

Date of Posting: January 14, 2026

Beth Stimatz
NorthWestern Energy
Mainline #1 Compressor Station
11 E. Park Street
Butte, Montana 59701

RE: Final and Effective Montana Air Quality Permit #2428-16

Sent via email: beth.stimatz@northwestern.com

Dear Ms. Stimatz:

Montana Air Quality Permit (MAQP) #2428-16 for the above-named permittee is deemed final and effective as of January 14, 2026, by the Montana Department of Environmental Quality (DEQ). All conditions of the Decision remain the same. A copy of final MAQP #2428-16 is enclosed.

For DEQ,

Eric Merchant, Supervisor
Air Quality Permitting Services Section
Air Quality Bureau
Air, Energy, and Mining Division
(406) 444-3626
eric.merchant2@mt.gov

Conor Fox, AQ Engineering Scientist
Air Quality Permitting Services Section
Air Quality Bureau
Air, Energy, and Mining Division
(406) 444-4267
conor.fox@mt.gov

**Montana Department of Environmental Quality
Air, Energy & Mining Division
Air Quality Bureau**

Montana Air Quality Permit #2428-16

NorthWestern Energy
Mainline #1 Compressor Station
South ½ of Section 22, Township 33 North, Range 5 West
Glacier County, Montana
11 E. Park Street
Butte, Montana 59701

Final and Effective Date:
January 14, 2026

MONTANA AIR QUALITY PERMIT

Issued To: NorthWestern Energy	MAQP: #2428-16
Mainline #1 Compressor Station	Administrative Amendment (AA) Request
11 East Park St.	Received: 12/01/2025
Butte, MT 59701	DEQ's Decision on AA: 12/29/2025
	Permit Final: 01/14/2026

A Montana Air Quality Permit (MAQP), with conditions, is hereby granted to NorthWestern Energy (NWE), pursuant to Sections 75-2-204 and 211 of the Montana Code Annotated (MCA), as amended, and Administrative Rules of Montana (ARM) 17.8.740, *et seq.*, as amended, for the following:

SECTION I: Permitted Facilities

A. Plant Location

The NWE natural gas facility is located approximately 4.5 miles southeast of Cut Bank in the South ½ of Section 22, Township 33 North, Range 5 West in Glacier County, Montana. The compressor station is referred to as Mainline #1. A listing of the permitted equipment is contained in Section I.A. of the permit analysis.

B. Current Permit Action

Pursuant to ARM 17.8.745(2), on December 1, 2025, the Montana Department of Environmental Quality (DEQ) received a request for Administrative Amendment (AA) of MAQP #2428-15 from NWE. More specifically, NWE requested an update to Section II.B., "Testing Requirements," to reflect a revised source testing schedule after fulfilling all requirements of the Supplemental Environmental Project (SEP) issued as part of a DEQ compliance and enforcement action on September 13, 2012. The SEP was officially deemed complete and was closed on April 13, 2015. Further, the AA addresses inconsistencies between NWE's MAQP and Title V operating permits related to affected source testing schedules.

SECTION II: Conditions and Limitations

A. Emission Limitations

1. NWE shall properly operate and maintain the 2,370-hp compressor engine and associated control equipment. The engine shall be a four-stroke lean-burn engine equipped and operated with an air-to-fuel ratio (AFR) controller and a catalytic oxidation unit (ARM 17.8.752).
2. The pound per hour (lb/hr) emission limits of the 2,370-hp compressor engine shall be determined using the following equation and pollutant-specific grams per brake horsepower-hour (g/bhp-hr) emission factors (ARM 17.8.752):

Equation:

Emission Limit (lb/hr) = Emission Factor (g/bhp-hr) * maximum rated design capacity of engine (bhp) * 0.002205 lb/g

Emission Factors:

NO _x :	1.0 g/bhp-hr
CO:	0.5 g/bhp-hr
VOC:	0.5 g/bhp-hr

3. Emissions from each of the three 1,100-hp compressor engines shall not exceed the following (ARM 17.8.752):

NO _x :	4.85 lb/hr
CO:	7.28 lb/hr
VOC:	1.82 lb/hr

4. Emissions from each of the two 2,000-hp compressor engines shall not exceed the following (ARM 17.8.752):

NO _x :	6.61 lb/hr
CO:	7.05 lb/hr
VOC:	2.65 lb/hr

5. NWE shall not cause or authorize emissions to be discharged into the atmosphere from haul roads, access roads, parking lots, or the general plant property without taking reasonable precautions to control emissions of airborne particulate matter (ARM 17.8.308).
6. NWE shall treat all unpaved portions of the access roads, parking lots, and general plant area with water and/or chemical dust suppressant as necessary to maintain compliance with the reasonable precautions limitation in Section II.A.8 (ARM 17.8.749).
7. NWE shall not incinerate any material other than oil-soaked rags, oil absorbents, and filters in the Smart Ash Burner (ARM 17.8.749).
8. NWE shall comply with all applicable standards and limitations, monitoring, reporting, recordkeeping, and notification requirements contained in 40 CFR 60, Subpart JJJJ (ARM 17.8.340 and 40 CFR 60, Subpart JJJJ).

B. Testing Requirements

1. The 2,370-hp compressor engine shall be tested for NO_x and CO, concurrently, within 180 days of the initial start-up date of the compressor engine (ARM 17.8.105 and ARM 17.8.749).

2. The 2,370-hp compressor engine shall be tested for NO_x and CO, concurrently, on an annual basis, or according to another testing/monitoring schedule as may be approved in writing by DEQ (ARM 17.8.105 and ARM 17.8.749).
3. The three 1,100-hp compressor engines shall be tested for NO_x and CO, concurrently, on an annual basis, or according to another testing/monitoring schedule as may be approved in writing by DEQ (ARM 17.8.105 and ARM 17.8.749).
4. The two 2,000-hp compressor engines shall be tested for NO_x and CO, concurrently, on an annual basis, or according to another testing/monitoring schedule as may be approved in writing by DEQ (ARM 17.8.105 and ARM 17.8.749).
5. All compliance source tests shall conform to the requirements of the Montana Source Test Protocol and Procedures Manual (ARM 17.8.106).
6. DEQ may require further testing (ARM 17.8.105).

C. Operational Reporting Requirements

1. NWE shall supply DEQ with annual production information for all emission points, as required by DEQ in the annual emission inventory request. The request will include, but is not limited to, all sources of emissions identified in the emission inventory contained in the permit analysis.

Production information shall be gathered on a calendar-year basis and submitted to DEQ by the date required in the emission inventory request. Information shall be in the units required by DEQ. This information may be used to calculate operating fees, based on actual emissions from the facility, and/or to verify compliance with permit limitations (ARM 17.8.505).
2. NWE shall document, by month, the hours of operation of the auxiliary generator engine. By the 25th day of each month, NWE shall total the hours of operation of the auxiliary generator during the previous month. The monthly information will be used to verify compliance with the rolling 12-month limitation in Section II.A. The information for each of the previous months shall be submitted along with the annual emissions inventory (ARM 17.8.749).
3. NWE shall notify DEQ of any construction or improvement project conducted, pursuant to ARM 17.8.745, that would include ***the addition of a new emissions unit***, change in control equipment, stack height, stack diameter, stack flow, stack gas temperature, source location, or fuel specifications, or would result in an increase in source capacity above its permitted operation. The notice must be submitted to DEQ, in writing, 10 days prior to startup or use of the proposed de minimis change, or as soon as reasonably practicable in the event of an unanticipated circumstance causing

the de minimis change and must include the information requested in ARM 17.8.745(l)(d) (ARM 17.8.745).

4. All records compiled in accordance with this permit must be maintained by NWE as a permanent business record for at least 5 years following the date of the measurement, must be available at the plant site for inspection by DEQ, and must be submitted to DEQ upon request (ARM 17.8.749).

SECTION III: General Conditions

- A. Inspection – NWE shall allow DEQ's representatives access to the source at all reasonable times for the purpose of making inspections or surveys, collecting samples, obtaining data, auditing any monitoring equipment (continuous emissions monitoring system (CEMS), continuous emissions rate monitoring system (CERMS)) or observing any monitoring or testing, and otherwise conducting all necessary functions related to this permit.
- B. Waiver – The permit and the terms, conditions, and matters stated herein shall be deemed accepted if NWE fails to appeal as indicated below.
- C. Compliance with Statutes and Regulations – Nothing in this permit shall be construed as relieving NWE of the responsibility for complying with any applicable federal or Montana statute, rule, or standard, except as specifically provided in ARM 17.8.740, *et seq.* (ARM 17.8.756).
- D. Enforcement – Violations of limitations, conditions and requirements contained herein may constitute grounds for permit revocation, penalties, or other enforcement action as specified in Section 75-2-401, *et seq.*, MCA.
- E. Appeals – Any person or persons jointly or severally adversely affected by DEQ's decision may request, within 15 days after DEQ renders its decision, upon affidavit setting forth the grounds therefor, a hearing before the Board of Environmental Review (Board). A hearing shall be held under the provisions of the Montana Administrative Procedures Act. The filing of a request for a hearing does not stay DEQ's decision, unless the Board issues a stay upon receipt of a petition and a finding that a stay is appropriate under Section 75-2-211(11)(b), MCA. The issuance of a stay on a permit by the Board postpones the effective date of DEQ's decision until conclusion of the hearing and issuance of a final decision by the Board. If a stay is not issued by the Board, DEQ's decision on the application is final 16 days after DEQ's decision is made.
- F. Permit Inspection – As required by ARM 17.8.755, Inspection of Permit, a copy of the air quality permit shall be made available for inspection by DEQ at the location of the source.
- G. Permit Fee – Pursuant to Section 75-2-220, MCA, failure to pay the annual operation fee by NWE may be grounds for revocation of this permit, as required by that section and rules adopted thereunder by the Board.

- H. Duration of Permit – Construction or installation must begin, or contractual obligations entered into that would constitute substantial loss within 3 years of permit issuance and proceed with due diligence until the project is complete or the permit shall expire (ARM 17.8.762).

Montana Air Quality Permit (MAQP) Analysis
NorthWestern Energy
MAQP #2428-16

I. Introduction/Process Description

NorthWestern Energy (NWE) operates a compressor station and associated equipment, located in the South 1/2 of Section 22, Township 33 North, Range 5 West in Glacier County near Cut Bank, Montana, known as Mainline #1.

A. Permitted Equipment

This facility consists of the following equipment:

1. One 2,370-horsepower (hp) 4-stroke lean-burn compressor engine (currently a 2010 Caterpillar 3608 LE) equipped with an air-to-fuel ratio (AFR) controller and oxidation catalyst.
2. Three 1,100-hp 4-stroke lean-burn compressor engines (currently Cooper-Superior compressor engines, model 8GTLB (installed 1989)).
3. Two 2,000-hp 4-stroke lean-burn compressor engines (currently Cooper-Superior compressor engines, model 12SGTB (installed 1998)).
4. One Smart Ash Burner, model number 100.
5. Building and process heaters (insignificant units) including:
 - a. Compressor heater #1
 - b. Fuel gas heater
 - c. Dehydrator reboiler
 - d. Superior compressor building heater
6. Other insignificant units/emissions including:
 - a. Process valves
 - b. Gas Blowdown
 - c. Fugitive emissions from in-plant vehicle traffic

B. Source Description

NWE provides pressure to the natural gas transmission system, which distributes to markets in western Montana. The primary equipment at the facility consists of one 2,370-hp compressor engine, expected to be installed in 2010, three 1,100-hp Cooper-Superior compressor engines installed in 1989, two 2,000-hp Cooper-Superior compressor engines installed in 1998, a compressor building heater #1, and a fuel gas heater.

C. Permit History

On March 23, 1988, **MAQP #2428** was approved for Montana Power - Mainline #1 to operate six natural gas compressor engines at the Cut Bank liquid plant. On December 21, 1990, MAQP #2428 was altered for the facility to undergo a Prevention of Significant Deterioration (PSD) review. **MAQP #2428A** replaced MAQP #2428.

On July 18, 1991, Montana Power - Mainline #1 received an alteration to MAQP #2428A. The alteration allowed Montana Power - Mainline #1 to add three 1100-hp compressor engines to the facility. Offsets for control of existing emissions were calculated as part of the permit alteration. **MAQP #2428B** replaced MAQP #2428A.

In November 1991, Montana Power - Mainline #1 applied for a permit modification to delete the three 1100-hp compressor engines previously proposed and extend the time frame for installing the catalytic converters on the 660-hp Ingersoll-Rand compressor engines. **MAQP #2428-03** replaced MAQP #2428B.

On February 22, 1998, Montana Power - Mainline #1 received a modification to MAQP #2428-03. Montana Power - Mainline #1 requested that the total hours of operation of the three 660-hp Ingersoll-Rand compressor engines be limited to 24,495 hours per year and that emissions from minor combustion sources be added to the emission inventory. Montana Power also requested that the auxiliary electrical generator powered by a diesel-fired engine be limited to 720 hours of operation per year. The limitations on the compressor engines and the auxiliary generator ensured that the facility's Potential to Emit (PTE) would remain below 250 tons per year of any pollutant so that Montana Power - Mainline #1 would not be defined as a major source under the New Source Review (NSR) program. **MAQP #2428-04** replaced MAQP #2428-03.

On April 3, 1998, Montana Power - Mainline #1 received an alteration to MAQP #2428-04 to remove two existing 1100-hp Cooper-Superior compressor engines and replace them with two 2000-hp Cooper-Superior engines. Montana Power - Mainline #1 also requested that the Smart Ash Burner, used to incinerate oily rags, be included in the permit alteration. The Montana Power - Mainline #1 facility was not a major source because it was not listed and did not have the potential to emit more than 250 tons per year (excluding fugitive emissions) of any air pollutant. The permit alteration revised the emission limitation units from gram per brake horsepower-hour (g/Bhp-hr) to pound per hour (lb/hr). The hourly emission limitation allowed for operational flexibility. **MAQP #2428-05** replaced MAQP #2428-04.

On February 15, 2001, Montana Power - Mainline #1 received a modification for MAQP #2428-05 to remove testing requirements for the following equipment:

- Unit #022-1 – 660-hp Ingersoll-Rand compressor engine
- Unit #022-2 – 660-hp Ingersoll-Rand compressor engine
- Unit #022-3 – 660-hp Ingersoll-Rand compressor engine
- Unit #022-4 - 1,100-hp Cooper Superior compressor engine
- Unit #022-5 - 2,000-hp Cooper Superior compressor engine

- Unit #022-6 - 1,100-hp Cooper Superior compressor engine
- Unit #022-7 - 1,100-hp Cooper Superior compressor engine
- Unit #022-8 - 2,000-hp Cooper Superior compressor engine
- Unit #022-9 - 1,100-hp Cooper Superior compressor engine

Because Montana Power-Mainline #1 had a final Title V Permit (#OP2428-00) that required a minimum of semi-annual emission testing for the above-described compressor engines, testing requirements of every 4 years were removed from MAQP #2428-05. Emission limitations for the compressor engines as provided in Section II.A of the permit remained applicable. **MAQP #2428-06** replaced MAQP #2428-05.

On August 10, 2001, the Department of Environmental Quality (DEQ) received a request from Montana Power - Mainline #1 to alter MAQP #2428-06 for the addition of a 2,370-hp Caterpillar Compressor Engine. On October 24, 2001, the application was deemed complete upon submittal of additional information by Montana Power - Mainline #1. The permit action added the new compressor engine to the permit. The permit action did not trigger the NSR program because the potential emissions from the action were less than the NSR threshold level of 250 tons per year. **MAQP #2428-07** replaces MAQP #2428-06.

Through the Montana Environmental Policy Act (MEPA) process, the applicant proposed mitigation measures, specifically relating to mitigating impacts from a pipeline proposed as a part of the Silver Bow Generation facility (originally permitted under MAQP #3165-00). DEQ incorporated a portion of those mitigation measures in this permitting action. The conditions pertaining to the mitigation measures were included in Section II.E of the permit and were intended to remain in the permit for the lifetime of the facility.

On November 23, 2001, Montana Power Company (MPC) notified DEQ of a pending merger of MPC with and into Montana Power, L.C.C. (MPC LCC). Due to questions regarding the length of time the new company name would be valid, DEQ decided to wait on the name change for the permit. On October 18, 2002, DEQ received a request to change the permit from MPC LLC to NorthWestern Corporation. The permit action changed the name on the permit from Montana Power Company - Mainline #1 to Northwestern Corporation - Mainline #1. **MAQP #2428-08** replaced MAQP #2428-07.

On April 11, 2005, DEQ received an e-mail from NorthWestern Corporation. NorthWestern Corporation notified DEQ that the 2,370-hp Caterpillar compressor engine would not be installed at the NorthWestern Corporation - Mainline #1 compressor station. The permit action removed the 2,370-hp Caterpillar compressor engine and updated the permit to reflect current permit language and rule references used by DEQ on MAQP #2428-08. **MAQP #2428-09** replaced MAQP #2428-08.

On February 7, 2008, DEQ received a request from NorthWestern Energy to change the name on MAQP #2783-07 from NorthWestern Corporation – Mainline #1 to NWE – Mainline #1. The permit action incorporated the requested name change as well as updated the permit format and language to reflect DEQ's current permit format and language. **MAQP #2428-10** replaced MAQP #2428-09.

On January 15, 2010, DEQ received a letter from NWE, in conjunction with Bison Engineering Inc., requesting that the applicant-accepted permit conditions for the Silver Bow Generation Project and associated pipeline construction activities, located in Section II Limitations and Conditions, D.1 through D.15 of MAQP #2428-10, be removed. Through the MEPA process, the applicant proposed mitigation measures, and conditions were accepted on March 12, 2002. DEQ incorporated a portion of those mitigation measures in the MAQP for Mainline #1.

In reviewing NWE's request to remove these conditions, the following information was evaluated by DEQ:

- The MAQP for the Continental Energy Services, Inc. - Silver Bow Generation Plant, MAQP #3165 (last issued as MAQP #3165-02), was revoked on December 18, 2007. Continental Energy Services, Inc., or any other entity, would be required to obtain a MAQP to construct a similar facility.
- The Natural Gas Pipeline to support the generation project was never installed. In addition, depending on the size of the pipeline, a similar pipeline may be subject to the permitting requirements under the Major Facility Siting Act (the Administrative Rules of Montana (ARM) Title 17, Chapter 20).
- On April 11, 2005, DEQ received notice from NWE that the 2,370-hp compressor engine permitted in MAQP #2428-07, required for the additional compression needed for the Silver Bow Generation Project, was not going to be installed. Upon NWE's request, DEQ removed that compressor engine from the permit in MAQP #2428-09. NWE, or any other entity, would be required to obtain a MAQP to install a similar compressor engine.
- If NWE or any other entity were to re-propose construction or installation of any of the above-described facilities or equipment in the future, applicable MEPA requirements would be required to be met at that time.

In consideration of the information above, DEQ granted NWE's request to remove these requirements. The action removed these conditions as an administrative amendment pursuant to ARM 17.8.764(1)(b) – “changes in operation that do not result in an increase in emissions.” **MAQP #2428-11** replaced MAQP #2428-10.

On February 9, 2010, the Department of Environmental Quality – Air Resources Management Bureau (DEQ) received an MAQP Application from Bison Engineering, Inc. on behalf of NWE. DEQ received an affidavit of public notice on February 10, 2010, completing the application. The application requested the following modifications:

- Removal of one 1,100-hp Cooper Superior Compressor Engine (previously emitting unit #6)

- Addition of a newly manufactured 2,370-hp natural gas fired lean burn compressor engine with emission controls
- Removal of hourly operation limits for emitting units #1-3 (660-hp compressor engines)

The permit action incorporated these changes into the permit. This action also corrected the auxiliary generator capacity to reflect that of the engine driving the generator rather than the generator itself, updated the emissions from glycol dehydration to reflect the ethylene glycol unit in operation instead of the tri-ethylene glycol dehydration unit originally assumed, updated emissions factors where appropriate, and updated the emissions inventory to reflect all corresponding changes. Revision of the applicability of federal regulations was also completed to include 40 CFR 63, Subpart ZZZZ – National Emission Standards for Stationary Reciprocating Internal Combustion Engines, as applicable in the permit analysis.

This project increased compressor capacity to compensate for projected system growth, and removed requirements associated with the 660-hp engines previously included to keep allowable emissions below the Prevention of Significant Deterioration (PSD) thresholds, which are no longer necessary based on the current facility configuration and associated emissions. **MAQP#2428-12** replaced MAQP#2428-11.

DEQ received a correspondence email requesting to swap to emission unit labels in the Emission Inventory of the Permit Analysis. EU06 is an 1100 horsepower (hp) Cooper Superior engine and EU07 is the 2370 hp Caterpillar engine. The permit action corrected the labeling of two emitting units, EU006 and EU007 in the emission inventory list. **MAQP #2428-13** replaced MAQP #2428-12.

On October 31, 2018, DEQ received an Administrative Amendment request from NWE to remove emitting units and update the permit conditions. Emitting units removed include;

- three (3) 660-hp Ingersoll-Rand Compressor Engines
- two (2) Natural Gas Storage Tanks and Vents
- one (1) 600 hp Auxiliary Generator Engine
- one (1) Emergency Shutdown Flare

The permitting action also removes the Propane Truck Venting, two (2) Non-vented Propane Tanks, two (2) Non-vented Butane Tanks, and a Non-vented Y-Grade Tank. **MAQP #2428-14** replaced **MAQP #2428-13**

On September 20, 2022, DEQ received an Administrative Amendment request from NWE to request the “Source Description” and associated conditions, limitations, rules, and regulations be updated to remove “Natural Gas Liquids Production” from this permit since the onshore natural gas processing equipment has been removed from the permit and facility. **MAQP #2428-15** replaced **MAQP #2428-14**

D. Current Permit Action

Pursuant to ARM 17.8.745(2), on December 1, 2025, the Montana Department of Environmental Quality (DEQ) received a request for Administrative Amendment (AA) of MAQP #2428-15 from NWE. More specifically, NWE requested an update to Section II.B., “Testing Requirements,” to reflect a revised source testing schedule after fulfilling all requirements of the Supplemental Environmental Project (SEP) issued as part of a DEQ compliance and enforcement action on September 13, 2012. The SEP was officially deemed complete and was closed on April 13, 2015. Further, the AA addresses inconsistencies between NWE’s MAQP and Title V operating permits related to affected source testing schedules. **MAQP #2428-16** replaces **MAQP #2428-15**

E. Additional Information

Additional information, such as applicable rules and regulations, Best Available Control Technology (BACT)/Reasonably Available Control Technology (RACT) determinations, air quality impacts, and environmental assessments, is included in the analysis associated with each change to the permit.

II. Applicable Rules and Regulations

The following are partial explanations of some applicable rules and regulations that apply to the facility. The complete rules are stated in the ARM and are available, upon request, from DEQ. Upon request, DEQ will provide references for location of complete copies of all applicable rules and regulations or copies where appropriate.

A. ARM 17.8, Subchapter 1 – General Provisions, including but not limited to:

1. ARM 17.8.101 Definitions. This rule includes a list of applicable definitions used in this chapter, unless indicated otherwise in a specific subchapter.
2. ARM 17.8.105 Testing Requirements. Any person or persons responsible for the emission of any air contaminant into the outdoor atmosphere shall, upon written request of DEQ, provide the facilities and necessary equipment (including instruments and sensing devices) and shall conduct tests, emission or ambient, for such periods of time as may be necessary using methods approved by DEQ.
3. ARM 17.8.106 Source Testing Protocol. The requirements of this rule apply to any emission source testing conducted by DEQ, any source or other entity as required by any rule in this chapter, or any permit or order issued pursuant to this chapter, or the provisions of the Clean Air Act of Montana, 75-2-101, *et seq.*, Montana Code Annotated (MCA).

NWE shall comply with the requirements contained in the Montana Source Test Protocol and Procedures Manual, including, but not limited to, using the proper test methods and supplying the required reports. A copy of the Montana Source Test Protocol and Procedures Manual is available from DEQ upon request.

4. ARM 17.8.110 Malfunctions. (2) DEQ must be notified promptly by telephone whenever a malfunction occurs that can be expected to create emissions in excess of any applicable emission limitation or to continue for a period greater than 4 hours.
5. ARM 17.8.111 Circumvention. (1) No person shall cause or permit the installation or use of any device or any means that, without resulting in reduction of the total amount of air contaminant emitted, conceals or dilutes an emission of air contaminant that would otherwise violate an air pollution control regulation. (2) No equipment that may produce emissions shall be operated or maintained in such a manner as to create a public nuisance.

B. ARM 17.8, Subchapter 2 – Ambient Air Quality, including, but not limited to the following:

1. ARM 17.8.204 Ambient Air Monitoring
2. ARM 17.8.210 Ambient Air Quality Standards for Sulfur Dioxide
3. ARM 17.8.211 Ambient Air Quality Standards for Nitrogen Dioxide
4. ARM 17.8.212 Ambient Air Quality Standards for Carbon Monoxide
5. ARM 17.8.213 Ambient Air Quality Standard for Ozone
6. ARM 17.8.214 Ambient Air Quality Standard for Hydrogen Sulfide
7. ARM 17.8.220 Ambient Air Quality Standard for Settled Particulate Matter
8. ARM 17.8.221 Ambient Air Quality Standard for Visibility
9. ARM 17.8.222 Ambient Air Quality Standard for Lead
10. ARM 17.8.223 Ambient Air Quality Standard for PM₁₀

NWE must maintain compliance with the applicable ambient air quality standards.

C. ARM 17.8, Subchapter 3 – Emission Standards, including, but not limited to:

1. ARM 17.8.304 Visible Air Contaminants. (1) This rule requires that no person may cause or authorize emissions to be discharged into the outdoor atmosphere from any source installed on or before November 23, 1968, that exhibit an opacity of 40% or greater averaged over 6 consecutive minutes. (2) This rule requires that no person may cause or authorize emissions to be discharged into the outdoor atmosphere from any source installed after November 23, 1968, that exhibit an opacity of 20% or greater averaged over 6 consecutive minutes.
2. ARM 17.8.308 Particulate Matter, Airborne. (1) This rule requires an opacity limitation of less than 20% for all fugitive emission sources and that reasonable precautions be taken to control emissions of airborne particulate matter. (2) Under this rule, NWE shall not cause or authorize the use of any street, road, or parking lot without taking reasonable precautions to control emissions of airborne particulate matter.
3. ARM 17.8.309 Particulate Matter, Fuel Burning Equipment. This rule requires that no person shall cause, allow, or permit to be discharged into the atmosphere particulate matter caused by the combustion of fuel in excess of the amount determined by this rule.

4. ARM 17.8.310 Particulate Matter, Industrial Process. This rule requires that no person shall cause, allow, or permit to be discharged into the atmosphere particulate matter in excess of the amount set forth in this rule.
5. ARM 17.8.316 Incinerators. This rule requires that no person may cause or authorize emissions to be discharged into the outdoor atmosphere from any incinerator, particulate matter in excess of 0.10 grains per standard cubic foot of dry flue gas, adjusted to 12% carbon dioxide and calculated as if no auxiliary fuel had been used. Further, no person shall cause or authorize to be discharged into the outdoor atmosphere from any incinerator emissions that exhibit an opacity of 10% or greater averaged over 6 consecutive minutes.
6. ARM 17.8.340 Standard of Performance for New Stationary Sources and Emission Guidelines for Existing Sources. This rule incorporates, by reference, 40 CFR Part 60, Standards of Performance for New Stationary Sources (NSPS). NWE is considered an NSPS affected facility under 40 CFR Part 60 and is subject to the requirements of the following subparts.
 - a. 40 CFR 60, Subpart A – General Provisions apply to all equipment or facilities subject to an NSPS Subpart as listed below:
 - b. 40 CFR 60, Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines applies to owners and operators of stationary spark ignition internal combustion engines (SI ICE) that commence construction after June 12, 2006, where the stationary SI ICE are manufactured on or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 hp (except lean burn engines with a maximum engine power greater than or equal to 500 hp and less than 1,350 hp). Therefore, the newly proposed 2,370 hp lean-burn engine is subject to this subpart. The emissions limitations determined through the BACT process are more stringent than the emissions standards of this subpart. The other, existing engines located at this site are not subject to this subpart due to manufacture date.
7. ARM 17.8.342 Emission Standards for Hazardous Air Pollutants for Source Categories. The source, as defined and applied in 40 CFR Part 63, shall comply with the requirements of 40 CFR Part 63, as listed below:
 - a. 40 CFR 63, Subpart A – General Provisions apply to all equipment or facilities subject to an NESHAP Subpart as listed below:
 - b. 40 CFR 63, Subpart HH - National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities. For purposes of determination of applicability of this Subpart and Subpart HHH only, NWE's operations at Mainline #1 are split into two different facilities for purposes of determining if they are major with respect to the rule. The Mainline #1 site contains the processing facility (the gas plant), and the transmission facility (the compressor station). Neither the

Mainline #1 gas plant nor the Mainline #1 compressor station equipment is considered a major source of HAPs as calculated in this Subpart.

Pursuant to 40 CFR 63.760 (b)(2) for area sources, the affected source includes each triethylene glycol dehydration unit located at a facility. NWE currently has an ethylene glycol unit, not a triethylene glycol dehydration unit.

Should a triethylene glycol dehydration unit be used, 40 CFR 63.764 (e)(1)(ii) and 40 CFR 63.765(a) excludes all requirements for glycol dehydration units that emit less than 0.9 megagram (~1 ton) per year of benzene. Records of the determination applicable to this exemption would be required to be maintained in accordance with 40 CFR 63.774(d)(1). It would be probable that NWE would qualify for this exemption should triethylene glycol be used. However, at this time, the Mainline #1 facility does not contain an affected unit pursuant to the area source standards; therefore, Subpart HH does not apply.

- c. 40 CFR 63, Subpart HHH - National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities. Owners or operators of natural gas transmission or storage facilities, as defined and applied in 40 CFR Part 63, shall comply with the standards and provisions of 40 CFR 63, Subpart HHH. In order for a natural gas transmission and storage facility to be subject to 40 CFR 63, Subpart HHH requirements, the facility must be a major source of HAPs as determined using the maximum natural gas throughput as calculated in either paragraphs (a)(1) and (a)(2) or paragraphs (a)(2) and (a)(3) of 40 CFR 63, Subpart HHH. Based on the information submitted by Bison Engineering, Inc. on behalf of NWE, Mainline#1 is not subject to the provisions of 40 CFR 63, Subpart HHH because neither the gas plant nor the compressor station is a major source of HAPs.
- d. 40 CFR 63, Subpart ZZZZ – National Emissions Standards for Hazardous Air Pollutants from Stationary Reciprocating Internal Combustion Engines (RICE). A source is subject to this subpart if they own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand. Therefore, NWE's Mainline #1 RICE located at this facility are subject to these regulations. Bison Engineering, Inc., on behalf of NWE, identified Mainline #1 as a major source of HAPs as calculated for this subpart.

D. ARM 17.8, Subchapter 5 – Air Quality Permit Application, Operation, and Open Burning Fees, including, but not limited to:

- 1. ARM 17.8.504 Air Quality Permit Application Fees. This rule requires that an applicant submit an air quality application fee concurrent with the submittal of a Montana Air Quality Permit application. A Montana Air Quality Permit Application is incomplete until the proper application fee is paid to DEQ.

NWE was not required to submit a fee for the current permit action because it is considered an administrative action.

2. ARM 17.8.505 Air Quality Operation Fees. An annual air quality operation fee must, as a condition of continued operation, be submitted to DEQ by each source of air contaminants holding an air quality permit (excluding an open burning permit) issued by DEQ. The air quality operation fee is based on the actual or estimated actual amount of air pollutants emitted during the previous calendar year.

An air quality operation fee is separate and distinct from an air quality permit application fee. The annual assessment and collection of the air quality operation fee, described above, shall take place on a calendar-year basis. DEQ may insert into any final permit issued after the effective date of these rules, such conditions as may be necessary to require the payment of an air quality operation fee on a calendar-year basis, including provisions that prorate the required fee amount.

- E. ARM 17.8, Subchapter 7 – Permit, Construction, and Operation of Air Contaminant Sources, including, but not limited to:

1. ARM 17.8.740 Definitions. This rule is a list of applicable definitions used in this chapter, unless indicated otherwise in a specific subchapter.
2. ARM 17.8.743 Montana Air Quality Permits--When Required. This rule requires a person to obtain a Montana Air Quality Permit or permit modification to construct, modify, or use any air contaminant sources that have the potential to emit (PTE) greater than 25 tons per year of any pollutant. NWE has a PTE greater than 25 tons per year of oxides of nitrogen (NO_x), carbon monoxide (CO), and volatile organic compounds (VOC); therefore, a Montana Air Quality Permit is required.
3. ARM 17.8.744 Montana Air Quality Permits--General Exclusions. This rule identifies the activities that are not subject to the Montana Air Quality Permit program.
4. ARM 17.8.745 Montana Air Quality Permits--Exclusion for De Minimis Changes. This rule identifies the de minimis changes at permitted facilities that do not require a permit under the Montana Air Quality Permit Program.
5. ARM 17.8.748 New or Modified Emitting Units--Permit Application Requirements. (1) This rule requires that a permit application be submitted prior to installation, modification, or use of a source. A permit application was not required for the current permit action because the permit change is considered an administrative change. (7) This rule requires that the applicant notify the public by means of legal publication in a newspaper of general circulation in the area affected by the application for a permit. An affidavit of publication of public notice was not required for the current permit action because the permit change is considered an administrative permit change

6. ARM 17.8.749 Conditions for Issuance or Denial of Permit. This rule requires that the permits issued by DEQ must authorize the construction and operation of the facility or emitting unit subject to the conditions in the permit and the requirements of this subchapter. This rule also requires that the permit must contain any conditions necessary to assure compliance with the Federal Clean Air Act (FCAA), the Clean Air Act of Montana, and rules adopted under those acts.
7. ARM 17.8.752 Emission Control Requirements. This rule requires a source to install the maximum air pollution control capability that is technically practicable and economically feasible, except that BACT shall be utilized. The required BACT analysis is included in Section III of this permit analysis.
8. ARM 17.8.755 Inspection of Permit. This rule requires that air quality permits shall be made available for inspection by DEQ at the location of the source.
9. ARM 17.8.756 Compliance with Other Requirements. This rule states that nothing in the permit shall be construed as relieving NWE of the responsibility for complying with any applicable federal or Montana statute, rule, or standard, except as specifically provided in ARM 17.8.740, *et seq.*
10. ARM 17.8.759 Review of Permit Applications. This rule describes DEQ's responsibilities for processing permit applications and making permit decisions on those permit applications that do not require the preparation of an environmental impact statement.
11. ARM 17.8.762 Duration of Permit. A Montana Air Quality Permit shall be valid until revoked or modified, as provided in this subchapter, except that a permit issued prior to construction of a new or modified source may contain a condition providing that the permit will expire unless construction is commenced within the time specified in the permit, which in no event may be less than 1 year after the permit is issued.
12. ARM 17.8.763 Revocation of Permit. A Montana Air Quality Permit may be revoked upon written request of the permittee, or for violations of any requirement of the Clean Air Act of Montana, rules adopted under the Clean Air Act of Montana, the FCAA, rules adopted under the FCAA, or any applicable requirement contained in the Montana State Implementation Plan (SIP).
13. ARM 17.8.764 Administrative Amendment to Permit. A Montana Air Quality Permit may be amended for changes in any applicable rules and standards adopted by the Board of Environmental Review (Board) or changed conditions of operation at a source or stack that do not result in an increase of emissions as a result of those changed conditions. The owner or operator of a facility may not increase the facility's emissions beyond permit limits unless the increase meets the criteria in ARM 17.8.745 for a de minimis change not requiring a permit, or unless the owner or operator applies for and receives another permit in accordance with ARM 17.8.748, ARM 17.8.749, ARM 17.8.752, ARM 17.8.755, and ARM 17.8.756, and with all

applicable requirements in ARM Title 17, Chapter 8, Subchapters 8, 9, and 10.

14. ARM 17.8.765 Transfer of Permit. This rule states that a Montana Air Quality Permit may be transferred from one person to another if written notice of intent to transfer, including the names of the transferor and the transferee, is sent to DEQ.
15. ARM 17.8.770 Additional Requirements for Incinerators. This rule specifies the additional information that must be submitted to DEQ for incineration facilities subject to 75-2-215, Montana Code Annotated (MCA).

F. ARM 17.8, Subchapter 8 – Prevention of Significant Deterioration of Air Quality, including, but not limited to:

1. ARM 17.8.801 Definitions. This rule is a list of applicable definitions used in this subchapter.
2. ARM 17.8.818 Review of Major Stationary Sources and Major Modifications-Source Applicability and Exemptions. The requirements contained in ARM 17.8.819 through ARM 17.8.827 shall apply to any major stationary source and any major modification, with respect to each pollutant subject to regulation under the FCAA that it would emit, except as this subchapter would otherwise allow.

This facility is not a major stationary source because this facility is not a listed source and the facility's PTE is below 250 tons per year of any pollutant (excluding fugitive emissions).

G. ARM 17.8, Subchapter 12 – Operating Permit Program Applicability, including, but not limited to:

1. ARM 17.8.1201 Definitions. (23) Major Source under Section 7412 of the FCAA is defined as any source having:
 - a. PTE > 100 tons/year of any pollutant;
 - b. PTE > 10 tons/year of any one hazardous air pollutant (HAP), PTE > 25 tons/year of a combination of all HAPs, or lesser quantity as DEQ may establish by rule; or
 - c. PTE > 70 tons/year of particulate matter with an aerodynamic diameter of 10 microns or less (PM₁₀) in a serious PM₁₀ nonattainment area.
2. ARM 17.8.1204 Air Quality Operating Permit Program. (1) Title V of the FCAA amendments of 1990 requires that all sources, as defined in ARM 17.8.1204(1), obtain a Title V Operating Permit. In reviewing and issuing MAQP #2428-14 for NWE, the following conclusions were made:
 - a. The facility's PTE is greater than 100 tons/year for any pollutant.

- b. The facility's PTE is greater than 10 tons/year for any one HAP and less than 25 tons/year for all HAPs.
- c. This source is not located in a serious PM₁₀ nonattainment area.
- d. This facility is subject to current NSPS (40 CFR 60, Subpart JJJJ).
- e. This facility is subject to current NESHAP standards (40 CFR 63, Subpart ZZZZ).
- f. This source is not a Title IV affected source, or a solid waste combustion unit.
- g. This source is not an EPA designated Title V source.

Therefore, NWE is subject to the Title V operating permit program. DEQ issued the latest renewal of NWE's Title V Operating Permit #OP2428-15 on February 19, 2021.

III. BACT Determination

A BACT determination is required for each new or modified source. NWE shall install on the new or modified source the maximum air pollution control capability, which is technically practicable and economically feasible, except that BACT shall be utilized. The permit action is an administrative permit action; therefore, a BACT determination is not required.

IV. Emission Inventory

NorthWestern Energy							
Mainline #1							
Potential To Emit in tons/year							
Source	NO _x	CO	VOC	PM ₁₀	PM _{2.5}	SO _x	HAP
EU04: 1100-hp Compressor Engine (Cooper Superior)	21.24	31.89	7.97	0.35	0.35	0.02	2.47
EU05: 2000-hp Compressor Engine (Cooper Superior)	28.95	30.88	11.61	0.63	0.63	0.04	4.50
EU06: 1100-hp Compressor Engine (Cooper-Superior)	21.24	31.89	7.97	0.35	0.35	0.02	2.47
EU07: 2370-hp Compressor Engine (CAT 3608 LE)	22.89	11.44	11.44	0.72	0.72	0.04	2.35
EU08: 2000-hp Compressor Engine (Cooper Superior)	28.95	30.88	11.61	0.63	0.63	0.04	4.50
EU09: 1100-hp Compressor Engine (Cooper-Superior)	21.24	31.89	7.97	0.35	0.35	0.02	2.47
EU13: Smart Ash Burner	0.33	0.04	0.00	0.03	0.03	0.97	0.00
IEU02: All Building Heaters (less than 8 MMBtu Capacity)	3.50	2.94	0.19	0.27	0.27	0.02	0.07
IEU03: Fuel Gas Heater	0.07	0.06	0.00	0.00	0.00	0.00	0.00
IEU05: Process Valves	N/A	N/A	0.07	ND	ND	N/A	0.00
IEU06: Gas Blowdown	N/A	N/A	0.73	ND	ND	N/A	0.00
IEU07: Fugitive Emissions - In-Plant vehicle traffic	N/A	N/A	N/A	1.21	0.12	N/A	N/A
Total:	148.41	171.91	59.56	4.54	3.45	1.17	18.83

*Emissions Inventory and Calculation Notes:

Some emissions may show zero due to rounding. See calculations following table.

EU = emitting unit number
IEU = insignificant emitting unit number

PM₁₀ = particulate matter with an aerodynamic diameter of 10 microns or less

PM_{2.5} = particulate matter with an aerodynamic diameter of 2.5 microns or less

HAP = hazardous air pollutants	Btu = British thermal unit	N/A = not applicable
SO _X = oxides of sulfur	hr = hour	ND = no data available
SO ₂ = sulfur dioxide	lb = pound	scf = standard cubic feet
Bhp = brake horsepower	MM denotes 10 ⁶ , M denotes 10 ³	VMT = vehicle miles traveled

CALCULATIONS:

1100-hp 4-Stroke Lean-Burn Compressor Engines

Heat Input:	7.92	MMBtu/hr
Maximum Heat Capacity :	0.0072	MMBtu/Bhp-hr
Horsepower:	1100	bhp
Fuel Usage:	0.00792	MMscf/hr
Hours Of Operation:	8760	hours/yr

NO_x Emissions

Emissions Factor:	4.85	lb/hr	(MAQP Limit)	
Calculations:	4.85 lb/hr * 8760 hr/yr =		42486	lb/yr
	42486 lb/yr * 0.0005 ton/lb =		21.24	ton/yr

CO Emissions

Emissions Factor:	7.28	lb/hr	(MAQP Limit)	
Calculations:	7.28 lb/hr * 8760 hr/ yr =		63772.8	lb/yr
	63772.8 lb/yr * 0.0005 ton/lb =		31.89	ton/yr

VOC Emissions

Emissions Factor:	1.82	lb/hr	(MAQP Limit)	
Calculations:	1.82 lb/hr * 8760 hr/ yr =		15943.2	lb/yr
	15943.2 lb/yr * 0.0005 ton/lb =		7.97	ton/yr

PM₁₀ and PM_{2.5} Emissions

Emissions Factor:	0.009987	lb/MMBtu	(AP-42 Table 3.2-2, 07/2000)	
Calculations:	0.0099871lbs/MMBtu*0.0072MMBtu/Bhp-hr*1100bhp=		0.079098	lb/hr
	0.079097832lb/hr*8760hours/yr* 0.0005 ton/lb =		0.35	ton/yr

SO₂ Emissions

Emission Factor:	0.000588	lb/MMBtu	(AP-42 Table 3.2-2, 07/2000)	
Calculations:	0.000588lbs/MMBtu*0.0072MMBtu/Bhp-hr*1100bhp*8760hours/yr=		40.79497	lb/yr
	40.7949696lb/yr* 0.0005ton/lb =		0.02	ton/yr

HAP Emissions

Emissions Factor:	0.0713	lb/MMBtu	(AP-42 Table 3.2-2, 07/2000)	
Calculations:	0.0713lb/MMBtu*0.0072MMBtu/Bhp-hr*1100bhp*8760hours/yr=		4946.737	lb/yr
	4946.73696lb/yr* 0.0005ton/lb =		2.47	ton/yr

2000-hp 4-Stroke Lean-Burn Compressor Engines

Heat Input:	14.4	MMBtu/hr
Maximum Heat Capacity :	0.0072	MMBtu/Bhp-hr
Horsepower:	2000	bhp
Fuel Usage:	0.0144	MMscf/hr
Hours Of Operation:	8760	hours/yr

NO_x Emissions

Emissions Factor:	6.61	lb/hr	(MAQP Limit)
Calculations:	6.61 lb/hr * 8760 hr/yr =	57903.6	lb/yr
	57903.6 lb/yr * 0.0005 ton/lb =	28.95	ton/yr

CO Emissions

Emissions Factor:	7.05	lb/hr	(MAQP Limit)
Calculations:	7.05 lb/hr * 8760 hr/ yr =	61758	lb/yr
	61758 lb/yr * 0.0005 ton/lb =	30.88	ton/yr

VOC Emissions

Emissions Factor:	2.65	lb/hr	(MAQP Limit)
Calculations:	2.65 lb/hr * 8760 hr/ yr =	23214	lb/yr
	23214 lb/yr * 0.0005 ton/lb =	11.61	ton/yr

PM₁₀ and PM_{2.5} Emissions

Emissions Factor:	0.009987	lb/MMBtu	(AP-42 Table 3.2-2, 07/2000)
Calculations:	0.0099871lbs/MMBtu*0.0072MMBtu/Bhp-hr*2000bhp=	0.143814	lb/hr
	0.14381424lb/hr*8760hours/yr* 0.0005 ton/lb =	0.63	ton/yr

SO₂ Emissions

Emission Factor:	0.000588	lb/MMBtu	(AP-42 Table 3.2-2, 07/2000)
Calculations:	0.000588lbs/MMBtu*0.0072MMBtu/Bhp-hr*2000bhp*8760hours/yr=	74.17267	lb/yr
	74.172672lb/yr* 0.0005ton/lb =	0.04	ton/yr

HAP Emissions

Emissions Factor:	0.0713	lb/MMBtu	(AP-42 Table 3.2-2, 07/2000)
Calculations:	0.0713lb/MMBtu*0.0072MMBtu/Bhp-hr*2000bhp*8760hours/yr=	8994.067	lb/yr
	8994.0672lb/yr* 0.0005ton/lb =	4.50	ton/yr

2370-hp 4-Stroke Lean Burn Engine

Rated bhp: 2370 bhp
Hours of Operation: 8760 hr/yr
Heat Input 6914 Btu/bhp-hr

NO_x Emissions - controlled

Emissions Factor: 1 g/bhp-hr (BACT - AFR and NSCR MAQP 2428-12)
Calculations: 1 g/bhp-hr * 2370 bhp * 8760 hr/yr * 0.002205 lb/g. = 45778.45 lb/yr
22.89 ton/yr

CO and VOC Emissions

Emissions Factor: 0.5 g/bhp-hr (BACT - MAQP 2428-12)
Calculations: 0.5 g/bhp-hr * 2370 bhp * 8760 hr/yr * 0.002205 lb/g = 22889.22 lb/yr
11.44 ton/yr

HAP Emissions

Emissions Factor: 0.0327 lb/MMBtu AP-42 Table 3.2-2 (07/2000)&Manufacturer specs (formaldehyde)
Max Fuel Rate: 6914 Btu/bhp-hr (CAT G3306TA Info)
Calculations: 0.0327 lb/MMBtu * 10^-6 MMBtu/Btu * 6914 Btu/bhp-hr = 0.0002 lb/bhp-hr
0.0002260878 lb/bhp-hr * 2370 bhp * 8760hr/yr = 4693.85 lb/yr
2.35 ton/yr

PM₁₀ Emissions

Emissions Factor: 0.0099871 lb/MMBtu (AP-42 Table 3.2-2 (07/2000))
Max Fuel Rate: 6914 Btu/bhp-hr
Calculations: 0.0099871lb/MMBtu*6914Btu/bhp-hr*8760hr/yr*2370bhp= 1433.5777 lb/yr
1433.57766411528lb/yr* 0.0005 ton/lb = **0.72 ton/yr**

SO₂ Emissions

Emissions Factor: 0.000588 lb/MMBtu
Max Fuel Rate: 6914 Btu/bhp-hr
Calculations: 0.000588lb/MMBtu*6914Btu/bhp-hr*8760hr/yr*2370bhp= 84.4032 lb/yr
84.4032468384lb/yr* 0.0005 ton/lb = **0.04 ton/yr**

Smart Ash Burner - 100

Specific weight oil = 7.208 lb/gal
Oil incinerated = 12153 gal/yr
Process rate = 10 lb/yr
Percent sulfur in oil = 2 %
Manufacture process rate is 50 lb/hr of material

Assume: 20% of the material is oil

PM₁₀ and PM_{2.5} Emissions

Emission Factor: 1.20 lb/ton (Stack Test)
Calculations: 1.20 lb/ton * 10 lb/hr * 0.0005 tons/lb = 0.006 lb/hr
0.006 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 0.0263 ton/yr

NO_x Emissions

Emission Factor: 55.00 lb/1000 gal (AP-42, Table 1.3-1, 10/96)

Calculations: 55.00 lb/1000 gal * 12153 gal/yr * 1 yr/8760 hr = 0.0763 lb/hr

0.0763 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 0.3342 ton/yr

CO Emissions

Emission Factor: 1.64 lb/ton (Stack Test)

Calculations: 1.64 lb/ton * 10 lb/hr * 0.0005 tons/lb = 0.0082 lb/hr

0.0082 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 0.0359 ton/yr

VOC Emissions

Emission Factor: 0.10 lb/1000 gal (AP-42, Table 1.3-1, 10/96)

Calculations: 0.10 lb/1000 gal * 12153 gal/yr * 1 yr/8760 hr = 0.00014 lb/hr

0.00014 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 0.00061 ton/yr

SO_x Emissions

Emission Factor: 159.00 lb/1000 gal (AP-42, Table 1.3-1, 10/96)

Calculations: 159.00 lb/1000 gal * 12153 gal/yr * 1 yr/8760 hr = 0.22059 lb/hr

0.22059 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 0.96616 ton/yr

HAP Emissions

Emissions Factor:

Calculations:

<u>AP-42 Tables 1.3-9 and 1.3-11, 09/1998</u>	<u>Emissions Factor:</u>	
	<u>lb/Mgal</u>	<u>lb/yr</u>
Benzene	2.14E-04	0.002601
Ethylbenzene	6.36E-05	0.000773
Formaldehyde	3.30E-02	0.401049
Naphthalene	1.13E-03	0.013733
1,1,1-Trichloroethane	2.36E-04	0.002868
Toluene	6.20E-03	0.075349
o-Xylene	1.09E-04	0.001325
OCDD	3.10E-09	3.77E-08
Antimony	5.25E-03	0.063803
Arsenic	1.32E-03	0.016042
Beryllium	2.78E-05	0.000338
Cadmium	3.98E-04	0.004837
Chloride	3.47E-01	4.217091
Chromium	8.45E-04	0.010269
Chromium VI	2.48E-04	0.003014
Cobalt	6.02E-03	0.073161
Lead	1.51E-03	0.018351
Manganese	3.00E-03	0.036459
Mercury	1.13E-04	0.001373
Nickel	8.45E-02	1.026929
Phosphorous	9.46E-03	0.114967
Selenium	6.83E-04	0.0083
Total:	6.092632	lb/yr
	0.003046	ton/yr

All Building Heaters

Heat Input: 8 MMBtu/hr
Fuel Heating Value: 1000 MMBtu/MMscf
Hours of operation: 8760 hrs/yr

PM₁₀ and PM_{2.5}:

Emissions Factor:	7.6 lb/MMscf (AP-42 Table 1.4-2, 07/1998)	
Calculations:	7.6lb/MMscf*1000 ⁻¹ MMBtu/MMscf ⁻¹ *8MMBtu/hr=	0.0608 lb/hr
	0.0608lb/hr*8760hrs/yr*0.0005 lb/ton =	0.27 ton/yr

NO_x Emissions:

Emissions Factor:	100 lb/MMscf (AP-42 Table 1.4-1, 07/1998)	
Calculations:	100lb/MMscf*1000 ⁻¹ MMBtu/MMscf ⁻¹ *8MMBtu/hr=	0.8 lb/hr
	0.8lb/hr*8760hrs/yr*0.0005 lb/ton =	3.50 ton/yr

CO Emissions:

Emissions Factor:	84 lb/MMscf (AP-42 Table 1.4-1, 07/1998)	
Calculations:	84lb/MMscf*1000 ⁻¹ MMBtu/MMscf ⁻¹ *8MMBtu/hr=	0.672 lb/hr
	0.672lb/hr*8760hrs/yr*0.0005 lb/ton =	2.94 ton/yr

VOC Emissions:

Emissions Factor:	5.5 lb/MMscf (AP-42 Table 1.4-2, 07/1998)	
Calculations:	5.5lb/MMscf*1000 ⁻¹ MMBtu/MMscf ⁻¹ *8MMBtu/hr=	0.044 lb/hr
	0.044lb/hr*8760hrs/yr*0.0005 lb/ton =	0.19 ton/yr

SO₂ Emissions:

Emissions Factor:	0.6 lb/MMscf (AP-42 Table 1.4-2, 07/1998)	
Calculations:	0.6lb/MMscf*1000 ⁻¹ MMBtu/MMscf ⁻¹ *8MMBtu/hr=	0.0048 lb/hr
	0.0048lb/hr*8760hrs/yr*0.0005 lb/ton =	0.02 ton/yr

HAP Emissions:

Emissions Factor:	1.886 lb/MMscf (AP-42 Table 1.4-3 and 1.4-4, 07/1998)	
Calculations:	1.886lb/MMscf*1000 ⁻¹ MMBtu/MMscf ⁻¹ *8MMBtu/hr=	0.015088 lb/hr
	0.015088lb/hr*8760hrs/yr*0.0005 lb/ton =	0.07 ton/yr

Fuel Gas Heater

Heat Input: 0.15 MMBtu/hr
Fuel Heating Value: 1000 MMBtu/MMscf
Hours of operation: 8760 hrs/yr

PM₁₀ and PM_{2.5}:

Emissions Factor: 7.6 lb/MMscf (AP-42 Table 1.4-2, 07/1998)
Calculations: $7.6 \text{ lb/MMscf} * 1000^{\text{-1}} \text{ MMBtu/MMscf}^{\text{-1}} * 0.15 \text{ MMBtu/hr} = 0.00114 \text{ lb/hr}$
 $0.00114 \text{ lb/hr} * 8760 \text{ hrs/yr} * 0.0005 \text{ lb/ton} = \mathbf{0.005 \text{ ton/yr}}$

NO_x Emissions:

Emissions Factor: 100 lb/MMscf (AP-42 Table 1.4-1, 07/1998)
Calculations: $100 \text{ lb/MMscf} * 1000^{\text{-1}} \text{ MMBtu/MMscf}^{\text{-1}} * 0.15 \text{ MMBtu/hr} = 0.015 \text{ lb/hr}$
 $0.015 \text{ lb/hr} * 8760 \text{ hrs/yr} * 0.0005 \text{ lb/ton} = \mathbf{0.066 \text{ ton/yr}}$

CO Emissions:

Emissions Factor: 84 lb/MMscf (AP-42 Table 1.4-1, 07/1998)
Calculations: $84 \text{ lb/MMscf} * 1000^{\text{-1}} \text{ MMBtu/MMscf}^{\text{-1}} * 0.15 \text{ MMBtu/hr} = 0.0126 \text{ lb/hr}$
 $0.0126 \text{ lb/hr} * 8760 \text{ hrs/yr} * 0.0005 \text{ lb/ton} = \mathbf{0.055 \text{ ton/yr}}$

VOC Emissions:

Emissions Factor: 5.5 lb/MMscf (AP-42 Table 1.4-2, 07/1998)
Calculations: $5.5 \text{ lb/MMscf} * 1000^{\text{-1}} \text{ MMBtu/MMscf}^{\text{-1}} * 0.15 \text{ MMBtu/hr} = 0.000825 \text{ lb/hr}$
 $0.000825 \text{ lb/hr} * 8760 \text{ hrs/yr} * 0.0005 \text{ lb/ton} = \mathbf{0.004 \text{ ton/yr}}$

SO₂ Emissions:

Emissions Factor: 0.6 lb/MMscf (AP-42 Table 1.4-2, 07/1998)
Calculations: $0.6 \text{ lb/MMscf} * 1000^{\text{-1}} \text{ MMBtu/MMscf}^{\text{-1}} * 0.15 \text{ MMBtu/hr} = 0.00009 \text{ lb/hr}$
 $0.00009 \text{ lb/hr} * 8760 \text{ hrs/yr} * 0.0005 \text{ lb/ton} = \mathbf{0.0004 \text{ ton/yr}}$

HAP Emissions:

Emissions Factor: 1.886 lb/MMscf (AP-42 Table 1.4-3 and 1.4-4, 07/1998)
Calculations: $1.886 \text{ lb/MMscf} * 1000^{\text{-1}} \text{ MMBtu/MMscf}^{\text{-1}} * 0.15 \text{ MMBtu/hr} = 0.000283 \text{ lb/hr}$
 $0.000283 \text{ lb/hr} * 8760 \text{ hrs/yr} * 0.0005 \text{ lb/ton} = \mathbf{0.001 \text{ ton/yr}}$

Process Valves

Production Rate: 20 MMscf/day
Hours of Operations: 8760 hrs/yr
Quantity: 2

Calculations:

Emissions Factor: 0.01 lb VOC/MMscf (Prior Title V Application)
Calculations: $0.01 \text{ lb VOC/MMscf} * 20 \text{ MMscf/day} * 0.04166666666667 \text{ day/hr} = 0.008333 \text{ lb/hr}$
 $0.0083333333333333 \text{ lb/hr} * 2 * 8760 \text{ hrs/yr} * 0.0005 \text{ ton/lb} = \mathbf{0.073 \text{ ton/yr}}$

Gas Blow Down

Prod. Rate 200,000.0 cf/yr

VOC Emissions

Emission Factor: 0.0073 lb VOC/cf (From Title V Application)

Calculations: $0.0073 \text{ lb VOC/cf} * 200000.0 \text{ cf/yr} * 1 \text{ yr/365 days} * 1 \text{ day/24 hr} = 0.16 \text{ lb/hr}$

$0.16 \text{ lb/hr} * 365 \text{ days/year} * 0.0005 \text{ ton/lb} * 24 \text{ hr/day} = 0.73 \text{ ton/yr}$

HAP Emissions 0.000068498 ton/yr (Prior Title V Application)

Road Dust

AP-42 13.2.2 equation 1.a

$$E = k (s/12)^a (W/3)^b$$

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

Constant	Industrial Roads (Equation 1a)			Public Roads (Equation 1b)		
	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
a	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	-
c	-	-	-	0.2	0.2	0.3
d	-	-	-	0.5	0.5	0.3
Quality Rating	B	B	B	B	B	B

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons)

M = surface material moisture content (%)

PM₁₀ Calculations

k = 1.5

a = 0.9

b = 0.45

s = 14.1 (Application)

W = 40 (Application - Trucks)

VMT = 78 (Application - Trucks)

E = 5.563 lb/VMT

PM₁₀ = 433.9527 lb/yr = 0.217 ton/yr

W = 0.25 (Application - Cars)

VMT = 3510 (Application - Cars)

E = 0.566883 lb/VMT

PM₁₀ = 1989.761 lb/yr = 0.99488 ton/yr

TOTAL: 1.212 ton/yr

PM_{2.5} Calculations

k = 0.15

a = 0.9

b = 0.45

s = 14.1 (Application)

W = 40 (Application - Trucks)

VMT = 78 (Application - Trucks)

E = 0.556 lb/VMT

PM₁₀ = 43.39527 lb/yr = 0.022 ton/yr

W =	0.25	(Application - Cars)
VMT =	3510	(Application - Cars)
E=	0.056688	lb/VMT
PM ₁₀ =	198.9761	lb/yr = 0.099488 ton/yr
TOTAL:		0.121 ton/yr

V. Existing Air Quality

The existing air quality of the Cut Bank area is expected to be in compliance with all currently effective state and federal requirements. Current sources in the area include the existing gas plant and the inactive Flying J Refinery.

VI. Ambient Air Impact Analysis

Air quality modeling was conducted for the NWE facility in 1991 (MAQP #2428B). The modeling was done to determine compliance with PSD increments and ambient air quality standards. The modeling results demonstrated that there were no significant impacts to the NO_x and CO PSD increments. The modeling also demonstrated that neither the National Ambient Air Quality Standards (NAAQS), nor the Montana Ambient Air Quality Standards (MAAQS) would be violated.

Modeling was also conducted for MAQP #2428-05. The modeling was done to determine the ambient annual concentration of HAPs resulting from the Smart Ash Burner. Upper air and surface air data from the National Weather Service for Great Falls (1991) were used to assist in determining the impacts. The modeling results satisfied the conditions of MCA 75-2-215 and ARM 17.8.706(5) (the predecessor to ARM 17.8.770).

The following table provides for a history of selected permitting actions. As demonstrated below, the current permitting action provides for lower allowable plant wide emissions than permitted in past actions:

	Tons per year*	<u>NO_x</u>	<u>CO</u>	<u>VOC</u>
MAQP #2428B modification application – 1986 EI	385	96	77	
MAQP #2428B modification application – 1989 EI	513	288	125	
MAQP #2428B modification application – 1991 EI	340	281	116	
MAQP #2428-07	236	314	119	
MAQP #2428-12	196	233	84	

*EI = total emissions as presented in the “emissions statistics” table of the MAQP #2428B modification application.

Furthermore, the net emissions change associated with that permitting action was minor, with a small increase in NO_x emissions, and a decrease in CO and VOC emissions. The following table illustrates the net allowable emissions change associated with the MAQP #2428-12 action compared to that of MAQP #2428-11:

Tons per year

	<u>NO_x</u>	<u>CO</u>	<u>VOC</u>
MAQP #2428-11	190.29	245.25	96.03
MAQP #2428-12	195.57	232.62	83.78
Net Difference:	5.28	-12.63	-12.25

The facility-wide allowable emissions of MAQP #2428-12 are lower than previous permitting actions, and considerably lower than those emissions of MAQP #2428-11.

The current permit action is an administrative action with no change in emissions. Based on this information and the previous modeling analyses, DEQ believes this action will not cause or contribute to a violation of any ambient air quality standard.

VII. Taking or Damaging Implication Analysis

As required by 2-10-105, MCA, DEQ conducted the following private property taking and damaging assessment.

YES	NO	
X		1. Does the action pertain to land or water management or environmental regulation affecting private real property or water rights?
	X	2. Does the action result in either a permanent or indefinite physical occupation of private property?
	X	3. Does the action deny a fundamental attribute of ownership? (ex.: right to exclude others, disposal of property)
	X	4. Does the action deprive the owner of all economically viable uses of the property?
	X	5. Does the action require a property owner to dedicate a portion of property or to grant an easement? [If no, go to (6)].
		5a. Is there a reasonable, specific connection between the government requirement and legitimate state interests?
		5b. Is the government requirement roughly proportional to the impact of the proposed use of the property?
	X	6. Does the action have a severe impact on the value of the property? (consider economic impact, investment-backed expectations, character of government action)
	X	7. Does the action damage the property by causing some physical disturbance with respect to the property in excess of that sustained by the public generally?
	X	7a. Is the impact of government action direct, peculiar, and significant?
	X	7b. Has government action resulted in the property becoming practically inaccessible, waterlogged or flooded?
	X	7c. Has government action lowered property values by more than 30% and necessitated the physical taking of adjacent property or property across a public way from the property in question?
	X	Takings or damaging implications? (Taking or damaging implications exist if YES is checked in response to question 1 and also to any one or more of the following questions: 2, 3, 4, 6, 7a, 7b, 7c; or if NO is checked in response to questions 5a or 5b; the shaded areas)

Based on this analysis, DEQ determined there are no taking or damaging implications associated with this permit action.

VIII. Environmental Assessment

This permitting action will not result in an increase of emissions from the facility and is considered an administrative action; therefore, an Environmental Assessment is not required.

Analysis Prepared By: Conor M Fox
Date: December 29, 2025