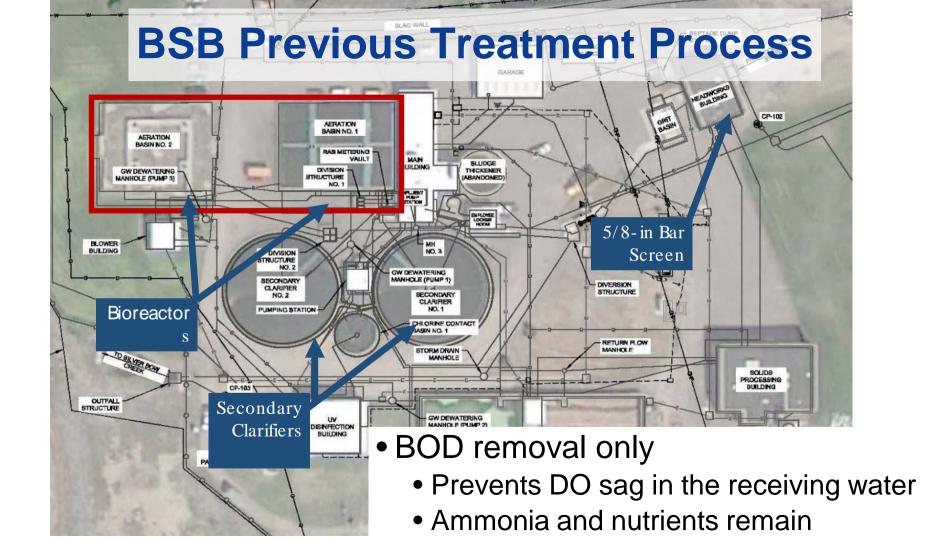


POTW's Proposed **AMP** Framework for Montana

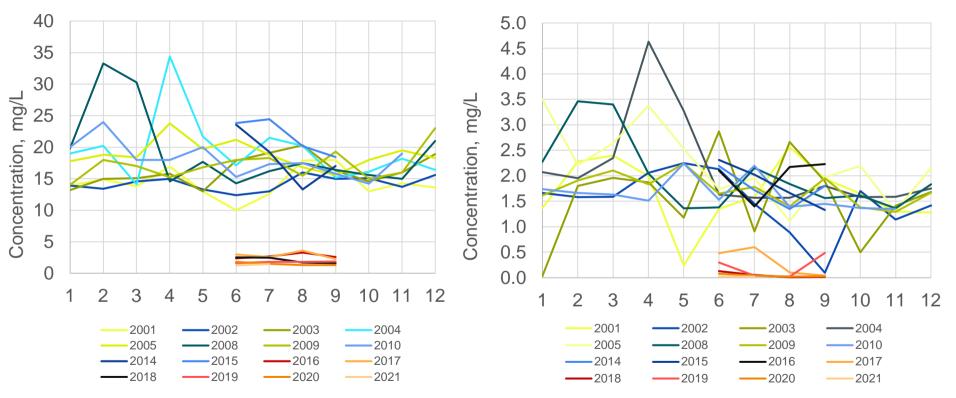

City of Billings' Water Reclamation Facility's recent \$75M upgrade

Agenda

- Cities' work on improving surface water quality
- Cost-benefit analysis
- Common goal supporting beneficial uses
- Region 8 States' approaches to interim limits
- Adaptive Management Plan flow charts
- Alt 5 TMDLs

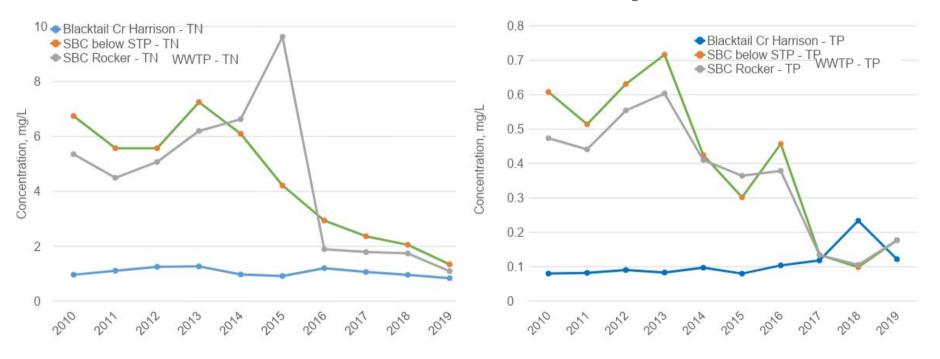
Silver Bow Creek and Butte WWTP 1998 to present

1998 VNRP and nutrient TMDL		2012-2015 Design of Butte WWTP Upgrade		2016 Completion of Butte MBR (limits of technology nutrient removal)		
	2005-2011 Planning for Butte WWTP Upgrade		2014 New Upper Clark Fork Nutrient TMDL (upstream of Deer Lodge)		Ongoing Stream Monitoring in Silver Bow Creek	



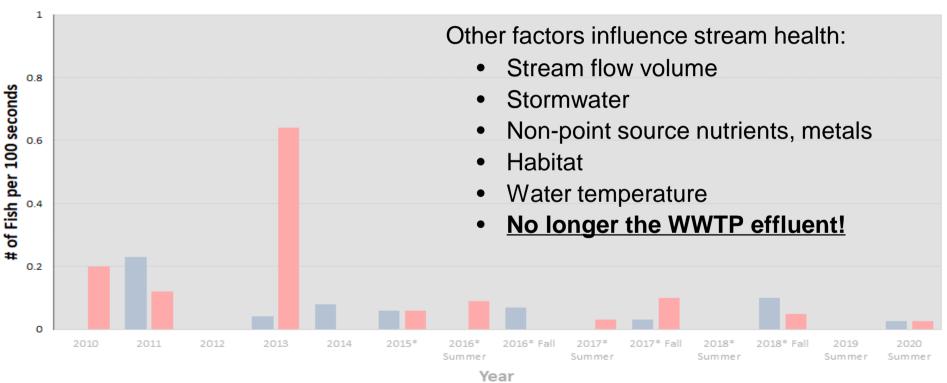
- <u>Capital</u> costs associated with upgrades for nutrient removal and better treatment in general:
 - \$35,000,000
- <u>Additional O&M Costs for higher level treatment:</u>
 - \$700,000 per year (total \$4.2M)

Effluent TN

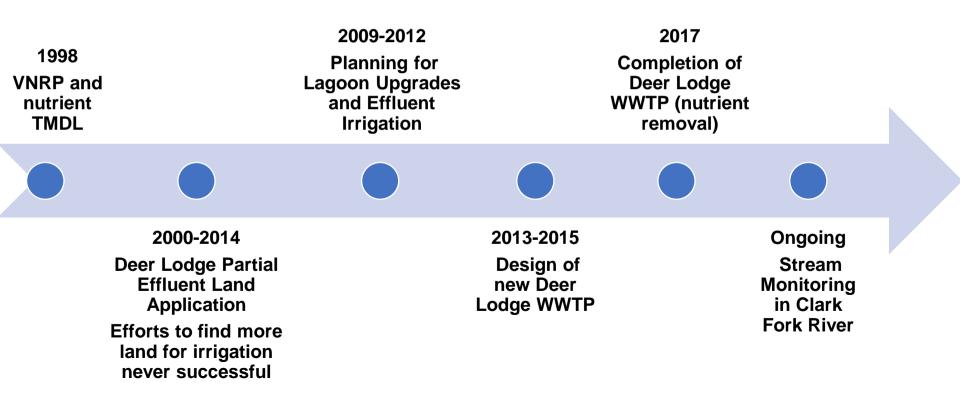


Blue-green – Old Process Yellow-red – New Process

Nutrient Load to Silver Bow Creek pounds per day (milligrams per liter)


	Total Nitrogen	Total Phosphorous
Old Process, 2001-2015 Avg.	626 lb/d (17 mg/L)	57 lb/ d (1.8 mg/ L)
New, no chemical addition, 2016-2017 Avg.	91lb/d (3.0 mg/L)	10 lb/d (0.3 mg/L)
New, process optimization, 2018-2019 Avg.	68 lb/d (1.94 mg/L)	4.7 lb/d (0.14 mg/L)
New, with chemical addition, 2020-2021Avg.	27 lb/ d (1.42 mg/ L)	0.74 lb/d (0.03 mg/L)

Silver Bow Creek - Decreasing nutrient concentrations downstream of plant outfall...


... No increased fish population since 2010

Silver Bow Creek @ Rocker

Brook Trout Cutthroat Trout

Upper Clark Fork River and Deer Lodge Lagoon/WWTP - 1998 to present

Deer Lodge Previous Treatment Process

Population: ~3,150

Number of Operators: 1 (also public works director)

Deer Lodge 2017 WWTP

- Population: ~2,900
- Number of Operators: 2 (public works superintendent plus backup)
 - Bio-N removal (target effluent 8 mg/L)
 - Chemical P-removal (target effluent 0.8 mg/L)
 - Ongoing efforts to reduce infiltration will further improve WWTP nutrient removal

Costs

- <u>Capital</u> costs associated with upgrades for nutrient removal and better treatment in general:
 - \$17,000,000
- <u>Additional O&M</u> Costs for higher level treatment with nutrient removal:
 - \$200,000 per year (total of \$300,000)

Further Reductions?

- Compliance with existing zero WLA has proved impossible
 - Sufficient land for land application could never be secured
 - Further reducing effluent nutrients is very costly for little gain
 - Decreasing rate payer base makes additional financial investments very costly
- More data is needed
 - Identify non-point nutrient sources
 - Identify best strategy for reducing nutrient sources with greatest impact

Great Falls WWTP

Missouri River

Large River, numeric criteria were not developed

Sampling in 2012, model not completed, complicated by dam and upstream impacts

B-2 water of the state

Not listed as impaired for nutrients in the stretch where the City discharges

Great Falls Facility Improvements & Missouri River Water Quality - 2000 to Present

Pre 2000 303(d) Impairment Listings Sun and other segments of Missouri		2010 Facility Plan and Mixing Zone Study		2012 – 20 Construct 3-Stage M Upgrad	ion 1LE	2018 Updated Facilities Master Pla		2015 - Present Evaluating CIP and financial options fo future \$65M Biological Nutrient Removal (BNR)
		•		ullet	•	lacksquare	•	ullet
	Pre 2000 Basic Secondary Treatment		2012 Wastewater Facility Upgrade Design	Ç	2017 Beg establishing w relationships local waters stakeholde	orking with hed	2019-20 Be installing nut treatmer optimization instrumenta	trient nt on

D.... 0000

Circa 2000 Great Falls WWTP Facility

Basic Secondary Treatment 10.5 MGD **Effluent Quality** Phosphorus 5 mg/L Nitrogen 25 mg/L

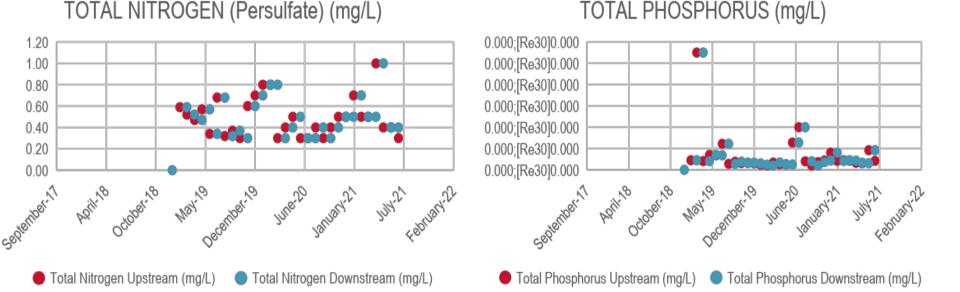
Missouri River TMDL Status

Location	Miles	Causes of Impairment	Probable Sources
Headwaters To Toston Dam	22	Arsenic, Nitrogen, Sedimentation	Agriculture, Municipal WW, Natural
Toston Dam To Canyon Ferry Reservoir	22.6	Cadmium, Copper, Lead, Sediment	Agriculture, Resource
Holter Dam To Little Prickly Pear Creek	2.8		Agriculture, Hydromod, Municipal WW , Natural
Little Prickly Pear Creek To Sheep Creek	20.9	Arsenic, Nitrogen, Sediment	Agriculture, Hydromod, Natural
Sheep Creek To Sun River	65.3		Agriculture, Hydromod, Urban Storm, Natural
Sun River To Rainbow Dam	7	Chromium, Mercury, PCBs, Sediment, Selenium, Solids, Turbidity	Legacy, Hydromod, Industrial, Urban Storm, Agriculture
Rainbow Dam To Morony Dam	9.1	Arsenic, Copper, PCBs, Sediment, Temp, Turbidity	Legacy, Hydromos, Resource, Industrial, Natural
Morony Dam To Marias River	54.6	Aluminum, Arsenic, Cadmium, Chlorophyll, Copper, Iron, Lead, Nitrogen, Phosphorous , Sediment, Zinc	Agriculture, Hydromod, Industrial
(Sun) Muddy Creek to Mouth		Nitrogen, Phosphorus, Sediment, Total Suspended Solids, Other flow alterations	Agriculture, Irrigated Crop Production, Rangeland Grazing, Channelization

Great Falls Biological Nitrogen Removal Upgrade

- \$16M upgrade
- MLE Nitrogen Removal Process with bonus phosphorus removal
- 13.3 MGD
- Typical TN 8 mg/L 77% Removal Typical TP – 0.5 mg/L 85% Removal

What it takes to do "more"


Nutrient treatment upgrades done *before* permit required

BNR = \$65 M (in prepandemic 2018 \$'s)

Great Falls Post Upgrade Monitoring

- Gathering monthly samples for nutrients
- Upstream to Downstream monitoring not statistically significant

Visual on Response Variables

Upstream Activities

Potentially harmful blue-green algae reported in Helena reservoirs, officials say

Tom Kuglin Aug 15, 2018 Updated Aug 20, 2018 🔍 0

Missouri River Impacts

• Septics

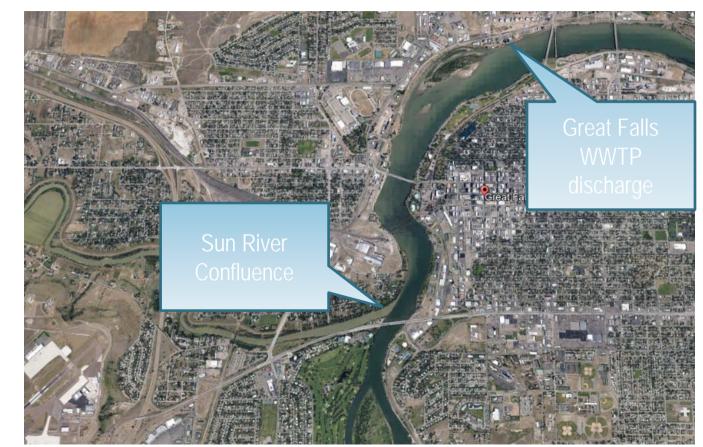
Hardy Creek to Craig – relatively high density housing on septics
 Impaired Reach = Prickly Pear to Sheep Creek

• Helena Valley septics

Impaired Reach = Holter to Prickly Pear?

Fish Hatchery and Ag Impaired Reach = Morony to Marias?

Improvements


Craig and Wolf Creek now have package plants
 Both paid for improvements with resort taxes

Sun River Impacts

 Impaired for TN and TP at the confluence with Missouri

Agriculture,
 Irrigated Crops,
 Grazing

 Small PS dischargers?

Summary

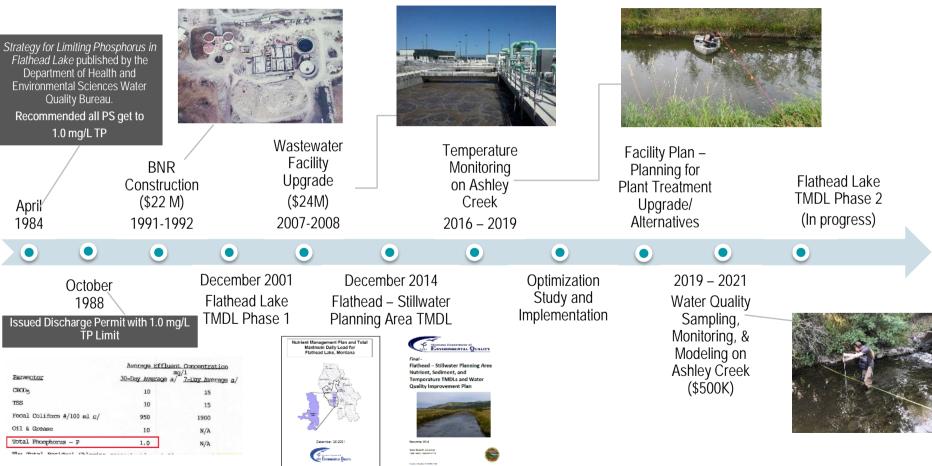
% point source removal without permit requirement

Discharge doesn't seem to impact the Missouri River

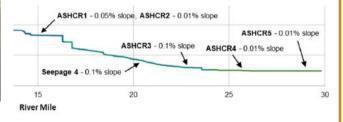
What next investment makes the most sense?

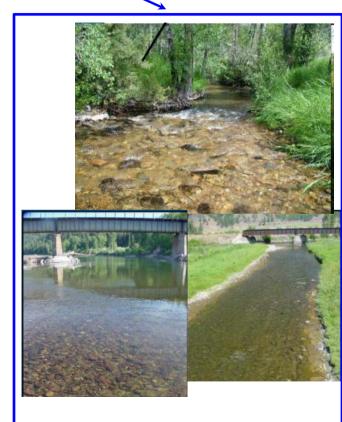
Impacts for other pollution sources nearby?

Collaboration


- Sun River Watershed Group
- Cascade Conservation District
- Cascade County

Kalispell's Efforts to Improve Water Quality in Ashley Creek


Kalispell Facility Improvements & Ashley Creek Water Quality: 1980s to Present



Ashley Creek is <u>NOT</u> a Typical Western MT Wadeable Stream

Natural Characteristics: No gravel or potential for gravel recruitment Low gradient and "U" shaped channel form Very low flows in late summer and early fall Backwater from Flathead River in lower reaches

Award Winning Treatment Facility

- Two National 1st Place
 U.S EPA Clean Water
 Act Recognition
 Awards
- Advanced Nutrient Removal (Modified Johannesburg Process)
- Effluent Quality
 - Phosphorus = 0.13 mg/L
 - ~ 97% Reduction
 - Nitrogen = 7.7 mg/L
 ~ 83% Reduction

Summary

- TMDLs have not considered improvements in water quality that have already occurred
- Important reductions in NPS loading have not occurred and should be addressed in the AMP
- General response/thresholds benchmarks for waterbodies should not be used when
 not applicable
- Significant investments already made to reduce PS nutrient loading to Ashley Creek

Common Goal – Supporting Beneficial Uses

- Nutrients do not have direct toxic effects (like metals/arsenic)
- Simple dose-response relationships do not exist for nutrients
- Relationship between nutrients and biology is complicated:
 - Habitat issues (IBI)
 - Stream geometry (depth, width, shape, slope, bed, banks)
 - Flow alteration (dewatered for irrigation?)
 - Light penetration (canopy)
 - Temperature
 - Climate change

Simply reducing nutrients, without addressing these other issues, will not move toward supporting beneficial uses of our water bodies.

Region 8 Approaches to Interim Values

- Use Technology Based Effluent Limits (TBEL)
- Annual Median or Annual Average values for application to TBEL
- Delayed implementation of Nitrogen
- Incentives for early compliance

TBELs and incentives can be options for the glide path to water quality standards

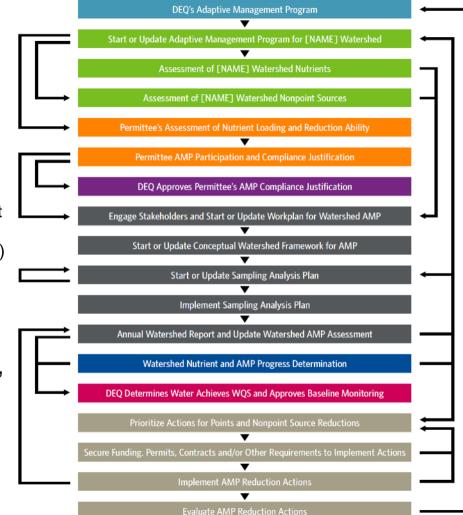
Region 8 Eutrophication Regulation Status

Colorado

- Chla standards
- Interim TBELs at 15 mg/L TIN, 1 mg/L TP
- Numeric standards set for 2027
- Incentive program for early removal

Utah

- * "Start with P, Interim N Reductions Later"
- * 1 mg/L Total P Technology Based Effluent Limit
- Percent cover rather than algae density


Wyoming/North Dakota/South Dakota

- WY-Working on an interpretation of the narrative standard for streams and lakes
- ND-Working on an interpretation of the narrative for lakes/reservoirs
- SD-specific regions have a clhl-a based approved for lakes/reservoirs

AMP Flowsheet

- Suggested improvement considerations
- Additional details to further define the process
- Feedback loops for modifications/updates
 - More realistically portray the iterative AMP process that incorporates mid-course adjustment and continues over an extended period of time (multiple permit cycles)
- Broader responsibilities for a SB358 Balanced Watershed Approach
- Potential for AMP prepared by Permittees, or DEQ, or an AMP Developer working on behalf of a group of stakeholders
- Conceptual Watershed Approach
 Guideline for AMP development

Schedule & Timeframes

- Years 0 to 2: Initiate AMP Process
- Years 3 to 5: Engagement, Monitoring, Reporting
- Years 2 to 5 Beyond: Prioritize Management Actions, Implementation, Feedback, Reprioritize

GENERAL SCHEDULE: Year 0 DEQ's Adaptive Management Program Year O Start or Update Adaptive Management Program for [NAME] Watershed Year 0 to 2 Assessment of [NAME] Watershed Nutrients Year 0 to 2 Assessment of [NAME] Watershed Nonpoint Sources Year 0 to 2 Permittee's Assessment of Nutrient Loading and Reduction Ability Year 3 Permittee AMP Participation and Compliance Justification Year 3 DEO Approves Permittee's AMP Compliance Justification

Year 3

and Throughout Year 3 to 5

and Throughout

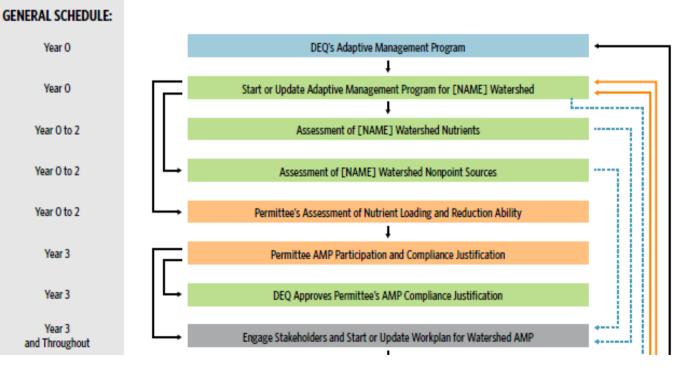
Year 0 Start or Update Sampling Analysis Plan and Throughout Year 0 Implement Sampling Analysis Plan and Throughout Year 3 and Annual Watershed Report and Update Watershed AMP Assessment Annually Afterward Year 2 Watershed Nutrient and AMP Progress Determination and Biennially Year 2 and DEQ Determines Water Achieves WQS and Approves Baseline Monitoring Annually Afterward Vear 3 and Prioritize Actions for Points and Nonpoint Source Reductions Annually Afterward Year 4 and Secure Funding, Permits, Contracts and/or Other Requirements to Implement Actions Annually Afterward Year 4 and Implement AMP Reduction Actions Annually Afterward Year 5 and Evaluate AMP Reduction Actions Annually Afterward

.

.

Engage Stakeholders and Start or Update Workplan for Watershed AMP

Start or Update Conceptual Watershed Framework for AMP


LEGEND: DEQ Program Action Permitte Action Group DEQ/Permittee/Other Action DEO Action

AMP Developer (likely Permittee or group of Permittees) Action

 Action or Step --- Informs Adaptive or Update Step; Potentionally Repeating

Years 0 to 2: Initiate AMP Process

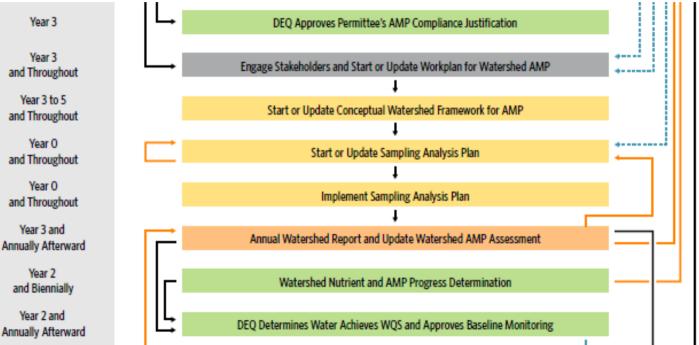
- Watershed Assessment
- Loading Analysis
- Permittee
 Participation
 - Justification
 - DEQ Approval
- ID Stakeholders
 - Feed Forward

Years 3 to 5: Engagement, Monitoring, Reporting

- Engage Stakeholders
- Conceptual Watershed Approach
- Monitoring Feedback 0 Adjustments
- Annual Reporting

Year 2 and Biennially Year 2 and Annually Afterward

Year 3


Year 3

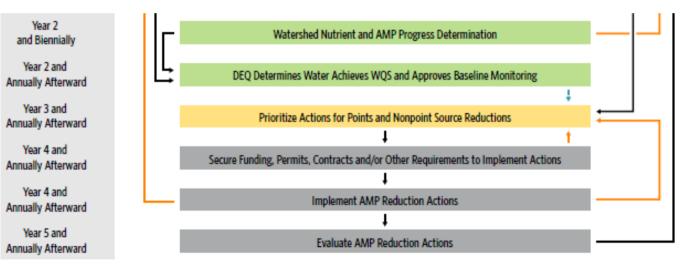
Year 3 to 5

Year O

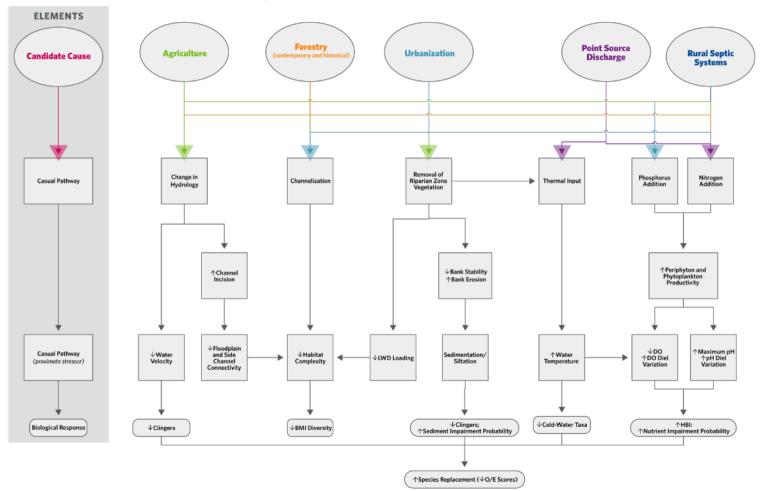
Year O

Year 3 and

Years 2 to 5 Beyond: Prioritize Management Actions, Implementation, Feedback, Re-prioritize


• Candidate

Management Actions


Point Source

- Nonpoint Source
- Funding

 ID Sources & Pursue
- Implementation
 - Prioritization
 - Trends Analysis
 - Evaluate AMP
 - Feedback
 - Re-prioritize
- Annual Reporting

Conceptual Watershed Model

Effluent Limits in AMP

- AMP process evolves over time
 - Near term definition of numerical effluent limits infeasible
 - Existing permits vary: no effluent nutrient limits, existing effluent limits, administratively extended
- NPDES limits may be expressed as numeric or non-numeric discharge requirements
 - Federal regulations authorize non-numeric effluent limits in lieu of numeric limits where "Numeric effluent limitations are infeasible." 40 CFR 122.44(k)(3)
- Non-numeric effluent limits based on Best Management Practices (BMP)
 - \circ AMP = BMP

Proposed AMP Implementation

Conceptual Watershed Model Development

First Phase

Monitoring:

- Response Variables
- TN and TP
- Major Tributaries
- Upstream/Downstream Extent
- Retain Existing TN/TP Approach
- Reference AMP for BMPs

AMP

-

-

Special Conditions:

- Watershed Inventory
- · Annual Reporting
- Optimization Efforts

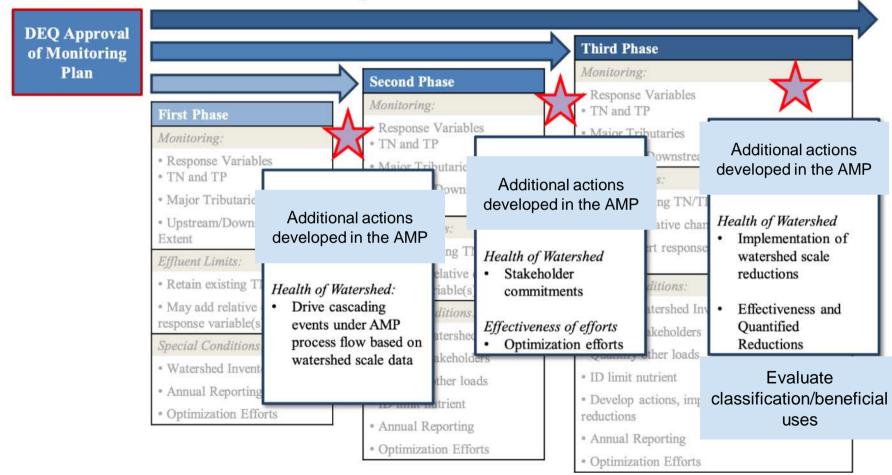
-Review beneficial use classification -Review impairment/assessment -Response Variables Determine if PS makes a material difference in response variables-if so enter Detailed AMP

Second Phase

Monitoring:

- Response Variables
- TN and TP
- Major Tributaries
- Upstream/Downstream Extent
- -Retain Existing TN/TP Approach, if appropriate -Reference AMP for BMPs -AMP
- Special Conditions:
 - Update Watershed Inventory
- Engage Stakeholders
- Quantify other loads
- ID limiting nutrient
- Annual Reporting
- Optimization Efforts
- -Response variables review
- -Conceptual Watershed Model review/update

Third Phase


Monitoring:

- Response Variables
- TN and TP
- Major Tributaries
- Upstream/Downstream Extent
- -Retain Existing TN/TP Approach, if appropriate -Reference AMP for BMPs

Special Conditions:

- Update Watershed Inventory
- Engage Stakeholders
- · Quantify other loads
- ID limit nutrient
- Develop actions, implement, and assess reductions and health of watershed
- Annual Reporting
- Optimization Efforts
- -Response variables review
- -Conceptual Watershed Model review/update

Key Decision Points

Adaptive Management Plan/TMDL Nexus

- How to reconcile TMDLs based on numeric values with new AMPs
- Consider alternative/iterative TMDL approaches
- EPA supported this idea in 2016 memo, also in Wisconsin
- Moving the response variable analysis into the AMP/TMDL has precedent and allows broader analysis than a permitting framework

Closing

- Point sources have invested heavily in capital, power, and chemical consumption to reduce point source loads
- Reached the point where new "cost-benefit analysis" needs to be done to make most effective decisions
 - Net environmental benefit needs to be considered
 - In many cases, further mechanical treatment often achieves little demonstrated benefit to the receiving water
 - Residents that pay for treatment have reached maximum capacity

Questions?