

# **Hellgate Elementary School**

## *SOURCE WATER DELINEATION AND ASSESSMENT REPORT*

**Hellgate Elementary School**  
Public Water System

**PWSID # MT0003702**

**Date of Report: 6/30/2004**

*Richard Riebe*  
**Certified Operator**  
*2385 Flynn Lane*  
*Missoula, MT 59808*  
**(406) 728-5626**

# Table of Contents

|                                             |             |
|---------------------------------------------|-------------|
| <b>Acknowledgments</b>                      | <b>iii</b>  |
| <b>Glossary</b>                             | <b>v</b>    |
| <b>Introduction</b>                         | <b>viii</b> |
| <b>Chapter 1, Background</b>                | <b>1</b>    |
| <b>Chapter 2, Delineation</b>               | <b>3</b>    |
| <b>Chapter 3, Inventory</b>                 | <b>9</b>    |
| <b>Chapter 4, Susceptibility Assessment</b> | <b>12</b>   |
| <b>References</b>                           | <b>14</b>   |

## Figures

- [Figure 1](#) - *Missoula Valley West* Location Map
- [Figure 2](#) - *Hellgate Elementary* Area Map
- [Figure 3](#) - General Surficial Geologic Map
- [Figure 4](#) - General Potentiometric Surface Map
- [Figure 5](#) - Geologic Cross Section and Hydrogeologic Conceptual Model
- [Figure 6](#) - *Missoula Valley West* Inventory Region
- [Figure 7](#) - Surface Water Buffer Zones and Recharge Areas
- [Figure 8](#) - Land Use Classification
- [Figure 9\(a-c\)](#)-Concentration/Classification of Septic Systems within Inventory Region
- [Figure 10](#) - Contaminant Source Inventory

## Tables

- Table 1 -- Missoula Valley West Area Background Water Quality
- Table 2 -- PWS Water Quality
- Table 3 -- Summary of Geologic and Hydrogeologic Studies of upper Clark Fork
- Table 4 -- Summary of Geologic and Hydrogeologic Maps of upper Clark Fork
- Table 5 -- PWS Information
- Table 6 -- Time-of-travel Input Parameters
- Table 7 -- Significant Potential Contaminant Sources
- Table 8 -- Relative Susceptibility based on Hazard and Barriers
- Table 9 -- Non-point Source Relative Hazard Ratings
- Table 10 - Susceptibility Assessment

## Appendices

- APPENDIX A - PWS System Layout and Sanitary Survey
- APPENDIX B - Well Logs for PWS
- APPENDIX C - MBMG-GWIC Well Logs for Area
- APPENDIX D - Time of Travel Calculations
- APPENDIX E - Inventory Sheets
- APPENDIX F - Checklist
- APPENDIX G - Letter of Concurrence

## **ACKNOWLEDGMENTS**

This Delineation and Assessment Report for the Hellgate Elementary PWS (source #003702) was completed by Michelle Hutchins, Jon Harvala, and Travis Ross, Environmental Health Specialists with the Missoula Valley Water Quality District. The Missoula Valley is located in Missoula County. The system can be contacted through Richard Riebe (406) 728-5626.

**GLOSSARY  
AND  
LIST OF ACRONYMS\***

**Acute Health Effect** An adverse health effect in which symptoms develop rapidly.

**Alkalinity** The capacity of water to neutralize acids.

**Aquifer** A water-bearing layer of rock or sediment that will yield water in usable quantity to a well or spring.

**AST** Aboveground storage tank.

**Best Management Practices (BMPs)** Methods that have been determined to be the most effective, practical means of preventing or reducing pollution from nonpoint sources.

**Coliform Bacteria** Bacteria found in the intestinal tracts of animals. Their presence in water is an indicator of pollution and possible contamination by pathogens.

**Confined Aquifer** A fully saturated aquifer overlain by a confining unit such as a clay layer. The static water level in a well in a confined aquifer is at an elevation that is equal to or higher than the base of the overlying confining unit.

**Confining Unit** A geologic formation that inhibits the flow of water.

**Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)** Enacted in 1980. CERCLA provides a Federal "Superfund" to clean up uncontrolled or abandoned hazardous-waste sites as well as accidents, spills, and other emergency releases of pollutants and contaminants into the environment. Through the Act, EPA was given power to seek out those parties responsible for any release and assure their cooperation in the cleanup.

**Delineation** A process of mapping source water management areas.

**DEQ** Montana Department of Environmental Quality.

**EPA** United States Environmental Protection Agency.

**GWIC** Ground-Water Information Center online well database administered by the Montana Bureau of Mines and Geology.

**Hardness** Characteristic of water caused by presence of various chemical compounds. Hard water may interfere with some industrial processes and prevent soap from lathering.

**Hazard** A measure of the potential of a contaminant leaked from a facility to reach a public water supply source. Proximity or density of significant potential contaminant sources determines hazard.

**HazMat** Hazardous Materials Response Team.

**Hydraulic Conductivity** A coefficient of proportionality describing the rate at which water can move through an aquifer.

**Inventory Region** A source water management area that encompasses the area expected to contribute water to a public water supply within a fixed distance or a specified groundwater travel time.

**Maximum Contaminant Level (MCL)** Maximum concentration of a substance in water that is permitted to be delivered to the users of a public water supply. Set by EPA under authority of the Safe Drinking Water Act.

**MGWPCS** Montana Ground Water Pollution Control System.

**MPDES** Montana Pollution Discharge Elimination System.

**NOAA** National Oceanic and Atmospheric Administration.

**Nitrate** An important plant nutrient and type of inorganic fertilizer. In water, the major sources of nitrate pollution are septic tanks, sanitary sewers, feed lots and fertilizers.

**Nonpoint-Source Pollution** Pollution sources such as stormwater runoff that are diffuse and do not have a single point of origin or are not introduced into a receiving stream from a specific outlet.

**NPL** National Priority List (Superfund).

**Pathogens** Bacterial organisms typically found in the intestinal tracts of mammals, capable of producing disease.

**Point Source** A stationary location or fixed facility from which pollutants are discharged.

**Public Water System** A system that provides piped water for human consumption to at least 15 service connections or regularly serves 25 individuals.

**Pumping Water Level** Water level elevation in a well when the pump is operating.

**Recharge Region** Source water management region that is generally the entire area that could contribute water to an aquifer used by a public water system. Includes areas that could contribute water over long time-periods or under different water usage patterns.

**Resource Conservation and Recovery Act (RCRA)** Enacted by Congress in 1976. RCRA's primary goals are to protect human health and the environment from the potential hazards of waste disposal, to conserve energy and natural resources, to reduce the amount of waste generated, and to ensure that wastes are managed in an environmentally sound manner.

**SDWA** Safe Drinking Water Act.

**Source Water Protection Area** For surface water sources, the land and surface drainage network that contributes water to a stream or reservoir used by a public water supply.

**Static Water Level (SWL)** Water level elevation in a well when the pump is not operating.

**Susceptibility (of a PWS)** The potential for a public water system to draw water with contamination at concentrations that would pose concern. Susceptibility is evaluated at the point immediately preceding treatment or, if no treatment is provided, at the entry point to the distribution system.

**Synthetic Organic Compounds (SOC)** Manmade organic chemical compounds such as herbicides and pesticides.

**Total Dissolved Solids (TDS)** The dissolved solids collected after a sample of a known volume of water is passed through a very fine mesh filter.

**Transmissivity** The ability of an aquifer to transmit water.

**Trihalomethanes (THMs)** Organic chemicals formed as disinfection byproducts

**Unconfined Aquifer** An aquifer containing water that is not under pressure. The water table is the top surface of an unconfined aquifer.

**UST** Underground storage tank.

**Volatile Organic Compounds (VOC)** Any organic compound that evaporates readily to the atmosphere.

**MWQA** Montana Water Quality Act.

**WQD** Missoula Valley Water Quality District.

\* Definitions taken from EPA's Glossary of Selected Terms and Abbreviations  
(<http://www.epa.gov/ceisweb1/ceishome/ceisdocs/glossary/glossary.html>)

## **INTRODUCTION**

This report is intended to meet the technical requirements for the completion of the delineation and assessment report for the Hellgate Elementary School PWS as required by the Montana Source Water Protection Program and the federal Safe Drinking Water Act (SDWA).

The Montana Source Water Protection Program is intended to be a practical and cost-effective approach to protecting public drinking water supplies from contamination. A major component of the Montana Source Water Protection Program is termed delineation and assessment. The emphasis of this delineation and assessment report is identifying significant potential contaminant threats to public drinking water sources and providing the information needed to develop a source water protection plan for the Hellgate Elementary School PWS.

Delineation is a process whereby areas that contribute water to aquifers or surface waters used for drinking water, called source water protection areas, are identified on a map. Geologic and hydrologic conditions are evaluated in order to delineate source water protection areas. Assessment involves identifying locations or regions in source water protection areas where contaminants may be generated, stored, or transported and then determining the potential for contamination of drinking water by these sources.

Delineation and assessment is the foundation of source water protection plans, the mechanism the Hellgate Elementary School PWS can use to protect their drinking water source. Although voluntary, source water protection plans are the ultimate focus of source water delineation and assessment. This delineation and assessment report is written to encourage and facilitate the Hellgate Elementary School PWS operator and the community to complete a source water protection plan that meets their specific needs.

# CHAPTER 1

## BACKGROUND

### The Community

The city of Missoula is located in the Missoula Basin at the southern end of the Missoula-Ninemile Valley ([Figure 1](#)). The population of Missoula County in 2000 was 95,802 with 57,053 people living in the city of Missoula (Census 2000). The Bitterroot River enters Missoula from the south and the Clark Fork River enters from the northeast. US Highway 93 serves Missoula from the south and the north and Interstate 90 passes along the northern edge of Missoula ([Figure 2](#)). Major Missoula area employers include the University of Montana, and the two local hospitals, each employing more than 1000 people. Stimson Lumber operates a lumber and plywood mill in the Bonner area, and employs 450 people. Other economic contributors include Smurfit-Stone Container, several transportation companies, as well as tourism, small businesses and outlying agriculture and timber operations. Wastewater from the community is collected in one sanitary sewer system, which, after treatment, discharges into the Clark Fork River near the western edge of Missoula. Surrounding areas rely on onsite sewage disposal systems. Mountain Water Company supplies Missoula residents and businesses with the majority of the city's drinking water; depending on location, some properties are served by individual or small public water supply wells.

### Geographic setting

Missoula is located in the southern end of the Missoula-Ninemile Valley as shown in [Figure 1](#). The valley elevation ranges from approximately 3000 to 3200 feet above sea level, with surrounding mountain ranges, including the Sapphire Range to the east, the Bitterroot Range to the south, the Rattlesnake Range to the north, and the Ninemile Divide to the west, rising to elevations of 5000 to 8000 feet. The Clark Fork and Bitterroot Rivers drain the valley; the Clark Fork flows westward through the valley, and the Bitterroot flows across the southwest corner of the valley, and joins the Clark Fork at Kelly Island, approximately 4 miles west of the City of Missoula. Milltown Dam and Milltown Reservoir are located approximately 5 miles upstream from Missoula at the confluence of the Clark Fork and Blackfoot Rivers. Rattlesnake Creek was a main source of drinking water until an outbreak of illness associated with Giardia lamblia in 1983 prompted the local water company to discontinue use of Rattlesnake Creek water and rely exclusively on groundwater from the Missoula Aquifer. The Missoula Aquifer has been designated a "sole-source" aquifer by the United States Environmental Protection Agency.

The climate in Missoula is typical of western Montana. Missoula receives approximately 13.5 inches of rain per annum, and 45 inches of snow. The annual average temperature is 44°F with average maximum temperatures occurring in July (83°F) and average minimum temperatures occurring in January (15°F).

### General description of the Source Water

The Hellgate Elementary School wells are completed in the Missoula Valley alluvial aquifer. The aquifer primarily consists of unconsolidated alluvial sand, gravel and cobbles and is recharged mainly by leakage from the Clark Fork River, flow from Tertiary sediments and fractures in Precambrian and Cambrian bedrock of the surrounding hills, leakage from irrigation canals, and underflow from the Clark Fork Valley and tributary drainages (Woessner, 1988; Smith, 1992).

## The Public Water Supply

The Hellgate Elementary School PWS is a non-transient, non-community water system that obtains water from one well finished in the Missoula Valley Aquifer. The well is located on West Broadway, west of Missoula, in Missoula County. The well draws from 71 feet below the ground surface. The Hellgate Elementary School PWS currently serves an estimated population of 400 with 1 active service connections. The location of the well is shown in [Figure 2](#). The well is linked to one captive air tank, located in Building #2, prior to distribution. A general plan showing the layout of the distribution system is presented in Appendix A, with a copy of the sanitary survey.

## Water Quality

Every PWS is required to perform monitoring for contamination to their water supply. Water is typically monitored for total coliform and fecal coliform, nitrates, metals and chemicals. The monitoring schedule depends on the population served, the number of wells and the source water for the PWS. DEQ defines monitoring programs and protocols that are specific to each PWS. The Hellgate Elementary PWS #3702 had reported violations of total coliform MCLs in August of 1998 and 2000. Table 1 lists typical levels of constituents for the Missoula Aquifer in this area.

The Milltown Dam and Reservoir “Superfund” site, approximately 4 miles upstream from Missoula, has been collecting runoff sediment from upstream mine tailings for decades and consequently harbors several million tons of toxic mine sediments that contain high levels of arsenic and copper. There is currently a plume of arsenic-contaminated groundwater, with arsenic levels exceeding Safe Drinking Water Act MCLs, in the Hellgate Valley Aquifer in Milltown, Montana, upgradient from Missoula. This groundwater contamination rendered several wells in Milltown unusable, and required development of a replacement water source for many residents. The plume appears to have been relatively stable during the period of monitoring, 1982 to present, based upon the existing limited distribution of monitoring wells. No immediate threat to wells in the Missoula area is indicated, because of dilution in the highly conductive aquifer. Furthermore, flow paths generated as part of this study indicate that water from the Hellgate School PWS primarily originates in the Grant Creek drainage and adjacent hills, rather than from the Clark Fork (see [Figure 4](#)), so the threat to this PWS should be negligible.

Portions of the Clark Fork River downstream could be threatened, as sediment from the reservoir is released during periodic events such as floods and ice jams, spreading contamination downstream. Data from a past ice jam event indicate that copper, which is highly toxic to fish but less toxic to humans, rather than arsenic, was the contaminant of concern after this event. Dam failure is also possible, and this would inundate downstream areas with toxic sediments.

The proposed removal of the dam and the most-contaminated sediments from behind the dam would largely eliminate this threat to downstream areas. The removal process may temporarily increase copper and arsenic levels downstream, but these levels are not expected to be hazardous to human health. In the long-term, dam and sediment removal should eliminate the arsenic-contaminated groundwater plume in Milltown, and improve downstream water quality. The Milltown Reservoir issue is further discussed in the *Inventory* section of this report.

**Table 1. Sample water quality data for the Missoula Aquifer, Grant Cr. Area (WQD, 1996-2003; MDEQ analytical results, 1995-2001).**

| Sample date        | Well #/ Location                                   | pH  | Ca Mg/L | SO <sub>4</sub> Mg/L | NO <sub>3</sub> Mg/L | Cl Mg/L | Fl (Mg/L) | As Mg/L | Ba Mg/L | Organic Contaminants |
|--------------------|----------------------------------------------------|-----|---------|----------------------|----------------------|---------|-----------|---------|---------|----------------------|
| 1996 - 2003 (Ave.) | WQD # 4; PWS 437, 828, 3305. 13N19W 6,7; 14N19W 32 | 7.2 | 24.4    | 4.49                 | 1.09                 | 3.6     | <0.0005   | 0.0006  | 0.15    | None Detected        |

**Table 2. Water quality data for Hellgate Elementary School (MDEQ, PWS analytical results, 1995-2003).**

| Sample Date      | Well #/ Location            | NO <sub>3</sub> (Mg/L) | Fl (Mg/L) | Ba (Mg/L) | Cd (Mg/L) | THMs (Mg/L) | Other Organic Contaminants |
|------------------|-----------------------------|------------------------|-----------|-----------|-----------|-------------|----------------------------|
| 1995-2003 (Ave.) | PWS #3702 – 13N19W, sect. 7 | 0.88                   | <0.0005   | 0.32      | <0.0005   | 0.0013      | None Detected              |

## CHAPTER 2

### DELINEATION

The source water protection area, the land area that contributes water to the Hellgate Elementary School PWS, is identified in this chapter. Four management areas are identified within the source water protection area: the control zone, inventory region, surface water buffer zone and recharge region. The control zone, also known as the exclusion zone, is an area at least 100-foot radius around the well. The inventory region represents the zone of contribution of the well, which approximates a three-year groundwater time-of-travel. Analytical equations describing ground water flow using estimates of pumping and aquifer characteristics and simple hydrogeologic mapping are used to calculate groundwater time-of-travel distance. The surface water buffer zone is delineated based on standard distance criteria of 10 miles upstream from the ground water inventory zone and encompasses ½ mile width of land area on each side of the drainages. The recharge region represents the entire portion of the aquifer that contributes water to the Hellgate Elementary School water system.

#### Hydrogeologic Conditions

Geologic and hydrogeologic studies of the Missoula area are listed in Table 3, with a summary of maps listed in Table 4. The following description is derived from these reports.

The Missoula Valley is part of a structural basin that began to open about 65 million years ago, during the early Tertiary crustal movement that created the Rocky Mountains. Precambrian metasedimentary rocks of the Belt Supergroup, and a few interspersed Paleozoic sedimentary rocks surround the valley, with peaks of 5000 to 7000 feet elevation. This relatively impermeable and deeply eroded landscape was partially filled with Tertiary and Quaternary alluvium, and Glacial Lake Missoula clays and silts. Portions of the Tertiary sediments were scoured from the valley during the repeated draining of Glacial Lake Missoula approximately 12,000 to 15,000 years ago, during the Wisconsin glacial stage, and were replaced with layers of sand, gravel and cobbles, deposited during these catastrophic events and more recent alluvium deposited along the river channel and flood plain. The sediments generally become finer to the southwest of the valley as a result of dissipating energy after sediment-carrying water flowed out of Hellgate Canyon and across the broader Missoula Valley, depositing coarser sediments first and then gradually allowing deposition of finer sediments.

The Missoula Aquifer is unconfined or semi-confined, depending on location, and composed mainly of unconsolidated Quaternary alluvium. The Quaternary alluvium consists of three main layers: a top sand/silt, gravel, cobble and boulder layer, which is most often above the water table, a middle clay-rich layer, which yields little water, and a bottom layer of sand, gravel and cobbles, which is the main water-bearing unit (Smith, 1992; Woessner, 1988). Layers of clay and silt deposited in Glacial Lake Missoula are interfingered with sand and gravel layers that were deposited between the multiple episodes of draining and refilling the Lake, creating a complex stratigraphy. Tertiary deposits (mostly Renova and Sixmile-Creek Equivalents) flank and underlie the area of Quaternary alluvium, but Renova Equivalent sediments are generally fine-grained and much less productive than the more recent deposits; probable Sixmile Creek Equivalent sediments do yield useable quantities of water in some parts of the valley. Some wells in the outlying areas of the valley are finished in Precambrian bedrock, but these derive water mainly from fractures and are also much less productive than the main water-bearing alluvium. Depth to the water table ranges from approximately 6 to 110 feet below land surface, depending on drought conditions and distance from rivers and tributary streams. The seasonal fluctuation of the groundwater table ranges from approximately 2 to 13 feet (Woessner, 1988) and

depends upon proximity to the recharge source and hydraulic conductivity of the surrounding aquifer sediments. The lateral extent of the Missoula Aquifer varies from about 0.25 miles wide at the mouth of Hellgate Canyon, to 6.25 miles wide between Maclay Flats and the mouth of Grant Creek; the overall length is approximately 20 miles. Groundwater flows generally southwest by westward through the Hellgate Elementary School area. The aquifer in this area is classified as having moderate source water sensitivity, because it is semi-confined and comprised of unconsolidated alluvium. The Missoula Valley Aquifer has been designated a “Sole Source Aquifer” by the U.S. EPA. A geologic map of the Missoula area is presented in [Figure 3](#). [Figure 4](#) represents a generalized ground water flow map. Geologic cross sections are shown in [Figure 5](#).

**Table 3. List of geologic or hydrogeologic investigations for the Missoula area.**

| Title of Project                                                                                                     | Reference               | Area Covered                                        | Project Purpose.                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Interactions Between the Clark Fork River and Missoula Aquifer, Missoula County, Montana                             | K.W. Clark, 1986        | Missoula Valley                                     | Define hydrogeology of Clark Fork River and Missoula Aquifer.                                                       |
| Hydrogeology and water resources of the Missoula Basin, Montana                                                      | A.L. Geldon, 1980       | Missoula Basin                                      | To determine the storage potential of the basin.                                                                    |
| Geographic, Geologic, and Hydrologic Summaries of Intermontane Basins of the Northern Rocky Mountains, Montana       | Kendy and Tresch, 1996. | Intermontane basins of the northern Rocky Mountains | Summarize the geographic, geologic and hydrologic characteristics of the Rocky Mountain region in western Montana.  |
| Geology and Ground-water Resources of the Missoula Basin, Montana                                                    | McMurtrey, et al., 1965 | Missoula Basin                                      | Summary of geology and hydrogeology                                                                                 |
| A Single Layer Transient Flow Model of the Missoula Aquifer                                                          | R.D. Miller             | Missoula Valley                                     | Computer model to define groundwater flow and hydraulic properties of the Missoula Aquifer.                         |
| The Source, Fate and Movement of Herbicides in an Unconfined, Sand and Gravel Aquifer in Missoula, Montana           | M.H. Pottinger, 1988    | North central Missoula Valley                       | Hydrologic properties and groundwater flow of aquifer to determine source and fate of herbicide contamination.      |
| The Hydrogeology of the Central and Northwestern Missoula Valley                                                     | C.A. Smith, 1992        | Portion of Missoula Valley                          | Geology, hydrologic properties, groundwater flow, interaction with river and water quality of the Missoula Aquifer. |
| Missoula Valley Aquifer Study: Hydrogeology of the eastern portion of the Missoula Aquifer, Missoula County, Montana | W.W. Woessner, 1988     | Eastern portion of the Missoula Aquifer             | To assess existing and future anthropogenic effects on the aquifer                                                  |

**Table 4. List of geologic or hydrogeologic maps available for the Missoula area.**

| <b>Title or Description</b>                                            | <b>Date</b> | <b>Area Covered</b>                                                                        | <b>Reference</b>                                                                                                          |
|------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Geologic Map of the Missoula West 30' x 60' Quadrangle                 | 1998        | Missoula Valley west of Missoula, and Bitterroot Valley south to Stevensville, MT          | Lewis, R.S., 1998.<br>MBMG Open File 373.                                                                                 |
| Potentiometric Map, March 1993 and June 1993                           | 1994        | Hellgate Canyon, Missoula County                                                           | Gestring, S.L., 1994.<br>The Interaction of the Clark Fork River and the Hellgate Valley on the Aquifer Near Milltown, MT |
| Geologic Map and Sections of the Bonner Quadrangle, Montana            | 1961        | Bonner Quadrangle                                                                          | Nelson and Dobell, 1961                                                                                                   |
| Generalized geologic map of the Butte 1 X 2 degree quadrangle, Montana | 1987        | Approximately 100 X 70 mi. area of Missoula, Powell, Lewis & Clark and Deer Lodge Counties | Wallace, C.A., USGS Miscellaneous Field Studies Map MF-1925                                                               |

### Conceptual Model and Assumptions

A conceptual hydrogeologic model is a simplified representation of the hydrogeologic system. This section describes the conceptual model used for this report.

The ground water in this part of the Missoula Valley is generally semi-confined under discontinuous Glacial Lake Missoula silts and clays, and occurs primarily in unconsolidated Quaternary sand and gravel units, which are laterally and basally bounded by much less permeable tertiary sediments and bedrock. Tertiary sediments and fractured bedrock yield small quantities of water in some areas. Recharge is derived mainly from the Clark Fork River, underflow from the Clark Fork Valley, tributary drainages and Tertiary units flanking the valley. The Clark Fork River loses water to the aquifer along some stretches and gains water from the aquifer along other stretches of its path through the Missoula Valley (Smith, 1992; Woessner, 1988). Ground water flows generally west northwestward through this area ([Figure 5](#)).

### Methods and Criteria

The Montana Department of Environmental Quality specifies the methods and criteria used for source water protection zone delineation for the Hellgate Elementary School PWS (DEQ, 1999). Because the Missoula Aquifer communicates with the Clark Fork River and tributary streams in the area, Surface Water Buffer Zones were applied to the Clark Fork River and tributary drainages. Time-of-travel calculations were completed for the ground water system using the uniform flow equation (U.S.E.P.A. 1991). Using published reports, estimates of the aquifer properties were made and are discussed in the following section. The recharge area is defined as the area where the aquifer is present upgradient from the well(s). The surface water buffer zones were delineated based on standard distance criteria of 10 miles upstream from the ground water inventory zone and encompassed ½ mile width of land area on each side of the drainages.

### Well(s) Information

The well is located on Flynn Lane north of Mullan Road, in T13N, R19W, section 7, in Missoula County. Table 5 is a summary of the well information and Appendix B contains copies of the well log.

**Table 5. Source well information for Hellgate Elementary School PWS.**

| Information                               | Well #1                                         |
|-------------------------------------------|-------------------------------------------------|
| PWS Source Code                           | <b>03702-002</b>                                |
| Well Location<br>(T, R, Sec or lat, long) | <b>Lat: 46.8928°</b><br><b>Long: -114.0547°</b> |
| MBMG#                                     | <b>197283</b>                                   |
| Water Right #                             | <b>C0004838-00</b>                              |
| Date Well was Completed                   | <b>7/15/75</b>                                  |
| Total Depth                               | <b>71 ft</b>                                    |
| Perforated Interval                       | --                                              |
| Static Water Level                        | <b>19 ft</b>                                    |
| Pumping Water Level                       | --                                              |
| Drawdown                                  | --                                              |
| Test Pumping Rate                         | <b>150 gpm</b>                                  |
| Specific Capacity                         | --                                              |

### Model Input

Time-of-travel input values are conservative assumptions made to identify areas that potentially impact source water for the Hellgate Elementary School PWS. These values assume that the general characteristics of the aquifer are the same for both wells. The criteria for selection of each value used for this delineation is summarized as follows:

**Thickness:** The thickness of the aquifer is estimated to be 100 ft, inferred from area well logs and published estimates (Smith, 1992; Pottinger, 1988).

**Hydraulic Conductivity:** A value for hydraulic conductivity is estimated to be 800 ft/day, based upon specific capacity data from well logs, and typical hydraulic conductivities of unconsolidated alluvial deposits. We have chosen a value that should provide a conservative estimate of time-of-travel distances.

**Transmissivity:** The estimated value for transmissivity in this area is 80,000 ft<sup>2</sup>/day (T = Kb, where K = hydraulic conductivity = 800 ft/day; b = aquifer thickness = 100 ft).

**Hydraulic Gradient:** The hydraulic gradient of 0.0084 is derived from Missoula Valley Water Quality District water level data from 1999.

**Flow Direction:** The estimated average flow direction for the purposes of this study is slightly southwest by westward (236 degrees), based on WQD water level data (1999).

**Porosity:** Effective porosity is the percent of rock/sediment volume occupied by interconnected voids, and is estimated at 25%. The estimated value is considered representative of unconsolidated sand and gravel, and is between two published estimates of 20% (Clark, 1986) and 40% (McMurtrey et al., 1965).

**Pumping Rate:** The estimated combined pumping rate of the wells is based on 25 gallons per day, estimated use per person (Salvato, 1992).

#### Time-of-Travel Calculation

Travel distances for 100 days, one year and three years are calculated based on input parameters summarized below. The one-year time-of-travel distance is used in Chapter 4 to rate the hazards of potential contaminant sources.

**Table 6. Estimates of input parameters used to delineate the Hellgate Elementary School source water protection area.**

| Input Parameter               | Range of Values          | Values Used                      |
|-------------------------------|--------------------------|----------------------------------|
| <b>PWS Source Code</b>        |                          | <b>003702 –002</b>               |
| <b>Transmissivity</b>         | <b>45,000 – 210,000</b>  | <b>80,000 ft<sup>2</sup>/day</b> |
| <b>Thickness</b>              | <b>90 – 140 ft.</b>      | <b>100 ft.</b>                   |
| <b>Hydraulic Conductivity</b> | <b>500 - 1500 ft/day</b> | <b>800 ft/day</b>                |
| <b>Hydraulic Gradient</b>     | <b>0.0019 – 0.01</b>     | <b>0.0084</b>                    |
| <b>Flow Direction</b>         | <b>213 – 258 deg.</b>    | <b>236 deg.</b>                  |
| <b>Effective Porosity</b>     | <b>20 – 40%</b>          | <b>25%</b>                       |
| <b>Pumping Rate</b>           | <b>0.5 – 2.3 gpm</b>     | <b>6.9 gpm</b>                   |
| <b>100-day TOT</b>            | <b>239 – 7505 ft</b>     | <b>2705 ft<br/>0.51 miles</b>    |
| <b>1-Year TOT*</b>            | <b>870 – 27,500 ft</b>   | <b>9875 ft<br/>1.87 miles</b>    |
| <b>3-Year TOT*</b>            | <b>2605 – 82,250 ft</b>  | <b>29,500 ft<br/>5.59 miles</b>  |

\*Time of Travel

#### Delineation Results

The results of the calculations indicate an estimated average distance of 2705 feet (0.51 miles) for a 100-day time of travel (TOT), an average distance of 9875 feet (1.87 miles) for a one-year TOT and an average distance of 29,500 feet (5.59 miles) for a three-year TOT. The delineated inventory zones are depicted in [Figure 6](#) for the Hellgate Elementary School PWS. The surface water buffer zones for the Clark Fork River are shown in [Figure 7](#). The recharge region for the aquifer comprises the aquifer upgradient from the supply wells, delineated in the inventory zone. A 45-degree range of groundwater flow directions was used to define the lateral boundaries of the inventory region ([Figure 5](#)).

### Limiting Factors

This delineation is based on estimated aquifer properties, pumping conditions and groundwater flow conditions, and assumes uniform flow in a homogeneous aquifer. Conclusions based on this interpretation are uncertain because the extent and properties of the aquifer, and the direction and rate of groundwater flow are not known precisely, and the actual transient flow and heterogeneous stratigraphy can only be roughly approximated by the above assumptions. Time-of-travel distances are estimates based on available data. We have chosen input parameter values that will give us conservative but reasonable estimates of capture zones. This should provide a protective margin for inaccuracy inherent in calculations of this nature.

## CHAPTER 3

### INVENTORY

An inventory of potential sources of contamination was conducted for the Hellgate Elementary School PWS within the control and inventory regions. Potential sources of all primary drinking water contaminants and pathogens were identified, however, only significant potential contaminant sources were selected for detailed inventory. The significant potential contaminants in the Hellgate Elementary School PWS inventory region are nitrate, pathogens, fuels, solvents, herbicides, pesticides, and metals. The inventory for the Hellgate Elementary School PWS focuses on all activities in the control zone, municipal and private facilities in the inventory region, and general land uses and large facilities in the recharge region.

#### Inventory Method

Available databases were searched to identify businesses and land uses that are potential sources of regulated contaminants in the inventory region. A “windshield survey” was conducted to obtain additional information for this assessment. The following steps were followed:

Step 1: Urban and agricultural land uses were identified from the U.S. Geological Survey's Geographic Information Retrieval and Analysis System. Sewered and unsewered residential land use was identified from boundaries of sewer coverage obtained from municipal wastewater utilities. Septic system density outside of the sewered area was evaluated using the Montana Department of Revenue Computer Assisted Mass Appraisal (CAMA) database.

Step 2: EPA's Envirofacts System was queried to identify EPA regulated facilities located in the Inventory Region. This system accesses facilities listed in the following databases: Resource Conservation and Recovery Information System (RCRIS), Biennial Reporting System (BRS), Toxic Release Inventory (TRI), and Comprehensive Environmental Response Compensation and Liability Information System (CERCLIS). The available reports were browsed for facility information including the Handler/Facility Classification to be used in assessing whether a facility should be classified as a significant potential contaminant source.

Step 3: The Permit Compliance System (PCS) was queried using Envirofacts to identify Concentrated Animal Feeding Operations with MPDES permits. The water system operator or other local official familiar with the area included in the inventory region identified animal feeding operations that are not required to obtain a permit.

Step 4: Databases were queried to identify the following in the inventory region: Underground Storage Tanks (USTs), hazardous waste contaminated sites (DEQ CECRA and WQA sites), landfills, abandoned mines and active mines including gravel pits. Any information on past releases and present compliance status was noted.

Step 5: County records were queried to identify businesses that generate, use, or store chemicals in the inventory region. The facilities include equipment manufacturing and/or repair facilities, printing or photographic shops, dry cleaners, farm chemical suppliers, and wholesale fuel suppliers.

Step 6: A “windshield survey” was undertaken to identify additional potential contaminant sources not listed in the databases.

Step 7: Major road and rail transportation routes were identified throughout the inventory region.

Step 8. All land uses and facilities that generate, store, or use large quantities of hazardous materials were identified within the recharge region and identified on the base map.

Potential contaminant sources are designated as significant if they fall into one of the following categories:

- 1) Large quantity hazardous waste generators.
- 2) Landfills.
- 3) Underground storage tanks.
- 4) Known groundwater contamination (including open or closed hazardous waste sites, state or federal superfund sites, and UST leak sites).
- 5) Underground injection wells.
- 6) Major roads or rail transportation routes.
- 7) Cultivated cropland greater than 20 % of the inventory region.
- 8) Animal feeding operations.
- 9) Wastewater treatment facilities, sludge handling sites, or land application areas.
- 10) Septic systems.
- 11) Sewer mains.
- 12) Storm sewer outflows.
- 13) Abandoned or active mines.

#### Inventory Results/Control Zone

The area immediately surrounding the well is residential.

#### Inventory Results/Inventory Region

Significant potential contaminant sources for the Hellgate Elementary School PWS include nearby septic systems; fuel and chemical spills along transportation routes and pipelines; stormwater injection wells and underground storage tanks. The presence of sewered area Hellgate Elementary School is approximately  $\frac{3}{4}$  miles from the railroad line and Highway 10, 1.6 miles from I-90, and 1.8 miles from the petroleum pipeline. Historic releases of fuel to groundwater have occurred at the Conoco/Yellowstone Pipeline Terminal and the Cenex gas station on North Reserve. In addition, there was a release of pesticides at the County Weed Control facility near the mouth of Grant Creek in the 1980's. None of these releases have impacted Hellgate Elementary wells and future impacts are unlikely. There are underground storage tanks at a Town Pump gas station, upgradient from Hellgate Elementary approximately 1 mile, and a removed UST at J.R. Dailey just over a mile upgradient. BFI landfill is approximately 2 miles upgradient from Hellgate wells. There is currently a plume of VOC contaminated groundwater beneath the landfill, and extending approximately 700 feet beyond the landfill; Hellgate Elementary is far enough away that no impacts from the landfill have been identified, and future impacts are unlikely, as the newer landfill cells are lined and drained, and have a soil vapor extraction system, all mitigating VOC migration. The Missoula White Pine Sash CECRA site, which impacted soil and groundwater with dioxin-laced pentachlorophenol and diesel fuel, is approximately 3.5 miles upgradient from Hellgate Elementary. However, the plume of contaminated groundwater extends offsite only several hundred feet, and appears to be relatively stable, so this should not threaten Hellgate wells. Septic system density is approximately  $85.3/\text{mi}^2$  in the 1-year time-of-travel, and

72.7/mi<sup>2</sup> in the 3-year time-of-travel region. The significant potential contaminant sources within the inventory zone are listed in Table 7. The general locations of these sources are shown in [Figure 10](#).

#### Inventory Results/Surface Water Buffer Zones

Significant potential contaminant sources for the surface water buffer zone are pathogens and nitrates from sewage disposal systems and agricultural land use (which may also contribute pesticides and herbicides to surface waters), and chemicals from toxic release sites. Septic system density for the surface water buffer zone is 6.5/mi<sup>2</sup>. No permitted confined animal feeding operations are listed in the EPA database for this area. Hellgate Elementary School is approximately 1.1 mile from the Clark Fork River.

#### Inventory Results/Recharge Region

The land use in the recharge region is primarily evergreen forest (73%), crop/pasture (10%), grass/rangeland (9%), commercial/industrial (7%), and residential (1.36%).

**Table 7a-j. Significant Potential Contaminant Sources for PWS #3702 Inventory Region**

| <b>Table 7a MPES Dischargers</b> |                                        |                            |                                           |               |             |
|----------------------------------|----------------------------------------|----------------------------|-------------------------------------------|---------------|-------------|
| <b>Npdes</b>                     | <b>Permitname</b>                      | <b>Descript</b>            | <b>Receiving water</b>                    | <b>County</b> | <b>Type</b> |
| MT0000094                        | Daily, John R., Inc. 001, 002          | Total Discharge To River   | Clark Fork River                          | Missoula      | Industrial  |
| MT0022594                        | Missoula (WWTP) 001                    | Wastewater Treatment Plant | Clark Fork River                          | Missoula      | Municipal   |
| MT0029840                        | Four B's Inn                           | Non-Contact Heat Exchanger | Grant Creek                               | Missoula      | Industrial  |
| MTR000023                        | Davis Transport Inc                    | Storm Water - Industrial   |                                           | Missoula      | Storm Water |
| MTR000046                        | Dixon Brothers Inc                     | Storm Water - Industrial   | Clark Fork River                          | Missoula      | Storm Water |
| MTR000305                        | BFI Waste Systems Of North America Inc | Storm Water - Industrial   | Ephemeral Tributaries to Clark Fork River | Missoula      | Storm Water |
| MTR000369                        | BFI Waste Systems Of North America Inc | Storm Water - Industrial   | Missoula Municipal Storm Sewer            | Missoula      | Storm Water |
| MTR000390                        | US Postal Service                      | Storm Water - Industrial   | Missoula Municipal Storm Sewer            | Missoula      | Storm Water |
| MTR000397                        | Mountain Line                          | Storm Water - Industrial   | Storm Water Dry Wells                     | Missoula      | Storm Water |
| MTR000400                        | Beach Transportation                   | Storm Water - Industrial   | Missoula Municipal Storm Sewer            | Missoula      | Storm Water |
| MTX000099                        | Roseburg Forest Products               | Wastewater                 | Groundwater                               | Missoula      | Waste Water |
| MTX                              | Town Pump Travel Plaza                 | Wastewater                 | Groundwater                               | Bonner        | Waste Water |

**Table 7b**  
**State Water Quality Act Sites**  
Effective Date: February 18, 2004

| <b>Name</b>                     | <b>Address</b>    | <b>Twn</b> | <b>Rng</b> | <b>Sec</b> | <b>Chemicals</b>                     | <b>Mt_rank</b> |
|---------------------------------|-------------------|------------|------------|------------|--------------------------------------|----------------|
| Conoco/Exxon Missoula Terminal  | 3350 Raser Dr     | 13         | 19         | 8          | Gasoline, diesel, ethanol, additives | R              |
| Interstate Detroit Diesel (Old) | 3757 N Reserve St | 13         | 19         | 8          | Diesel, waste oil, trichloroethylene | L              |
| Long Machinery                  | 3760 N Reserve St | 13         | 19         | 8          | Diesel, oil, solvent, battery fluid  | N              |

**Table 7c**  
**State and Federal Superfund Sites**  
Sources: <http://www.deq.state.mt.us/Rem/mwc/feds.asp>

| <b>Site Name</b>             | <b>Authority</b> | <b>Status</b> | <b>ID</b> | <b>Address</b> | <b>Description</b>                              | <b>Chemicals</b>                  |
|------------------------------|------------------|---------------|-----------|----------------|-------------------------------------------------|-----------------------------------|
| Missoula White Pine and Sash | CERCLIS/CECRA    | High          | 130       | 1301 Scott St  | inactive sawmill and wood products manufacturer | Pentachlorophenol, dioxin, diesel |

**Table 7d**  
**UST Sites**

| Site Name                           | Location                   | Release?         | Active?    | Removed?   |
|-------------------------------------|----------------------------|------------------|------------|------------|
| AAA of Montana                      | 275 W Main Street          | Yes              | No         | No         |
| Anr Freight Systems                 | 1400 Cooley St             | Yes              | No         | No         |
| Anr Freight Systems                 | 1400 Cooley St             | 1990             | No         |            |
| BFI Landfill & Shop                 | Old Coal Mine Road         | 30-Nov-90        | No         |            |
| BFI Waste Systems                   | 1501 Rodgers St            | Yes              | No         | No         |
| Blue Star Canvas Products Inc       | 300 W Main                 | Yes              | No         | No         |
| Callaghan Residence                 | 3923 Timber Lane           | 06-May-02        | No         |            |
| Cenex Bulk Plant (2)                | 4570 N Reserve St          | 1991-1998        | No/Yes     |            |
| Cenex Self-Serve-Missoula           | 1108 W Central             |                  | No         |            |
| <b>Cenex Tire Service</b>           | <b>400 W Front St</b>      | <b>Yes</b>       | <b>No</b>  | <b>Yes</b> |
| <b>Cenex Tire Service</b>           | <b>400 W Front St</b>      | <b>14-Feb-91</b> | <b>Yes</b> |            |
| Christopherson, Joan                | 223 W Broadway             | 16-Dec-92        | No         |            |
| City Street Dept                    | 800 W Broadway             | Yes              | No         | No         |
| Colonial Motel                      | 1410 W Broadway            | Yes              | No         | No         |
| <b>Conoco Products Terminal</b>     | <b>3330 Raser Dr</b>       | <b>1991-2003</b> | <b>Yes</b> |            |
| Consolidated Freightways            | 1500 Burns St              | Yes              | No         | Yes        |
| Costco Wholesale                    | 3220 Northern Pacific Ave. |                  | No         | No         |
| Courtesy Sinclair                   | 541 E Broadway             | Yes              | No         | No         |
| Cummins Northwest, Inc.             | 4950 N Reserve St          | 09-Nov-89        | No         |            |
| Deanos Truck Stop #14               | 5055 N Reserve             | 1989-1998        | No         |            |
| Demarois                            | 3115 W. Broadway           |                  | No         | No         |
| Earl's Dist. Inc.                   | 3305 Great Northern Way    | 1991             | No         |            |
| Eastgate Conoco                     | 1002 E Broadway            | Yes              | No         | No         |
| <b>Eastgate Oil</b>                 | <b>1020 E Broadway</b>     | <b>Yes</b>       | <b>No</b>  | <b>Yes</b> |
| <b>Eastgate Oil</b>                 | <b>1020 E Broadway</b>     | <b>24-Jun-98</b> | <b>Yes</b> |            |
| Economy One Motel                   | 1144 W Broadway            | Yes              | No         | No         |
| El-Mar Rv/Mh Village Inc            | 3450 Tina Ave              | 11-Dec-97        | No         |            |
| Felton Construction Co.             | 3660 Grant Creek Rd.       | Yes              | No         | Yes        |
| Finest Oil Co - Northgate           | 3695 Grant Creek Rd        | 26-Apr-99        | No         |            |
| Finest Oil Company Eastgate         | 940-980 E Broadway         | Yes              | No         | No/Yes     |
| Former Grizzly Auto Center          | 2000 W Broadway            | Yes              | No         | No         |
| <b>Former Schwink's Gas Station</b> | <b>525 W Broadway</b>      | <b>Yes</b>       | <b>No</b>  | <b>Yes</b> |
| Front St Ventures                   | 117 W Front Street         | Yes              | No         | No         |
| Front St Ventures                   | 117 W Front Street         | 07-Nov-90        | No         |            |
| Frontier Gas & Grocery              | 2120 W Broadway            | Yes              | No         | No         |
| <b>Garden City Market</b>           | <b>624 E. Broadway</b>     | <b>Yes</b>       | <b>Yes</b> | <b>Yes</b> |
| <b>Garden City Market</b>           | <b>624 E Broadway</b>      | <b>Yes</b>       | <b>No</b>  | <b>Yes</b> |
| <b>Garden City Market</b>           | <b>624 E Broadway</b>      | <b>24-Aug-01</b> | <b>Yes</b> |            |
| Gary's West Broadway Sinclair       | 1340 W Broadway            | Yes              | No         | No         |
| Gary's West Broadway Sinclair       | 1340 W Broadway            | 25-May-99        | No         |            |
| Gas Card Otto Site #032             | 2738 W Broadway            | Yes              | No         | No         |
| <b>Goofy's West</b>                 | <b>1111 W. Broadway</b>    | <b>No</b>        |            | <b>No</b>  |
| <b>Grant Creek Ranch</b>            | <b>Old Grant Cr Rd</b>     | <b>No</b>        | <b>No</b>  | <b>Yes</b> |
| Greaves, David & Sharon             | 9295 Woodwind Trail        | 03-Aug-92        | No         |            |
| Hellgate Conoco Service Center      | 711 E Broadway             |                  | No         | No         |
| Holiday Station Store #265          | 111 Orange St              | Yes              | No         | No         |
| Import Palace                       | 1358 W. Broadway           | Yes              | No         | No         |

**Table 7d**  
**UST Sites**

|                                                 |                         |                  |            |            |
|-------------------------------------------------|-------------------------|------------------|------------|------------|
| J & D C-Store                                   | 624 E Broadway          | 1992-1994        | No         |            |
| J R Daily Co                                    | 2900 Mullan Road        | Yes              | No         | No         |
| Jgl Landfarm Site                               | 3700 Grant Creek Road   | 05-May-92        | No         |            |
| Johnson Brothers Contracting                    | 6675 Desmet Rd          | 03-Apr-03        | No         |            |
| <b>Karl Tyler Chevrolet</b>                     | <b>3663 N. Reserve</b>  | <b>No</b>        |            | <b>No</b>  |
| Larry Tabish Conoco                             | 1451 W Broadway         | Yes              | No         | No         |
| Lithia Auto Center                              | 5001 Grizzly Ct.        | No               |            | No         |
| Long Machinery Co                               | 3760 N Reserve          |                  | No         |            |
| Louisiana-Pacific Corporation                   | 3300 Raser Dr           | Yes              | No         |            |
| MDOT Maintenance Shop                           | 2100 W Broadway         | Yes              | No         | No         |
| Missoula Airport-Washington Hanger              | 5225 Hwy 10 W           | 28-Oct-92        | No         |            |
| Missoula City Cemetery Shop                     | 1820 Rodgers            | No               |            | Yes        |
| <b>Missoula County Airport Authority</b>        | <b>5225 Hwy 10 W</b>    | <b>22-Jul-99</b> | <b>Yes</b> |            |
| Missoula County Detention Ctr                   | 2340 Mullan Rd          | No               |            | No         |
| Missoula County Road Dept                       | 3095 Stockyard Road     | 1990-1997        | No         |            |
| Missoula Urban Transportation                   | 1221 Shakespeare        | Yes              | No         | No         |
| <b>Missoula White Pine Sash Co</b>              | <b>1301 Scott St</b>    | <b>Yes</b>       | <b>Yes</b> | <b>Yes</b> |
| Montana Rail Link/Yellow Freight Depot Building | Railroad Ave            | Yes              | No         | No         |
| Montana Snow Bowl                               | 1700 Snowbowl Road      | 15-Dec-93        | No         |            |
| Noon's #411                                     | 2738 W. Broadway        | No               |            | No         |
| <b>Noon's #435</b>                              | <b>1540 Toole Ave.</b>  | <b>No</b>        |            | <b>No</b>  |
| <b>Noon's #458</b>                              | <b>820 E. Broadway</b>  | <b>Yes</b>       | <b>No</b>  | <b>No</b>  |
| <b>Noon's #57</b>                               | <b>540 E Broadway</b>   | <b>Yes</b>       | <b>No</b>  | <b>Yes</b> |
| Northwest Erection Inc.                         | 9660 Summit Dr. Suite A | 17-Nov-94        | No         |            |
| Ole's Country Store                             | 923 N. Orange           | No               |            | No         |
| Ole's Country Store #8                          | 4901 N Reserve          |                  | No         |            |
| <b>Orange St. Sinclair</b>                      | <b>400 W. Broadway</b>  | <b>Yes</b>       | <b>Yes</b> | <b>Yes</b> |
| <b>Otto's Inc</b>                               | <b>514 Defoe</b>        | <b>Yes</b>       | <b>No</b>  | <b>Yes</b> |
| Palmer Bros Auto Supply                         | 1421 W Broadway         | Yes              | No         | No         |
| Performance Auto                                | 901 N Orange            | Yes              | No         | No         |
| <b>Providence Center</b>                        | <b>900 N. Orange</b>    | <b>No</b>        |            | <b>No</b>  |
| <b>PS Mini Mart</b>                             | <b>930 N. Russell</b>   | <b>No</b>        |            | <b>No</b>  |
| R. H. Grover, Inc.                              | 9550 Derby Dr.          | 09-Feb-94        | No         |            |
| Rangitsch Bros.                                 | 2001 W. Broadway        | No               |            | No         |
| Real Log Homes, Inc.                            | 9575 Futurity Dr        | 28-May-97        | No         |            |
| Refrigeration Specialties                       | 3535 Hwy 10 W           | 09-Jan-96        | No         |            |
| Rocky Mountain Elk Foundation                   | 2291 W Broadway         | Yes              |            | No         |
| Sevenar Convenience Store                       | 5310 Grant Creek Road   | 18-Sep-00        | No         |            |
| Sewage Treatment Plant                          | Clarkfork Lane          | 16-Jul-91        | No         |            |
| Short Stop                                      | 820 E Broadway          | Yes              | No         | No         |
| Sprint                                          | 2515 Railroad St W      | No               |            | No         |
| St Mary's Cemetery                              | 641 Turner              | Yes              | No         | No         |
| St Patrick Hospital                             | 500 W Broadway          | Yes              | No         | No         |
| Stan Watkins Trucking, Inc                      | N 6400 Hwy 10 W         | 1998             | No         |            |
| Sun Mountain Sports Inc. (2)                    | 401 W Railroad          | 1990-2001        | No/Yes     |            |
| <b>Tabish Bros. Distr.</b>                      | <b>955 Beech</b>        | <b>Yes</b>       | <b>No</b>  | <b>No</b>  |

**Table 7d**  
**UST Sites**

|                                   |                       |           |     |     |
|-----------------------------------|-----------------------|-----------|-----|-----|
| Tabish Brothers Distributing, Inc | 501 Taylor            | 23-Feb-98 | No  | No  |
| Thompson Medical Office           | 410 W. Spruce         | Yes       | Yes | Yes |
| Triple W Equipment                | 3201 W Broadway       | 29-May-98 | No  |     |
| United Parcel Service             | 221 Expressway Ln     | 13-Jul-93 | No  |     |
| Vehicle Maintenance Div.          | 800 W. Broadway       | Yes       | No  | Yes |
| Washington Corporations           | 500 Taylor St.        | Yes       | No  | Yes |
| Washington Corporations           | 500 Taylor Street     | Yes       | No  | No  |
| Washington Corporations           | 101 International Way | 11-Jul-91 | No  |     |
| Western Transport Crane & Rigging | 100 Western Way       | 06-Jan-99 | No  |     |
| Wines, Clarence                   | Hwy 10 W              | 26-Nov-90 | No  |     |

**Table 7e**  
**RCRA Hazardous Waste Generators**

Source:[http://www.epa.gov/enviro/html/nris\\_query\\_java.html](http://www.epa.gov/enviro/html/nris_query_java.html) 5-22-2003

| Handler Name                       | Handler Id   | Street               | City | Handler Type    | P2 Permit    |
|------------------------------------|--------------|----------------------|------|-----------------|--------------|
| American Eagle                     | MTR000008227 | 6575 Butler Creek Rd | Msla | Small Generator | X            |
| Big Sky Tile & Marble Works-Closed | MTR000000844 | 9525 Hwy 10 W        | Msla | Small Generator | Not required |
| Conoco Missoula Product Terminal   | MTT000622191 | 3330 Raser Drive     | Msla | Large Generator | X            |
| Missoula Textile Service           | MTD035277359 | 111 E Spruce St      | Msla | Small Generator | X            |
| Missoula White Pine-Closed         | MTD006229074 | 1301 Scott St        | Msla | Small Generator | X            |
| Roseburg Forest Products           | MTD980807176 | 3300 Raser Drive     | Msla | Small Generator | X            |
| The Home Depot #3102               | MTR000202127 | 2725 Radio Way       | Msla | Small Generator | Not required |

**Table 7f**  
**Active WQD Pollution Prevention Permitted Facilities**

| Facility Name                     | Address               | City     | Reg Type                                                                                                                                    |
|-----------------------------------|-----------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| BFI Missoula Hauling Company      | 1501 Rodgers St       | Missoula | Diesel, New Oil, Waste Oil                                                                                                                  |
| BFI Missoula Landfill             | Coal Mine Road        | Missoula | Diesel, New Oil, Waaste Oil                                                                                                                 |
| Borden Chemical                   | 3670 Grant Creek Rd   | Missoula | Formaldehyde, Methanol, Phenol, Potassium Hydroxide, Sulfuric Acid, Ethylene Glycol, Mercury, Diesel                                        |
| Cenex Harvest States              | 4570 N Reserve St     | Missoula | Gasoline, Diesel, Kerosene, Lubricants                                                                                                      |
| City Of Missoula Maintenance Shop | 1305 B Scott St       | Missoula | New Oil, Waste Oil, Gear Lube                                                                                                               |
| Clawson Manufacturing Co          | 1225 Rodgers St       | Missoula | Diesel, New Oil, Waste Oil                                                                                                                  |
| Conoco Phillips/Exxon Mobile      | 3330 Raser Dr         | Missoula | Gasoline, Diesel Ls#1 & #2, Transmix, Automate Red Bd 50, Ethanol, Octel Starreon 8500, Hitec 5423, Infinium 7594, Pur Add 5000, Hitec 6476 |
| Costco Wholesale                  | 3220 Northern Pacific | Missoula | Gasoline                                                                                                                                    |
| Davis Transport Inc               | 216 Trade St          | Missoula | New Oil, Waste Oil, Windshield Washer, Antifreeze, Quick Sorb, Solvent-Parts Washer                                                         |
| Deano's Truck Plaza               | 5055 N Reserve St     | Missoula | Gasoline, Diesel                                                                                                                            |
| Demarois Olds-Gmc                 | 3115 W Broadway       | Missoula | Gasoline                                                                                                                                    |

**Table 7f**  
**Active WQD Pollution Prevention Permitted Facilities**

| <b>Facility Name</b>                | <b>Address</b>        | <b>City</b> | <b>Reg Type</b>                                                                                                                                |
|-------------------------------------|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Eko Compost, Inc                    | 1125 Clark Fork Lane  | Missoula    | Ethylene Glycol, Gasoline, Diesel, Hydrodesulpher Kerosene                                                                                     |
| Elmar Rv/Mh Village Inc             | 3450 Tina Ave         | Missoula    | Gasoline, Diesel                                                                                                                               |
| Finest Oil Company Eastgate         | 980 E Broadway        | Missoula    | Gasoline, Diesel                                                                                                                               |
| Finest Oil Company Northgate        | 3665 Grant Creek Rd   | Missoula    | Gasoline, Diesel, Lube Oil Grease                                                                                                              |
| Frontier Super Stop                 | 2120 W Broadway       | Missoula    | Gasoline Diesel                                                                                                                                |
| Goofy's West                        | 1111 W Broadway       | Missoula    | Gasoline                                                                                                                                       |
| Great Western Petroleum             | 1002 E Broadway       | Missoula    | Gasoline, Diesel, New Oil, Bulk Hydraulic Oil                                                                                                  |
| Hellgate Conoco                     | 711 E Broadway        | Missoula    | Gasoline, New Oil, Used Oil                                                                                                                    |
| Hellgate Trading Post               | 6265 Mullan Rd        | Missoula    | Gasoline                                                                                                                                       |
| Inland Truck Parts & Service        | 6550 Exress Way       | Missoula    | New Oil, Waste Oil                                                                                                                             |
| Interstate Detroit Diesel           | 5561 Express Way      | Missoula    | Diesel, Ethylene Glycol, Waste Oil                                                                                                             |
| Jiffy Lube #1946                    | 3640 N Reserve St     | Missoula    | New Oil, Waste Oil, Waste Anitfreeze, Antifreeze, Methanol                                                                                     |
| Karl Tyler Chevrolet, Inc           | 3663 N Reserve St     | Missoula    | Fuel, Used Oil, New Oil                                                                                                                        |
| Kls Hydraulics                      | 3650 Grant Creek Rd   | Missoula    | Waste Oil                                                                                                                                      |
| Ls Jensen Construction & Paving     | 4685 Mullan Rd        | Missoula    | Diesel #2, Diesel #1, Gas, New Oil, Antifreeze, W. Oil, Asphalt Cement, Ss1-Tack Oil, Heat Transfer, #2 Diesel, #4 Fuel Oil, Liquefied Propane |
| Mickelson Rock Products             | 7005 Butler Creek Rd  | Missoula    | Diesel Motor Oil                                                                                                                               |
| Minuteman Aviation                  | 5225 Hwy 10 W         | Missoula    | Jet Fuel, Aviation Fasoline, Waste Oil, Unleaded Gas, Ethylene Glycol                                                                          |
| Missoula International Airport      | 5225 Hwy 10 W         | Missoula    | Ethylene Glycol, Propylene, Aviation Fuel, Gasoline, Waste Oil, New Oil                                                                        |
| Missoula Truck Sales Inc            | 2600 Charlo St        | Missoula    | New Oil, Waste Oil                                                                                                                             |
| Missoula Wastewater Treatment Plant | 1100 Clark Fork Dr    | Missoula    | Diesel                                                                                                                                         |
| Modern Machinery                    | 101 International Way | Missoula    | Gasoline, Diesel, New Oil, Waste Oil, Solvent                                                                                                  |
| Montana Rail Link, Car Shop         | 1705 Rodgers St       | Missoula    | Gasoline, Diesel, New Oil, Waste Oil, Fuel Performance Catalyst, Petroleum Naphtha                                                             |
| Mountain Line                       | 1221 Shakespeare      | Missoula    | Diesel, Waste Oil                                                                                                                              |
| Mountain Water Company Shop         | 1345 W Broadway       | Missoula    | Diesel, Sodium Hypochlorite Solution, Propane                                                                                                  |
| Msla County Road Department         | 6089 Training Dr      | Missoula    | New Oil, Antifreeze, Waste Oil, Toluene, Hyd. Fluid, Gear Lube, Transmission Fluid                                                             |
| Mt Dept Of Transportation           | 2100 W Broadway       | Missoula    | Gasoline, Diesel, Waste Oil, Stripping Paint, Deicer, Waste Oil                                                                                |
| Mullan Station                      | 3420 Mullan Rd        | Missoula    | Gasoline, Diesel                                                                                                                               |
| Noon's #435                         | 1540 Toole Ave        | Missoula    | Gasoline                                                                                                                                       |
| Noon's #457                         | 540 E Broadway        | Missoula    | Gasoline                                                                                                                                       |
| Noon's #458                         | 820 E Broadway        | Missoula    | Gasoline, Diesel                                                                                                                               |
| Ole's #12, Tri East Inc             | 3705 E Hwy 200 E      | E Missoula  | Gasoline, Diesel                                                                                                                               |
| Ole's #8 (Seven Bar R)              | 4901 N Reserve St     | Missoula    | Gasoline                                                                                                                                       |
| Ole's Country Store #2              | 923 N Orange St       | Missoula    | Gasoline                                                                                                                                       |

**Table 7f**  
**Active WQD Pollution Prevention Permitted Facilities**

| <b>Facility Name</b>           | <b>Address</b>      | <b>City</b> | <b>Reg Type</b>                                                                                        |
|--------------------------------|---------------------|-------------|--------------------------------------------------------------------------------------------------------|
| Otto Site #411                 | 2738 W Broadway     | Missoula    | Gasoline                                                                                               |
| Otto's Site #432               | 2738 W Broadway     | Missoula    | Gasoline, Diesel                                                                                       |
| Pro Lube                       | 1935 Cooper St      | Missoula    | Oil, Waste Oil                                                                                         |
| Providence Center              | 900 N Orange St     | Missoula    | Diesel                                                                                                 |
| Ps Mini Mart                   | 930 N Russell St    | Missoula    | Gasoline, Diesel                                                                                       |
| Qwest Missoula Central Office  | 201 N Pattee St     | Missoula    | Sulfuric Acid                                                                                          |
| Rangitsch Brothers             | 2001 W Broadway     | Missoula    | Gasoline                                                                                               |
| Rattlesnake Trading Post       | 1002 E Broadway     | Missoula    | Gasoline, Diesel                                                                                       |
| Roseburg Forest Products       | 3330 Raser Dr       | Missoula    | Gasoline, Diesel, New Oil, Formaldehyde, Butyl Acetate, Mibk, Thermal Oil                              |
| Sevenar                        | 5310 Grant Creek Rd | Missoula    | Gasoline, Diesel                                                                                       |
| Sorensen Transport             | 6575 Hwy 10 W       | Missoula    | Diesel, Oil, Waste Oil                                                                                 |
| Sprint Communications          | 2825 Stockyard Rd   | Missoula    | Diesel                                                                                                 |
| St Patrick Hospital            | 500 W Broadway      | Missoula    | Diesel                                                                                                 |
| Tabish Brothers Distributing   | 955 Beech St        | Missoula    | Gasoline, Diesel, New Oil, Hydraulic Oil                                                               |
| Thatcher Chemical Co           | 3200 Raser Dr       | Missoula    | Al Sulphate, Copper Sulphate, Sulphuric Acid, Sodium Hypochlorite, Sodium Hydroxide, Hydrochloric Acid |
| Triple W Equipment             | 3201 W Broadway     | Missoula    | Oil, Waste Oil, Antifreeze                                                                             |
| United Parcel Service          | 221 Express Way     | Missoula    | Gasoline, Used Oil New Oil                                                                             |
| Washington Flight Department   | 5225 Hwy 10 W       | Missoula    | Jet Fuel                                                                                               |
| Watkins & Shepard Trucking Inc | 6400 Hwy 10 W       | Missoula    | Diesel, New Oil, Waste Oil                                                                             |
| Western States Equipment       | 3760 N Reserve St   | Missoula    | Diesel, New Oil, Waste Oil, Solvent, Battery Fluid                                                     |
| Wimmett Trucking               | 6600 Wimett Ln      | Missoula    | Diesel, Solvent, Aluminum Brine                                                                        |

**Table 7g**  
**Mines**

| Mine Name      | MBMG #   | Property Type | Product | Operation Type | Status     | Location |       |         |         |           |
|----------------|----------|---------------|---------|----------------|------------|----------|-------|---------|---------|-----------|
|                |          |               |         |                |            | Township | Range | Section | Lat     | Long.     |
| L.S. Jensen    | MI002916 | Lode          | Stone   | Surface        | Active     | 13N      | 19W   | 7       | 46.9028 | -114.0417 |
| Wheeler's Mill | MI002754 | Mill          | Barium  | Proc. Plant    | Past Prod. | 13N      | 19W   | 16      | 46.8856 | -114.0169 |

**Table 7i  
Landfills**

| Facility                   | Class | Status | Close Date |
|----------------------------|-------|--------|------------|
| Browning Ferris Industries | II    | Open   | --         |
| Browning Ferris Industries |       | Closed | 8-20-81    |
| Rainglo Services, Inc.     | II    | Closed | 12-31-89   |
| City of Missoula Northside |       |        |            |
| Eko Compost                |       | Open   |            |
| William Wheeler            | III   |        |            |

**Table 7i  
Confirmed Groundwater Contamination**

| Source Name                   | Type                   | Contaminants        | Year of Release |
|-------------------------------|------------------------|---------------------|-----------------|
| Yellowstone Pipeline          | Petroleum Pipeline     | Fuel                | 1982            |
| Conoco/Phillips Terminal      | Pipeline Terminal      | Fuel                |                 |
| Cenex Station                 | Gas Station            | Fuel                |                 |
| Interstate Detroit Diesel     | Repair Shop            | Fuel, oil, solvents |                 |
| BFI Landfill                  | Landfill               | VOCs                | NA              |
| Missoula County Weed District | Weed Control Operation | Pesticides          | 1991            |

**Table 7j  
Miscellaneous Sources**

| Source                     | Density                                                       | Land Use % | Number |
|----------------------------|---------------------------------------------------------------|------------|--------|
| Septic Systems             | 85.3/mi <sup>2</sup> 1-yr TOT; 72.7/ mi <sup>2</sup> 3-yr TOT |            |        |
| Sewered Area               |                                                               | 11%        |        |
| Agricultural Land Use      |                                                               | 10%        |        |
| Stormwater Injection Wells |                                                               |            | 474    |

### Inventory Update

The certified operator will update the inventory every year. Changes in land uses or potential contaminant sources will be noted and additions made as needed. The complete inventory will be submitted to DEQ every five years to ensure re-certification of the source water delineation and assessment report.

### Inventory Limitations

The accuracy of the inventory is limited by the accuracy of information provided by state and federal databases. The windshield survey provides a level of quality assurance that the information presented reflects actual conditions. The inventory is also limited by the accuracy of the delineation, which is discussed above.

## CHAPTER 4

### SUSCEPTIBILITY ASSESSMENT

The susceptibility of Hellgate Elementary School wells to significant potential contaminant sources is assessed in this chapter. Susceptibility is the potential for a well to be contaminated by one of the sources inventoried in the previous chapter. Hazard ratings and the presence of barriers determine susceptibility (Table 8). Hazard ratings are determined by the proximity of a potential point-source contaminant or the density of non-point source potential contaminants to the well. For the Hellgate Elementary School PWS, contaminant sources within the one-year TOT were given a high hazard rating and all other sources within the inventory region were given moderate hazard rating. The susceptibility is then determined based upon the hazard and any barriers that mitigate the hazard. Barriers can be engineered structures, management actions and/or natural conditions. Spill catchments for fueling facilities and leak detection for underground storage tanks are examples of engineered barriers. Emergency planning and availability of trained hazardous materials response team, and best management practices are examples of management barriers. Clay soils, deep wells and a thick layer of substrate above an aquifer can be considered natural barriers.

**Table 8. Relative susceptibility to specific contaminant sources as determined by hazard and the presence of barriers.**

| Presence Of Barriers | Hazard                   |                         |                         |
|----------------------|--------------------------|-------------------------|-------------------------|
|                      | High                     | Moderate                | Low                     |
| No Barriers          | Very High Susceptibility | High Susceptibility     | Moderate Susceptibility |
| One Barrier          | High Susceptibility      | Moderate Susceptibility | Low Susceptibility      |
| Multiple Barriers    | Moderate Susceptibility  | Low Susceptibility      | Very Low Susceptibility |

For point sources, the relative hazard of the significant potential contaminant sources listed in Table 7 reflects the location of the sites relative to the PWS wells and how long ground water would take to travel from that site to the wells. For sites located within a time of travel distance of less than one year, the relative hazard is assigned as high. For the remaining sites located in the inventory region, the relative hazard assigned is moderate.

For non-point sources, the relative hazard is assigned based on the following table.

**Table 9. Non-point source relative hazard ratings.**

| Source Type                            | High Hazard      | Moderate Hazard   | Low Hazard      |
|----------------------------------------|------------------|-------------------|-----------------|
| Septic Systems                         | >300 per sq. mi. | 50-300 per sq. mi | <50 per sq. mi. |
| Municipal Sanitary Sewer (% Land Use)  | >50% of region   | 20%-50% of region | <20% of region  |
| Cropped Agricultural Land (% Land Use) | >50% of region   | 20%-50% of region | <20% of region  |

**Table 10. Susceptibility assessment for significant potential contaminant sources in the Control Zone and Inventory Region.**

| Map ID#   | Facility Name                                                                        | Contaminant         | Hazard   | Barriers                                                                    | Susceptibility | Management                                 |
|-----------|--------------------------------------------------------------------------------------|---------------------|----------|-----------------------------------------------------------------------------|----------------|--------------------------------------------|
|           | Stormwater injection wells                                                           | Mixed               | High     | HazMat Team                                                                 | High           |                                            |
|           | Septic density of 85.3/mi <sup>2</sup> (1-yr. TOT); 72.7/mi <sup>2</sup> (3-yr. TOT) | Pathogens & nitrate | Moderate |                                                                             | High           | Connections to municipal sewer             |
| Labeled   | USTs                                                                                 | Fuel                | High     | WQD Pollution Prevention Permit; HazMat Team                                | Moderate       | Leak prevention and detection              |
| Labeled   | I-90; Hwy 10; Montana Rail Link                                                      | Fuel/chemicals      | Moderate | HazMat Team                                                                 | Moderate       |                                            |
| Labeled   | Yellowstone Pipeline                                                                 | Petroleum products  | Moderate | HazMat team                                                                 | Moderate       | Pipeline inspection and maintenance        |
| Labeled   | CECRA—Old illegal dump                                                               | Solvents?           | Moderate | Old release; any contaminated soil or groundwater areas should be receding. | Moderate       | --                                         |
| Labeled   | Conoco/Exxon Terminal Release                                                        | Gasoline            | Moderate | Ongoing monitoring                                                          | Moderate       | --                                         |
| Non-point | Municipal Sewer <20%                                                                 | Pathogens & nitrate | Moderate | New sewer mains; inspection program                                         | Low            | Continued monitoring of condition of mains |

## REFERENCES

Clark, K.W., 1986. Interactions between the Clark Fork River and Missoula Aquifer, Missoula, Montana. University of Montana, M.S. thesis, 150 p.

Driscoll, F.G., 1986. Groundwater and wells, 2<sup>nd</sup> Edition. Johnson Division, St. Paul, Minnesota.

Evans, C.A., 1998. A Constrained Gravity Model of the Central Missoula Valley and Shape of the Ninemile Fault. University of Montana M.S. Thesis, 45 p.

Fetter, C.W., Jr., 1980. Applied Hydrogeology. Charles E. Merrill, Columbus, Ohio, 488 p..

Freeze, R.A., and Cherry, J.A., 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, NJ, 604 p.

Geldon, A. L., 1980. Hydrogeology and Water Resources of the Missoula Basin, Montana. University of Montana, M.S. thesis, 114 p.

Kendy, E., and Tresch, R.E., 1996. Geographic, Geologic, and Hydrologic Summaries of Intermontane Basins of the Northern Rocky Mountains, Montana. U. S. Geological Survey Water-Resources Investigations Report 96-4025, 233 p.

Miller, R.D., 1990. A Single Layer Transient Flow Model of the Missoula Aquifer. Missoula City-County Health Department Report, 253 p.

Missoula Valley Water Quality District, 1996. Evaluation of Unsewered Areas in Missoula, Montana.

Montana Bureau of Mines and Geology, Ground-Water Information Center online well log database.

Montana Department of Environmental Quality (DEQ), 1999. Montana Source Water Protection Program.

National Oceanic and Atmospheric Administration, National Climatic Data Center online database.

Nimick, D.A., 1993. Hydrology and Water Chemistry of Shallow Aquifers Along the Upper Clark Fork, Western Montana. U.S. Geological Survey Water-Resources Investigations Report 93-4052, 63 p.

Pottinger, M.H., 1988. The Source, Fate and Movement of Herbicides in an Unconfined, Sand and Gravel Aquifer in Missoula, Montana. University of Montana M.S. Thesis, 172 p.

Salvato, J.A., 1992. Environmental Engineering and Sanitation. John Wiley & Sons, Inc. pp. 285-294.

Smith, C.A., 1992. The Hydrogeology of the Central and Northwestern Missoula Valley. University of Montana M.S. Thesis, 169 p.

Solley, W.B., Pierce, R.R. and Perlman, H.A., 1998. Estimated Use of Water in the United States in 1995. U.S.G.S. Circular 1200, pp. 24 – 27.

U.S. Environmental Protection Agency, 1997. Water on Tap: A Consumer's Guide to the Nation's Drinking Water.

Woessner, W.W., 1988. Missoula Valley Aquifer Study: Hydrogeology of the Eastern Portion of the Missoula Aquifer, Missoula County, Montana. University of Montana Department of Geology, 127 p.

# APPENDIX A

## PWS System Layout and Sanitary Survey

## APPENDIX B

### Well Log for PWS

**One Page Site Report -- GWICMontana Bureau of Mines and Geology**  
**Ground-Water Information Center Site Report**  
**HELLGATE ELEMENTARY SCHOOL #2**

**Location Information**

GWIC Id: 197283  
Location (TRS): 13N 19W 07 CCDD  
County (MT): MISSOULA  
DNRC Water Right: C004838-00  
PWS Id:03702002  
Block:  
Lot:  
Addition:  
Site Notes: TRACT LOCATION BASED ON LAT\LONG FROM DEQ. WELL RECORD CREATED FROM DATA FROM DEQ. THIS WELL SERVES THE K-2ND GRADES.

Source of Data: LOG  
Latitude (dd): 46.8928  
Longitude (dd): -114.0547  
Geomethod: MAP  
Datum:1927  
Certificate of Survey:  
Type of Site: WELL

**Well Construction and Performance Data**

Total Depth (ft): 71.00  
Static Water Level (ft):19.00  
Pumping Water Level (ft):  
Yield (gpm): 150.00  
Test Type:Special Conditions:  
Test Duration:  
Drill Stem Setting (ft):  
Recovery Water Level (ft):  
Recovery Time (hrs):  
How Drilled:  
Driller's Name:  
Driller License:  
Completion Date (m/d/y):7/15/1975  
Is Well Flowing?:  
Shut-In Pressure:  
Geology/Aquifer: Not Reported  
Well/Water Use: PUBLIC WATER SUPPLY

Well Notes: WELL DATA FROM DEQ SANITATION SURVEY.

**Hole Diameter Information**

No Hole Diameter Records currently in GWIC.Casing Information1

| From | To  | Dia | Description |
|------|-----|-----|-------------|
| 0.0  | 0.0 | 6.0 |             |

**Annular Seal Information**

No Seal Records currently in GWIC.Completion Information1

No Completion Records currently in GWIC.

**Lithology Information**

No Lithology Records currently in GWIC.

1 - All diameters reported are inside diameter of the casing.

These data represent the contents of the GWIC databases at the Montana Bureau of Mines and Geology at the time and date of the retrieval. The information is considered unpublished and is subject to correction and review on a daily basis. The Bureau warrants the accurate transmission of the data to the original end user. Retransmission of the data to other users is discouraged and the Bureau claims no responsibility if the material is retransmitted. Note: non-reported casing, completion, and lithologic records may exist in paper files at GWIC.

# APPENDIX C

## MBMG-GWIC Well Logs for Area

**Ground Water Information Center**  
**Wells Report**

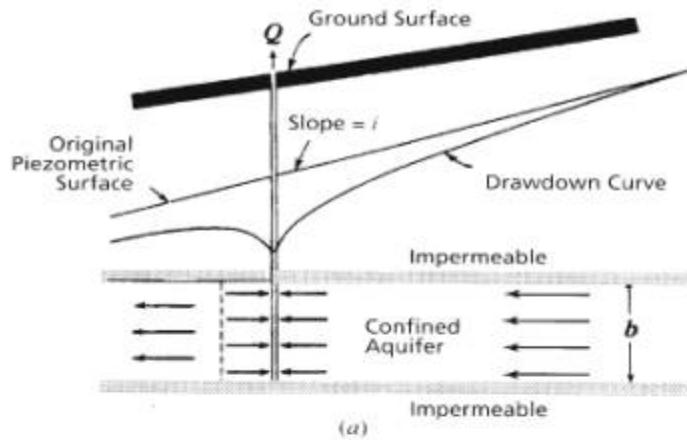
| Gwic Id | DNRC WR    | Site Name                             | Location      | Ver? | Type | Td     | Pwl    | Swl   | Yield | Date       | Use                  |
|---------|------------|---------------------------------------|---------------|------|------|--------|--------|-------|-------|------------|----------------------|
| 68348   |            | BIGGER COREY D.                       | 13N19W07      | NO   | WELL | 60.00  | 47.00  | 36.0  | 50.0  | 5/4/1983   | UNKNOWN              |
| 68350   |            | D'ORAYI Albert J. Rosemary            | 13N19W 07     | NO   | WELL | 70.00  |        | 20.00 | 50.0  |            | DOMESTIC/ IRRIGATION |
| 120484  |            | SAMMON'S TRUCKING                     | 13N19W07      | NO   | WELL | 80.00  | 50.00  | 37.0  | 50.0  | 8/10/1990  | DOMESTIC             |
| 68349   |            | SAMMONS TRUCKING                      | 13N19W 07     | NO   | WELL | 60.00  | 26.00  | 25.00 | 27.00 | 7/1/1972   | DOMESTIC             |
| 68347   |            | SHERATON HOTEL                        | 13N19W 07     | NO   | WELL | 138.00 | 47.00  | 46.00 | 215   | 2/3/1984   | OTHER                |
| 68351   |            | GERRITY TOM                           | 13N19W 07     | NO   | WELL | 60.00  |        | 45.00 |       | 1/1/1938   | COMMERCIAL/DOMESTIC  |
| 68352   |            | UNION CONSTRUCTION                    | 13N19W 07A    | NO   | WELL | 100.00 | 55.00  | 46.00 | 30.00 | 9/9/1957   | INDUSTRIAL           |
| 68354   |            | SCHRAMM JOHN W. #2                    | 13N19W 07AA   | NO   | WELL |        |        | 96.00 | 350   | 1/1/1930   | INDUSTRIAL           |
| 68353   |            | SCHRAMM JOHN W. #1                    | 13N19W 07AAC  | NO   | WELL |        |        | 96.00 | 350   | 1/1/1890   | INDUSTRIAL           |
| 203098  |            | HARTZELL JAMES &SUZANNE               | 13N19W 07AB   | NO   | WELL | 118.00 |        | 80.00 | 30    | 5/7/2003   | IRRIGATION           |
| 68356   |            | BAKKE TIRE CO                         | 13N19W 07AC   | NO   | WELL | 79.00  | 50.00  | 39.00 | 60.00 | 8/5/1985   | PUBLIC WATER SUPPLY  |
| 194438  |            | BURTON DON                            | 13N19W 07AC   | NO   | WELL | 72.00  |        |       |       | 12/17/2001 |                      |
| 706330  |            | DOUGHERTY JOHN                        | 13N19W 07AC   | NO   | WELL | 107.00 |        |       |       | 1/1/1947   | IRRIGATION           |
| 187428  |            | JTL GROUP                             | 13N19W 07AC   | NO   | WELL | 159.00 | 144.40 | 85.40 | 133   | 3/6/2001   | OTHER                |
| 68355   |            | WESTERN TRANSPORT                     | 13N19W 07AC   | NO   | WELL | 106.00 | 100.00 | 61.00 | 40.00 | 11/21/1979 | UNKNOWN              |
| 140744  | C088492-00 | SAMMONS TRUCKING                      | 13N19W 07ACBA | NO   | WELL | 81.00  | 60.00  | 53.00 | 30.00 | 12/23/1993 | DOMESTIC             |
| 141334  |            | 4B'S WHOLESAL                         | 13N19W 07AD   | NO   | WELL | 100.00 |        | 57.00 | 40.00 | 3/18/1994  | DOMESTIC             |
| 68362   |            | BUD LAKE TRUCK STOP                   | 13N19W 07AD   | NO   | WELL | 62.00  |        | 60.00 |       | 1/1/1957   | PUBLIC WATER SUPPLY  |
| 68363   |            | BUD LAKE TRUCK STOP                   | 13N19W 07AD   | NO   | WELL | 87.00  |        | 60.00 |       | 1/1/1954   | PUBLIC WATER SUPPLY  |
| 68358   |            | EVANS WENDY                           | 13N19W 07AD   | NO   | WELL | 119.00 | 100.00 | 12.00 | 100   | 8/1/1985   | DOMESTIC             |
| 68359   |            | EVANS WENDY                           | 13N19W 07AD   | NO   | WELL | 95.00  | 90.00  |       | 100   | 8/9/1978   | DOMESTIC             |
| 68361   |            | LAKE HAROLD &MARY                     | 13N19W 07AD   | NO   | WELL | 76.00  |        | 60.00 |       | 1/1/1950   | PUBLIC WATER SUPPLY  |
| 68360   |            | PATTERSON SHEEP CO.                   | 13N19W 07AD   | NO   | WELL | 90.00  |        | 40.00 | 60    | 1/1/1947   | DOMESTIC             |
| 68357   | 12236      | RENTAL EQUIPMENT                      | 13N19W 07AD   | NO   | WELL | 138.00 | 95.00  | 68.00 | 75    | 2/4/1977   | INDUSTRIAL           |
| 152136  | P047644-00 | IMPERIAL FOODS 4-BS WHOLESALE- WELL 3 | 13N19W 07ADCC | NO   | WELL | 100.00 |        | 51.00 | 50    | 10/11/1995 | PUBLIC WATER SUPPLY  |
| 68364   |            | WASHINGTON CORP                       | 13N19W 07B    | NO   | WELL | 122.00 |        | 47.00 | 25.00 | 4/22/1988  | DOMESTIC             |
| 173203  |            | MONTANA HOMES                         | 13N19W 07BA   | NO   | WELL | 78.00  | 70.00  | 45.00 | 38    | 3/12/1999  |                      |
| 163046  | 6676       | WILSON KEN                            | 13N19W 07BB   | NO   | WELL | 95.00  |        | 21.00 | 40.00 | 7/1/1997   | DOMESTIC             |

|        |            |                                         |               |     |      |        |       |       |       |            |                      |
|--------|------------|-----------------------------------------|---------------|-----|------|--------|-------|-------|-------|------------|----------------------|
| 171777 |            | FOREST INN LOUNGE & APARTMENTS WELL 1   | 13N19W 07BBCC | NO  | WELL |        |       |       |       |            |                      |
| 706331 |            | DOUGHERTY JOHN                          | 13N19W 07BC   | NO  | WELL | 36.00  |       |       |       | 1/1/1965   | IRRIGATION           |
| 169302 |            | NORDBERG JASON                          | 13N19W 07BD   | NO  | WELL | 110.00 | 27.00 |       | 30    | 8/21/1998  | DOMESTIC             |
| 68366  |            | DOUGHERTY JACK PATRICK                  | 13N19W 07C    | NO  | WELL | 62.00  | 55.00 |       | 8     | 7/4/1969   | DOMESTIC             |
| 68365  |            | GUEST JIM & SUSAN                       | 13N19W 07C    | NO  | WELL | 60.00  | 29.00 | 20.00 | 30    | 3/13/1984  | DOMESTIC             |
| 183175 |            | DAIGLE MIKE & SANDRA                    | 13N19W 07CC   | NO  | WELL | 77.00  |       | 25.00 | 30    | 5/16/2000  | DOMESTIC             |
| 706332 |            | HELLGATE SCHOOL                         | 13N19W 07CC   | NO  | WELL |        |       |       |       | 1/1/1997   | PUBLIC WATER SUPPLY  |
| 151186 |            | MISSOULA COUNTY WQD WELL W131907C       | 13N19W 07CCCA | YES | WELL | 50.00  |       | 24.24 |       | 1/10/1995  | MONITORING           |
| 123189 | 77805      | HELLGATE ELEMENTARY SCHOOL              | 13N19W 07CCCC | YES | WELL | 124.00 | 34.00 | 22.00 | 223   | 6/17/1991  | IRRIGATION           |
| 197283 | C004838-00 | HELLGATE ELEMENTARY SCHOOL #2           | 13N19W 07CCDD | NO  | WELL | 71.00  |       | 19.00 | 150   | 7/15/1975  | PUBLIC WATER SUPPLY  |
| 134202 | C077805-00 | HELLGATE ELEMENTARY SCHOOL #3           | 13N19W 07CCDD | NO  | WELL | 140.00 | 38.50 | 34.00 | 580   | 2/10/1993  | PUBLIC WATER SUPPLY  |
| 68367  | C077796-00 | HELLGATE SCHOOL DISTRICT NO. 1 – WELL 1 | 13N19W 07CCDD | NO  | WELL | 100.00 |       | 20.00 | 45    | 1/1/1929   | PUBLIC WATER SUPPLY  |
| 68373  |            | D'ORAYI ALBERT J. & ROSEMARY *DUG WELL  | 13N19W 07D    | NO  | WELL |        |       |       |       | 1/15/1872  | DOMESTIC/ INDUSTRIAL |
| 706333 |            | EL MAR TRAILER                          | 13N19W 07DA   | NO  | WELL | 135.00 |       |       |       | 1/1/1997   | PUBLIC WATER SUPPLY  |
| 706334 |            | EL MAR TRAILER                          | 13N19W 07DA   | NO  | WELL | 57.00  | 55.00 | 35.00 | 50.00 | 1/1/1959   | PUBLIC WATER SUPPLY  |
| 68374  |            | STATE HIGHWAY DEPT.                     | 13N19W 07DA   | NO  | WELL | 69.00  | 47.00 | 47.00 | 25.00 | 12/13/1971 | IRRIGATION           |
| 68375  |            | ROARK DOUGLAS B.                        | 13N19W 07DAB  | NO  | WELL | 177.00 | 75.00 | 53.00 | 100   | 4/11/1077  | COMMERCIAL/DOMESTIC  |
| 68368  |            | EL MAR TRAILER VILLAGE – WELL 1         | 13N19W 07DABA | NO  | WELL | 165.00 | 41.00 | 36.00 | 40    | 7/21/1962  | PUBLIC WATER SUPPLY  |
| 68369  |            | EL MAR TRAILER VILLAGE – WELL 3         | 13N19W 07DACC | NO  | WELL | 76.00  | 65.00 | 25.00 | 125   | 7/21/1965  | PUBLIC WATER SUPPLY  |
| 68371  |            | EL MAR TRAILER VILLAGE – WELL 5         | 13N19W 07DBAA | NO  | WELL |        |       | 24.00 |       | 1/1/1946   | PUBLIC WATER SUPPLY  |

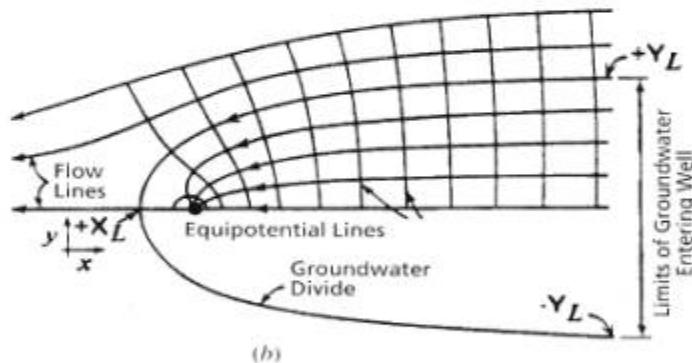
|        |        |                                    |                  |    |      |        |       |       |       |            |                           |
|--------|--------|------------------------------------|------------------|----|------|--------|-------|-------|-------|------------|---------------------------|
| 68377  |        | DONALDSON<br>EUGENE                | 13N19W<br>07DD   | NO | WELL | 71.00  | 30.00 | 27.00 | 45    | 5/30/1969  | DOMESTIC                  |
| 706335 |        | DORAZI AL                          | 13N19W<br>07DD   | NO | WELL | 70.00  |       |       |       | 1/1/1997   | UNUSED                    |
| 161959 | 102071 | FRISTO JAMES                       | 13N19W<br>07DD   | NO | WELL | 80.00  |       | 32.00 | 30    | 6/4/1997   | DOMESTIC                  |
| 68378  |        | GERRITY THOMAS                     | 13N19W<br>07DD   | NO | WELL | 101.00 | 60.00 | 26.00 | 20.00 | 5/25/1966  | DOMESTIC                  |
| 68376  |        | WICK THOR J.                       | 13N19W<br>07DD   | NO | WELL | 70.00  | 41.00 | 30.00 | 45.00 | 2/28/1983  | UNKNOWN                   |
| 159373 |        | KAUFFMAN TERRY                     | 13N19W<br>07DDA  | NO | WELL | 80.00  |       | 43.00 | 30    | 12/9/1996  | DOMESTIC                  |
| 68379  |        | WILLIAMS<br>DWAYNE C               | 13N19W<br>07DDAB | NO | WELL | 100.00 | 95.00 | 34.00 | 75    | 8/11/1980  | UNKNOWN                   |
| 68370  |        | EL MAR TRAILER<br>VILLAGE – WELL 4 | 13N19W<br>07DDBB | NO | WELL | 69.00  | 35.00 | 27.00 | 75    | 6/16/1969  | PUBLIC<br>WATER<br>SUPPLY |
| 129030 |        | EL MAR TRAILER<br>VILLAGE – WELL 6 | 13N19W<br>07DDBC | NO | WELL | 75.5   | 50.00 | 32.00 | 100   | 5/12/1992  | PUBLIC<br>WATER<br>SUPPLY |
| 68380  |        | MATRANGA<br>GEORGE                 | 13N19W<br>07DDC  | NO | WELL | 100.00 | 80.00 | 35.00 | 40    | 12/13/1963 | DOMESTIC                  |
| 68381  |        | KOBLE FRANK &<br>AUDREY            | 13N19W<br>07DDCD | NO | WELL | 71.00  | 28.00 | 28.00 | 21    | 8/22/1966  | DOMESTIC                  |

Retrieval Statistics \*

| Field               | Max    | Min   | Count | Avg   |
|---------------------|--------|-------|-------|-------|
| Total Depth         | 177.00 | 36.00 | 53    | 91.48 |
| Pumping Water Level | 144.40 | 26.00 | 31    | 58.71 |
| Static Water Level  | 85.40  | 12.00 | 45    | 39.30 |
| Yield (gpm)         | 580.00 | 8.00  | 43    | 73.49 |


\* These statistics do not take any geographic, topographic, or geologic factors into consideration. Negative swl values are reported for water levels that are above land surface.

## APPENDIX D


### Time of Travel Calculations

## UNIFORM GROUNDWATER FLOW EQUATION

Flow to a well penetrating a confined aquifer having a sloping plane piezometric surface - vertical section and plan view (Todd, 1980).



(a)



(b)

$$-\frac{Y}{X} = \tan\left(\frac{2\pi Kbi}{Q} Y\right)$$

Uniform-Flow Equation

$$X_L = -\frac{Q}{2\pi Kbi}$$

Distance to  
Down-Gradient  
Null Point

$$Y_L = \pm \frac{Q}{2Kbi}$$

Boundary Limit

### Legend:

- Pumping Well

### Where:

- $Q$  = Well Pumping Rate
- $K$  = Hydraulic Conductivity
- $b$  = Saturated Thickness
- $i$  = Hydraulic Gradient
- $\pi = 3.1416$

## TIME-OF-TRAVEL CALCULATION METHOD

*The time of travel for water to move along a line parallel to the hydraulic gradient, from a point to a pumping well (EPA 1991).*

$$T_x = \frac{n}{K_i} \left[ X_L - \frac{Q}{2\pi K b i} \ln \left( 1 + \frac{2\pi K b i}{Q} X_L \right) \right]$$

|       |   |                                                                    |
|-------|---|--------------------------------------------------------------------|
| $T_x$ | = | travel time from point x to a pumping well                         |
| $n$   | = | porosity                                                           |
| $X_L$ | = | distance from pumping well over which groundwater travels in $T_x$ |
| $Q$   | = | discharge                                                          |
| $K$   | = | hydraulic conductivity                                             |
| $b$   | = | aquifer thickness                                                  |
| $i$   | = | hydraulic gradient                                                 |

## APPENDIX E

### Inventory Sheets

## APPENDIX F

### Checklist

*Department of Environmental Quality  
Source Water Protection Program*

**CERTIFICATION CHECKLIST**  
*Source Water Delineation and Assessment Reports (SWDAR)*  
*For Community and non-community non-transient PWSs*

The following items represent the minimum requirements for certification of a completed SWDAR for Community and non-community non-transient PWSs. The SWDAR represents the technical component of the SWPP, and must be completed per the 1996 amendments to the Federal Safe Drinking Water Act. This checklist should be used in conjunction with the information and general format provided in the template for preparing SWDAR documents. While the format of the template may be modified as needed, all requested information should be included for certification.

For any items that are not applicable or information is not available, note in checklist column and provide and explanation. Attach additional sheets for explanation, if necessary.

|                         |                                   |                                                                              |
|-------------------------|-----------------------------------|------------------------------------------------------------------------------|
| <b>Name of System:</b>  | <b>Hellgate Elementary School</b> |                                                                              |
| <b>PWS #:</b>           | <b>3702</b>                       |                                                                              |
| <b>Date Submitted:</b>  | <b>June 30, 2004</b>              |                                                                              |
| <b>Operator Name:</b>   | <b>Richard Riebe</b>              |                                                                              |
| <b>SWPP Contact:</b>    | Name:                             | Richard Riebe<br>2385 Flynn Ln<br>Missoula, MT 59808<br>(406) 728-5626       |
| <b>Person Preparing</b> | Name:                             | Michelle Hutchins,<br>Environmental Health Specialist                        |
| <b>Plan Contact:</b>    | Address:                          | Missoula City County Health Department<br>301 W. Alder<br>Missoula, MT 59802 |
|                         | Phone:                            | (406) 258-4890                                                               |

The following summary checklist is derived from the Source Water Delineation and Assessment Report template document. The completed plan should include summary discussions, when appropriate, for each listed item. Indicate the page and/or section number where this information is, or indicate not applicable (n/a) when appropriate. For items indicated as not applicable, the text should indicate why.

## Introduction

Page

|                                                   |       |
|---------------------------------------------------|-------|
| Person who prepared document                      | iv    |
| Name of system and county located in              | iv    |
| PWS Identification Number                         | iv    |
| PWS contact person, with address and phone number | cover |

## Chapter 1 – Background

This section provides background information on the community served by the PWS.

Page

### 1. The Community: 1

|                                          |   |
|------------------------------------------|---|
| • Population                             | 1 |
| • Economic base                          | 1 |
| • Major water users                      | 1 |
| • Major waste generators                 | 1 |
| • Domestic sewage treatment and disposal | 1 |

### 2. Geographic Setting

|                                                                         |        |
|-------------------------------------------------------------------------|--------|
| • Geographic setting, including surrounding area                        | 1      |
| • Physiographic features                                                | 1      |
| • Streams and lakes                                                     | 1      |
| • Climate information (including annual precipitation and temperatures) | 1      |
| • A vicinity map at appropriate scale                                   | Fig. 1 |

For surface water sources, or ground water systems influenced by surface water

|                                        |     |
|----------------------------------------|-----|
| • 8 and 11 digit USGS Hydrologic Units | n/a |
| • Montana Watershed Management Region  | n/a |

3. General Description of Source Water 1

Description of PWS system, including:

- Source of water (number of wells, depths, etc.) 2
- Well lithology and construction logs (in appendix) Appx B
- Distribution system 1, Appx A
- Number of connections and users 2
- PWS Treatment System 2
  
- Copy of latest Sanitary Survey (in appendix) Appx A
  
- A map indicating the general layout of the PWS. Appx A

4. Water Quality:

- Summarize enforcement actions in the past 5 years 2
- Describe background/regional water quality 2
- Table summarizing background water quality 3

For surface water sources, or ground water systems influenced by surface water

- Use classification n/a
- Threatened or impaired streams in watershed n/a
- TMDL development prioritization and status n/a

## Chapter 2 – Delineation

This section provides information on the hydrogeology of the water supply for the PWS. Background information on the hydrogeologic setting should be assembled into a ***Hydrogeologic Conceptual Model*** that summarizes the ground water system in a simplified manner. The background information should support the process to delineate management areas.

|                                                                       | <u>Page</u> |
|-----------------------------------------------------------------------|-------------|
| 1. Hydrogeologic Conditions                                           | 4           |
| • Identification of references for hydrogeologic information          | 4           |
| • Summary tables of hydrogeologic studies and maps for area           | 5-6         |
| • Summary of wells in area from GWIC database                         | Appx C      |
| • Geologic map(s) included (if not, valid justification for omission) | Fig. 3      |
| • Geologic cross section(s) included                                  | Fig. 5      |

For ground water systems:

|                                                                 |   |
|-----------------------------------------------------------------|---|
| • Identify aquifer                                              | 4 |
| • Geologic setting of aquifer                                   | 4 |
| • Aquifer properties (lithology, boundaries, etc.)              | 4 |
| • Aquifer type (confined, unconfined, semi-confined)            | 4 |
| • Connection with surface water                                 | 4 |
| • Classify sensitivity of hydrogeologic setting of source water | 4 |

For surface water sources, or ground water systems influenced by surface water

|                                                              |     |
|--------------------------------------------------------------|-----|
| • Hydrogeologic setting of PWS watershed                     | n/a |
| • Identification of references for hydrogeologic information | n/a |
| • Stream flow characteristics                                | n/a |

|                                      |   |
|--------------------------------------|---|
| 2. Conceptual Model and Assumptions  | 6 |
| • Seasonal trends in system          | 4 |
| • Assumptions made to simplify model | 9 |

For ground water systems:

|                                    |   |
|------------------------------------|---|
| • Aquifer boundaries               | 4 |
| • Aquifer recharge areas           | 6 |
| • Ground water flow direction      | 6 |
| • Communication with surface water | 6 |

For surface water sources, or ground water systems influenced by surface water

|                                                           |     |
|-----------------------------------------------------------|-----|
| • Relationships of surface water with ground water system | n/a |
|-----------------------------------------------------------|-----|

### 3. Well (or source) Information

For ground water systems:

|                                                                                                                                                                                                                                                          |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| • Well depths, construction details                                                                                                                                                                                                                      | 7 |
| • Well locations described                                                                                                                                                                                                                               | 7 |
| • Summary table of source information                                                                                                                                                                                                                    | 7 |
| [Source information to include: PWS Source Code, Well Location, MBMG (GWID) No., MT Water Right No., Date Well completed, total depth, perforated interval, static water level, pumping water level, drawdown, test pumping rate, and specific capacity] |   |

For surface water sources, or ground water systems influenced by surface water

|                                             |     |
|---------------------------------------------|-----|
| • Description of source water intake system | n/a |
| • Streamflow data, if available             | n/a |

#### 4. Delineation Methods and Criteria

|                                             |   |
|---------------------------------------------|---|
| • Overview of approach used for delineation | 6 |
|---------------------------------------------|---|

#### 5. Model Input

For ground water systems:

|                                                                |     |
|----------------------------------------------------------------|-----|
| • Identify analytical method used, with source reference       | 6   |
| • Values of hydraulic parameters identified, with ranges       | 9   |
| • Identify hydrogeologic parameter values used, with rationale | 7-8 |
| • Summary table of input values for model                      | 9   |
| • Reference and justification for assumed values               | 7-8 |
| • Time of travel equations or model specifications             | 7-8 |

For surface water sources, or ground water systems influenced by surface water

|                                                            |     |
|------------------------------------------------------------|-----|
| • Time of travel calculations for surface water body       | n/a |
| • Summary of ranges for streamflow parameter values        | n/a |
| • Identify streamflow parameter values used with rationale | n/a |
| • Summary table of input values for model                  | n/a |

#### 6. Delineation Results

|                                                                           |             |
|---------------------------------------------------------------------------|-------------|
| • Travel time calculation results, or computer model calibration criteria | 9           |
| • Management zones identified on map(s)                                   | Figs. 6 & 7 |
| • Delineated areas reflect seasonal variations in hydrologic systems      | 9           |

#### 7. Limiting factors

|                                                                       |   |
|-----------------------------------------------------------------------|---|
| • Identify uncertainties in delineation approach based on assumptions | 9 |
| • Identify how uncertainties may effect delineated areas              | 9 |

## Chapter 3 – Inventory

This section identifies all known and potential contaminant sources which may affect the PWS.

|                                                                      |       |
|----------------------------------------------------------------------|-------|
| 1. Inventory methods identified                                      | 10-11 |
| 2. Appropriate databases searched, with potential sources identified | 10-11 |

For ground water systems:

|                       |    |
|-----------------------|----|
| • <b>Control zone</b> | 11 |
|-----------------------|----|

|                                                        |
|--------------------------------------------------------|
| Description of land uses                               |
| Description of potential contaminant sources           |
| Worksheets completed for significant potential sources |
| Potential contaminant sources summarized in a table    |
| Potential contaminant sources located on a base map    |

|                           |    |
|---------------------------|----|
| • <b>Inventory Region</b> | 11 |
|---------------------------|----|

|                                                        |
|--------------------------------------------------------|
| Description of land uses                               |
| Description of potential contaminant sources           |
| Worksheets completed for significant potential sources |
| Potential contaminant sources summarized in a table    |
| Potential contaminant sources located on a base map    |

|                               |    |
|-------------------------------|----|
| • <b>Surface Water Buffer</b> | 12 |
|-------------------------------|----|

|                                                                                   |
|-----------------------------------------------------------------------------------|
| Description of land uses                                                          |
| Description of potential contaminant sources for pathogens (acute health hazards) |

|                          |    |
|--------------------------|----|
| • <b>Recharge Region</b> | 15 |
|--------------------------|----|

|                                                     |
|-----------------------------------------------------|
| Description of land uses                            |
| Description of large potential contaminant sources  |
| Large potential sources and land use shown on a map |

For surface water sources, or ground water systems influenced by surface water

|                                |     |
|--------------------------------|-----|
| • <b>Spill Response Region</b> | n/a |
|--------------------------------|-----|

|                                                        |
|--------------------------------------------------------|
| Description of land uses                               |
| Description of potential contaminant sources           |
| Worksheets completed for significant potential sources |
| Potential contaminant sources summarized in a table    |
| Potential contaminant sources located on a base map    |

|                           |     |
|---------------------------|-----|
| • <b>Watershed Region</b> | n/a |
|---------------------------|-----|

|                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of land uses                                                                                                                                        |
| Description of large potential contaminant sources                                                                                                              |
| Map of watershed region showing significant potential contaminant sources<br>(e.g. MPDES permitted discharges, to the extent practical with existing databases) |

For all systems

|                                                            |    |
|------------------------------------------------------------|----|
| • Inventory update – procedures to update every five years | 15 |
| • Inventory limitations identified                         | 15 |

## **Chapter 4 – Susceptibility Assessment**

This section evaluates the potential for the PWS water supply to be contaminated by the significant potential sources of contamination identified in Chapter 3. This information can be used by local officials to prioritize management actions for the delineation control and inventory zones. Worksheets to be considered when completing each task are listed with each topic.

Attach completed worksheets as Appendices to final document

1. Hazard of potential contaminant sources identified 17-19
2. Barriers for each potential contaminant sources identified and evaluated 17-19
  - Supporting information for identification of features as barriers 17-19
3. Threats from significant potential contaminant sources ranked 17-19

## **References**

All technical references are listed in the appropriate format 25-26

## **Appendices**

All necessary supporting information is included in Appendices yes

## **List any Deficiencies:**

none

## APPENDIX G

### Letter of Concurrence

Source Water Protection Section  
Department of Environmental Quality  
POB 200901  
Helena, MT 59602-0901

RE: Source Water Delineation & Assessment Report

To Whom It May Concern:

The Hellgate Elementary School public water system #3702 has reviewed the source water delineation and assessment report (SWDAR) dated June 2004. We concur that the delineation component appears to describe current conditions at the water system based on reasonably available information and that the susceptibility assessment identifies the origins of regulated contaminants to the extent practical.

We understand that the Hellgate Elementary School PWS SWDAR will be made available to the public by DEQ as described in the Montana Source Water Protection Program. Also, we will make a copy of the report available for the public to view during our normal office hours and describe the results in subsequent releases of our consumer confidence report.

Signed,

---

Signature

Title and Date

## Figures