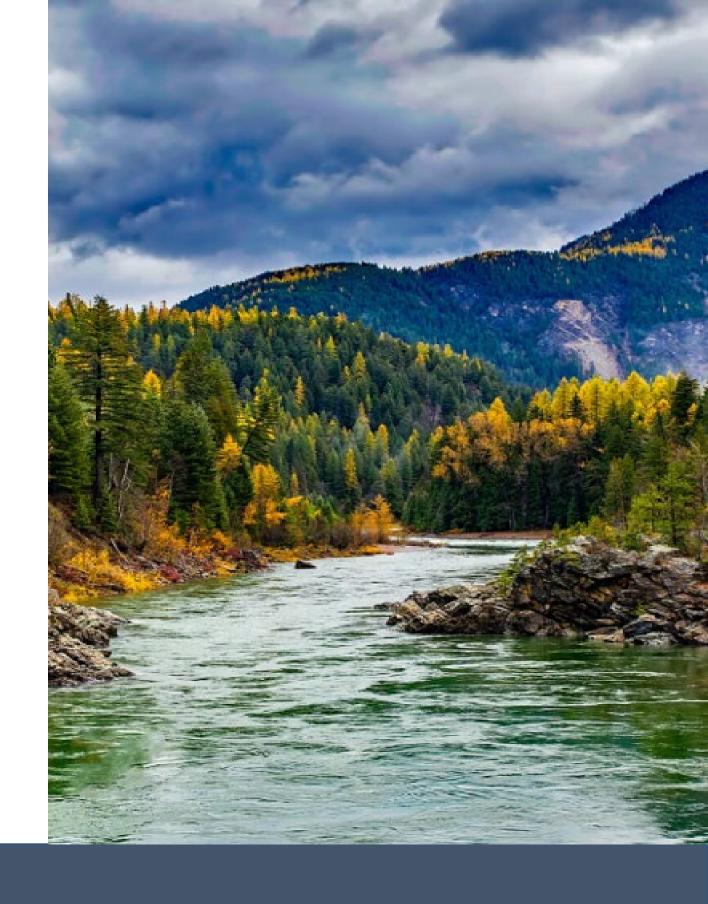
Risk-Based Corrective Action (RBCA)

Table Updates


Daphne Ryan | *Environmental Project Officer* Tanks, Brownfields, and Federal Facilities Bureau Montana Department of Environmental Quality Office: 406-444-6728 | <u>Daphne.Ryan@mt.gov</u>

Tables

- 1. Confirmation Table
- 2. Tier 1 Soil RBSL Table
- 3. Groundwater Table
- Look Up Tables: Calculated Tier 2 Soil Tables (A,B,C)
- 5. Lab Methods: Soil and Aqueous Sampling

DEO

MONTANA

Montana Department of Environment

News

comment...

Our mission is to champion a healthy enviror thriving Montana.

Learn more about DEQ >>

Environmental Policy Implementation

Quick Links

ASBESTOS INFORMATION

CLIMATE POLLUTION REDUCTION PLAN

FREE RADON TEST KITS

GOVERNOR'S HOUSING TASK FORCE

LEAD IN SCHOOLS

MEPA PUBLIC PROCESS

NUTRIENT WORK GROUP

PAY A BILL

PUBLIC COMMENT OPPORTUNITIES

WATER OPERATOR CERTIFICATION

WORK AT DEQ

DEQ Highlights the Importance of Testing your Home for Radon

1/3/2024 | Tags: Energy, Press Release

1/8/2024 | Tags: Press Release

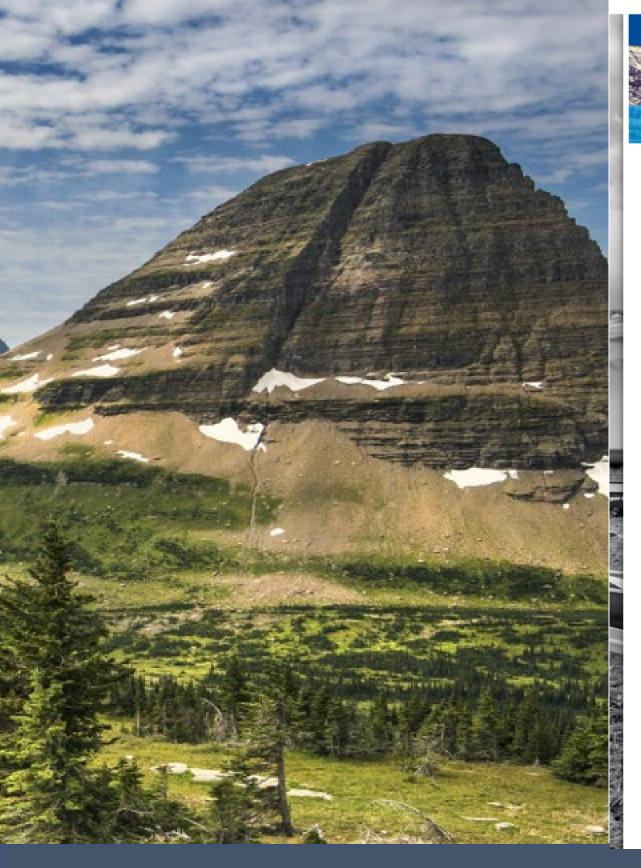
The Montana Department of Environmental Quality (DEQ) is offering free radon test kits for the month of January to test radon levels in Montanans' homes. January is National Radon Action Month.

DEQ's Monitoring Efforts on the Big Hole River will Provide Insight into the Health of the Waterbody

12/12/2023 | Tags: Water quality, Press Release

The Montana Department of Environmental Quality (DEQ) received reports of undesirable algae growth on the lower portion of the Big Hole River this summer. DEQ's monitoring and assessment team conducted sampling to determine the density and extent of the algae growth.

More DEQ News >>


ABOUT US PERMITTING & OPERATOR ASSISTANCE PUBLIC PARTICIPATION

& RECYCLING - Sea	arch
Waste & Recycling	
	Hazardous Waste
d Operator Assistance	Motor Vehicle Wrecking & Disposal
	Recycling
and the second second	Septic Tank Pumper
	Solid Waste
tal Qual	Tanks
	Tier II Reporting (EPCRA)
nment for a	Used Oil

Montana DEQ Launches MEPA Work Group to Enhance Public Engagement and

The Montana Department of Environmental Quality (DEQ) is pleased to announce the formation of a dedicated work group to further discuss the agency's implementation of the Montana Environmental Policy Act (MEPA). Following a productive series of listening sessions and public

Overview of Tanks Programs

Montana DEQ works closely with stakeholders to implement regulations for various aspects of above ground and underground storage tank systems, including construction, installation, and operation as well as identification and cleanup of associated leaks and funding options to support cleanup work. Use the buttons below to click through for more information on any of the programs.

Need to Report a Leak?

Call the leak reporting hotline

1-800-457-0568 (M-F 8:00-5:00) 1-406-324-4777 (After hours and holidays)

NOTE: You must report to a live person. Leaving a message does not constitute a report.

Underground Storage Tanks

Underground Storage Tanks Learn more >>

Keywords: Underground Storage Tank Permits, Licensing for Tank Professionals, Tank Operator Training, UST Owner Information

Petroleum Tank Cleanup

Petroleum Tank Cleanup Learn More >>

Keywords: Petroleum Release, Petroleum Cleanup, Petroleum Investigation, Petroleum Contamination, Petroleum Remediation

Petroleum Brownfields

Petroleum Brownfields Learn More >>

Keywords: Property Owner Assistance, Petroleum Funding Eligibility, Brownfields Funding, Petroleum Release Cleanup, Abandoned Gas Station Redevelopment

Petroleum Tank Release Compensation Board

Petroleum Tank Release Compensation Board Learn More >>

Keywords: Petroleum Funding, Financial Assistance, Financial Responsibility, Eligibility, Cleanup, Remediation, Remediation Assistance, Claims, Work Plan, Corrective Action Plan (CAP)

DEO MONTANA

Program Overview

The goal of the Petroleum Tank Cleanup Section is to protect human health and the environment from petroleum and hazardous substance releases from both underground and above ground storage tank systems.

- Directs and oversees reporting, investigation, cleanup, and resolution of petroleum releases.
- Is the technical resource for tank owners and operators (O/O), consultants, local government. officials, and the public to help respond to questions or concerns about the cleanup of petroleum releases.
- Approves the cleanup efforts of the facility O/O, assesses the potential threat to human health and the environment and provides technical assistance with corrective action.
- Works with O/O and their identified funding source (often the PTRCB) which provides financial assistance for eligible corrective action remediation.
- Administers other funding sources: o Leaking Underground Storage Tank (LUST) Trust Fund Program
- o Petroleum Brownfields Program
- o Special Legislative Funding

HOTLINE for Reporting Leaks

Monday through Friday 8:00 a.m. to 5:00 p.m. call 1-800-457-0568

After hours and holidays call 1-406-324-4777

NOTE: You must report to a live person. Leaving a message does not constitute a report.

Save the Date

Consultants Day 2024 February 9, 2024 at Fairmont Hot Springs

GUIDANCE

Risk Based Corrective Action Guidance (RBCA)

Risk-Based Screening Level (RBSL) Changes Table 1: Tier 1 Surface Soil (0-2 ft) RBSLs Table 2: Tier Subsurface Soil (>2 ft) RBSLs Table 3: Tier 1 Groundwater RBSLs and Standards Table 4: Tier 1 Groundwater RBSLs and Standards
 Table 2: Tier Subsurface Soil (>2 ft) RBSLs Table 3: Tier 1 Groundwater RBSLs and Standards
Table 3: Tier 1 Groundwater RBSLs and Standards
THE ALL STREET AND STREET ADDRESS OF T
 Table 4: Master Table - All Potential Tier 1 RBSLs for Soil
 Table 5: Conceptual Site Model - Evaluation of Exposure Pathway

Remedial Investigation Guidance Remedial Alternatives Analysis Guidance **Cleanup Guidance and Cleanup Technologies Workbook**

TANKS, WASTE & RECYCLING *

Search..

Q

PETROLEUM TANK CLEANUP CONTACTS

Main Number: (406) 444-6444

Email: DEQTanks@mt.gov

Helena PTCS Office 1225 Cedar St. Helena, MT 59601

Section Supervisor Latysha Pankratz (406) 556-4512

Project Support Tom Dodge (406) 444-6434

Env Science Specialist Daphne Ryan (406) 444-6728

Env Science Specialist William Bergum (406) 444-0216

Lead Env Science Specialist Shannon Willams-Cala (406) 444-6377

Env Science Specialist Chris Herman (406) 444-6424

Env Science Specialist Donnie McCurry (406) 444-6584

Billings PTCS Office

(406) 444-6444 Airport Business Park IP-9 1371 Rimtop Dr. Billings, MT 59105-9702

Env Science Specialist Jonathan Love (406) 247-4450

Lead Env Science Specialist Jay Shearer (406) 247-4451

Bozeman PTCS Office (406) 444-6444 Martel Building Ste 3B, 220 West Lamme St. Bozeman, MT 59715

Env Science Specialist Eric Krueger (406)556-6280

Env Science Specialist Latysha Pankratz (406)586-2779

TABLE 1 TIER 1 SURFACE SOIL (0-2 ft) RBSLs (mg/kg) (includes default RBSLs)

This table applies to contaminated surface soil from 0-2 feet below ground surface. Distance to water is from the sample depth to the water table. For VPH compounds at UST sites, default RBSLs (bold) are used to determine if a release has occurred at a site. Default RBSLs apply to the entire soil column and always apply in the absence of adequate information. For EPH compounds, the 200 ppm EPH screen concentration is used to determine if additional analysis (fractionation) is needed.

Distance to groundwater		< 10 fe	t to	groundwater		10-20 fee	et to g	groundwater				groundwater		
Chemical	Е	Residential	В	Commercial	B	Residential	В	Commercial	В	Residential	В	Commercial	В	
units (mg/kg = ppm)	its (mg/kg = ppm) RBSL (mg/kg			RBSL (mg/kg)		RBSL (mg/kg)		RBSL (mg/kg)		RBSL (mg/kg)		RBSL (mg/kg)		
For Gasoline and Light H	ydı	rocarbons me	sure	ed using the M	Iassa	chusetts Meth	od fo	or Volatile Pet	role	um Hydrocar	bon	s (VPH)		
C5-C8 Aliphatics	n	52	dc	220	1	52	dc	290	dc	52	dc	290	dc	
C9-C12 Aliphatics	n	77	dc	360	dc	77	dc	360	dc	77	dc	360	dc	
C9-C10 Aromatics	n	130	l/dc	130	1	130	dc	470	1	130	dc	720	1	0
MTBE	с	0.078*	1	0.078*	1	0.16	1	0.16	1	0.25	1	0.25	1	N
Benzene	с	0.07	1	0.07	1	0.21	1	0.21	1	0.33	1	0.33	1	
Toluene	n	21	1	21	1	65	1	65	1	100	1	100	1	par 1
Ethylbenzene	с	6.4	dc	26	1	6.4	dc	28	dc	6.4	dc	28	dc	
Xylenes	n	72	dc	310	dc	72	dc	310	dc	72	dc	310	dc	
Naphthalene	С	4.3	dc	12	1	4.3	dc	19	dc	4.3	dc	19	dc	
Lead Scavengers														
1,2-Dibromoethane (EDB)	с	0.000086*	1	0.000086*	1	0.00022*	1	0.00022*	1	0.00033*	1	0.00033*	1	
1,2-Dichloroethane (DCA)	с	0.019	1	0.019	1	0.052	1	0.052	1	0.079	1	0.079	1	
For Diesel and Heavy Hyd	carbons meas	ired	using the Ma	ssach	usetts Metho	d for	Extractable P	etro	leum Hydroc	arbo	ons (EPH)			
EPH Screen, Fractionate		200		200		200		200		200		200		
C9-C18 Aliphatics	n	110	dc	540	dc	110	dc	540	dc	110	dc	540	dc	
C19-C36 Aliphatics	n	24,000	dc	200,000	dc	24,000	dc	200,000	dc	24,000	dc	200,000	dc	
C11-C22 Aromatics	n	370	1	370	1	490	dc	1,300	1	490	dc	2,000	1	
Acenaphthene	n	27	1	27	1	91	1	91	1	140	1	140	1	
Anthracene	n	2,200	dc	2,600	1	2,200	dc	8,800	1	2,200	dc	14,000	1	
Benz(a)anthracene	с	1.3	dc	6.8	1	1.3	dc	23	1	1.3	dc	24	dc	
Benzo(a)pyrene	с	0.13**	dc	2.3	1	0.13**	dc	2.4	dc	0.13**	dc	2.4	dc	-
Benzo(b)fluoranthene	с	1.3	dc	23	1	1.3	dc	24	dc	1.3	dc	24	dc	-
Benzo(k)fluoranthene	с	13	dc	230	1	13	dc	240	dc	13	dc	240	dc	
Chrysene	С	130	dc	690	1	130	dc	2,300	1	130	dc	2,400	dc	
Dibenzo(a,h)anthracene	с	0.13**	dc	2.4	dc	0.13**	dc	2.4	dc	0.13**	dc	2.4	dc	
Fluoranthene	n	85	1	85	1	280	1	280	1	300	dc	440	1	
Fluorene	n	35	1	35	1	120	1	120	1	180	1	180	1	
Indeno(1,2,3-cd)pyrene	С	1.3	dc	24	dc	1.3	dc	24	dc	1.3	dc	24	dc	
Naphthalene	С	4.3	dc	12	1	4.3	dc	19	dc	4.3	dc	19	dc	
Pyrene	n	83	1	83	1	220	dc	280	1	220	dc	430	1	
1-Methylnaphthalene	С	2.1	1	2.1	1	7.1	1	7.1	1	11	1	11	1	
2-Methylnaphthalene	n	6.9	1	6.9	1	23	1	23	1	30	dc	35	1	

Confirmation Table

Table 1

Petroleum-Release Confirmation Risked-Based Screening Levels (RBSLs) for Soil

Laboratory analytical results that exceed the Table 1 Release Confirmation Soil RBSLs listed below confirm that a release has oc ARM 17.56.506. These represent the most conservative Tier 1 RBSLs for Leaching to groundwater and Residential Direct Cont. including ingestion, inhalation, and dermal routes of exposure.

Chemical / Analyte / Compound	Effects - carcinogenicity	RBSL, mg/kg	Basi
For Gasoline & Light Hadrocarbons measured using	the Montana Method for	r Volatile Petroleum Hydrocar	bons (VP
MTBE	C	0.078 *	1
Benzene	C	0.07	1
Toluene	n	21	1
Ethylbenzene	C	8.4	de
Xylenes	m	75	de
Naphthalene	C	2.9	dc
C9-C10 Aromatics	n	100	de
C5-C8 Aliphatics	. (n	78	de
C9-C12 Aliphatics	n	89	de
1,2-Dichloroethane (DCA)	с	0.019	1
1.2-Dibromoethane (EDB)	c	0.000086 *	1
For Diesel & Heavy Hydrocarbons measured using M			ons (EPH)
**EPH Screen	n/a	200	n/a
C9-C18 Aliphatics	n	130	de
C19-C36 Aliphatics	n	30,000	de
C11-C22 Aromatics	n	370	
Acenaphthene	n	27	1
Anthracene	n	2,300	de
Benz(a)anthracene	c	1.6	de
Benzo(a)pyrene	с	0.17	de
Benzo(b)fluoranthene	C	1.7	de
Benzo(k)fluoranthene	с	17	de
Chrysene	с	170	de
Dibenzo(a,h)anthracene	с	0.17	de
Fluoranthene	n	85	I.
Fluorene	n	35	1
Indeno(1,2,3-cd)pyrene	c	1.7	de
Naphthalene	с	2.9	dc
Pyrene	n	83	
1-Methylnaphthalene	c	2.1	
2-Methylnaphthalene	m	6.9	

-	
13- 14-	
-	
_	
_	
-	

TABLE 2 TIER 1 SUBSURFACE SOIL (>2 ft) RBSLs (mg/kg)

This table applies to contaminated subsurface soil (>2 feet below the ground surface). Distance to water is from the sample depth to the water table. For VPH compounds at UST sites, default RBSLs, provided in bold on Table 1, are used to determine if a release has occurred at a site. Default RBSLs apply to the entire soil column and always apply in the absence of adequate information. For EPH compounds the 200 ppm screen concentration is used to determine if additional analysis (fractionation) of the soil sample is needed.

Distance to groundwater		< 10 feet to groun	nd water	10-20 feet to groun	d water	> 20 feet to groun	d water
Chemical		>2 ft Construction		>2 ft Construction		>2 ft Construction	
units (mg/kg = ppm)	E	RBSL (mg/kg)	в	RBSL (mg/kg)	в	RBSL (mg/kg)	в
For Gasoline and Light Hy	dro	carbons measured usin	ig the Massa	chusetts Method for Vol	atile Petrol	leum Hydrocarbons (VPH	Ŋ
C5-C8 Aliphatics	n	220	1	410	dc	410	dc
C9-C12 Aliphatics	n	640	de	640	dc	640	dc
C9-C10 Aromatics	n	130	1	470	1	720	1
MTBE	С	0.078*	1	0.16	1	0.25	1
Benzene	C	0.07	1	0.21	1	0.33	1
Toluene	n	21	1	65	1	100	1
Ethylbenzene	\mathbf{C}	26	1	84	1	130	1
Xylenes	n	320	1	610	de	610	de
Naphthalene	n	12	1	40	1	62	1
Lead Scavengers							
1,2-Dibromoethane (EDB)	C	0.000086*	1	0.00022*	1	0.00033*	1
1,2-Dichloroethane (DCA)	С	0.019	1	0.052	1	0.079	1
For Diesel and Heavy Hydr	oca	rbons measured using	the Massach	usetts Method for Extra	actable Petr	roleum Hydrocarbons (EF	PH)
EPH Screen, Fractionate		200		200		200	
C9-C18 Aliphatics	n	900	de	900	de	900	de
C19-C36 Aliphatics	n	200,000	de	200,000	dc	200,000	dc
C11-C22 Aromatics	n	370	1	1,300	1	2,000	1
Acenaphthene	n	27	1	91	1	140	1
Anthracene	n	2,600	1	8,800	1	14,000	1
Benz(a)anthracene	С	6.8	1	23	1	35	1
Benzo(a)pyrene	C	2.3	1	7.5	1	12	1
Benzo(b)fluoranthene	C	23	1	76	1	120	1
Benzo(k)fluoranthene	C	230	1	750	1	1,200	1
Chrysene	C	690	1	2,300	1	3,500	1
Dibenzo(a,h)anthracene	C	7.5	1	24	1	38	1
Fluoranthene	n	85	1	280	1	440	1
Fluorene	n	35	1	120	1	180	1
Indeno(1,2,3-cd)pyrene	\mathbf{C}	77	1	250	1	380	1
Naphthalene	n	12	1	40	1	62	1
Pyrene	n	83	1	280	1	430	1
1-Methylnaphthalene	С	2.1	1	7.1	1	11	1
2-Methylnaphthalene	n	6.9	1	23	1	35	1

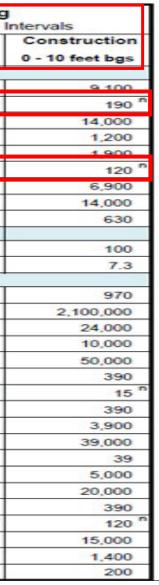
TABLE 4 - MASTER TABLE ALL POTENTIAL TIER 1 RBSLs FOR SOIL (mg/kg) Leaching RBSLs are based on the distance from the bottom of the contamination to the groundwater.

Chemical	Leaching 0-10 feet	Leaching 10-20 feet	Leaching >20 feet	Direct Contact Residential	Direct Contact Commercial*	Direct Contact Construction		
For Gasoline and Light Hydrocarbons measured using the Montana Method for Volatile Petroleum Hydrocarbons (VPH)								
C5-C8 Aliphatics	220	770	1,200	52	290	410		
C9-C12 Aliphatics	11,000	40,000	60,000	77	360	640		
C9-C10 Aromatics	130	470	720	130	1,000	1,000		
MTBE	0.078	0.16	0.25	52	230	8,900		
Benzene	0.07	0.21	0.33	1.3	5.7	240		
Toluene	21	65	100	610	5,500	5,500		
Ethylbenzene	26	84	130	6.4	28	1,300		
Xylenes	320	1,000	1,600	72	310	610		
Naphthalene**	12	40	62	4.3°	19 ^e	140 ⁿ		
Lead Scavengers								
1,2-Dibromoethane (EDB)	0.000086	0.00022	0.00033	0.04	0.18	7.8		
1,2-Dichloroethane (DCA)	0.019	0.052	0.079	0.52	2.3	110		
For Diesel and Heavy Hydro	ocarbons measured	using the Montan	a Method for Extra	actable Petroleum	Hydrocarbons (EP	H)		
C9-C18 Aliphatics	53,000	170,000	270,000	110	540	900		
C19-C36 Aliphatics	C	onsidered Immobile	8	24,000	200,000	200,000		
C11-C22 Aromatics	370	1,300	2,000	490	3,900	3,900		
Acenaphthene	27	91	140	450	3,800	3,800		
Anthracene	2,600	8,800	14,000	2,200	19,000	19,000		
Benz(a)anthracene	6.8	23	35	1.3	24	390		
Benzo(a)pyrene	2.3	7.5	12	0.13	2.4	39		
Benzo(b)fluoranthene	23	76	120	1.3	24	390		
Benzo(k)fluoranthene	230	750	1,200	13	240	3,900		
Chrysene	690	2,300	3,500	130	2400	39,000		
Dibenzo(a,h)anthracene	7.5	24	38	0.13	2.4	39		
Fluoranthene	85	280	440	300	2,500	2,500		
Fluorene	35	120	180	300	2,500	2,500		
Indeno(1,2,3-cd)pyrene	77	250	380	1.3	24	390		
Naphthalene**	12	40	62	4.3°	19 ^e	140 ⁿ		
Pyrene	83	280	430	220	1,900	1,900		
1-Methylnaphthalene	2.1	7.1	11	20	81	1,400		
2-Methylnaphthalene	6.9	23	35	30	250	250		
* = Construction workers are	exposed to both surf	ace and subsurface	oil The lower of c	onstruction or comm	percial RBSI s are p	rouided here		

* = Construction workers are exposed to both surface and subsurface soil. The lower of construction or commercial RBSLs are provided here.

** = Naphthalene has both carcinogenic (^c) and non-carcinogenic effects (ⁿ). For residential and commerial receptors the carcinogenic RBSLs are lower. For construction workers the non-carcinogenic RBSL are lower. Please use the appropriate adjustment for Tier 2 analysis (see Section 5.2).

Table 2: Tier 1 RBSLs


All Potential Tier 1 Risked-Based Screening Levels (RBSLs) for Soil, mg/kg

Leaching RBSLs: require vertical distance (feet) from base of petroleum-contaminated soil sample to groundwater.

Direct Contact RBSLs: require depth below ground surface (feet bgs) to petroleum-contaminated soil sample.

		ing RBSLs,			irect Contact	
~		eet) from Soil Groundwater	Sample to	carcinogenic	Residential	Commercial
Chemical / Analyte /						
Compound	0-10 feet	10-20 feet	>20 feet	non-carcinogenic	0 - 2 feet bgs	0 - 2 feet bgs
For Gasoline & Light Hydrocarbo					drocarbons (VPH)	310
MTBE	0.078	0.16	0.25	с		
Benzene				c/n	1.7 °	7.6 ^c
Toluene	21	65	100	n	630	6,300
Ethylbenzene	26	84	130	c	8.4	38
Xylenes	320	1,000	1,600	n	75	330
Naphthalene	12			c/n	2.9 °	13 ^c
C9-C10 Aromatics	130	470	720	n	100	570
C5-C8 Aliphatics	220	770	1,200	n	78	390
C9-C12 Aliphatics	11,000	40,000	60,000	n	89	410
Lead Scavengers			1			
1,2-Dichloroethane (DCA)	0.019	0.052	0.079	c	0.67	3.0
1,2-Dibromoethane (EDB)	0.000086	0.00022	0.00033	C	0.05	0.24
For Diesel & Heavy Hydrocarbon	s measured usi	ng Montana Me	thod for Extra	ctable Petroleum Hyd	rocarbons (EPH)	
C9-C18 Aliphatics	53,000	170,000	270,000	n	130	620
C19-C36 Aliphatics	Co	nsidered Immo	bile	n	30,000	470,000
C11-C22 Aromatics	370	1,300	2,000	n	540	6,200
Acenaphthene	27	91	140	n	470	6,000
Anthracene	2,600	8,800	14,000	n	2,300	30,000
Benz(a)anthracene	6.8	23	35	c	1.6	31
Benzo(a)pyrene	2.3	7.5	12	c/n	0.17 °	3.1 °
Benzo(b)fluoranthene	23	76	120	c	1.7	31
Benzo(k)fluoranthene	230	750	1,200	с	17	310
Chrysene	690	2,300	3,500	c	170	3,100
Dibenzo(a,h)anthracene	7.5	24	38	c	0.17	3.1
Fluoranthene	85	280	440	n	310	4,000
Fluorene	35	120	180	n	310	4,000
Indeno(1,2,3-cd)pyrene	77	250	380	c	1.7	31
Naphthalene	12	40	62	c/n	2.9 °	13 ^c
Pyrene	83	280	430	n	230	3,000
1-Methylnaphthalene	2.1	7.1	11	c	25	110
2-Methylnaphthalene	6.9	23	35	n	31	400

TABLE 3 TIER 1 GROUNDWATER RBSLs AND STANDARDS

This table applies to groundwater and consists of DEQ-7 Human Health Standards (HHSs; DEQ 2012), where available. For compounds without DEQ-7 HHSs, DEQ has developed RBSLs and included them in the table. For EPH compounds, a total extractable hydrocarbon (TEH) concentration of 1,000 µg/L is used to determine if additional analysis (fractionation) is needed. Surface water impacts require a minimum of a Tier 2 evaluation.

			Groundwater
			Standard or RBSL
Chemical	Effect	Basis	(µg/l)
For Gasoline and Light Hydrocarbon			
Massachusetts Method for Volatile Pe	troleum	Hydroc	arbons (VPH)
C5-C8 Aliphatics (b)	n	rb	650
C9-C12 Aliphatics ^(b)	n	rb	1,400
C9-C10 Aromatics ^(b)	n	rb	1,100
MTBE	n	hhs	30
Benzene	с	hhs	5
Toluene	n	hhs	1,000
Ethylbenzene	n	hhs	700
Xylenes	n	hhs	10,000
Naphthalene	с	hhs	100
Lead Scavengers			
Ethylene dibromide (EDB)	с	hhs	0.017
1,2-Dichloroethane (DCA)	с	hhs	4
For Diesel and Heavy Hydrocarbons Massachusetts Method for Extractabl	e Petrole		
EPH / TEH Screen fractionation require	d ^(a)		1,000
C9-C18 Aliphatics ^(b)	n	rb	1,400
C19-C36 Aliphatics	n	bu	1,000
C11-C22 Aromatics ^(b)	n	rb	1,100
Acenaphthene	n	hhs	70
Anthracene	n	hhs	2,100
Benz(a)anthracene	с	hhs	0.5
Benzo(a)pyrene	с	hhs	0.05*
Benzo(b)fluoranthene	с	hhs	0.5
Benzo(k)fluoranthene	с	hhs	5
Chrysene	с	hhs	50
Dibenzo(a,h)anthracene	с	hhs	0.05*
Fluoranthene	n	hhs	20
Fluorene	n	hhs	50
Indeno(1,2,3-cd)pyrene	с	hhs	0.5
Naphthalene	с	hhs	100
Pyrene	n	hhs	20
1-Methylnaphthalene	с	rsl	11
2-Methylnaphthalene	n	rsl	36

Groundwater Table

Table 3

Groundwater Standards and Risked-Based Screening Levels (RBSLs)

Table applies to groundwater and consists of current DEQ-7 Human Health Standards, where available. For compounds without DEQ-7 standards, the riskased screening levels (RBSLs) have been developed using EPA's RSL equations and information found in Appendix D. For EPH compounds, a total extractable hydrocarbon (TEH) concentration of 1,000 µg/L is used to determine if fractionation is needed. For surface water, see Appendix D.

Chemical / Analyte / Compound	Effects - carcinogenicity	Basis	Groundwater Standard or RBSL, µg/L
For Gasoline and Light Hydrocarbons meas Hydrocarbons (VPH)	ured using the Massachus	etts Method for	Volatile Petroleum
MTBE	n	DEQ-7	30
Benzene	c	DEQ-7	5
Toluene	n	DEQ-7	1,000
Ethylbenzene	n	DEQ-7	700
Xylenes	n	DEQ-7	10,000
Naphthalene	c	DEQ-7	100
C9-C10 Aromatics	n	rbsl	1,100
C5-C8 Aliphatics	n	rbsl	650
C9-C12 Aliphatics	n	rbsl	2,700
Lead Scavengers			
1,2-Dichloroethane (DCA)	c	DEQ-7	4
Ethylene dibromide (EDB)	c	DEQ-7	0.017
Hydrocarbons (EPH) EPH / TEH Screen fractionation required ⁽²⁾			1,000
C9-C18 Aliphatics	n	rbsi	2,700
C19-C36 Aliphatics	n	rbsl/bu	96,000/bu
C11-C22 Aromatics	n	rbsl	1,100
Acenaphthene	n	DEQ-7	70
Anthracene	n	DEQ-7	2,100
Benz(a)anthracene	c	DEQ-7	0.5
Benzo(a)pyrene	c	DEQ-7	0.05*
Benzo(b)fluoranthene	c	DEQ-7	0.5
Benzo(k)fluoranthene	c	DEQ-7	5
Chrysene	с	DEQ-7	
Dibenzo(a,h)anthracene			50
Fluoranthene	c	DEQ-7	50 0.05*
Eluorene	c n	DEQ-7 DEQ-7	
r hadrenne			0.05*
Indeno(1,2,3-cd)pyrene	n	DEQ-7	0.05*
	n n	DEQ-7 DEQ-7	0.05* 20 50
Indeno(1,2,3-cd)pyrene	n n c	DEQ-7 DEQ-7 DEQ-7	0.05* 20 50 0.5
Indeno(1,2,3-cd)pyrene Naphthalene	n n c	DEQ-7 DEQ-7 DEQ-7 DEQ-7	0.05* 20 50 0.5 100

Notes: (a) = An exceedance of the 1,000 µg/I EPH/TEH screen value indicates only that fractionation is required. If none of the tractions exceed, EPH/TEH does not need to be identified as a COPC exceeding RBSLs.

Effect: n = non-carcinogenic RBSLs and DEQ-7 standards are based on a hazard quotient of 1.

c = carcinogenic DEQ-7 standards are based on a cancer risk 1X10⁶.

bu = beneficial use ceiling - if taste/odor or any other parameters that render a water harmful, detrimental or injurious to the beneficial uses for that water are violated, the site cannot be closed

Table 4 **Lookup Tables**

Calculated Tier 2 Direct Contact Soil RBSLs

3 Tables – A, B, C

Site-Specific Tier 2 RBSLs for Direct-**Contact Soil**

- Calculated from Tier 1 RBSLs (Table 2)
- Two separate calculations >One for carcinogenic analytes > One for non-carcinogenic analytes

Table 2: Tier 1 Soil RBSLs

All Potential Tier 1 Risked-Based Screening Levels (RBSLs) for Soil, mg/kg

Leaching RBSLs: require vertical distance (feet) from base of petroleum-contaminated soil sample to groundwater. Direct Contact RBSLs: require depth below ground surface (feet bgs) to petroleum-contaminated soil sample.

		eet) from Soil	5 5	Direct Contact RBSLs, mg/kg Carcinogenic Effects, Receptors, and Depth Intervals							
Chemical / Analyte /		Groundwater	oumpie to	carcinogenic	Residential	Commercial	Construction				
Compound	0-10 feet	10-20 feet	>20 feet	non-carcinogenic	0 - 2 feet bgs	0 - 2 feet bgs	0 - 10 feet bgs				
	ins measured us	sing the Montan	a Method for	Volatile Petroleum Hydrocarbons (VPH)							
MTBE	0.078	0.16	0.25	с	67	310	9,100				
Benzene	0.07	0.21	0.33	c/n	1.7 °	7.6 ^c	190				
Toluene	21	65	100	n	630	6,300	14,000				
Ethylbenzene	26	84	130	c	8.4	38	1,200				
Xylenes	320	1,000	1,600	n	75	330	1,900				
Naphthalene	12	40	62	c/n	2.9 °	13 ^c	120				
C9-C10 Aromatics	130	470	720	n	100	570	6,900				
C5-C8 Aliphatics	220	770	1,200	n	78	390	14,000				
C9-C12 Aliphatics	11,000	40,000	60,000	n	89	410	630				
Lead Scavengers											
1,2-Dichloroethane (DCA)	0.019	0.052	0.079	c	0.67	3.0	100				
1,2-Dibromoethane (EDB)	0.000086	0.00022	0.00033	c	0.05	0.24	7.3				
For Diesel & Heavy Hydrocarbon	s measured usin	ng Montana Met	hod for Extra	table Petroleum Hyd	rocarbons (EPH)						
C9-C18 Aliphatics	53,000	170,000	270,000	n	130	620	970				
C19-C36 Aliphatics	Co	nsidered Immol	bile	n	30,000	470,000	2,100,000				
C11-C22 Aromatics	370	1,300	2,000	n	540	6,200	24,000				
Acenaphthene	27	91	140	n	470	6,000	10,000				
Anthracene	2,600	8,800	14,000	n	2,300	30,000	50,000				
Benz(a)anthracene	6.8	23	35	c	1.6	31	390				
Benzo(a)pyrene	2.3	7.5	12	c/n	0.17 °	3.1 °	15				
Benzo(b)fluoranthene	23	76	120	c	1.7	31	390				
Benzo(k)fluoranthene	230	750	1,200	c	17	310	3,900				
Chrysene	690	2,300	3,500	c	170	3,100	39,000				
Dibenzo(a,h)anthracene	7.5	24	38	c	0.17	3.1	39				
Fluoranthene	85	280	440	n	310	4,000	5,000				
Fluorene	35	120	180	n	310	4,000	20,000				
Indeno(1,2,3-cd)pyrene	77	250	380	c	1.7	31	390				
Naphthalene	12	40	62	c/n	2.9 °	13 ^c	120				
Pyrene	83	280	430	n	230	3,000	15,000				
1-Methylnaphthalene	2.1	7.1	11	c	25	110	1,400				
2-Methylnaphthalene	6.9	23	35	n	31	400	200				

Table 4a: Calculated Tier 2 Soil RBSLs **Direct Contact Residential**

Effects	Tier 1 Soil RBSLs, n	ng/kg		Calc	ulated Ti	er 2 RBS	Ls for Su	il Exceed	lances of	Tier 1 R	BSLs, mg	/kg				
.0	Direct Contact		Tier 2 R	BSL = Tier 1	RBSL X 10	/ (number of	Non-Carcino	Tier 2 RBSL = Tier 1 RBSL X 10 / (number of Carcinogenic Analy								
anic inoge	Residential Recep	otor		Tier 2 RBSL = Tier 1 RBSL X 10 / (number of Non-Carcinogenic Analytes >Tier 1 RBSLs)						>Tier 1 RBSLs)						
carcinogenic non-carcinogenic	Chemical / Analyte /	0 - 2 feet	Numbe	r of Non-C	arcinoger	nic Analyte	s >Tier 1	RBSLs	Num	ber of Car	cinogenic	Analytes	Tier 1 RF	SLs		
C: C3L	Compound	bgs	1	2	3	4	5	6	1	2	3	4	5	(
0 2	For Gasoline & Light Hydrocarb		d using the l	Montana Me	thod for Vol	atile Petrole	um Hydroc	arbons (VPI	1)							
с	MTBE	67							670	335	223	168	134			
С	Benzene	1.7							17	8.5	5.7	4.3	3.4			
n	Toluene	630	6,300	3,150	2,100	1,575	1,260	1,050								
С	Ethylbenzene	8.4							84	42	28	21	16.8			
n	Xylenes	75	750	375	250	188	150	125								
С	Naphthalene	2.9							29	15	9.7	7.3	5.8			
n	C9-C10 Aromatics	60	600	300	200	150	120	100								
n	C5-C8 Aliphatics	90	900	450	300	225	180	150								
n	C9-C12 Aliphatics	160	1,600	800	533	400	320	267								
	Lead Scavengers															
С	1,2-Dichloroethane (DCA)	0.67							6.7	3.4	2.23	1.68	1.34	1		
С	1,2-Dibromoethane (EDB)	0.05							0.5	0.3	0.17	0.13	0.10	(
	For Diesel & Heavy Hydrocarbo	ns measured	using Monta	na Method f	for Extracta	ble Petroleu	m Hydrocai	bons (EPH)								
n	C9-C18 Aliphatics	230	2,300	1,150	767	575	460	383								
n	C19-C36 Aliphatics	25,000	250,000	125,000	83,333	62,500	50,000	41,667								
n	C11-C22 Aromatics	540	5,400	2,700	1,800	1,350	1,080	900								
n	Acenaphthene	470	4,700	2,350	1,567	1,175	940	783								
n	Anthracene	2,300	23,000	11,500	7,667	5,750	4,600	3,833								
С	Benz(a)anthracene	1.6							16	8.0	5.3	4.0	3.2			
С	Benzo(a)pyrene	0.17							1.7	0.85	0.57	0.43	0.34	(
С	Benzo(b)fluoranthene	1.7							17	8.5	5.7	4.3	3.4			
С	Benzo(k)fluoranthene	17							170	85	57	43	34			
С	Chrysene	170							1,700	850	567	425	340			
С	Dibenzo(a,h)anthracene	0.17							1.7	0.85	0.57	0.43	0.34	(
n	Fluoranthene	310	3,100	1,550	1,033	775	620	517								
n	Fluorene	310	3,100	1,550	1,033	775	620	517								
С	Indeno(1,2,3-cd)pyrene	1.7							17	8.5	5.7	4.3	3.4			
С	Naphthalene	2.9							29	15	9.7	7.3	5.8			
n	Pyrene	230	2,300	1,150	767	575	460	383								
С	1-Methylnaphthalene	25							250	125	83.3	62.5	50	2		
n	2-Methylnaphthalene	31	310	155	103	78	62	52						_		

Table 4a

*Refer to RBCA Guidance Section 4.0 for details on the Tier 2 Evaluation Process and calculation of Tier 2 RBSLs

29-Dec-2023

nalytes
81.0
SLs
0
140
112 2.8
2.8
14
14
4.8
4.8
1.12
0.08
0.00
2.7
0.28
0.28
28
283
0.28
2.8
4.8
41.7

Table 4b: Calculated Tier 2 Soil RBSLs **Direct Contact Commercial**

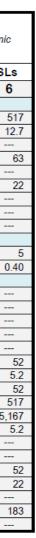
29-Dec-2023

Calculated Tier	2* Soil RBSLs: Direct Contact Commercial	Receptor 0 - 2 feet bgs
r 1 Soil RBSLs, mg/kg	Calculated Tier 2 RBSLs for Surface Soil Exce	eedances of Tier 1 RBSLs, mg/kg
Direct Contact	Tier 2 RBSL = Tier 1 RBSL X 10 / (number of Non-Carcinogenic Analytes >Tier 1	Tier 2 RBSL = Tier 1 RBSL X 10 / (number of Carcinogenic
ommorcial Pocontor	RBS(s)	Analytes >Tier 1 RBSLs)

Table 4b

: carcinogenic : non-carcinogen	Commercial Rece		RBSLs)						Analytes >Tier 1 RBSLs)					
rcinog n-carc	Chemical / Analyte /	0 - 2 feet	Number of Non-Carcinogenic Analytes >Tier 1 RBSLs						Numb	er of Card	inogenic	Analytes	>Tier 1 F	RBSL
C: Cal	Compound	bgs	1	2	3	4	5	6	1	2	3	4	5	6
	For Gasoline & Light Hydroca	rbons measur	ed using the N	Iontana Metho	d for Volatile F	Petroleum Hyd	rocarbons (V	/PH)						
С	MTBE	310							3,100	1,550	1,033	775	620	5
С	Benzene	7.6							76	38	25	19	15.2	12
n	Toluene	6,300	63,000	31,500	21,000	15,750	12,600	10,500						
С	Ethylbenzene	38							380	190	127	95	76	
n	Xylenes	330	3,300	1,650	1,100	825	660	550						
С	Naphthalene	13							130	65	43	33	26	
n	C9-C10 Aromatics	300	3,000	1,500	1,000	750	600	500						
n	C5-C8 Aliphatics	450	4,500	2,250	1,500	1,125	900	750						
n	C9-C12 Aliphatics	800	8,000	4,000	2,667	2,000	1,600	1,333						
	Lead Scavengers													
с	1,2-Dichloroethane (DCA)	3							30	15	10	7.5	6	
С	1,2-Dibromoethane (EDB)	0.24							2.4	1.2	0.80	0.60	0.48	0.4
	For Diesel & Heavy Hydrocarbons measured using Montana Method for Extractable Petroleum Hydrocarbons (EPH)													
n	C9-C18 Aliphatics	1,200	12,000	6,000	4,000	3,000	2,400	2,000						
n	C19-C36 Aliphatics	330,000	3,300,000	1,650,000	1,100,000	825,000	660,000	550,000						
n	C11-C22 Aromatics	6,200	62,000	31,000	20,667	15,500	12,400	10,333						
n	Acenaphthene	6,000	60,000	30,000	20,000	15,000	12,000	10,000						
n	Anthracene	30,000	300,000	150,000	100,000	75,000	60,000	50,000						
с	Benz(a)anthracene	31							310	155	103	78	62	
с	Benzo(a)pyrene	3.1							31	15.5	10.3	7.8	6.2	5
с	Benzo(b)fluoranthene	31							310	155	103	78	62	
С	Benzo(k)fluoranthene	310							3,100	1,550	1,033	775	620	5
С	Chrysene	3,100							31,000	15,500	10,333	7,750	6,200	5,1
С	Dibenzo(a,h)anthracene	3.1							31	15.5	10.3	7.8	6.2	5
n	Fluoranthene	4,000	40,000	20,000	13,333	10,000	8,000	6,667						
n	Fluorene	4,000	40,000	20,000	13,333	10,000	8,000	6,667						
с	Indeno(1,2,3-cd)pyrene	31							310	155	103	78	62	
с	Naphthalene	13							130	65.0	43	33	26	
n	Pyrene	3,000	30,000	15,000	10,000	7,500	6,000	5,000						
с	1-Methylnaphthalene	110							1,100	550.0	367	275	220	1
n	2-Methylnaphthalene	400	4,000	2,000	1,333	1,000	800	667						

*Refer to RBCA Guidance Section 4.0 for details on the Tier 2 Evaluation Process and calculation of Tier 2 RBSI s



Effects

<u>i</u>

Tier

Table 4c: Calculated Tier 2 Soil RBSLs **Direct Contact Construction**

						Tal	ole 4c						
			ier 2* So						-		0 - 10		g
Effects	Tier 1 Soil RBSLs,	mg/kg		Calc	ulated Tier	2 RBSLs f	or Subsurfa	ace Soil Ex	ceedances	s of Tier 1	I RBSLs,	mg/kg	_
jų.	Direct Contac	t	Tise 0 DDCI	Tired DDCL Vd	0. / /	les Contractor	in Analytics Th		Tier 2 RBSL :	= Tier 1 RBSI	L X 10 / (nun	nber of Carc	ind
inge	Construction Rece	eptor	Tier 2 RBSL =	Tier 1 RBSL X 1	07 (number of I	von-Carcinoger	nic Analytes > He	er i RBSLS)			1 RBS		
carcinogenic non-carcinogenic	Chemical / Analyte /	0 - 10 feet	Nu	umber of Non-	Carcinogeni	c Analytes >	Tier 1 RBSLs	3	Num	ber of Card	cinogenic	Analytes	>1
c: car n: nor	Compound	bgs	1	2	3	4	5	6	1	2	3	4	Γ
0 2	For Gasoline & Light Hydrocar		using the Mont		Volatile Petrole	eum Hydrocarl	bons (VPH)	-		_	-		t
с	MTBE	9,100							91,000	45,500	30,333	22,750	Г
n	Benzene	190	1,900	950	633	475	380	317					t
n	Toluene	14,000	140,000	70,000	46,667	35,000	28,000	23,333					T
с	Ethylbenzene	1,200							12,000	6,000	4,000	3,000	T
n	Xylenes	1,900	19,000	9,500	6,333	4,750	3,800	3,167					Γ
n	Naphthalene	120	1,200	600	400	300	240	200					Γ
n	C9-C10 Aromatics	4,000	40,000	20,000	13,333	10,000	8,000	6,667					F
n	C5-C8 Aliphatics	2,000	20,000	10,000	6,667	5,000	4,000	3,333					Г
n	C9-C12 Aliphatics	3,000	30,000	15,000	10,000	7,500	6,000	5,000					Г
	Lead Scavengers												Γ
С	1,2-Dichloroethane (DCA)	100							1,000	500	333	250	Г
С	1,2-Dibromoethane (EDB)	7.3							73	37	24	18.3	Γ
	For Diesel & Heavy Hydrocarb	ons measured	using Montana N	lethod for Extra	ctable Petroleu	im Hydrocarbo	ons (EPH)						
n	C9-C18 Aliphatics	4,600	46,000	23,000	15,333	11,500	9,200	7,667					
n	C19-C36 Aliphatics	1,600,000	16,000,000	8,000,000	5,333,333	4,000,000	3,200,000	2,666,667					
n	C11-C22 Aromatics	33,000	330,000	165,000	110,000	82,500	66,000	55,000					
n	Acenaphthene	10,000	100,000	50,000	33,333	25,000	20,000	16,667					
n	Anthracene	50,000	500,000	250,000	166,667	125,000	100,000	83,333					
С	Benz(a)anthracene	390							3,900	1,950	1,300	975	
n	Benzo(a)pyrene	15	150	75	50	38	30	25					
с	Benzo(b)fluoranthene	390							3,900	1,950	1,300	975	
С	Benzo(k)fluoranthene	3,900							39,000	19,500	13,000	9,750	
С	Chrysene	39,000							390,000	195,000	130,000	97,500	1
С	Dibenzo(a,h)anthracene	39							390	195	130	98	L
n	Fluoranthene	5,000	50,000	25,000	16,667	12,500	10,000	8,333					1
n	Fluorene	40	400	200	133	100	80	67					
С	Indeno(1,2,3-cd)pyrene	390							3,900	1,950	1,300	975	1
n	Naphthalene	120	1,200	600	400	300	240	200					4
n	Pyrene	15,000	150,000	75,000	50,000	37,500	30,000	25,000					1
С	1-Methylnaphthalene	1,400							14,000	7,000	4,667	3,500	1
n	2-Methylnaphthalene	200	2,000	1,000	667	500	400	333					

*Refer to RBCA Guidance Section 4.0 for details on the Tier 2 Evaluation Process and calculation of Tier 2 RBSLs

29-Dec-2023

js

nogenic Analytes >Tier						
Tier 1 RBSLs						
5	6					
18,200	15,167					
2,400	2,000					
200	167					
14.6	12.2					
780	650					
780	650					
7,800	6,500					
78,000	65,000					
78	65					
780	650					
2,800	2,333					

New Equation

Tier 1 RBSL X 10/ # Non-Carcinogenic Analytes>Tier 1 RBSLs = Tier 2 RBSL

How To Calculate Tier 2 RBS

- **1. Determine number** of Noncarcinogenic analytes that exceed their respective RBSLs = (# exceedances)
- 2. For each Noncarcinogenic analyte, **lookup Tier 1 RBSL** in RBCA Table 2 = Tier 1 RBSL
- **3. Multiply** Tier 1 RBSL **by 10** = (RBSL x 10)
- 4. <u>Divide</u> Tier 1 RBSL x 10 by # exceedances = <u>Tier 2 RBSL</u>

L	

Example

	on and Field Data		e			n Hydrocarbons (VPH) co			<u>0</u>		
	Sample Depth,	B	Benzene	nen	Ethyl- benzene	enes	ht	9-C 10 romatic	C5-C8 Aliphatic s	C12 phat	-
Sample ID	ft bgs	MTBE	Ber	Toluene	Ethyl- benze	Xyle	Naphthal ene	a C9-	C5-C8 Alipha s	C9-C12 Aliphatic s	ТРН
Carcinogenic(C)/N (N	-		N	N	С	N	N	N	N	N	
DEQ Tier 1 RBSL		0.078	0.07	21	26	320	12	130	220	11,000	NSL
DEQ Tier 1 RBSL	4		190	14,000	1,200	1900	120	6,900	14000	630	NSL
SB-1	4		255	32	14	851	220	<10	<10	<10	
SB-2	4		130	18	8	15	64	•	•	•	

3 Non-Carcinogenic analytes exceed Tier 1 RBSL

Tier 2 RBSL Calculation

Benzene RBSL = 190 mg/kg

Number of NC exceedances = 3

190 X **10** / **3** = 633

Tier 2 RBSL = 633 mg/kg

Tier 2 RBSL Calculation

Xylene RBSL = 1900 mg/kg

Number of NC exceedances = 3

$1900 \times 10 / 3 = 6,333$

Tier 2 RBSL = 6,333 mg/kg

Tier 2 RBSL Calculation

Naphthalene RBSL = 120 mg/kg

Number of NC exceedances = 3

$120 \times 10 / 3 = 400$

Tier 2 RBSL = 400 mg/kg

Calculated Tier 2 RBSLs

Benzene :
$$(\underline{190})(10) = 633$$

Xylenes : $(\underline{1900})(10) = 6,333$
Naphthalene : $(\underline{120})(10) = 400$
3

Table 4c

Calculated Tier 2* Soil RBSLs: Direct Contact Construction Receptor 0 - 10 feet bgs

Effects Tier 1 Soil RBSLs, mg/kg Calculated Tier 2 RBSLs for Subsurface Soil Exceedances of Tier 1 RBSLs, mg/kg Direct Contact Tier 2 RBSL = Tier 1 RBSL X 10 / (number of Carcinoge c: carcinogenic n: non-carcinogeni Fier 2 RBSL = Tier 1 RBSL X 10 / (number of Non-Carcinogenic Analytes >Tier 1 RBSLs) 1 RBSLs) Construction Receptor Number of Non-Carcinogenic Analytes >Tier 1 RBSLs Number of Carcinogenic Analytes >Tie Chemical / Analyte / 0 - 10 feet 2 4 5 6 Compound 1 3 2 3 bqs 1 4 For Gasoline & Light Hydrocarbons measure using the Montana Method for Volatile Petroleum Hydrocarbons (VPH) MTBE 9,100 91,000 45,500 30,333 22,750 C ----------------____ ----190 Benzene 1,900 950 633 475 380 317 n ----------------Toluene 14.000 140,000 70,000 23,333 46.667 35.000 28,000 -----------n ----1.200 Ethylbenzene 12,000 6,000 4,000 3,000 С ------------------------1,900 Xylenes 19,000 9,500 6,333 4,750 3,800 3,167 ____ ____ n --------Naphthalene 120 1,200 600 400 300 240 200 -----------n ----4,000 C9-C10 Aromatics 40,000 13,333 20,000 10,000 8,000 6,667 ---n ------------C5-C8 Aliphatics 2,000 n 20,000 10,000 6,667 5,000 4,000 3,333 ----------------C9-C12 Aliphatics 3,000 30,000 15,000 10,000 7,500 5,000 6,000 ---n ------------Lead Scavengers 1.2-Dichloroethane (DCA) 100 250 ----1.000 500 333 С ------------____ ----1.2-Dibromoethane (EDB) 7.3 73 37 24 18.3 С ----____ ----____ ____ ---sing Montana Method for Extractable Petroleum Hydrocarbons (EPH) For Diesel & Heavy Hydrocarbons measured 4,600 C9-C18 Aliphatics 7.667 n 46,000 23,000 15,333 11.500 9.200 ----------------C19-C36 Aliphatics 1,600,000 16,000,000 8,000,000 5,333,333 4,000,000 3,200,000 2.666,667 n --------____ ----C11-C22 Aromatics 33,000 330,000 165.000 110,000 82,500 66.000 55.000 n ----------------Acenaphthene 10,000 100.000 50,000 33,333 16.667 25,000 20,000 -------n ------50,000 Anthracene 500,000 250,000 166.667 125.000 100.000 83.333 n ----------------390 Benz(a)anthracene 975 --------3,900 1,950 С ------------____ 1.300 15 Benzo(a)pyrene 150 75 50 38 25 n 30 ----------------390 С Benzo(b)fluoranthene ----3,900 1,950 1,300 975 ------------____ ____ Benzo(k)fluoranthene 3,900 39,000 19,500 13.000 9,750 --------С ------------____ 39,000 390,000 195.000 97,500 Chrysene 130.000 С ------------------------Dibenzo(a,h)anthracene 39 --------390 195 130 98 С --------____ ----Fluoranthene 5,000 50,000 25,000 8.333 16.667 12,500 10.000 -------n --------40 Fluorene 400 200 133 100 67 ---n 80 ____ --------390 С Indeno(1,2,3-cd)pyrene ----____ --------____ ----3,900 1,950 1,300 975 120 Naphthalene 1,200 600 400 300 240 200 n ----------------15,000 Pyrene 150,000 75,000 50,000 37,500 30,000 25,000 -------n ____ ----1-Methylnaphthalene 1,400 7.000 3,500 ------------------------14,000 4.667 С n 2-Methylnaphthalene 200 2.000 1.000 667 500 400 333 ----____ ____ ----

*Refer to RBCA Guidance Section 4.0 for details on the Tier 2 Evaluation Process and calculation of Tier 2 RBSLs

29-Dec-2023

enic Analytes >Tier							
r 1 RBSLs							
5	6						
8,200	15,167						
2,400	2,000						
200	167						
14.6	12.2						
780	650						
780	650						
7,800	6,500						
78,000	65,000						
78	65						
780	650						
2,800	2,333						

			Tab	le 4c				
Calcu	lated Tier 2* Soil RB	SLs: Direc	t Contact	Construct	ion Rece	ptor	0 - 10 fe	et bgs
Effects	Tier 1 Soil RBSLs, n	ng/kg	Calculated Ti	er 2 RBSLs for Su	ubsurface Soil	Exceedances o	of Tier 1 RBSL	.s, mg/kg
c ogenic	Direct Contac Construction Rec		er 1 RBSL X 10 / (n nic Analytes >Tier 1		Tier 2 RBS (number of Ca	SL = Tier 1 RBS rcinogenic Ana RBSLs)		
carcinogenic non-carcinogenic	Chemical / Analyte /	0 - 10 feet	Number of Non	-Carcinogenic An RBSLs	alytes >Tier 1		Carcinogenic Tier 1 RBSLs	-
c: ca n: nc	Compound	bgs	1	2	3	1	2	3
	For Gasoline & Light Hydrocarbo	ons measured us	sing the Montana	Method for Volat	le Petroleum H	drocarbons (VPH)	
С	MTBE	9,100				91,000	45,500	30,333
n	Benzene	190	1,900	950 >	633			
n	Toluene	14,000	140,000	70,000	46,667			
С	Ethylbenzene	1,200				12,000	6,000	4,000
n	Xylenes	1,900	19,000	9,500 >	6,333			
n	Naphthalene	120	1,200	600 >	400			
n	C9-C10 Aromatics	4,000	40,000	20,000	13,333			
n	C5-C8 Aliphatics	2,000	20,000	10,000	6,667			
n	C9-C12 Aliphatics	3,000	30,000	15,000	10,000			
	Lead Scavengers							
С	1,2-Dichloroethane (DCA)	100				1,000	500	333
С	1,2-Dibromoethane (EDB)	7.3				73	37	24
	For Diesel & Heavy Hydrocarbon					drocarbons (EF	<u>PH)</u>	
n	C9-C18 Aliphatics	4,600	46,000	23,000	15,333			
n	C19-C36 Aliphatics	1,600,000	16,000,000	8,000,000	5,333,333			
n	C11-C22 Aromatics	33,000	330,000	165,000	110,000			
	*Refer to RBCA Guidance Section 4.0 for	details on the Tier 2	Evaluation Process	and calculation of Tier	2 RBSLs			

Updated Lab Methods: Soil and Aqueous Sampling

00

50

100

Table A: Soil Samples

Parameter	Analytical Method	Sample Container/ Preservation	Holding
Soil Samples			_
VPH	Montana Method VPH	 60 mL or 40 mL VOA vials or 4 oz wide mouth jar. Collect at least 10 g of soil, cool to 4 ±2° C. Must be preserved at the lab in methanol within 48 hours of collection. or Methanol preservation in the field.1 mL methanol for every g soil, +/- 25%; lab can provide appropriate vials with methanol for easy collection; cool to 4 ±2° C. If preserving with methanol in the field, a sample containing no methanol must also be submitted for determining moisture percentage. 	28 Days to ana collection. If collecting in without metha preservation in w/in 48 hours : days to analysi collection.
EPH Screen	Montana Method EPH	4-oz wide-mouth amber glass jar, cool to 4±2° C	Extracted with of collection. within 40 days extraction.
EPH Fractionation with or without PAH's	Montana Method EPH (PAHs: 8270))	One 4-oz glass jar, cool to (4 ± 2) °C	Following EPI 14-day to extra days to analysi
VOCs/Oxygenates/ 1,2 DCA/lead scavengers EDB	EPA Method 8260/SW- 846-5035A	One 4-oz. glass jar, cool to (4 ± 2) °C	48 hours to lab extraction. 14 time from coll
		Preserve in methanol in field or at lab within 48 hours of collection.	McOH preserv days to extract analysis from (
RCRA Metals plus zinc (Except Hg)	EPA Method 6010 or 6020	One 4-oz. plastic or glass jar, no preservation	6 months
Mercury (Hg)	EPA Method 7471 B	One 4-oz. plastic or glass jar, no preservation	28 days
% Moisture- required for all soil samples	USDA Handbook 60 method 26 (or equivalent)		

Table A - Soil Sampling and Preservation Protocol

Alternate approved versions of the methods are allowed.

ng Time
analysis from
; in the field hanol, lab in methanol rs and 28 ysis from
ithin 14 days n. Analyzed ays of
PH Screen ctraction, 40 ysis.
lab 14-day hold ollection
ervation: 14 action and m collection.

60 mL or 40 mL VOA vials or 4 oz wide mouth jar. Collect at least 10 g of soil, cool to 4 ±2° C. Must be preserved at the lab in methanol within 48 hours of collection.

or

Methanol preservation in the field. 1 mL methanol for every g soil, +/- 25%; lab can provide appropriate vials with methanol for easy collection; cool to $4 \pm 2^{\circ}$ C.

If preserving with methanol in the field, a sample containing no methanol must also be submitted for determining moisture

percentage.

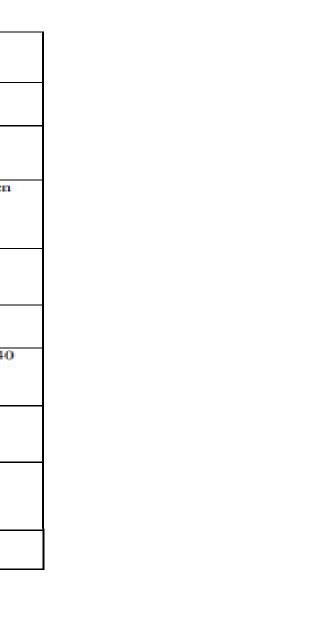
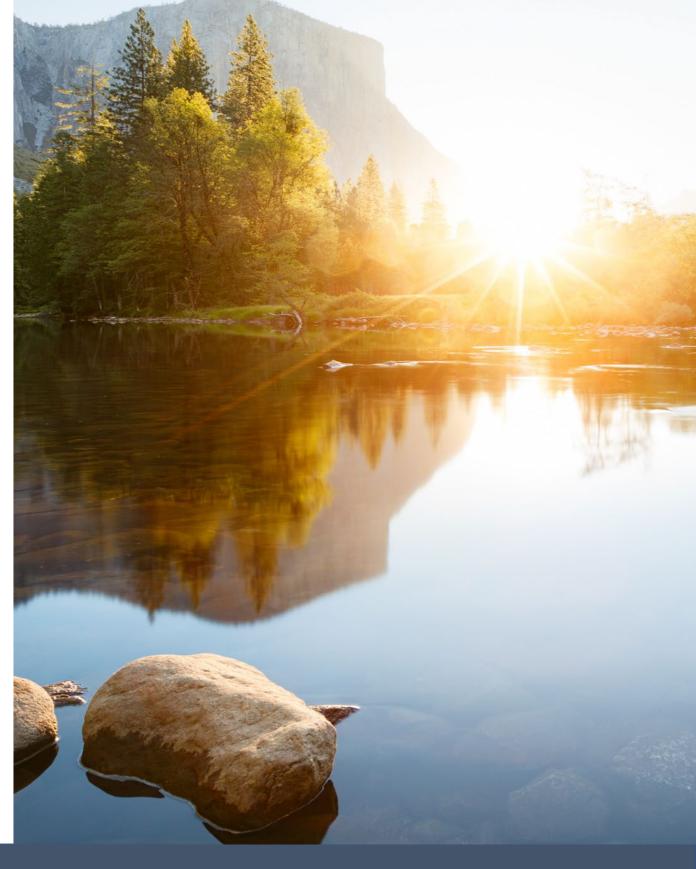
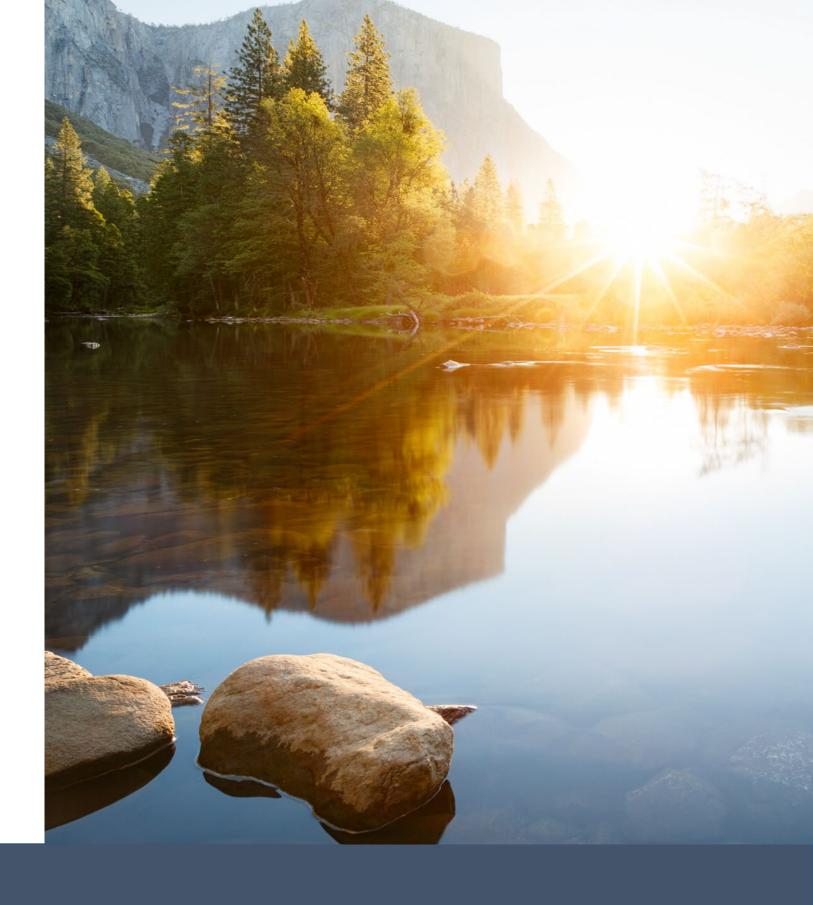


Table C: Aqueous Samples


Parameter	Analytical Method	Sample Container/ Preservation	Holding Time
VPH	Montana Method VPH	Three 40-mL VOC vials with zero headspace, acidify with HCl to pH <2: cool to 4±2° C.	14 days to analysis
EPH Screen	Montana Method EPH	Two 1-L amber glass bottle, acidify with 1:1 HCl (or alternate acids, as allowed by method) to pH <2; cool to 4±2° C	14 days to extraction. 40 days to analysis following extraction.
EPH	Montana Method EPH	1-Liter amber glass bottle. Acidify with 1:1 HCl (or alternate acids, as allowed by method) to pH <2; cool to 4±2° C	14 days to EPH Screen extraction, 40 days to analysis following extraction.
VOCs (Drinking Water)	EPA Method 524.2	Three 40-ml vials with zero headspace, acidify with HCl to pH <2, cool to (4 ± 2) °C. Remove chlorine with Ascorbic Acid.	14 days to analysis
VOCs	EPA Method 8260	Three 40-ml vials with zero headspace, acidify with HCl to pH <2, cool to (4 ± 2) °C	14 days to analysis
PAHs (Semi-volatile Organics)	EPA Method 8270	Two 1-liter amber glass bottles do not acidify, cool to (4 ± 2) °C. Remove chlorine with ~4 drops of 10% Sodium Thiosulfate (Na ₂ S ₂ O ₃)	7 days to extraction, 40 days to analysis
Lead Scavengers EDB 1,2-DCA	EPA Method 8011 EPA Method 8260 ¹	Six 40-ml vials, acidify with HCl to pH <2, cool to (4 ± 2) °C. Remove chlorine with ~4 drops of 10% Sodium Thiosulfate (Na2S2O3)	14 days to analysis
RCRA Metals plus zine (except Hg)	EPA Method 6010/200.7 or 6020/200.8	One 250-ml HDPE bottle, acidify with nitric acid (HNO ₃) to pH <2, cool to (4 ± 2) °C; field filtered 0.45 µm for dissolved metals (can also be filtered at lab with advanced arrangements)	6 months
Mercury (Hg)	EPA Method 245.1 or 7470	One 250-ml HDPE bottle, acidify with HNO3 to pH <2	28 days

Highlights

- Table 1: Confirmation Soil Table
 Most conservative RBSLs
- Table 2: All Tier 1 Soil RBSLs
 ➢New RBSLs
- Table 3: Groundwater RBSLs ≻New RBSLs
- Table 4 (A,B,C): Tier 2 Look Up
 ➢ Depth, number of C/NC analytes


Highlights

• Lab Methods

Massachusetts Method 2018

Methanol Preservation Soil Samples

Analytical Methods Aqueous Samples

Questions?

Connect with us!

Montana **Department of Environmental** Quality

- Daphne Ryan •
- Environmental Project Officer •
- Daphne.ryan@mt.gov
- 406-444-6728

@montanadeq

Montana **Department of Environmental** Quality

35