40 CFR 261.24 Toxicity characteristic.

(a) A solid waste (except manufactured gas plant waste) exhibits the characteristic of toxicity if, using the Toxicity Characteristic Leaching Procedure, test Method 1311 in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846, as incorporated by reference in §260.11 of this chapter, the extract from a representative sample of the waste contains any of the contaminants listed in table 1 at the concentration equal to or greater than the respective value given in that table. Where the waste contains less than 0.5 percent filterable solids, the waste itself, after filtering using the methodology outlined in Method 1311, is considered to be the extract for the purpose of this section.

(b) A solid waste that exhibits the characteristic of toxicity has the EPA Hazardous Waste Number specified in Table 1 which corresponds to the toxic contaminant causing it to be hazardous.

Table 1 —Maximum Concentration of Contaminants for the Toxicity Characteristic

EPA HW No. ¹	Contaminant	CAS No. ²	Regulatory Level (mg/L)
D004	Arsenic	7440–38–2	5.0
D005	Barium	7440–39–3	100.0
D018	Benzene	71–43–2	0.5
D006	Cadmium	7440–43–9	1.0
D019	Carbon tetrachloride	56–23–5	0.5
D020	Chlordane	57–74–9	0.03
D021	Chlorobenzene	108–90–7	100.0
D022	Chloroform	67–66–3	6.0
D007	Chromium	7440–47–3	5.0
D023	o-Cresol	95–48–7	⁴ 200.0
D024	m-Cresol	108–39–4	⁴ 200.0
D025	p-Cresol	106–44–5	⁴ 200.0
D026	Cresol		⁴ 200.0
D016	2,4-D	94–75–7	10.0
D027	1,4-Dichlorobenzene	106–46–7	7.5
D028	1,2-Dichloroethane	107-06-2	0.5
D029	1,1-Dichloroethylene	75–35–4	0.7
D030	2,4-Dinitrotoluene	121–14–2	³ 0.13
D012	Endrin	72–20–8	0.02
D031	Heptachlor (and its epoxide)	76–44–8	0.008
D032	Hexachlorobenzene	118–74–1	³ 0.13
D033	Hexachlorobutadiene	87–68–3	0.5
D034	Hexachloroethane	67–72–1	3.0

D008	Lead	7439–92–1	5.0
D013	Lindane	58-89-9	0.4
D009	Mercury	7439–97–6	0.2
D014	Methoxychlor	72–43–5	10.0
D035	Methyl ethyl ketone	78–93–3	200.0
D036	Nitrobenzene	98–95–3	2.0
D037	Pentrachlorophenol	87–86–5	100.0
D038	Pyridine	110-86-1	³ 5.0
D010	Selenium	7782–49–2	1.0
D011	Silver	7440–22–4	5.0
D039	Tetrachloroethylene	127–18–4	0.7
D015	Toxaphene	8001–35–2	0.5
D040	Trichloroethylene	79–01–6	0.5
D041	2,4,5-Trichlorophenol	95–95–4	400.0
D042	2,4,6-Trichlorophenol	88-06-2	2.0
D017	2,4,5-TP (Silvex)	93–72–1	1.0
D043	Vinyl chloride	75–01–4	0.2

¹Hazardous waste number.

[55 FR 11862, Mar. 29, 1990, as amended at 55 FR 22684, June 1, 1990; 55 FR 26987, June 29, 1990; 58 FR 46049, Aug. 31, 1993; 67 FR 11254, Mar. 13, 2002; 71 FR 40259, July 14, 2006]

²Chemical abstracts service number.

³Quantitation limit is greater than the calculated regulatory level. The quantitation limit therefore becomes the regulatory level.

⁴If o-, m-, and p-Cresol concentrations cannot be differentiated, the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/l.