Montana Wind Capacity Contribution

Wind and Transmission Working Group, Sept 22, 2016

Helena, Montana

Northwest **Power** and **Conservation** Council

The Classic ELCC Wind Capacity Study:

- 1. Take an existing system simulation with an estimated Loss of Load Probability or other reliability metric
- 2. Add load to the system which will make the system less reliable
- **3**. Add wind generation until the system is back to the same reliability level

Ambiguity gets introduced because of the load. Is the additional load:

- A flat annual block
- Proportional load
- An end-use future forecast load
- Something else

In the Northwest hydro generation can further confuse the study.

- If hydro is re-dispatched, some additional system capacity may be available.
- If integration is done with hydro, some capacity may be held back that should be netted against the capacity contribution.
- Different run-off means capacity contribution is different every combination of wind year and water year.

The Seventh Plan took a unique approach by measuring the **system** capacity contribution of a new resource:

- ASCC = the effective change in the aggregate system capacity when a resource is added to the existing power supply
- The ASCC can be thought of as a resource's nameplate capacity plus any capacity gained by the hydroelectric system.

Calculating ASCC

- 1. Start with an inadequate power supply (i.e. LOLP > 5%)
- 2. <u>Needed Capacity for Adequacy</u> = Analyze the curtailment record produced by the GENESYS model to determine the exact amount of capacity needed to get 5% LOLP
- 3. <u>Nameplate Capacity for Adequacy</u> = <u>Using the GENESYS model</u>, add increments of new resource nameplate capacity until the LOLP gets to 5%
- **4.** ASCC = Needed capacity/Nameplate capacity

Examples of ASCC

<u>Combustion Turbine</u>

- Base case is inadequate
- Needed capacity
- Nameplate capacity

LOLP = 50% 5,850 MW 4,400 MW 1.3

- <u>Energy Efficiency</u>
 - EE capacity for 5% LOLP 4,900 MW
 - ASCC = 5,850/4,900 = 1.2

Associated System Capacity Contribution from the Seventh Power Plan

	Q1	Q21	Q3	Q4
Solar PV ²	0.26	N/A	0.80	0.42
Geothermal	1.28	N/A	1.02	1.20
Energy Efficiency	1.24	N/A	1.14	1.16
Natural Gas	1.28	N/A	1.02	1.20
Columbia Gorge Wind ²	0.03	N/A	0.11	0.08

¹The lack of adequacy issues in Q2 makes the system capacity contribution meaningless. ²Within-hour balancing reserves were not adjusted for the solar or wind ASCC analyses

Associated System Capacity Contribution from the Seventh Power Plan

	Q1	Q21	Q3	Q4
Solar PV ²	0.26	N/A	0.80	0.42
Geothermal	1.28	N/A	1.02	1.20
Energy Efficiency	1.24	N/A	1.14	1.16
Natural Gas	1.28	N/A	1.02	1.20
Columbia Gorge Wind ²	0.03	N/A	0.11	0.08
Judith Gap ²	0.52	N/A	0.25	0.74
Great Falls ²	0.63	N/A	0.18	0.40

¹The lack of adequacy issues in Q2 makes the system capacity contribution meaningless. ²Within-hour balancing reserves were not adjusted for the solar or wind ASCC analyses.

Caveats and Notes

- 7th power plan methods and assumptions
- No additional within-hour balancing reserves were added
- Very small sample size for Montana wind
- Staff to revisit ASCC methodology (7th power plan action item)

Wind Site Characteristics

Conclusions

• Higher annual energy generation, especially in winter – helps increase ASCC

• Montana wind correlates better with timing of regional winter peak load

Next Steps

• Update study with additional data and continue to add data as available

• Investigate other potentially promising sites in Montana

Additional Slides

Wind Site Characteristics

	Average Values				
Wind Site	Annual Energy (% of NP)	Winter Energy (% of NP)	Summer Energy (% of NP)	Winter HLH ¹ Energy (% of NP)	
Gorge	29%	27%	31%	26%	
Judith Gap	41%	48%	34%	48%	
Great Falls	34%	43%	25%	46%	

¹HLH = High Load Hours, in this case from 7am to 6pm all days.

Variation in Winter¹ Wind Energy Judith Gap and Great Falls

¹Winter months from October through March

Variation in Winter¹ Wind Energy Gorge Wind

¹Winter months from October through March

