Clarks Fork Yellowstone Watershed Water Quality Monitoring Project

Abbie Ebert April 24th, 2024

Questions or Comments

- Raise hand (*9 if on the phone) or type questions into the Q&A
- DEQ will unmute you if you wish to provide your comment orally
- If calling by phone, press*6 to unmute
- State your name and affiliation before providing your comment

Why are we monitoring here and now?

- Watershed value and vulnerability
- Local interest
- Time lapse in data

Purpose of Monitoring and Assessing Water Quality

- Update the status of previous water quality issues.
- Determine the overall health of the Clarks Fork Yellowstone watershed.
- Total Maximum Daily Loads (TMDLs)

Beneficial Uses

Are goals and expectations specified in water quality standards for state surface waters uses.

Clarks Fork Yellowstone Watershed Beneficial Uses

- Drinking, culinary, and food processing purposes, after conventional treatment;
- Bathing, swimming, and recreation;
- Growth and propagation or marginal propagation of salmonid fishes and associated aquatic life, waterfowl and furbearers;
- Agricultural water supply; and
- Industrial water supply (ARM 17.30.623).

Water Quality Planning Process

3 - 4 Years

Monitor Water Quality

Collect data about water quality.

1 - 2 Years

Assess Water Quality

• Describe water quality and determine whether waters are "impaired" (do not meet water quality standards and do not fully support beneficial uses).

1 - 3 Years

Identify Sources of Pollution and Develop TMDLs

- Estimate amount of pollution from identified sources.
- Determine reductions needed for impaired waters to meet water quality standards and recommend pollution reduction strategies.

On Going

Support Water Quality Protection Practices

 Support efforts to reduce point and nonpoint source pollution and protect and restore water quality.

2023 Monitoring

- Monitored June Oct.
- 17 Waterbodies
- 51 Monitoring Sites
- Water Quality Parameters
 - Nutrients and Response Variables
 - Metals
 - E.coli
 - Oil and Gas Parameters

2023 Monitoring Sites

Slide 10

EA0

Need new maps Ebert, Abbie, 2023-02-12T19:50:37.971

Clarks Fork Yellowstone River: Nitrogen Results

Clarks Fork Yellowstone River: Phosphorus Results

Bear Creek: Nutrient Results

- Total phosphorus and total nitrogen are elevated during spring runoff.
 - Could be due to runoff after the 2021 fire.
- Total nitrogen does not follow a seasonal or upstream to downstream pattern.
- No exceedances of chlorophyll a or ash free dry weight.

Silvertip Creek: Nutrient Results

- Elevated concentrations of ammonia, total nitrogen, total phosphorus, and soluble reactive phosphorus at the WY border.
- Total nitrogen and total phosphorus decreases from upstream to downstream.

Dry Creek: Nutrient Results

 Total nitrogen and total phosphorus increase in concentrations from upstream to downstream.

Bridger Creek: Nutrient Results

- Total nitrogen and total phosphorus increase from upstream to downstream.
- South Fork Bridger Creek provides most of the flow to Bridger Creek.

Bluewater Creek: Nutrient Results

- Total suspended solids, total phosphorus, total nitrogen, and nitrite + nitrate concentrations increase from upstream to downstream.
- One exceedance of ash free dry weight.

Spring Creek: Nutrient Results

- Total nitrogen and nitrite + nitrate are the highest tributary concentrations in the watershed.
- In 2023, each nitrite + nitrate concentration was above 4.0 mg/L in 2023.

Rock Creek: Nitrogen Results

Rock Creek: Phosphorus Results

E. Coli Results

Definitions: Metals Standards

- Chronic Standard: Long duration at a lower concentration.
- Acute Standard: Short duration at a higher concentration.
- Hardness Dependent Standards: Acute and chronic toxicity is dependent on hardness concentrations.

Clarks Fork Yellowstone River: Metals Results

- Aluminum (Aquatic Life): 3 chronic exceedances
- Copper (Aquatic Life): 2 acute exceedances and 14 chronic exceedances
- Iron (Aquatic Life): 53 chronic exceedances * Iron concentrations are high
- Lead (Aquatic Life): 15 chronic exceedances

Silvertip Creek: Metals Results

- Arsenic (Human Health): 17 exceedances
- Chromium (Human Health): 1 exceedances
- Lead (Human Health): 1 acute exceedance
- Copper (Aquatic Life): 1 acute exceedance
- Iron (Aquatic Life): 19 chronic exceedances
- Lead (Aquatic Life): 2 chronic exceedances
- Zinc (Aquatic Life): 1 acute exceedances & 1 chronic exceedances

Clarks Fork Yellowstone Tributaries: Iron Results

Clarks Fork Yellowstone Tributaries: Lead Results

Clarks Fork Yellowstone Tributaries: Copper Results

2022-2023 Monitoring Key Points

- Elevated metals during runoff.
- High concentrations of iron throughout the Clarks Fork Yellowstone Valley.
- Multiple exceedances of copper and lead.
- Exceedances of nutrient thresholds

2024 and 2025 Monitoring

2024 Monitoring

- Cooney Reservoir: Nutrients, Algae, Metals, E.coli
- Response variable monitoring: Algae, Dissolved Oxygen, and Macroinvertebrates
- E.coli monitoring on CFY and Rock Creek
- Clear Creek monitoring sites
- One Spring Creek site will be added back
- Continue oil and gas parameter monitoring on Silvertip Creek.

2025 Monitoring

- Cooney Reservoir: Nutrients, Algae, Metals, E.coli
- Sediment Monitoring

Questions or Comments

- Raise hand (*9 if on the phone) or type questions into the Q&A
- DEQ will unmute you if you wish to provide your comment orally
- If calling by phone, press*6 to unmute
- State your name and affiliation before providing your comment

