The following table summarizes the air quality programs testing, monitoring, and reporting requirements applicable to this facility.

<table>
<thead>
<tr>
<th>Facility Compliance Requirements</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Monitoring Required</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMS Required</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEMS Required</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule of Compliance Required</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Compliance Certification and Semiannual Reporting Required</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly Reporting Required</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarterly Reporting Required</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applicable Air Quality Programs

<table>
<thead>
<tr>
<th>Applicable Air Quality Programs</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM Subchapter 7 MAQP Permitting</td>
<td>X</td>
<td></td>
<td>MAQP #2303-22</td>
</tr>
<tr>
<td>New Source Performance Standards (NSPS)</td>
<td>X</td>
<td></td>
<td>40 CFR 60, Subpart Dc</td>
</tr>
<tr>
<td>National Emission Standards for Hazardous Air Pollutants (NESHAPS)</td>
<td>X</td>
<td></td>
<td>40 CFR 61, Subpart M</td>
</tr>
<tr>
<td>Maximum Achievable Control Technology (MACT)</td>
<td>X</td>
<td></td>
<td>40 CFR 63, Subparts A, JJ, DDDDD, DDDDDD, ZZZZ</td>
</tr>
<tr>
<td>Major New Source Review (NSR) – includes Prevention of Significant Deterioration (PSD) and/or Non-Attainment Area (NAA) NSR</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable Air Quality Programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Management Plan Required (RMP)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid Rain Title IV</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance Assurance Monitoring (CAM)</td>
<td>X</td>
<td>Appendix E of Operating Permit</td>
<td></td>
</tr>
<tr>
<td>State Implementation Plan (SIP)</td>
<td>X</td>
<td>General SIP</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

SECTION I. GENERAL INFORMATION
- A. PURPOSE .. 4
- B. FACILITY LOCATION ... 4
- C. FACILITY BACKGROUND INFORMATION ... 4
- D. CURRENT PERMIT ACTION .. 15
- E. TAKING AND DAMAGING ANALYSIS .. 15
- F. COMPLIANCE DESIGNATION ... 16

SECTION II. SUMMARY OF EMISSION UNITS
- A. FACILITY PROCESS DESCRIPTION ... 17
- B. EMISSION UNITS AND POLLUTION CONTROL DEVICE IDENTIFICATION 17
- C. CATEGORICALLY INSIGNIFICANT SOURCES/ACTIVITIES 23

SECTION III. PERMIT CONDITIONS
- A. EMISSION LIMITS AND STANDARDS ... 24
- B. MONITORING REQUIREMENTS ... 28
- C. TEST METHODS AND PROCEDURES ... 28
- D. RECORDKEEPING REQUIREMENTS ... 31
- E. REPORTING REQUIREMENTS .. 31
- F. PUBLIC NOTICE... ERROR! BOOKMARK NOT DEFINED.

SECTION IV. NON-APPLICABLE REQUIREMENT ANALYSIS

SECTION V. FUTURE PERMIT CONSIDERATIONS
- A. MACT STANDARDS .. 33
- B. NESHAP STANDARDS ... 33
- C. NSPS STANDARDS .. 33
- D. RISK MANAGEMENT PLAN ... 33
- E. CAM APPLICABILITY ... 33
- F. PSD AND TITLE V GREENHOUSE GAS TAILORING RULE ... 34
SECTION I. GENERAL INFORMATION

A. Purpose

This document establishes the basis for the decisions made regarding the applicable requirements, monitoring plan, and compliance status of emission units affected by the operating permit proposed for this facility. The document is intended for reference during review of the proposed permit by the U.S. Environmental Protection Agency (EPA) and the public. It is also intended to provide background information not included in the operating permit and to document issues that may become important during modifications or renewals of the permit. Conclusions in this document are based on information provided in the renewal application submitted by Roseburg Forest Products (Roseburg) on January 8, 2007, associated correspondence submitted on March 6 and June 26, 2007, the application for a routine control device maintenance exemption submitted on August 31, 2007, various de minimis notifications, significant modification permit application submitted on September 15, 2008, administrative amendment request received September 2, 2010, permit modification and renewal application received on March 30, 2012, administrative amendment request received on June 18, 2012, a permit modification received on February 27, 2013, and on October 16, 2013, a de minimis request. Administrative amendment received on February 5, 2018, with an additional related clarification received on February 12, 2018. Renewal application for the most recent Title V application received on April 11, 2018. An administrative amendment request received May 16, 2020.

B. Facility Location

Roseburg’s Missoula Particleboard Plant is located in Missoula County, Montana, approximately 1-mile northwest of the city limits of Missoula on Raser Road. The 189-acre site is located in the NW¼ of the SW ¼ of Section 8, Township 13 North, Range 19 West. The mill is located in an industrial area with no critical receptors within one mile.

C. Facility Background Information

MAQP History

On September 16, 1986, Louisiana-Pacific (LP) was granted a general Montana Air Quality Permit (MAQP) for their particle board plant, including the plant expansion and other related equipment, located near Missoula, in Missoula County, Montana. The application was given MAQP #2303.

The particle board plant existed in the Missoula area prior to 1968 and operated under MAQP #1274. The original mill had a capacity of 100 million square feet (MMft²) of ¾-inch particle board. LP expanded the mill capacity in 1987 by 50%, using the offsets provided by the closure of the Evans Products plant. The expanded mill had a capacity of 150 MMft² of ¾-inch particle board. The mill consisted of four rotary dryers, which were heated by the exhaust gases from the sander dust boiler, sander dust burner, and natural gas burners. The old press line utilized a batch press with a capacity of 100 MMft² of particle board on a ¾-inch basis. The 1987 expansion added two new wood particle dryers, two new predryers with a Coen sander dust burner, and a new press line with a continuous press. A GEKA200 natural gas heater was also added to heat the new press line.
The first MAQP modification, to add general fugitive dust control measures to the facility, was issued on March 20, 1992, and was given MAQP #2303-M. On July 1, 1987, EPA promulgated new ambient air quality standards for particulate matter with an aerodynamic diameter of ten microns or less (PM$_{10}$). The annual standard is 50 micrograms per cubic meter (ug/m3) and the 24-hour standard is 150 ug/m3. These standards were, in turn, adopted by the Montana Board of Environmental Review (Board) on April 15, 1988. Due to violations of these standards, Missoula was designated as a PM$_{10}$ nonattainment area. As a result of this designation, the Department of Environmental Quality (Department) and the Missoula County Air Pollution Control Agency (Missoula County) developed a plan to control these emissions and bring the area into compliance with the federal and state ambient air quality standards.

In order to identify the emission sources that were contributing to the violation of the PM$_{10}$ standard, Missoula County conducted a chemical mass balance study (CMB) of the area. The LP mill was not identified as a significant contributor to the problem by this method, but fugitive dust was a problem at the plant and was addressed at all other point sources in nonattainment areas. Therefore, a MAQP modification was required in order to add general fugitive dust control measures to this facility.

Since the State Implementation Plan (SIP) process did not identify this source as a significant contributor to the Missoula nonattainment problem, no emission limitations were changed or added to the MAQP. Only cyclone-controlled and fugitive dust sources were addressed in detail. MAQP #2303-M replaced MAQP #2303.

On August 9, 1993, MAQP #2303-02 was issued to LP for an alteration to their existing MAQP to install a baghouse and controls to reduce emissions from an existing outside truck dump. The outside truck dump was located at the southeastern end of the LP facility.

The baghouse would pull approximately 27,470 cubic feet per minute (cfm) of air through the top of the existing surge bin on the truck dump. The surge bin is partially shrouded to allow air to enter along the top and sides of the truck when in the dumping position. The air is pulled towards the back and top of the shrouded surge bin and through the baghouse system. The efficiency of the baghouse is estimated to be 99.99%; however, the reduction of fugitive dust emissions was reduced by the amount of air that can be drawn through the baghouse system. With proper manifold ducting and skirting, an estimated average reduction of 90% fugitive emissions was expected. MAQP #2303-02 replaced MAQP #2303-M.

LP was issued MAQP#2303-03 on March 10, 1995, to replace two existing baghouses (BH100 and BH101) at the Missoula facility with two new baghouses. LP replaced the existing 26,680-cfm Clark baghouse on source PC 401A (forming machine) with a new 35,000-cfm Day Division Model 376 RFW$_{10}$ baghouse (BH100). In addition, LP replaced the existing 26,680-cfm Clark baghouse on source PC 401B (forming machine) with a new 5,400-cfm Day Division Model 48 RFW-8 baghouse (BH101). The MAQP alteration resulted in a decrease of particulate matter (PM) emissions of approximately 10 tons per year (TPY) because the combined flow from the new baghouses was less than the combined air flow from the two existing baghouses. MAQP #2303-03 replaced MAQP #2303-02.
MAQP #2303-04 was issued to LP on March 9, 1997, to change the allowable particulate emission limitations for the baghouses, cyclones, particle board press vents, and the continuous press vents to more accurately reflect the actual particulate emissions from these sources. The majority of the emission limitations were decreased, although the cyclone and press vent fan limits were increased. Overall, the allowable emissions of the facility decreased by approximately 208 tons of PM per year.

In addition, the alteration allowed LP to increase the outside storage capacity of the contaminated floor sweepings enclosure from 50 cubic yards (yd³) to 50 units (370 yd³). A condition in MAQP #2303-03 required that a control strategy for particulate be employed, which resulted in no increase in associated fugitive emissions. The control strategy proposed by LP included containing the contaminated floor sweepings within the three-sided enclosure and covering the exposed sides with a screen. The Department approved this control strategy with the caveat that if the fugitive emissions were not controlled by the screen, the Department would require an alternative control strategy be employed. Finally, MAQP #2303-04 clarified MAQP conditions, updated the facility’s configuration, incorporated MAQP #1274, and updated the MAQP with current rule citations and MAQP language.

MAQP #2303-05 was issued to LP on June 29, 1997, after LP requested that the Department modify the MAQP to clarify language concerning the electric eye in the sander dust boiler abort stack. The language was changed to require corrective action when emissions to atmosphere exceeded 20%. The electric eye monitors the boiler exhaust gas, even when it is not being emitted directly to atmosphere. A sentence stating that data from the monitor need not be recorded unless required by the Department was also put back into the MAQP.

MAQP #2303-06 was issued on July 6, 1998. LP requested that the Department modify the requirements for the contaminated floor sweepings from a fixed screen, for the control of fugitives, to a fixed roof enclosure. Emissions were expected to decrease with this modification, as the new roof would improve the control of fugitives, offering more protection than the screen system being replaced. The new roof also facilitated the loading and unloading of sweepings from the three-sided bunker. The above floor sweepings bunker was allowed by the previous MAQP, and this MAQP modification simply updated the MAQP to recognize the improvement to the storage bunker.

MAQP #2303-07 was issued to LP on May 17, 1999. This MAQP alteration allowed LP to rebuild the Line 1 press. The rebuilt press was expected to result in smoother board from Line 1, and thus a decrease in the amount of sanding necessary. The reduced sanding was expected to decrease the sander dust burned at the facility. LP decided to make up the additional heat requirement with natural gas.

The rebuild of the press allowed LP to increase production of Line 1 from approximately 131 MMft²/year to 160 MMft²/year. All emissions resulting from the debottlenecking were considered, to determine whether the change would result in a major modification subject to the requirements of the New Source Review Program (NSR) and, in particular, the Prevention of Significant Deterioration (PSD) requirements.

LP proposed, and the Department agreed, to base the actual emissions from the facility on the years 1993 and 1994. The years 1993 and 1994 were considered most representative for Line 1 because of the degradation of the press during the last several years. Based on the past actual to future potential test, the emissions from the press project would exceed significance levels for
both PM and PM_{10}. However, because of the addition of new control equipment, LP reduced the net emission increases of PM and PM_{10} to less than significance levels. Therefore, the requirements of the NSR/PSD program did not apply to this project.

As part of this MAQP action, LP proposed to implement the following emission controls at the facility:

1. A cover and curtains over the Line 2 Reject Dump;
2. A cover over the reclaim hopper;
3. A cover over the lift portion of the outside truck dump;
4. A baghouse in milling and drying (M&D) to control three dryer loop vents and the coarse refiner loop vent;
5. A limit on the allowable emissions from the dryers and from the raw material handling fugitives;
6. A limit on the amount of sander dust which may be combusted in the Coen Burner; and
7. A change in the use of process wax addition to reduce evaporative losses. The wax injection to the sawdust was changed from injection prior to the dryers to injection after the dryers.

The method of calculating the emissions from the raw material handling at the facility was also modified in this MAQP. The control efficiencies for several of the processes increased because of the additional controls required by the MAQP. The control efficiency for the outside truck dump increased from 90% to 99% because LP was required to install a full cover over the lift portion of the truck dump. The control efficiency for the pile reclaim hopper increased from 0% to 50% because LP constructed an earthen berm around the exposed sides of the pile and was required by MAQP to install a cover over the hopper. The control efficiency for the radial stacker increased from 25% to 50% because of the construction of the earthen berm.

The testing requirements for the dryers and predryers were modified in this MAQP to require the testing of each dryer and predryer once every 5-years. The previous testing requirement was inconsistent with other sources. MAQP #2303-07 replaced MAQP #2303-06.

On August 24, 2000, LP was issued MAQP #2303-08 in accordance with NSR/PSD. LP requested an alteration to their MAQP on January 7, 2000. The Department requested additional information from LP and received the final submittal on June 9, 2000. In 1979, LP installed a 50-million British thermal unit per hour (MMBtu/hr) Roemmle sander dust/natural gas-fired burner, replaced the original bullnose line with Bullnose #1, and made various changes to baghouses and wood waste handling systems. In 1986-1987, LP installed a second production line (Line 2) with associated sources, a 35-MMBtu/hr Coen sander dust/natural gas-fired burner, Predryers 1 and 2, and the GEKA200.

In 1991, LP installed Bullnose #2. The changes made in each of these years triggered the NSR program for PSD regulations; however, none of the changes were permitted at the time through the PSD regulations. In 1979, LP triggered the PSD regulations for carbon monoxide (CO) and NOx. In 1986-1987, LP triggered the PSD regulations for NOx and Volatile Organic Compounds (VOCs). In 1991, LP triggered the PSD regulations for VOCs. LP proposed to permit the 1979, 1986-1987, and 1991 changes in accordance with the PSD regulations. MAQP #2303-08 replaced MAQP #2303-07.
The Department received comments from LP on the preliminary determination (PD) on August 3, 2000. Based on the comments submitted by LP, several changes were made to the MAQP prior to issuance of the Department decision (DD). Most notably, the emission limits for both the Coen and the Roemme burners were changed. The NO\textsubscript{x}, CO, and VOC emission limits placed in the PD for the Coen Burner were calculated by averaging the emissions from burning sander dust and natural gas. While LP could easily comply with this limit while burning natural gas, they would be unable to comply with this limit while burning sander dust. The Department changed the limit in the MAQP to correspond with the emissions from burning sander dust. However, LP was required to burn sander dust during any compliance source tests that are conducted to monitor compliance with the NO\textsubscript{x} and CO emission limits for the Coen Burner.

LP requested an increase in the NO\textsubscript{x} emission limit for the Roemme Burner. LP submitted supporting information with their PD comments indicating that the plant would have problems complying with the limit in the PD during the winter months. Because the Department determined that “no additional control” constitutes the Best Available Control Technology (BACT) for NO\textsubscript{x}, CO, and VOC emissions, the Department determined that changing the emission limit for NO\textsubscript{x} and CO would be appropriate. The Department based the new emission limits on the emission factors proposed by LP in MAQP Application #2303-08 and on the unit operating at 2 tons per hour. A complete copy of LP’s comments on the PD and the Department’s responses to the comments are on file with the Department.

On March 2, 2001, LP was issued MAQP #2303-09 by the Department for a change in emission limits for the Roemme Burner. Based on more recent source test information, LP requested new emission limits for the Roemme Burner that more accurately reflected the emissions from the unit. The emission limits for NO\textsubscript{x}, CO, and VOC were increased for the Roemme Burner during this MAQP action. Furthermore, the Department removed the requirements and limitations regarding cyclones from the MAQP, because there are no longer any cyclones that are considered emitting units at LP. All cyclones have either been completely removed from the facility or are no longer attached and in use at the facility.

Because the previous PSD permit determination (MAQP #2303-08) was made using the information that was submitted/discussed with LP, the Department determined that the changes required another analysis of the PSD issue as they related to the Roemme Burner. All affected portions of the previous application that changed were required to be resubmitted using the new emission limits that LP proposed. MAQP #2303-09 replaced MAQP #2303-08.

On April 24, 2001, the Department received an application (MAQP Application #2303-10) from LP for the addition of three temporary natural gas-fired turbines. The turbines were capable of generating approximately 4.5 megawatts of electrical power per turbine. They requested to install the generators/turbines to offset the high cost of power at the time. After submittal of the MAQP application, but before issuance of a preliminary determination, LP submitted a request to withdraw the MAQP application.

MAQP #2303-11 was issued on August 7, 2002, based on a de minimis modification notice and corresponding modification request to minimize the fire hazard in their M&D operations. The proposal was to install an additional pneumatic line to collect dust in the M&D belt room. The new line connects to the existing M&D baghouse (BH55). Although the emission limit for the baghouse would remain the same, the flow through the baghouse would change from 18,000 dry standard cubic feet per minute (dscfm) to 32,000 dscfm. The MAQP change was necessary to change the flowrate limit on the baghouse. In addition, the source test frequency for the
Roemmc Burner was changed to once every five years. LP requested the change to account for safety concerns that arise during the testing of the Roemmc. MAQP #2303-11 replaced MAQP #2303-09.

On February 21, 2003, LP and Roseburg submitted a request to transfer the MAQP for the facility from LP to Roseburg. The permitting action was an administrative amendment and updated rule citations in the MAQP. MAQP #2303-12 replaced MAQP #2303-11.

On October 3, 2005, the Department received a complete MAQP application from Roseburg. Roseburg requested that the Department modify MAQP #2303-12. Roseburg proposed to reconfigure the particleboard predry process involving the removal of one of two predryers and the replacement of the existing Coen sander dust burner with a new direct-fired, low-NOₓ burner with dryer gas recirculation. In addition, Roseburg proposed to install a wet electrostatic precipitator (WESP) on the predryer exhaust to control combustion and dryer emissions.

The single predryer is configured so that approximately 50% of its exhaust gases are reintroduced into the duct immediately preceding the predryer drum. This allows the heat to be used more efficiently by increasing the humidity in the predryer to increase heat transfer. Configuring the predry system in this manner resulted in the ability to dry a greater quantity of green sawdust at a higher inlet temperature. Dried sawdust is directed to a storage silo that is controlled with a baghouse. MAQP #2303-13 replaced MAQP #2303-12.

On August 14, 2007, the Department received a complete permit application from Roseburg requesting that the Department modify MAQP #2303-13. Roseburg proposed to install a Regenerative Thermal Oxidizer (RTO) to control emissions of volatile organic hazardous air pollutants from its existing wood-fired green furnish predryer. This RTO would be installed on the outlet of the existing WESP and would be fueled by natural gas. In addition, de minimis changes that had occurred at Roseburg's facility since the issuance of the previous permit were incorporated. These changes included the construction of a melamine application line. New equipment associated with this melamine line included a conveyor line, a hot press, a natural gas-fired burner, and a baghouse. MAQP #2303-14 replaced MAQP #2303-13.

On September 16, 2008, the Department received a complete application from Roseburg requesting that the Department modify MAQP #2303-14. In order to comply with the Plywood and Composite Wood Product Maximum Achievable Control Technology (MACT) rule, Roseburg installed a regenerative thermal oxidizer (RTO) to control emissions of volatile organic hazardous air pollutants (VHAP) from its existing wood-fired green furnish predryer. This RTO was installed on the outlet of the existing wet electrostatic precipitator and is fueled by natural gas. The installation of the RTO was permitted under MAQP #2303-14, which included a provision limiting the particulate matter emitted from the RTO to 0.10 grains per dry standard cubic foot (gr/dscf) corrected to 12% carbon dioxide (CO₂) and calculated as if no auxiliary fuel had been used. This limit is a Best Available Control Technology (BACT)-derived limit intended to be consistent with ARM 17.8.316. However, since the issuance of MAQP #2303-14, Roseburg has discovered that the RTO is not capable of achieving this BACT-derived limit. Therefore, Roseburg proposes to modify the particulate BACT limit for the RTO in this permit action. The Department has updated the permit based on the revised BACT analysis.

In addition, several de minimis changes have occurred at this facility since the last permit action. These de minimis changes include: the replacement of two saws (the Jenkins 5x16 production saw and the old, existing Giben saw) with a 1991 Giben 12’ Angular Panel saw, the installation
of a biofilter on the particleboard presses to comply with the Plywood and Composite Wood Product MACT rule, and the installation of an edge banding line in the Remanufacturing (Reman) area of the facility. The edge banding line consists of an edge bander with a capacity of 60.4 million lineal feet per year that utilizes an adhesive product to bind tape to the edge of the particleboard. The emissions change associated with each of these projects are below the de minimis level of 15 tons per year, as specified in ARM 17.8.745. Therefore, an MAQP was not required. The Department has updated this permit, however, to reflect these de minimis changes. **MAQP #2303-15** replaced MAQP #2303-14.

On March 30, 2012, Roseburg submitted a permit application for a modification of MAQP #2303-15 and a renewal application for the Title V Operating Permit (OP) #2303-06. The MAQP application was deemed complete on April 16, 2012. In addition to this application, this permit action incorporates several de minimis requests previously approved by the Department as discussed below.

On May 1, 2009, the Department approved a de minimis change to allow Roseburg to utilize 14 MMBtu/hr of land fill gas (LFG) from Allied Waste. Roseburg proposed to burn this fuel in the Sander Dust Boiler and possibly the Solagen Sander Dust Boiler.

On February 6, 2012, Roseburg submitted a de minimis request to repurpose the Six-Head Sander Baghouses (BH 300 A & B) to collect dust from the Line 1 Blending and Forming area, and the Line 1 M & D shaker screens and dryer conveyor area. On February 8, 2012, the Department determined the request did not meet the requirements of the de minimis rule pursuant to ARM 17.8.745.

In addition to those items listed above, Roseburg’s permit application requested the Department: (1) remove Line 2 and all associated equipment (including the GEKA 200 Burner) from the MAQP and OP; (2) remove Dryer stacks #5 and #6 because these are no longer used; (3) change the baghouse references in Section I.H.1 to Roseburg’s naming convention and numbering system; (4) remove the cyclone requirement from the predryer because the cyclone is used as product recovery rather than control; (5) add the regenerative thermal oxidizer (RTO) in addition to the wet electrostatic precipitator (WESP) as control for the predryer because all the exhaust gases are routed here; (6) change the reference from the wood particle dryer to the wood particle rotary dryer; (7) remove a portion of the remanufacturing process; (8) change the temperature requirement on the dryer alarm system from 1100 degrees Fahrenheit (ºF) to 600 ºF to coincide with 40 Code of Federal Regulations (CFR) 63, Subpart DDDD; and (9) change the testing requirement on the Solagen Burner from 2-year testing to a 5-year testing requirement. Additionally, Roseburg requested that the Department change referral of the ‘dryer stacks’ to the ‘Line 1 Dryer stack’. Both permits list six (6) dryers and Roseburg requested the Department remove the #5 and #6 dryers. Also, because the dryers are all now routed to common stack (Line 1 dryer stack), Roseburg requested a combined emission limit of 19.4 pounds per hour for all the dryers. **MAQP #2303-16** replaced MAQP #2303-15.

On June 18, 2012, the Department received a request to amend MAQP #2303-16 to clarify some items in the permit. Specifically, Roseburg requested an administrative amendment to change Section II.E.5 from “Roseburg shall install and operate temperature sensors at the inlet of each wood particle rotary dryer” to “Roseburg shall install and operate temperature sensors at the inlet of each wood particle dry rotary dryer (final dryers).”
Additionally, in MAQP #2303-16 the Department previously listed one of the changes to the permit as: “change the reference from the wood particle dryer to the wood particle rotary dryer,” and Roseburg thought it would be more accurate if the reference to “Wood Particle Dryers (Dryers 1, 2, 3, and 4)” in Section II.E. changed to “final dryers.” MAQP #2303-17 replaced MAQP #2303-16.

On February 25, 2013, Roseburg Forest Products submitted an application for a modification to the MAQP with additional information submitted through July 2, 2013.

This project would utilize much of the existing permitted equipment at the site along with some unused equipment which had been removed from the permitted equipment list earlier, and new equipment providing for a plant modernization. Roseburg’s plant modernization would be done to achieve greater efficiency and lower facility operating costs. With the plant modernization, the overall production capacity would be 217,333 thousand square feet per year (Msf/yr) (3/4 inch basis).

The line 1 modernization project would include a new pre-screening system to provide better size classification. The screening, milling and drying equipment would be reconfigured to include the installation of a disk screen system with an air density separator to remove large pieces of wood, rocks and metal; installation of metering bins on the dryers to help obtain accurate, consistent material flow to the dryers; re-routing the conveyor system downstream of DRY 200 (final dryer); and reconfiguring the refiners in milling and drying. The project would also add eight new baghouses while removing five baghouses from the permitted equipment list. MAQP #2303-18 replaced MAQP #2303-17.

On October 16, 2013, the Department received a de minimis request to install two baghouses on the board cooler vents to replace the single baghouse which had been permitted under MAQP #2303-18. The de minimis request was approved on October 22, 2013. The permit language was modified to reflect an increase in flowrate from the board cooler vents, two baghouses and a higher control efficiency for the two new baghouses which will be used for particulate control but exhaust through a common exhaust stack. MAQP #2303-19 replaced MAQP #2303-18.

On February 12, 2015, the Department received a modification request to provide for reconstruction of the Sander Dust Boiler. Under MAQP #2303-18, the replacement of the Sander Dust Boiler burner was approved but it had not yet been installed. The modification did not reduce any of the previously permitted limits associated with the new burner, but did provide for a reconstruction of the boiler itself and also triggered Title 40 Code of Federal Regulations (CFR) Part 60 Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units. Subpart Dc triggered lower filterable particulate matter (PM) limits than were previously permitted for the Sander Dust Boiler burner. There were no changes to PM10, PM2.5, NOx, or CO limits. There were no emission increases associated with this change. MAQP #2303-20 replaced MAQP #2303-19.

On July 27, 2017, the Department received a request from Roseburg to administratively open their current MAQP to modify the Solagen Burner sander dust limit (Section II.C.1). The request was required by a Consent Order related to Violation Letter #VL20160517-00135. According to the Administrative Rules of Montana (ARM) 17.8.764, the permit may be amended when there are changes in operation that do not result in an emissions increase. There were no emission increases associated with this proposed change. MAQP #2303-21 replaced MAQP #2303-20.
On April 11, 2018, the Department received an application from Roseburg requesting a change to the routing of the Sander Dust Boiler exhaust when burning natural gas. Roseburg proposed to modify the MAQP to allow for an alternative operating scenario to allow the boiler to bypass the baghouse when the unit is solely combusting natural gas, allowing the exhaust to be emitted directly to atmosphere. Roseburg has identified potential concerns with the higher moisture content that exists in the boiler exhaust when burning natural gas and potential operating issues especially during cold temperatures. Additionally, allowing the boiler to bypass the baghouse provided for the ability to conduct routine maintenance on the baghouse while allowing the boiler to still operate. Bypass of the baghouse while firing solely natural gas is anticipated to be limited to those times when inspections and maintenance are being performed on the baghouse that require the baghouse to be offline, or for periods of cold outdoor temperatures. An additional condition was also added to prevent inadvertent bypass of the baghouse when switching back from natural gas to sander dust fuel. MAQP #2303-22 replaced MAQP #2303-21.

A brief list of de minimis notifications submitted by Roseburg from 2013 thru 2018 is also included. Where required, these actions have been updated into the Title V Operating Permit.

- On July 20, 2018, Roseburg provided notice of the intent to replace their existing wet electrostatic precipitator with a replacement unit as a result of damage due to several fires.
- On March 27, 2018, Roseburg provided notice of the intent to install an emergency generator to provide emergency shutdown power for computer control and fire controls. The generator is subject to 40 CFR 63 Subpart ZZZZ.
- On October 23, 2015, Roseburg provided notice of the addition of a new single blade panel saw to be used for intermittent cutting of test panels. The saw utilizes an existing baghouse (BH500).
- On August 21, 2015, Roseburg provided notice of a reconfiguration of seven baghouse stack exhausts.
- On February 9, 2015, Roseburg provided notice of a reconfiguration of the exhaust stack associated with baghouse 101B.
- On January 16, 2015, Roseburg provided notice of the intent to replace baghouse 102B with an identically sized unit due to damage caused by fire.

Title V Operating Permit History

On July 26, 2002, Title V Operating Permit #OP2303-00 was issued to LP. The permit included all applicable conditions under Title V of the Federal Clean Air Act. On February 21, 2003, LP and Roseburg submitted a request to transfer the permit for the facility from LP to Roseburg. In addition, on March 20, 2003, Roseburg submitted a request to update the Responsible Official of the facility. The permit action was an administrative amendment to make the changes and to update rule citations in the permit. Appendix A (Rule Citations) was removed from the permit because it no longer applies. Operating Permit #OP2303-01 replaced Operating Permit #OP2303-00.

On July 17, 2003, the Department received a letter from Roseburg indicating various typographical errors and permit condition discrepancies contained in Title V Operating Permit #OP2303-01. In addition, since Roseburg was identified as being subject to 40 CFR 63, Subpart JJ, National Emissions Standards for Wood Furniture Manufacturing Operations, the
Department determined that it was appropriate to include these requirements under the Remanufacturing Facility portion of the operating permit. The permit action modified the Remanufacturing Facility section of the permit, to include applicable 40 CFR 63, Subpart JJ requirements and modified various typographical errors and permit condition discrepancies indicated in the letter received by the Department on July 17, 2003. Operating Permit #OP2303-02 replaced Operating Permit #OP2303-01.

On January 8, 2007, the Department received a Title V Operating Permit Renewal Application from Roseburg. On March 9, 2007, the Department received additional information that the Department requested regarding the application. Specific changes that were made to the permit during the permit renewal, excluding routine changes such as updating permit language, rule references, and compliance demonstrations, include the following:

- Appendix E, Ambient Air Quality Monitoring was removed from the permit as requested by Roseburg on July 17, 2003, and approved by the Department on July 31, 2003;

- The permit action from MAQP application #2903-12 was included in the permit: Remove EU009, #2 predryer (DRY 501); Remove EU034, COEN Burner (COEN); and Add EU046, predryer storage silo (BH 60), EU047 Solagen Burner (SOLAGEN), and associated requirements from MAQP;

- The permit action from MAQP #2303-14 was included in the permit: Add EU055, Melamine Baghouse (BH 500) and Add EU056, Regenerative Thermal Oxidizer (RTO), and associated requirements from MAQP;

- EU020 and EU021, six head sander system (BH 300 A and BH 300 B) were combined as EU020, six head sander system (BH 300 A & B);

- EU024 and EU025, eight head sander system (BH 302 and BH 303) were combined as EU024, eight head sander system (BH 302 & 303);

- EU048, Line 1 Board Cooler Vents 1, 2, and 3 and EU049, Line 2 Board Cooler Vents 1 and 2 were added to the permit for completeness;

- EU039, Remanufacturing facility (REMAN) was separated out into individual emitting units as EU050, Bullnose Fugitives (FUG 400), EU051 Paintline Fugitives (FUG 401), EU052, Paint Drying Oven #1 (S400), EU053, Paint Drying Oven #2 (S401), and EU054, Paint Drying Oven #3 (S402);

- EU040 through EU043, #1 through #4 dryer line 1 natural gas burners (DRY-NG 100 through DRY-NG 103) were included with the Line 1 dryers in Section III.C. of the permit;

- EU044 and EU043, #5 and #6 dryer line 2 natural gas burners (DRY-NG 200 and DRY-NG 201) were included with the Line 2 dryers in Section III.D of the permit;
IEU028, Melamine Press Vents (FUG) and IEU029, Melamine Burner (INTEC) which were approved by the Department on March 14, 2005 as a de minimis change according to the provisions of ARM 17.8.745, were added to the insignificant list because the combined potential to emit (PTE) of the two units is less than significant levels as clarified by Roseburg in a letter dated January 13, 2006;

Appendix F, Routine Control Device Maintenance Exemption was added to the permit as required in 40 CFR 63.2251; and

A condition was included in Section III.B – Plant - Wide to identify that the facility is subject to 40 CFR 63, Subpart DDDD National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood Products.

Operating Permit #OP2303-03 replaced Operating Permit #OP2303-02.

On September 15, 2008, the Department received a Title V Operating Permit Significant Modification application from Roseburg, with a follow-up letter that was received October 3, 2008. In order to comply with the Plywood and Composite Wood Product MACT rule, Roseburg installed an RTO to control emissions of VHAP from its existing wood-fired green furnish predryer. This RTO was installed on the outlet of the existing wet electrostatic precipitator and is fueled by natural gas. The installation of the RTO was permitted under MAQP #2303-14, which included a provision limiting the particulate matter emitted from the RTO to 0.10 gr/dscf corrected to 12% CO₂ and calculated as if no auxiliary fuel had been used. Under MAQP #2303-15, this BACT-derived limit was modified. Under this significant modification, this modified particulate matter limit has been incorporated into Roseburg’s Title V Operating Permit. Additionally, clarifications to 40 CFR 63, Subpart DDDD conditions were added to the permit. Operating Permit #OP2303-04 replaced Operating Permit #OP2303-03.

On September 2, 2010, the Department received an administrative amendment request from Roseburg requesting a change of Responsible Official from Ken Cole to Chuck Ulik. Operating Permit #OP2303-05 replaced Operating Permit #OP2303-04.

On July 22, 2011, the Department received an administrative amendment request from Roseburg requesting to add Grady Mulbery as a Responsible Official. The Department received a second administrative amendment request on August 8, 2011 to also add Mark Allen as a Responsible Official in addition to Chuck Ulik and Grady Mulbery. Operating Permit #OP2303-06 replaced Operating Permit #OP2303-05.

On March 30, 2012, Roseburg submitted a concurrent permit application for a modification of MAQP #2303-15 and a renewal application for the Title V Operating Permit (OP) #2303-06. The MAQP and OP application was deemed complete on April 16, 2012. After the completeness date, the Department requested additional information regarding the CAM plan and Roseburg responded on June 21, 2012, Operating Permit #OP2303-07 replaced Operating Permit #OP2303-06.
On February 27, 2013, the Department received a concurrent permit application for a modification of MAQP #2303-17 and the Title V Operating Permit (OP) #2303-07. The OP application was deemed substantively complete on July 2, 2013. The project provided for the modernization of line 1, utilizing equipment from both line 1 and the previously shutdown line 2, as well as other Roseburg unused equipment and some new equipment. The project also added eight new baghouses while removing five baghouses. A de minimis request was received on October 16, 2013, and baghouse 74 was approved to become two baghouses exhausting to a common stack. Operating Permit #OP2303-08 replaced Operating Permit #OP2303-07.

On February 5, 2018, the Department received an administrative amendment request to update the Title V Operating Permit to reflect a change in Responsible Official. Dennis Tally is now the Plant Manager and has been identified as the primary Responsible Official. The Department also confirmed in a subsequent communication received on February 12, 2018, and official administrative amendment that Mark Avery is now the alternate Responsible Official. The MAQP history and compliance status were also updated with this permit action. Operating Permit #OP2303-09 replaced Operating Permit #OP2303-08.

On April 11, 2018, the Department received a significant modification request and Title V renewal to update the Title V Operating Permit. The renewal incorporates changes made in MAQP #2303-20, MAQP #2303-21, and MAQP #2303-22 as well as a number of de minimis changes. A description of de minimis reviews was also added to the permit. The MAQP history and compliance status were also updated with this permit action. Operating Permit #OP2303-10 replaced Operating Permit #OP2303-09.

D. Current Permit Action

On June 3, 2020, the Department received an administrative amendment request from Roseburg requesting a change of Responsible Official to Tony Ramm and Ben Anschuetz. Operating Permit #OP2303-11 replaced Operating Permit #OP2303-10.

E. Taking and Damaging Analysis

HB 311, the Montana Private Property Assessment Act, requires analysis of every proposed state agency administrative rule, policy, permit condition or permit denial, pertaining to an environmental matter, to determine whether the state action constitutes a taking or damaging of private real property that requires compensation under the Montana or U.S. Constitution. As part of issuing an operating permit, the Department is required to complete a Taking and Damaging Checklist. As required by 2-10-101 through 2-10-105, MCA, the Department conducted a private property taking and damaging assessment and has determined there are not taking or damaging implications.

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1. Does the action pertain to land or water management or environmental regulation affecting private real property or water rights?</td>
</tr>
<tr>
<td>X</td>
<td>2. Does the action result in either a permanent or indefinite physical occupation of private property?</td>
</tr>
<tr>
<td>X</td>
<td>3. Does the action deny a fundamental attribute of ownership? (ex.: right to exclude others, disposal of property)</td>
</tr>
<tr>
<td>X</td>
<td>4. Does the action deprive the owner of all economically viable uses of the property?</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>X</td>
<td>5. Does the action require a property owner to dedicate a portion of property or to grant an easement? [If no, go to (6)].</td>
</tr>
<tr>
<td></td>
<td>5a. Is there a reasonable, specific connection between the government requirement and legitimate state interests?</td>
</tr>
<tr>
<td></td>
<td>5b. Is the government requirement roughly proportional to the impact of the proposed use of the property?</td>
</tr>
<tr>
<td>X</td>
<td>6. Does the action have a severe impact on the value of the property? (consider economic impact, investment-backed expectations, character of government action)</td>
</tr>
<tr>
<td>X</td>
<td>7. Does the action damage the property by causing some physical disturbance with respect to the property in excess of that sustained by the public generally?</td>
</tr>
<tr>
<td>X</td>
<td>7a. Is the impact of government action direct, peculiar, and significant?</td>
</tr>
<tr>
<td>X</td>
<td>7b. Has government action resulted in the property becoming practically inaccessible, waterlogged or flooded?</td>
</tr>
<tr>
<td>X</td>
<td>7c. Has government action lowered property values by more than 30% and necessitated the physical taking of adjacent property or property across a public way from the property in question?</td>
</tr>
<tr>
<td>X</td>
<td>Takings or damaging implications? (Taking or damaging implications exist if YES is checked in response to question 1 and also to any one or more of the following questions: 2, 3, 4, 6, 7a, 7b, 7c; or if NO is checked in response to questions 5a or 5b; the shaded areas)</td>
</tr>
</tbody>
</table>

F. Compliance Designation

An onsite inspection of the Roseburg facility was last on May 20, 2019. Roseburg was determined to be in compliance during the inspection.
SECTION II. SUMMARY OF EMISSION UNITS

A. Facility Process Description

This plant processes raw wood fiber into particle board by refining the fiber, adding resin, and pressing the mat into boards. The raw material, primarily wood shavings from the planing process in sawmills, is transported to Missoula by truck. This material is unloaded at the plant and moved by conveyor to the dryers and the press line, or out to the storage pile. The material is retrieved from the pile by front-end loader and conveyed to the dryers and the press line. Approximately 50% of the plant production is stored in this pile during the year. The wood fiber is then dried, blended with a resin, and introduced to the press line for particle board production. Many baghouses and cyclones are used in the wood fiber handling systems. Sawdust and sander dust is used as fuel for the boiler and the sander dust burners. This plant also contains a remanufacturing (reman) section, which processes the particle board into finished wood that is used in furniture production. The reman section includes an edge banding line that utilizes an adhesive product to bind tape to the edge of the particle board. In addition, this facility applies melamine to its manufactured particleboard. Melamine application involves placing a sheet of melamine paper on the top and bottom surfaces of a particleboard mat and pressing the paper and particleboard in a hot press. The melamine paper that overhangs the particleboard is then trimmed with a saw.

B. Emission Units and Pollution Control Device Identification

The Roseburg Particleboard Plant includes the following process and control equipment.

1. Final Dryers (DRY 100, DRY 101, DRY 102, and DRY 103)

Four direct-contact wood particle dryers with multiclone control (DRY 100, DRY 101, DRY 102, and DRY 103). The dryers draw hot combustion gases from the Roemmc burner (ROEMMC) tube to dry particleboard furnish. The combustion gases come from combustion of sander dust and/or a small amount of natural gas in the Boiler (BOILER 1) and the Roemmc burner (ROEMMC). There is an ID fan on the outlet side of the dryer which draws the combustion gas, furnish, and cool makeup air through the dryer. The ID fan exhausts through a multiclone which collects the dried furnish and acts as particulate control. Exhaust gases from each dryer exit a common vertical stack. Each dryer is equipped with a natural gas burner which is used if hot gas from the Roemmc burner is not available. Each of the dryers has a rated capacity of 20,000 pounds per hour (lb/hr) of wet wood (annual average hourly rate). The natural gas back-up burners for DRY100 and DRY102 have capacities of 28 MMBtu/hr and the natural gas back-up burners for DRY103 and DRY104 have capacities of 22 MMBtu/hr.

2. DRY 200

One direct-contact wood particle dryer with multiclone control (DRY 200). The dryer draws hot combustion gases from the Roemmc burner (ROEMMC) tube to dry particleboard furnish. The combustion gases come from combustion of sander dust and/or a small amount of natural gas in the Boiler (BOILER 1) and the Roemmc burner (ROEMMC). There is an ID fan on the outlet side of the dryer which draws the combustion gas, furnish, and cool makeup air through the dryer. The ID fan exhausts through a multiclone which collects the dried furnish and acts as particulate control. The dryer is equipped with a
natural gas burner which is used if hot gas from the Roemmc burner is not available. The dryer has a rated capacity of 20,000 lb/hr of wet wood (annual average hourly rate). The natural gas back-up burner for DRY200 has a capacity of 28 MMBtu/hr.

3. Predryer (DRY 500)

A direct-contact predryer (DRY 500) with a WESP and RTO control. The predryer draws hot combustion gases from the Solagen tube to dry particleboard furnish. The combustion gases come from combustion of sander dust and/or a small amount of natural gas in the Solagen burner (SOLAGEN). There is an ID fan on the outlet side of the dryer which draws the combustion gas, furnish and cool makeup air through the dryer. The ID fan exhausts through a medium efficiency cyclone, which collects the dried furnish and then through a WESP, which acts as particulate control, and then through an RTO to control volatile organic hazardous air pollutants. The predryer is equipped with low NOx burners and is configured so that approximately 50% of its exhaust gas will be reintroduced into the duct immediately preceding the predryer drum. The predryer has a rated capacity of 46,000 bone dry pound per hour (BDP/hr) of wet wood. The Solagen burner has a rated capacity of 45 MMBtu/hr.

4. Outside Truck Dump (BH 50)

Outside Truck Dump (BH 50) represents the unloading of trucks at the outside truck dump. Product is trucked in and unloaded onto conveyors with a hydraulic truck dump. Emissions from product unloading are collected with an aspiration system connected to a baghouse (BH 50). Material collected by the baghouse is transferred to the covered storage area.

5. Green Material Transfers Baghouse (BH 52)

Collects dust from green material material handling conveyors. The filtrate off of this baghouse will be conveyed back in to the material destined for the Predryer. It also collects the discharge air from a small high pressure blower.

6. Furnish Building Baghouse (BH 56)

Collects dust from material handling conveyors in the furnish building area. The filtrate off of this baghouse will be conveyed directly into the milling and drying process.

7. Prescreen Baghouse (BH 62)

Collects dust from the prescreening and raw material areas. The filtrate off of this baghouse will be conveyed directly into the milling and drying process.

8. Wet Bins Baghouse (BH 64)

Collects dust associated with conveying material to the wet bin area. The filtrate from this baghouse will be conveyed directly into the milling and drying process.
9. M&D Face Baghouse (BH 70)

Collects dust from the conveyors inside the milling and drying building. The filtrate off of this baghouse will be included with face material destined for the forming line.

10. M&D Core Baghouse (BH 72)

Collects dust from the conveyors inside the milling and drying building. The filtrate off of this baghouse will be included with core material destined for the forming line.

11. Board Cooler Baghouse (BH 74A and BH 74B)

Collects dust from the Board Cooler exhaust.

12. Sander Dust Boiler Baghouse (BH76)

Collects particulate from the Boiler.

13. Reject System (BH 100)

Collects dust from numerous pick-up points on the formstation. The filtrate off of this baghouse will be sent to a new boardtrim silo which is controlled by BH 62 and be recovered as raw material.

14. 5 X 25 Board Trimsaws System (BH 102 A)

5 X 25 Board Trimsaws System (BH 102 A) represents 5 X 25 particleboard trim and sizing. After being processed and cooled, the particleboard is trimmed to marketable dimensions. The end trim is hogged and pneumatically transferred to one of the two baghouses. Sawdust that is generated is also collected and transferred to the baghouses. Material collected by the baghouses is pneumatically transferred to the covered storage area. Exhaust from the system vents through BH 102 A.

15. 5 X 16 Board Trimsaws System (BH 102 B)

5 X 16 Board Trimsaws System (formerly designated as BH 103) represents 5 X 16 particleboard trim and sizing. After being processed and cooled, the particleboard is trimmed to marketable dimensions. The end trim is hogged and pneumatically transferred to one of the two baghouses. Sawdust that is generated is also collected and transferred to the baghouses. Material collected by the baghouses is pneumatically transferred to the covered storage area. Exhaust from the system vents through BH 102B.

16. Forming Line Cleanup (Previously named Forming and M & D Cleanup) (BH 101 A & B)

With the cessation of Line 2, Roseburg repurposed the six head sander baghouses (formerly BH 300 A and BH 300B) to be used on the Line 1 Forming and M & D Cleanup and renamed them BH 101 A & B.
17. Eight Head Sander (BH 302 A & B)

BH 302 A & B (formerly designated BH302 and BH 303) each represents one of two aspiration systems on the eight-head sander. A percentage of the particleboard manufactured is finish sanded for market. The board is top and bottom sanded and all sanderdust is collected by a series of pickup points along the process. Collected material is pneumatically transferred to one of two baghouses. Material collected in the baghouses is pneumatically transferred to a relay system baghouse (BH 304) located by the sanderdust storage bin.

18. Eight Head Sander System Relay (BH 302R)

Eight Head Sander System Relay (formerly BH 304) represents the relay for baghouses BH 302 A & B. All collected materials from BH 302 A & B are pneumatically transferred to BH 302R. Collected material is augured into one of two sanderdust storage bins.

19. Schilling and Bullnose Saw System (BH 401)

Schilling and Bullnose Saw System (BH 401) represents the aspiration system on the Reman finishing system (Particleboard going through the reman process after being coated and cut to length by the schilling saw) and the edge bander line. Sawdust from the process is pneumatically conveyed to BH 401.

20. Melamine Baghouse (BH 500)

The Melamine Baghouse (BH 500) represents the dust and melamine trim collection air system. Resin dust from the back side of the melamine paper, along with wood dust left over from sanding is collected in the process before the press. After the press, excess melamine trim is collected in the Melamine Baghouse. From there the dust and melamine trim passes through an airlock into a collection hopper. When the hopper is full, it is taken to a landfill and dumped. A panel saw was added as a de minimis action in 2015 and particulate emissions are also controlled by BH 500.

Particle Board Press and Press Vents (Press Vents A, B, C and D) represents the four exhaust vents above the particleboard batch press. The press is heated by steam from the boiler (Boiler #1). After the mat is formed and trimmed, it is conveyed to the press loader. The mats are loaded and pressed. Heat, steam, and gases from the press are drawn to a biofilter by the three powered press vents above the process. There is a pre-press vent before the four press exhaust vents that stack testing has shown draws air in and does not exhaust to the atmosphere.

22. Board Cooler Vents 1, 2, and 3

Board Cooler Vents 1, 2, and 3 represent three board cooling chambers. After exiting the hot press, board panels need to be cooled before being stacked for extended periods. This process is done in the board cooling chambers. Outside ambient air from above the building roof is forced down into each cooling chamber with two large fans in the ducts. As the board panel enters the chambers it is tipped on edge with forks with approximately six
inches between each panel. The board panels move slowly through the chambers with cool air passing between the panels. The chambers are designed so that cool air flows from right to left. In the second part of the chambers, the air flow is reversed. There are two large ducts with fans that exhaust through the roof of the building. Above the roof, there are smaller ducts connecting the infeed and exhaust ducts. During the winter months, infeed air is mixed with exhaust to a desired temperature for cooling the panels. Too much cold air will warp thin panels, causing problems when sawing. The Board Cooler Vents are now controlled by BH 74A and BH 74B under the permit action associated with issuance of OP2303-08.

23. Boiler #1 (BOILER 1)

Boiler #1 (BOILER 1) represents a 55 MMBtu/hr sanderdust and/or natural gas fired boiler that supplies steam to the hydraulic press. Steam from the boiler is also used as building heat. In normal operation, the boiler exhaust gas vents into the ROEMMC tube, which supplies heat to the five dryers. Or emissions from the boiler can vent to a baghouse and then to atmosphere. The boiler also has an abort stack to divert hot gases directly to the atmosphere in case of fire or other problems.

24. Roemmc Burner (ROEMMC)

Roemmc Burner (ROEMMC) represents a 50 MMBtu/hr sanderdust and/or natural gas burner that supplies heat to the five wood particle dryers. The Roemmc burner exhaust gas vents into a heating duct called the Roemmc tube which feeds heat to the dryers. The exhaust gas may also vent directly into the atmosphere through the Roemmc burner stack. The combustion rate of the burner may be varied depending on the amount of heat needed to dry the furnish. This, in turn, is dependent on season, throughput, and moisture content of the furnish.

25. Solagen Burner (SOLAGEN)

Solagen Burner (SOLAGEN) represents the sander dust or natural gas-fired burner primarily intended to heat the wood particle predryer. The Solagen burner utilizes a minor amount of exhaust gases from the predryer in order to reduce NOx emissions. All exhaust gases from the Solagen burner are ducted through the predryer. The Solagen burner has a maximum rated design capacity of 45 MMBtu/hr.

26. Regenerative Thermal Oxidizer (RTO)

The RTO (and WESP) controls volatile organic hazardous air pollutant emissions from the predryer. The RTO runs on natural gas and has a burner capacity of 8 MMBtu/hr.

27. Outside Truck Dump (FUG 50)

Outside Truck Dump (FUG 50) represents the unloading of trucks at the outside truck dump. Product is trucked in and unloaded onto conveyers with a hydraulic truck dump. The truck dump is partially covered (only part of the trailer and the cab are exposed). Fugitive emissions from product unloading are collected with an aspiration system connected to a baghouse (BH 50). Unloaded product is conveyed to either inside storage, outside storage, or directly to the pre-dry chip bins.
28. Pile Reclaim Fugitives (FUG 51)

Pile Reclaim Fugitives (FUG 51) represents the loading of products from outside storage into the reclaim system. Product is transferred from the reclaim system to the drying systems.

29. Radial Stacker (FUG 52)

Radial Stacker (FUG 52) represents the loading of product from inside storage onto the outside storage pile. The stacker is adjustable and mobile to vary the size and placement of the product pile.
C. Categorically Insignificant Sources/Activities

The Administrative Rules of Montana (ARM) 17.8.1201(22)(a) defines an insignificant emission unit as one that emits less than 5 TPY of any regulated pollutant, has the potential to emit less than 500 pounds per year of lead or any hazardous air pollutant, and is not regulated by any applicable requirement other than a generally applicable requirement. The following table contains the insignificant emitting units at the Roseburg facility:

<table>
<thead>
<tr>
<th>Emissions Unit ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEU01</td>
<td>Auxiliary Diesel Generators (I2)</td>
</tr>
<tr>
<td>IEU02</td>
<td>Degreasing (I7)</td>
</tr>
<tr>
<td>IEU03</td>
<td>Portable Heaters (I9)</td>
</tr>
<tr>
<td>IEU04</td>
<td>Wax Pump (I15)</td>
</tr>
<tr>
<td>IEU05</td>
<td>Gas Powered Sump Pump (I2)</td>
</tr>
<tr>
<td>IEU06</td>
<td>Fire Pond Dredging (I120)</td>
</tr>
<tr>
<td>IEU07</td>
<td>Diesel Tank (I23)</td>
</tr>
<tr>
<td>IEU08</td>
<td>Gasoline Storage Tank (I22)</td>
</tr>
<tr>
<td>IEU09</td>
<td>2 Wax Tanks (I22)</td>
</tr>
<tr>
<td>IEU10</td>
<td>10 Resin Tanks (I22)</td>
</tr>
<tr>
<td>IEU11</td>
<td>1 Day Use Wax Tank (I22)</td>
</tr>
<tr>
<td>IEU12</td>
<td>Propane Storage Tanks (I25, I31)</td>
</tr>
<tr>
<td>IEU13</td>
<td>General Repair and Maintenance (I34)</td>
</tr>
<tr>
<td>IEU14</td>
<td>Machining – General Maintenance (I36)</td>
</tr>
<tr>
<td>IEU15</td>
<td>2-52 Gallon Brine Tanks (I33)</td>
</tr>
<tr>
<td>IEU16</td>
<td>Septic System with Lift System (I40)</td>
</tr>
<tr>
<td>IEU17</td>
<td>Space Heaters (I43)</td>
</tr>
<tr>
<td>IEU18</td>
<td>Steam Cleaning – General Maintenance (I45)</td>
</tr>
<tr>
<td>IEU19</td>
<td>Knife Sharpening Solution (I46)</td>
</tr>
<tr>
<td>IEU20</td>
<td>Degreasing (I7)</td>
</tr>
<tr>
<td>IEU21</td>
<td>Non Processing Heaters (NPHEAT)</td>
</tr>
<tr>
<td>IEU22</td>
<td>Melamine Press Vents (FUG)</td>
</tr>
<tr>
<td>IEU23</td>
<td>Melamine Burner (INTEC)</td>
</tr>
</tbody>
</table>
SECTION III. PERMIT CONDITIONS

A. Emission Limits and Standards

1. Facility Wide

The facility wide emission limits include limitations on visible air contaminants, airborne PM, PM from fuel-burning equipment, PM from industrial processes, sulfur oxide emissions from sulfur in fuel (liquid, solid, and gaseous), operations during emergency episodes, and various reporting and recordkeeping requirements. These emission limits are applicable to the facility and/or to specific emission units located at the facility.

Roseburg's visible air contaminants are limited to less than 40% opacity averaged over 6 consecutive minutes for all sources installed on or before November 23, 1968, unless otherwise specified by rule or in this permit. Furthermore, Roseburg's visible air contaminants from all sources installed after November 23, 1968, are limited to less than 20% opacity averaged over 6 consecutive minutes, unless otherwise specified by rule or in this permit.

Roseburg must take reasonable precautions to minimize airborne PM prior to producing, handling, transporting, or storing any material. Furthermore, Roseburg shall not use any street, road, or parking lot, or operate any construction site or demolition project unless reasonable precautions are taken to control emissions of airborne PM. Such emissions of airborne PM are limited to less than 20% opacity averaged over 6 consecutive minutes, unless otherwise specified by rule or in this permit.

Roseburg is limited on the emissions of PM from the combustion of fuel. The applicable limitation is based on the installation date of the combustion device and the heat input capacity of the device.

Roseburg is limited on the amount of PM that can be discharged from any operation, process, or activity into the outdoor atmosphere. The appropriate emission limit is based on the process weight rate of the respective emitting unit. Certain units within the Roseburg facility contain more stringent emission limits than the limits that would apply based on the process weight rate. For those units, the process weight rate limitation was not included as an applicable requirement because the existing condition was more stringent.

The Roseburg facility is also limited on the sulfur oxide emissions that are allowed from the facility. Roseburg is not allowed to burn any liquid or solid fuels containing sulfur in excess of 1 pound of sulfur per MMBtu fired. In addition, Roseburg may not burn any gaseous fuels containing sulfur in excess of 50 grains per 100 ft³ of gaseous fuel.
The Roseburg facility is subject to the emergency episode plan requirements contained in Chapter 4 of the Missoula City-County Air Pollution Control Program (Chapter 32 of the State of Montana Air Quality Control Implementation Plan). Each stationary source within Missoula County that emits or is capable of emitting 25 TPY or more of PM$_{10}$, SO$_2$, CO, O$_3$, or NO$_2$ must have an abatement plan for reducing emissions of such pollutants during an air pollutant emergency episode. The plan, which is subject to review and approval by the Missoula City-County Health Department, must sufficiently demonstrate the ability of the source to reduce emissions as required under each stage of the emergency episode avoidance plan. The Missoula City-County Health Department may require sources to periodically review and update their abatement plans and submit them to Missoula City-County Health for review and approval.

2. **Plant Wide**

In addition to those limits previously identified as “facility-wide” emission limits, the following emission limits apply “plant-wide” at the Roseburg facility. Similar to the facility wide limitations, the plant wide emissions are limited to less than 20% opacity from all sources installed after November 23, 1968.

The press, board coolers and final dryers are each limited to 8,500 hours during any rolling 12-month period.

Paving or a dust suppressant is required on all routinely used haul roads to minimize fugitive emissions. The opacity from the haul roads shall not exceed 20%.

Roseburg is not allowed to store any contaminated floor sweepings outdoors. This requirement is intended to reduce the possibility of the material becoming airborne. Currently, Roseburg is limited to storing no more than 50 units (370 yd3) of contaminated floor sweepings in the contaminated floor sweepings building.

Roseburg is required to plant and maintain vegetation on the earthen berm to minimize emissions from the raw material storage pile.

3. **Final Dryers (DRY 100, DRY 101, DRY 102, DRY 103)**

Emissions from the dryers at the Roseburg facility are limited to less than 20% opacity averaged over 6 consecutive minutes. The total PM and PM$_{10}$ emissions from each dryer are also limited. Roseburg is required to operate and maintain multiclones as part of the effort of complying with the total PM and PM$_{10}$ emission limits. Furthermore, Roseburg is required to install and operate temperature sensors with remote readout and audible alarm on the inlet of all dryers. The alarm system shall become activated when the inlet gas temperature exceeds 600°F.

4. **DRY 200**

Emissions from DRY200 shall not cause or authorize emissions to be discharged into the outdoor atmosphere from any source that exhibit an opacity of 20% or greater averaged over 6 consecutive minutes. The total PM and PM$_{10}$ emissions from each dryer are also limited. Roseburg is required to operate and maintain multiclones as part of the effort of complying with the total PM and PM$_{10}$ emission limits.
5. Predryer (DRY 500)

Similar to the dryers, the predryer at the Roseburg facility is limited to less than 20% opacity averaged over 6 consecutive minutes. The predryer is also limited in total PM and PM\textsubscript{10} emissions. Roseburg is required to operate and maintain a WESP and RTO as part of the effort of complying with the total PM and PM\textsubscript{10} emission limits. In addition, the production from the predryer is limited to 200,000 BDT per rolling 12-month period.

The baghouses at the Roseburg facility are limited to less than 20% opacity averaged over 6 consecutive minutes. Each baghouse is limited in total PM emissions, PM\textsubscript{10} emissions, and flow rate. The particulate limits range from grain-loading limits to the limits that were established in previous MAQPs. The flow-rate limits have been incorporated from the MAQP.

For those baghouses in the Title V permit that already contain a more stringent particulate limit, the limits established through the process weight rule were removed from the permit. When compared to the emission limits currently established for the baghouses, the regulatory limit established through the process weight rule is less stringent.

7. Particle Board Press and Press Vents (Press Vents A, B, C and D)

The emissions from each of the press vents are limited to less than 20% opacity averaged over 6 consecutive minutes and routed to the biofilter. The total PM and PM\textsubscript{10} emissions from each of the press vents are also limited. The PM limit that would result from the process weight rule would be less stringent than the limit that is currently contained in the MAQP (and the Title V permit). For this reason, the PM limit that would be based on the process weight rule was removed from this section of the Title V permit. Also, the biofilter routine control device maintenance exemption is limited to a maximum of 0.5% of the press annual operating uptime.

8. Board Cooler Vents (Board Cooler Vents 1, 2, and 3)

The Board cooler vents are limited to less than 20% opacity averaged over 6 consecutive minutes and are now controlled by BH 74A and BH74B. Initial testing within 180 days of startup is required and then as required by the Department.

9. Boiler #1 (BOILER 1)

The emissions from Boiler #1 are limited to less than 20% opacity averaged over 6 consecutive minutes. Furthermore, particulate from fuel combustion, total PM, and PM\textsubscript{10} emissions are also limited. The particulate from fuel combustion is limited to a pound per MMBtu value that is determined by using the heat-input capacity of the boiler.
10. Roemmc Burner (ROEMMC)

Limitations have been placed on the Roemmc Burner for opacity, particulate from fuel combustion, sander dust combustion, NOx emissions, CO emissions, and VOC emissions. The Roemmc Burner shall not exhibit an opacity of 20% or greater averaged over 6 consecutive minutes. The particulate from fuel combustion is limited to a pound-per-MMBtu value that is determined by using the heat-input capacity of the burner. The Roemmc Burner is limited to combusting 23,000 tons or less of sander dust per rolling 12-month period. Emissions of NOx, CO, and VOC from the Roemmc Burner shall not exceed 115.0 lb/hr, 100.0 lb/hr, and 0.35 lb/hr, respectively. The Roemmc Burner is potentially required to have an opacity monitor. Roseburg is required to install and operate an opacity monitor on the burner exhaust, as required by the Department.

11. Solagen Burner (SOLAGEN)

Limitations have been placed on the Solagen Burner for opacity, particulate from fuel combustion, sander dust combustion, natural gas combustion, NOx emissions, CO emissions, and VOC emissions. The Solagen Burner shall not exhibit an opacity of 20% or greater averaged over 6 consecutive minutes. The particulate from fuel combustion is limited to a pound-per-MMBtu value that is determined by using the heat-input capacity of the burner. The Solagen Burner is limited to combusting 21,745 tons or less of sander dust per rolling 12-month period and 352.1 MMScf or less of natural gas per rolling 12-month period. The Solagen Burner is potentially required to have an opacity monitor. Roseburg is required to install and operate an opacity monitor on the burner exhaust, as required by the Department.

12. Regenerative Thermal Oxidizer (RTO)

Limitations have been placed on the RTO for opacity, particulate from fuel combustion, and the potential requirement to install and operate an opacity monitor. Emissions from the RTO shall not exhibit an opacity of 10% or greater averaged over 6 consecutive minutes. The particulate from fuel combustion for the RTO is limited to 0.10 gr/dscf. Roseburg is required to install, operate, and maintain the RTO to control volatile hazardous air pollutants from the predryer. Roseburg’s Routine Control Device Maintenance Exemption is limited to 3% of the predryer annual operating uptime. The RTO is potentially required to have an opacity monitor. Roseburg is required to install and operate an opacity monitor on the RTO, as required by the Department.

13. Fugitives (FUG 50, FUG 51, FUG 52)

The fugitive emissions from FUG 50, FUG 51, and FUG 52 are limited to less than 20% opacity averaged over 6 consecutive minutes.
B. Monitoring Requirements

ARM 17.8.1212(1) requires that all monitoring and analysis procedures or test methods required under applicable requirements are contained in operating permits. In addition, when the applicable requirement does not require periodic testing or monitoring, periodic monitoring must be prescribed that is sufficient to yield reliable data from the relevant time period that is representative of the source's compliance with the permit.

The requirements for testing, monitoring, recordkeeping, reporting, and compliance certification sufficient to assure compliance do not require the permit to impose the same level of rigor for all emission units. Furthermore, they do not require extensive testing or monitoring to assure compliance with the applicable requirements for emission units that do not have significant potential to violate emission limitations or other requirements under normal operating conditions. When compliance with the underlying applicable requirement for a insignificant emissions unit is not threatened by lack of regular monitoring and when periodic testing or monitoring is not otherwise required by the applicable requirement, the status quo (i.e., no monitoring) will meet the requirements of ARM 17.8.1212(1). Therefore, the permit does not include monitoring for insignificant emission units.

The permit includes periodic monitoring or recordkeeping for each applicable requirement. The information obtained from the monitoring and recordkeeping will be used by the permittee to periodically certify compliance with the emission limits and standards. However, the Department may request additional testing to determine compliance with the emission limits and standards.

C. Test Methods and Procedures

The operating permit may not require testing for all sources if routine monitoring is used to determine compliance, but the Department has the authority to require testing if deemed necessary to determine compliance with an emission limit or standard. In addition, the permittee may elect to voluntarily conduct compliance testing to confirm its compliance status.

Various test methods and procedures have been incorporated into this permit to assist in determining compliance with applicable limitations. Numerous limitations within the permit identify a routine time frame for conducting emission tests (e.g. every 2 years, every 5 years or as required by the Department). In either case, the testing that is conducted or that may be conducted must be done in accordance with the Montana Source Test Protocol and Procedures Manual. The Montana Source Test Protocol and Procedures Manual requires that process rates during testing must be at specific conditions that are representative of maximum operating capacity or maximum permitted capacity unless otherwise agreed upon by the Department and the source. Furthermore, the Department has the authority to require additional source testing (for example, more often than every 2 years) if necessary in accordance with ARM 17.8.105. A summary of test methods and procedures for each of the emitting units follows:

1. Facility Wide

The facility wide emission limits are intended to identify conditions that are generally applicable to the facility. The section labeled “Facility Wide” Emission Limits does not include the method of compliance monitoring or the frequency. Each of the limitations that are applicable to a specific emitting unit is identified with the conditions for that limit. The
appropriate test methods and procedures are identified with the corresponding emitting unit, as well.

2. Plant Wide

Roseburg is required to conduct weekly visual surveys to verify compliance with the opacity limitation identified for the plant. If Roseburg does not conduct weekly visual surveys, Roseburg is required to conduct semiannual Method 9 Source Tests to verify compliance with the opacity limitation. The Method 9 Source Tests must be performed in accordance with the Montana Source Test Protocol and Procedures Manual.

Roseburg is required to log the hours of operation of on a monthly basis to monitor compliance with the rolling 12 month limitations in the permit.

Roseburg is required to certify compliance and/or maintain records to monitor compliance with several requirements in the Operating Permit for the plant wide conditions. The certifications and/or records shall indicate whether or not Roseburg is in compliance with the particulate limit.

Roseburg shall calculate the daily and annual total particulate and PM$_{10}$ emissions in accordance with the equations provided in Section III.B.

3. Final Dryers (DRY 100, DRY 101, DRY 102, DRY 103)

Roseburg shall conduct either a semiannual Method 9 source test or a weekly visual survey on the visible emissions from the combined stack for DRY 100, DRY 101, DRY 102, and DRY 103. Specifically, Roseburg is required to vent the emissions from DRY 100, DRY 101, DRY 102, and DRY 103 into one common combined stack. Emissions from the combined stack for DRY 100, DRY 101, DRY 102 and DRY 103 may not exhibit an opacity of 20% or greater averaged over 6 consecutive minutes. If weekly visual surveys are not conducted, Roseburg shall conduct semiannual Method 9 visual emission observations. The Method 9 Source Tests must be performed in accordance with the Montana Source Test Protocol and Procedures Manual.

Roseburg is required to perform Method 5 and Method 201A Source Tests initially and then once every 5 years to monitor compliance with the total PM and PM$_{10}$ emission limitations for DRY 100, DRY 101, DRY 102, and DRY 103. When Roseburg is venting the emissions from any combination of DRY 100, DRY 101, DRY 102, and/or DRY 103 the applicable emission limitation will be the sum total of the emission limits of each of the sources venting through the combined stack at the time of the source test.

Roseburg is required to maintain records to monitor compliance with several requirements in the Operating Permit for the final dryers. The recordkeeping shall indicate whether or not Roseburg is in compliance with the particulate limit.

4. Predryer (DRY 500)

Roseburg shall conduct either a semiannual Method 9 source test or weekly visual surveys on the visible emissions from DRY 500 to monitor compliance with the 20% opacity limitation. If weekly visual surveys are not conducted, Roseburg shall conduct semiannual Method 9
visual emission observations on the stack of DRY 500. The Method 9 Source Tests must be performed in accordance with the Montana Source Test Protocol and Procedures Manual.

Roseburg must perform Method 5 and Method 201A Source Tests every 5-years to monitor compliance with the total PM and PM$_{10}$ emission limitations.

Roseburg is required to maintain records to monitor compliance with several requirements in the Operating Permit for the predryer. The recordkeeping shall indicate whether or not Roseburg is in compliance with the particulate limit.

Roseburg shall conduct weekly visual surveys on the visible emissions from the baghouses to monitor compliance with the 20% opacity limitation. If weekly visual surveys are not conducted, Roseburg shall conduct semiannual Method 9 visual emission observations on the baghouse stacks. The Method 9 Source Tests must be performed in accordance with the Montana Source Test Protocol and Procedures Manual.

Roseburg must perform Method 2, Method 5, and Method 201A Source Tests as required by the Department to monitor compliance with the flow rate, total PM, and PM$_{10}$ emission limitations. Baghouse conditions have been incorporated at different times and therefore, specific requirements are not identical for all baghouses.

6. Particle Board Press and Press Vents (Press Vents A, B, C and D)

Roseburg shall conduct weekly visual surveys on the biofilter exhaust on the visible emissions from the press vents to monitor compliance with the 20% opacity limitation. If weekly visual surveys are not conducted, Roseburg shall conduct semiannual Method 9 visual emission observations on the press vents. The Method 9 Source Tests must be performed in accordance with the Montana Source Test Protocol and Procedures Manual.

Roseburg must perform Method 5 and Method 201A Source Tests, as required by the Department, to monitor compliance with the total PM and PM$_{10}$ emission limitations.

7. Roemmc Burner (ROEMMC)

Roseburg shall conduct weekly visual surveys on the visible emissions from the Roemmc Burner to monitor compliance with the 20% opacity limitation. If weekly visual surveys are not conducted, Roseburg shall conduct semiannual Method 9 visual emission observations on the Roemmc Burner stack. The Method 9 Source Tests must be performed in accordance with the Montana Source Test Protocol and Procedures Manual.

Roseburg must perform Method 5, Method 7E, Method 10, and Method 18, Method 25, or Method 25A Source Tests, as required by the Department, to monitor compliance with the particulate from fuel combustion, NO$_x$, CO, and VOC emission limitations.
Roseburg is required to maintain records to monitor compliance with several requirements in the Operating Permit for the Roemmc Burner. The records shall indicate whether or not Roseburg is in compliance with the particulate limit.

8. Solagen Burner (SOLAGEN)

 Roseburg shall conduct weekly visual surveys on the visible emissions from the Solagen Burner to monitor compliance with the 20% opacity limitation. If weekly visual surveys are not conducted, Roseburg shall conduct semiannual Method 9 visual emission observations on the Solagen Burner stack. The Method 9 Source Tests must be performed in accordance with the Montana Source Test Protocol and Procedures Manual.

 Roseburg must perform Method 5, Method 7E, Method 10, and Method 18, Method 25, or Method 25A Source Tests, as required by the Department, to monitor compliance with the particulate from fuel combustion, NOx, CO, and VOC emission limitations.

 Roseburg is required to maintain records to monitor compliance with several requirements in the Operating Permit for the Solagen Burner. The records shall indicate whether or not Roseburg is in compliance with the particulate limit.

9. Regenerative Thermal Oxidizer (RTO)

 Roseburg shall conduct weekly visual surveys on the visible emissions from the RTO to monitor compliance with the 10% opacity limitation. If weekly visual surveys are not conducted, Roseburg shall conduct semiannual Method 9 visual emission observations. The Method 9 Source Tests must be performed in accordance with the Montana Source Test Protocol and Procedures Manual.

 Roseburg shall monitor compliance with the particulate limitations for the RTO by conducting EPA Method 5 source testing, as required by the Department.

10. Fugitives (FUG 50, FUG 51, FUG 52)

 Roseburg shall conduct weekly visual surveys on the visible emissions from the fugitive emission sources to monitor compliance with the 20% opacity limitation. If weekly visual surveys are not conducted, Roseburg shall conduct semiannual Method 9 visual emission observations on the fugitive emissions sources. The Method 9 Source Tests must be performed in accordance with the Montana Source Test Protocol and Procedures Manual.

D. Recordkeeping Requirements

The permittee is required to keep all records listed in the operating permit as a permanent business record for at least 5 years following the date of the generation of the record.

E. Reporting Requirements

Reporting requirements are included in the permit for each emissions unit and Section V of the operating permit "General Conditions" explains the reporting requirements. However, the permittee is required to submit semiannual and annual monitoring reports to the Department and to annually certify compliance with the applicable requirements contained in the permit.
The reports must include a list of all emission limit and monitoring deviations, the reason for any deviation, and the corrective action taken as a result of any deviation.

SECTION IV. NON-APPLICABLE REQUIREMENT ANALYSIS

Roseburg did not request a shield from any of the air quality Administrative Rules of Montana or federal regulations (pursuant to ARM 17.8.1214). Therefore, no further analysis of non-applicable requirements is necessary.
SECTION V. FUTURE PERMIT CONSIDERATIONS

A. MACT Standards

Note: Roseburg has historically used the Sanderdust Boiler gas to supplement the Roemmc exhaust gas for use in the dryers. As such, Roseburg noted that the Boiler is not subject to the Boiler NESHAP, Subpart DDDDD since its exhaust gas comes into direct contact with process materials. However, Roseburg submitted a significant permit modification (application for Title V OP # 2303-08) on February 27, 2013 to modify the boiler’s configuration. With this action, reporting under Subpart DDDDD has been added to the plant-wide conditions sections in the permit.

B. NESHAP Standards

As of the date of permit issuance, the Department is unaware of any future NESHAP Standards that may be promulgated that will affect this facility.

C. NSPS Standards

As of the date of permit issuance, the Department is unaware of any future NSPS Standards that may be promulgated that will affect this facility.

D. Risk Management Plan

As of the date of permit issuance, this facility does not exceed the minimum threshold quantities for any regulated substance listed in 40 CFR 68.115 for any facility process. Consequently, this facility is not required to submit a Risk Management Plan.

If a facility has more than a threshold quantity of a regulated substance in a process, the facility must comply with 40 CFR 68 requirements no later 3 years after the date on which a regulated substance is first listed under 40 CFR 68.130; or the date on which a regulated substance is first present in more than a threshold quantity in a process, whichever is later.

E. CAM Applicability

An emitting unit located at a Title V facility that meets the following criteria listed in ARM 17.8.1503 is subject to Subchapter 15 and must develop a CAM Plan for that unit:

- The emitting unit is subject to an emission limitation or standard for the applicable regulated air pollutant (unless the limitation or standard that is exempt under ARM 17.8.1503(2));
- The emitting unit uses a control device to achieve compliance with such limit; and
- The emitting unit has potential pre-control device emission of the applicable regulated air pollutant that is greater than major source thresholds.
EU008 – Predryer (DRY 500) is subject to CAM for PM$_{10}$ and utilizes an RTO as part of its control strategy to maintain compliance with the PM$_{10}$ emission limit. The CAM plan is found in Appendix E of the Title V Operating Permit.

F. PSD and Title V Greenhouse Gas Tailoring Rule

On May 7, 2010, EPA published the “light duty vehicle rule” (Docket # EPA-HQ-OAR-2009-0472, 75 FR 25324) controlling greenhouse gas (GHG) emissions from mobile sources, whereby GHG became a pollutant subject to regulation under the Federal and Montana Clean Air Act(s). On June 3, 2010, EPA promulgated the GHG “Tailoring Rule” (Docket # EPA-HQ-OAR-2009-0517, 75 FR 31514) which modified 40 CFR Parts 51, 52, 70, and 71 to specify which facilities are subject to GHG permitting requirements and when such facilities become subject to regulation for GHG under the PSD and Title V programs.

Under the Tailoring Rule, any PSD action (either a new major stationary source or a major modification at a major stationary source) taken for a pollutant or pollutants other than GHG that would become final on or after January 2, 2011 would be subject to PSD permitting requirements for GHG if the GHG increases associated with that action were at or above 75,000 TPY of carbon dioxide equivalent (CO$_{2e}$) and greater than 0 TPY on a mass basis. Similarly, if such action were taken, any resulting requirements would be subject to inclusion in the Title V Operating Permit. Facilities which hold Title V permits due to criteria pollutant emissions over 100 TPY would need to incorporate any GHG applicable requirements into their operating permits for any Title V action that would have a final decision occurring on or after January 2, 2011.

Starting on July 1, 2011, PSD permitting requirements would be triggered for modifications that were determined to be major under PSD based on GHG emissions alone, even if no other pollutant triggered a major modification. In addition, sources that are not considered PSD major sources based on criteria pollutant emissions would become subject to PSD review if their facility-wide potential emissions equaled or exceeded 100,000 TPY of CO$_{2e}$ and 100 or 250 TPY of GHG on a mass basis depending on their listed status in ARM 17.8.801(22) and they undertook a permitting action with increases of 75,000 TPY or more of CO$_{2e}$ and greater than 0 TPY of GHG on a mass basis. With respect to Title V, sources not currently holding a Title V permit that have potential facility-wide emissions equal to or exceeding 100,000 TPY of CO$_{2e}$ and 100 TPY of GHG on a mass basis would be required to obtain a Title V Operating Permit.

The Supreme Court of the United States (SCOTUS), in its *Utility Air Regulatory Group v. EPA* decision on June 23, 2014, ruled that the Clean Air Act neither compels nor permits EPA to require a source to obtain a PSD or Title V permit on the sole basis of its potential emissions of GHG. SCOTUS also ruled that EPA lacked the authority to tailor the Clean Air Act’s unambiguous numerical thresholds of 100 or 250 TPY to accommodate a CO$_{2e}$ threshold of 100,000 TPY. SCOTUS upheld that EPA reasonably interpreted the Clean Air Act to require sources that would need PSD permits based on their emission of conventional pollutants to comply with BACT for GHG. As such, the Tailoring Rule has been rendered invalid and sources cannot become subject to PSD or Title V regulations based on GHG emissions alone. Sources that must undergo PSD permitting due to pollutant emissions other than GHG may still be required to comply with BACT for GHG emissions.