Nutrient Work Group Technical Subcommittee Session Six

August 10, 2021

Welcome!

- Please keep your microphone muted until called on
- TSC Members may participate during discussions
- Please reserve public comment until the end
- *6 unmutes your phone

Mute

- State your name and affiliation before providing your comment
- Enter questions in the chat box at any time
- Turning off your video feed provides better bandwidth
- Please sign-in to the chat box with name and affiliation

Leave

More

Stop Video Participants Chat Share Screen Reactions

Agenda

Meeting Goal:

1. Respond to feedback on proposed response variables & thresholds. **2.** Continue discussion of response variables & thresholds, with details on collection timeframes, frequency, etc.

1:30 p.m. Welcome

1:35 p.m. Introductions

1:40 p.m. Summary of feedback DEQ received on its proposed response variables & thresholds

- 2:05 p.m. Western Montana wadeable streams (algal biomass measures)
 - Data collection timeframe, frequency of collection
- 2:25 p.m. Eastern Montana wadeable streams (DO, DO delta)
 - Data collection timeframe, instream equipment maintenance needs
 - Overview of large-scale factors which influence DO delta (2013-2017 study)
- 2:45 p.m. Relative change in response variables upstream and downstream of the point source
- 3:05 p.m. The additional response variables: How they might be used
- 3:15 p.m. Data and monitoring resources overview
- 3:25 pm: Public comment

Introductions Facilitator

• John Bernard

 \bullet

 \bullet

DEQ Staff

- Michael Suplee, Water Quality Science Specialist
- Rainie DeVaney, Discharge Permitting Section Supervisor
- Amy Steinmetz, Water Quality Division Administrator
- Jon Kenning, Water Protection Bureau Chief
- Galen Steffens, Water Quality Planning Bureau Chief
 - Myla Kelly, WQ Standards & Modeling Section Supervisor
 - Kristy Fortman, Watershed Protection Section Supervisor
 - Darrin Kron, WQ Monitoring & Assessment Section Supervisor

Introductions Nutrient Work Group Technical Subcommittee Members

Interest Group	Representative	Substitute
Point Source Discharger: Large Municipal Systems (>1 MGD)	Dave Clark	
Point Source Discharger: Middle-Sized Mechanical Systems (<1 MGD)	Vacant	
Point Source Discharger: Small Municipal Systems with Lagoons	Rika Lashley	Amy Deitchler
Point Source Discharger: Non-POTW	Shane Lacasse	
Municipalities	Amanda McInnis	Kelly Lynch
Mining	Matt Wolfe	
Farming-Oriented Agriculture	John Youngberg	
Livestock-Oriented Agriculture	Jay Bodner	
Conservation Organization - Local	Kristin Gardner	
Conservation Organization – Regional	Sarah Zuzulock	Stephanie Bonucci
Conservation Organization – Statewide	Sarah Zuzulock	Stephanie Bonucci
Environmental Advocacy Organization	Guy Alsentzer or Sarah Zuzulock	
Water or Fishing-Based Recreation	Guy Alsentzer or Sarah Zuzulock	
Federal Land Management Agencies	Andy Efta	
Federal Regulatory Agencies	Tina Laidlaw or Erik Makus	
State Land Management Agencies	Jeff Schmalenberg	
Water Quality Districts / County Planning Departments	Pete Schade	
Soil & Water Conservation Districts – West of the CD	Samantha Tappenbeck	
Soil & Water Conservation Districts – East of the CD	Dan Rostad	
Wastewater Engineering Firms	Coralynn Revis	
Timber Industry	Julia Altemus	

Ground Rules

- Speak one at a time—refrain from interrupting others.
- Wait to be recognized by the facilitator before speaking.
- Facilitator will call on people who have not yet spoken before calling on someone a second time for a given subject.
- Share the oxygen—ensure that all members who wish to have an opportunity to speak are afforded a chance to do so.
- Be respectful towards all participants.
- Listen to other points of view and try to understand other interests.
- Share information openly, promptly and respectfully.
- If requested to do so, hold questions to the end of each presentation.
- Remain flexible and open-minded, and actively participate in meetings.

Feedback from TSC on Response Variables and Thresholds: Discussion

For Western and Eastern Montana Wadeable Streams and Medium Rivers

For Large Rivers

Example Watershed with Multiple MPDES Permittees

Note: This map demonstrates monitoring locations upstream and downstream of point sources. The locations shown are for illustrative purposes only. In addition to upstream and downstream, monitoring downstream of the confluence would be required to demonstrate cumulative effects.

Data Collection Index Periods ("Growing Season")

Start and Ending Dates for Three Seasons (Winter, Runoff and Growing), by	/ Level III Ecoregion.
---	------------------------

					Start of	End of
	Start of	End of	Start of	End of	Growing	Growing
Ecoregion Name	Winter	Winter	Runoff	Runoff	Season	Season
Canadian Rockies	Oct.1	April 14	April 15	June 30	July 1	Sept. 30
Northern Rockies	Oct.1	March 31	April 1	June 30	July 1	Sept. 30
Idaho Batholith	Oct.1	April 14	April 15	June 30	July 1	Sept. 30
Middle Rockies	Oct.1	April 14	April 15	June 30	July 1	Sept. 30
Northwestern Glaciated Plains	Oct.1	March 14	March 15	June 15	June 16	Sept. 30
Northwestern Great Plains	Oct.1	Feb. 29	March 1	June 30	July 1	Sept. 30
Wyoming Basin	Oct.1	April 14	April 15	June 30	July 1	Sept. 30

Chlorophyll a Thresholds for Western MT

Entity	Benthic Chla (mg Chla /m ²) Threshold	Use Protected/Instream Value
MT's Clark Fork River (2002)	<100-150	Aquatic Life. Summer mean (100), maximum (150), ARM 17.30.631
MT: Recreational Threshold (2009)	<150	Recreational use
MT: Dissolved oxygen in lower-gradient western streams (2014)	<125	Salmonid fishes and assocaited aquatic life
Utah DEQ (2019)	<125	Recreational use
Ohio EPA (2015)	<182-320	Trophic Condition Status per Stream Nutrient Assessment Procedure. Chla threshold dependent on other WQ variables.
British Columbia (BCMOE 2001)	50-100	50 (aesthetics/recreation) 100 (undesireable aquatic life changes)
New Zealand Periphyton Guidelines (2000)	<120 filamentous, <200 diatoms	Trout habitat and Angling
New Zealand National Policy Statement (2017)	<200	A maximum value reflecting periodic short-duration blooms from moderate enrichment

HUC 8 Watersheds and Ecoregions

Western Montana Reference Sites (2001-2019)			
Descriptive Statistic	mg Chla /m ²		
25th percentile:	4		
50 percentile:	7		
75th percentile:	19		
90th percentile:	48		
Average:	21		
Min:	0		
Max:	591		

DEQ recommendation: 125 mg Chla/m²

Ash Free Dry Weight (AFDW) Thresholds for Western Montana

Entity	AFDW (g/m ²) Threshold	Use Protected/Instream Value
MT: Assessment Method (2016)	35	Recreation, salmonid fishes and associated aquatic life uses
Utah DEQ (2019)	49	Recreational use
New Zealand Periphyton Guidelines (2000)	35	Aesthetics/recreation and trout habitat and angling

HUC 8 Watersheds and Ecoregions

Western Montana Reference Sites (2013-2019)			
Descriptive Statistic	grams AFDW/m ²		
25th percentile:	0.4		
50 percentile:	2		
75th percentile:	5		
90th percentile:	11		
Average:	7		
Min:	0		
Max:	262		

DEQ recommendation: 35 mg Cha/m² Errata: DEQ recommendation:

35 g AFDW/m²

% Bottom Cover Thresholds for Western Montana

Entity	% Bottom Cover	Use Protected/Instream Value
Utah DEQ (2019)	<33%	Aquatic life
Main DEP (2021)	<18-35%	Nuisance algae cover threshold; varies by stream class
West Virginia DEP (2012)	<25%	recreational acceptance
Virginia CBF (2021)	in development	recreational acceptance
New Zealand Periphyton Guidelines (2000)	<60% (microalgae) <30% (filamentous)	Aesthetics/recreation and trout habitat and angling

HUC 8 Watersheds and Ecoregions

Draft DEQ recommendation: 30% cover

by filamentous algae

Example DEQ Standardized Visual Assessment Form Categories include % bottom cover,

length of filaments

Transect Letter:	D	Contraction		R. Lawrence St.	and a second
AQUATIC PLAN	IT VISUAL	0 = Absent (0%) 1 = Sparse (< 10%) 2 = Moderate (10-40%) 3 = Heavy (40-75%) 4 = Very Heavy (>75%)	G = Green GLB=Green/light brown LB= Light brown BR = Brown/reddish DBB =Dark brown/black	Gr = Growing M = Mature D = Decaying	Thin = < 0.5 mm thick Medium = 0.5-3 mm thick Thick = > 3 mm thick Short = < 2 cm long Long = >2 cm long
ASSESSMEN	T FORM	Actual Cover in channel (circle one)	Predominant Color	Condition	<u>Microalgae</u> : Thickness (Thin, Medium or Thick) and/or Measured Thickness (mm), <u>Filamentous Algae</u> : Length (Short or Long) and/or Measured Length (cm).
	Microalgae	0 (1) 2 3 4	GLB	M	THIN
FI	amentous Algae	0 1 (2) 3 4	GLB	M	LONG
	Chara	0 1 2 3 4	GLB	M	
Macropi	nytes (list below)	0 1 2 3 (4)	G	M	
	Moss	0 1 2 3 4	- G	Gr	
COMMENTS	1 1	and the		. 1.	
2990 p	Lo h	ill fail	Comman,	Watte .	spanael)
		55 55 55 55 55 55 55 55 55 55 55 55 55			
I ransect Letter:	4	O = Abaast (OP/)	C = Croop	Ca - Crewing	
	T VISUAL	1 = Absent (0%) 1 = Sparse (< 10%) 2 = Moderate (10.40%) 3 = Heavy (40-75%) 4 = Very Heavy (>75%)	GLB=Green/light brown LB= Light brown BR = Brown/reddish DBB =Dark brown/black	M = Mature D = Decaying	Medium = 0.5-3 mm thick Thick = > 3 mm thick Short = < 2 cm long Long = >2 cm long
ASSESSMEN	TFORM	Actual Cover in channel (circle one)	Predominant Color	Condition	Microalgae: Thickness (Thin, Medium or Thick) and/or Measured Thickness (mm). Filamentous Algae: Length (Short or I onc) and/or Measured Length (cm)
	Microalgae	0 1 2 3 4	G	Gr	THIN

*Note: photo does not correspond to the form's data.

Western MT: Sample Types and Frequency

HUC 8 Watersheds and Ecoregions

Near Field Sites

- <u>Benthic Chla, AFDW, and TP, TN</u> <u>concentrations</u>: At least twice annually during the index period, with at least six weeks between each sampling event
- <u>Visual Assessment of % Bottom Cover</u>: At least monthly during the index period; two events must pair with the Chla/AFDW sampling.

Far Field Sites

<u>TP, TN Concentrations</u>: At least twice annually during the index period, with at least six weeks between each sampling event. DEQ is considering if response variables should be required

Western MT: Sample Types and Frequency

HUC 8 Watersheds and Ecoregions

Tributaries

• <u>TP, TN Concentrations</u>: At least twice annually during the index period, with at least six weeks between each sampling event.

Technical Subcommittee Discussion and Feedback

Eastern Montana Wadeable Streams

HUC 8 Watersheds and Ecoregions

Dissolved Oxygen Delta: Daily High minus Daily Low

(DO standards will also apply, per DEQ-7, DO assessment SOP)

Data Collection Index Periods ("Growing Season")

Start and Ending Dates for Three Seasons (Winter, Runoff and Growing), by	/ Level III Ecoregion.
---	------------------------

					Start of	End of
	Start of	End of	Start of	End of	Growing	Growing
Ecoregion Name	Winter	Winter	Runoff	Runoff	Season	Season
Canadian Rockies	Oct.1	April 14	April 15	June 30	July 1	Sept. 30
Northern Rockies	Oct.1	March 31	April 1	June 30	July 1	Sept. 30
Idaho Batholith	Oct.1	April 14	April 15	June 30	July 1	Sept. 30
Middle Rockies	Oct.1	April 14	April 15	June 30	July 1	Sept. 30
Northwestern Glaciated Plains	Oct.1	March 14	March 15	June 15	June 16	Sept. 30
Northwestern Great Plains	Oct.1	Feb. 29	March 1	June 30	July 1	Sept. 30
Wyoming Basin	Oct.1	April 14	April 15	June 30	July 1	Sept. 30

DO Delta Thresholds for Eastern Montana

Entity	Dissolved Oxygen Delta	Use Protected/Instream Value
MT: Assessment Method (2016)	5.3	Non-salmonid fishes and associated aquatic life
Minnesota PCA (2015)	3-4.5	Aquatic life; vary by region (4.5 similar to E. MT ecoregions)
	C F	Trophic Condition Status, per Stream Nutrient Assessment
ONIO EPA (2015)	0.5	Procedure

Eastern Montana Reference Sites (2008-2010)

90% of the daily DO deltas <5.3 mg/L. Highest value was 6.6 mg/L in a site with abundant macrophytes

Draft DEQ recommendation: 5.3 mg/L

HUC 8 Watersheds and Ecoregions

Eastern MT: Sample Types and Frequency

HUC 8 Watersheds and Ecoregions

Near Field Sites

- <u>Dissolved Oxygen, DO Delta, Temperature</u>: Instruments must be deployed annually for a minimum of 30 continuous days with at least 21 days collected in August.
- <u>TP, TN Concentrations</u>: At least twice annually during the index period, with at least 30 days between each sampling event.

Far Field Sites

 <u>TP, TN Concentrations</u>: At least twice annually during the index period, with at least 30 days between each sampling event. DEQ is considering if response variable should also be required

Eastern MT: Sample Types and Frequency

HUC 8 Watersheds and Ecoregions

Tributaries

• <u>TP, TN Concentrations</u>: At least twice annually during the index period, with at least 30 days between each sampling event.

Instrument Maintenance

- Copper mesh keeps algae growth off the sensor for up to a month
 - Prevents interference with data
- Drifting algae and aquatic plants can smother instruments
 - Should be checked periodically during deployment (weekly ideal)

Technical Subcommittee Discussion and Feedback

Factors Affecting DO Delta in Prairie Streams

2013-2017 DEQ Study GLEC* assisted DEQ with analyses

- 78 unique sites
- DO delta measured from one to five years in summer/fall

*Great Lakes Environmental Center, Inc., Traverse City, MI

We Examined these Variables that Might Affect DO Delta

Land Use/Cover

 % area within watershed by type (19 types)
 Compiled for whole watershed, 5 km radius (from sampling point), 1 km radius

Petroleum-Based Well

- Count by age (actual, before/on-after 1990) or type within watershed
- Type= oil, gas, oil & gas

Topographic Slope

 Median, mean, variance, or maximum value (tangent) by watershed

Drought

- NOAA Palmer Indexes (Z-index, PMDI, PHDI)
 - By month by climate division → integrated to watershed
- National Drought Monitoring Center (% area, consecutive weeks)
 - By week by county → integrated to watershed

Water Chemistry

- Nutrients (concentration only)
 - TP, SRP
 - TN (measured), NO23, NH34
 - Conductivity, temp (both instantaneous and continuous), pH
- Events: 2013-2017 (various frequencies by site)
 - 73 sites every site not sampled each year some sites have data for 5 years, others 4,3,2,1 year

Aquatic Plants – Aquatic Visual Assessment

- Microalgae (diatoms and all "short" attached algae), filamentous algae, macrophyte, moss
- Cover (numerical), color, condition, and thickness (numerical)
- Events: 2013-2017 (various frequencies by site)
 - 73 sites same frequency as Water Chemistry if turbid no sample taken

Aquatic Plants – Plant Species

- Categorical presence/absence by species
 - Algae/macrophyte
- Events: 1 time sample only
 - 73 sites same frequency as Aquatic Visual Assessment – if turbid no sample taken
- ted to watershed

- Stream category (site count)
 - Perennial (25), intermittent (41), ephemeral (1), wetland type (6)
- 2. Drainage area (numeric)
- 3. Comparison (reference) site yes/no

Aquatic Plants - Periphyton (diatoms)

- % relative abundance, impairment probability (metric)
- End sample result or average begin/end sample

if turbid no sample taken

Events: 2013-2017 (various frequencies by site)
 73 sites – same frequency as Water Chemistry –

Dissolved Oxygen

- Multiple week sampling
 - Minimum: average/max
 - Variance of time series
 - Delta:
 - average/max
 - #days delta above threshold (mg/L)
 - 3.5 (Heiskary MN)
 - 5.3 (Suplee MT)
 - 6.5 (Miltner OH)
- Events: 2013-2017 (various frequencies by site)
 - 73 sites every site not sampled each year some sites have data for 5 years, others 4,3,2,1 year

Major Findings and Implications

- Recommended using average weekly DO Delta
- Drought cycles tend to have higher DO Delta, wet cycles lower
- Watersheds with higher % land use have higher DO delta
- Findings allow DO delta thresholds to be considered in light of other environmental factors that co-occur

Updated procedures regarding use of DO delta should come later this year

Technical Subcommittee Discussion and Feedback

Relative Change: Up- and Downstream of Point Source (Near Field

Sites)

DE()

MONTANA

Note: This map demonstrates monitoring locations upstream and downstream of point sources. The locations shown are for illustrative purposes only. In addition to upstream and downstream, monitoring downstream of the confluence would be required to demonstrate cumulative effects.

Relative Change Data Will Provide New Insights on the Effect of a Point Source

Scenario 1: Mixed results, minimal effect from point source. Little relative difference, and fairly variable (sometimes algae is lower below the facility, sometimes higher). Both upstream and downstream sites meet threshold of 125 mg Chla/m².

Benthic Chlorophyll <i>a</i> (mg/m ²)					
Sampling Event	Upstream	Downstream	Difference		
July 15, 2022	60	115	55		
August 15, 2022	55	54	-1		
July 15, 2023	90	91	1		
August 15, 2023	95	110	15		
July 15, 2024	30	75	45		
August 15, 2024	35	20	-15		
July 15, 2025	49	49	0		
August 15, 2025	70	60	-10		
July 15, 2026	10	50	40		
August 15, 2026	20	20	0		
5-Year Average:	51.4	64.4	13		

Scenario 2: Large effect from the point source. Algae is high below the facility and routinely exceeds the 125 mg Chla/m² threshold. Upstream, the river consistently meets the threshold. The problem can be clearly linked to the point source.

Benthic Chlorophyll a (mg/m ²)					
Sampling Event	Upstream	Downstream	Difference		
July 15, 2022	60	115	55		
August 15, 2022	55	300	245		
July 15, 2023	30	250	220		
August 15, 2023	35	115	80		
July 15, 2024	30	125	95		
August 15, 2024	35	140	105		
July 15, 2025	49	250	201		
August 15, 2025	25	275	250		
July 15, 2026	10	155	145		
August 15, 2026	20	155	135		
5-Year Average:	34.9	188	153.1		

DEQ is still working out the details of how all the data will be considered and assessed collectively

Technical Subcommittee Discussion and Feedback

Additional Response Variables

For Western and Eastern Montana Wadeable Streams and Medium Rivers

Western MT Wadeable Streams & Medium Rivers: Additional Response Variable

- Macroinvertebrates
 - Hilsenoff Biotic Index (HBI)

At near-field sites, DEQ proposes that no specific metric threshold will apply, because other environmental factors affect insect populations. Instead, DEQ will consider the relative HBI change u/s vs. d/s.

- Data will be used to support algae data results
- Sampling Frequency: At a minimum, once per annual index period, corresponding to one of the other sampling events

HUC 8 Watersheds and Ecorogions

Eastern MT Wadeable Streams & Medium Rivers: Additional Response Variable

• Biochemical Oxygen Demand (BOD5)

For near-field sites, DEQ proposes that no specific threshold apply, as our knowledge of natural BOD5 levels in prairie streams is limited. Instead, examine relative change in BOD u/s vs. d/s.

- Data will be used to support DO delta results
- Sampling Frequency: At a minimum, once per year during September or October (Note: October is after the index period).

IIUC 8 Watersheds and Ecorogions

Technical Subcommittee Discussion and Feedback

As Time Allows

Data and Monitoring Resources Overview

Water Quality Planning Bureau Monitoring

Collect water quality data from state waters

- Ambient data representing current conditions
- Streams, rivers, lakes/reservoirs, wetlands
- Many types of data (chemical, biological, physical)

Implement monitoring projects each field season

- Monitoring objectives vary across programs
- Project areas vary from year to year

Water Quality Planning Bureau Monitoring

Use three main approaches

- Internal
- Partnerships
- Volunteer Monitoring

Apply similar data quality requirements Data can be applied to multiple uses

• Similar field methods, analytical methods

Apply Similar data management approach

- Data is stored in the same location and format (EQuIS)
- Data is publicly available

Internal Monitoring

Each WQPB section monitors for several objectives:

Standards and Modeling

Standards Development Reference Conditions

Monitoring and Assessment **Beneficial Use Assessment**

Trend Analysis

Watershed Protection **TMDL Source Assessment**

Restoration Project Effectiveness

Monitoring Partnerships

Examples: State/federal agencies; water quality districts; municipalities; watershed groups; conservation districts

Volunteer Monitoring Support Program

Types of Data

Chemical parameters

- Water and benthic sediment
- Nutrients, metals, organics, other
- **Biological samples**
 - Algae (chlorophyll-a, AFDW)
 - Periphyton (taxa)
 - Macroinvertebrates (taxa)
- **Field parameters**
 - Instantaneous or continuous measurements
 - Dissolved oxygen, pH, specific conductivity, temperature

Discharge

Physical/sediment

Data Summary

Last 5 years (2016 - 2020)

Total number of result values* in database

- Internal monitoring projects: 175,985
- Volunteer monitoring projects: 32,284

* includes both analytes and field measurements

MONTAN

2021 Monitoring Projects

Accessing Data: EQuIS

DEQ's primary database for ambient water quality data

- Result values
- Metadata (e.g., station name, lat/long, method, reporting limit)
- Internal DEQ and external (partners, VM) data submittal
- Not publicly available via EQuIS
- Data is uploaded weekly from EQuIS to National Water Quality Portal

E EQuIS Enterprise	
▲ Username or Email *	1ª
Password*	and the second s
Login failed. Please try again or contact your system administrator.	44
Stay signed in SIGN IN	10
Forgot your password?	
Create New Account	
earths@ft	
7.21.2.21200 © EarthSoft, Inc.	
	 Equiparent et al et

Accessing Data: National Water Quality Portal

- Combines EPA's STORET and USGS's NWIS databases
- Contains data from EPA, USGS, states, tribes, watershed groups, other federal agencies, volunteer groups, and universities
- Includes most DEQ ambient water quality data
- Publicly available

National Water Quality Monitoring Council Working together for clean water

Water Quality Portal

The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA), and the National Water Quality Monitoring Council (NWQMC). It serves data collected by over 400 state, federal, tribal, and local agencies.

intact us

Accessing Data: Water Quality Assessments

Clean Water Act Information Center (CWAIC)

Here you will find information about the quality of Montana's rivers, streams, and lakes in relation to Montana's Water Quality assessments. These assessments are derived from available statewide water monitoring data and information. The Clean Water Act Information Center also provides access to Montana's Water Quality Reports and List of Impaired Surface Waters, as well as online search and mapping tools.

Search Water Quality Assessment Information

https://deq.mt.gov/water/resources

y Water By Location By Category	By Impairment	
earch by Water		
earch by water		
Waterbody Name		
Contract the access of the		
Optional Filters		
These filters allow you to reduce the sumber of	f requite returned from the above search criteria	
These liners allow you to reduce the number of	r results returned from the above search chiena.	
County		
O HOC4		
O TMDL Planning Area		
	O Search	

Accessing Data: Water Quality Assessments

CWAIC, continued...

Summary of assessment findings

Q New Scarch 🔲 Detailed	Assessment Report						
Cycle Year: 2020 Vi	ew detailed report by cycle y	rear					
Water Information							
JUD	MT41E0	02_030	Water Typ	e		RIVER	
/aterbody Name	Basin Ci	Basin Creek		HUC Name		Boulder	
ize (Miles / Acres)	16.70	16.70		HUC		10020006	
Ecoregion		Middle Rockies		Basin		Upper Missouri	
County		Jefferson County		Use Class		A-1	
TMDL Planning Area		Boulder - Elkhorn		Trophic Status and Trend			
Location		BASIN CREEK, headwaters to mouth (Boulder River)					
ater Quality Category	4A						
Beneficial Use Support In	oformation						
se Name	Fully Supporting	Not Fully Support	ting	Threatened	Insufficient Information	Not Assessed	
rinking Water		-		No			
rimary Contact Recreation				No			
gricultural				No		•	
quatic Life				No			

Detailed assessment record

Accessing Data: EPA's How's My Waterway? How's My Waterway? Informing the conversation about your waters. Let's get started! Use My Location Search by address, zip code, or place ... >> Go OR ∇ Choose a place to learn about your waters: Community National State **Explore Topics:** Swimming **Eating Fish Aquatic Life Drinking Water** DEU MONTANA

Accessing Data: EPA's How's My Waterway?

Accessing Data: Reports and Information

Other Monitoring Resources

Other resources that may be available for those developing Adaptive Management Plans:

- Standard Operating Procedures (SOPs) for field methods
- Training
- Equipment Support

Public Comment & Close of Meeting

Questions/ Comments

- Raise hand or type questions into the chat
- Please keep your microphone muted until called on
- If calling by phone, press*6 to unmute
- State your name and affiliation before providing your comment

Participants

Chat

Share Screen

Mute

Stop Video

MONTANA

Leave

More

Reactions

Next Meetings

- Next Technical Subcommittee Sept. 7, 2021, 1:30 – 3:30 PM Topic: Details for identifying point source long-term nutrient targets
- Nutrient Work Group Session 4 Aug. 25, 2021, 9-11 AM

Thanks for Joining Us

Contact: Mike Suplee, MSuplee@mt.gov Rainie Devaney, RDevaney@mt.gov

To submit comments or questions

http://deq.mt.gov/water/resources

