Montana Department of Environmental Quality

AIR QUALITY 2024 ANNUAL MONITORING NETWORK PLAN

June 25, 2024

Montana Department of Environmental Quality Air Quality Bureau

> 1520 East 6th Ave Helena, MT 59601

Table of Contents

Introduction	3
Background	3
	2
Ambient Air and Criteria Pollutants	3
Measuring Criteria Pollutants	4
Designations of Higher-Populated Areas	4
Metrics for NAAQS compliance	4
I. 2023 Ambient Air Monitoring Network Summary	5
A On Monitoring	5
B CO Monitoring	ر ع م
$\Gamma_{\rm NO_2}$ Monitoring	۵ ۵
D $S\Omega_2$ Monitoring	
F Ph Monitoring	
F. PM ₁₀ Monitoring	
G. PM ₂₅ Monitoring	
H. NCore Monitoring	
I. General Monitoring Network Design Considerations	20
II. 2024 Proposed Changes to the Monitoring Network	21
	21
A. Overview	21
B. PM _{2.5} Changes	۲۲۲
C. NO_2 Changes	22 22
D. O3 Changes	22 22
E. FM25 Sensor Network Changes	25
III. Appendices	24
Appendix A Monitoring Site Locations	25
Appendix B Montana Core Based Statistical Areas (CBSAs)	
Appendix C Monitoring Network Parameter and Equipment Summary	
Appendix D Ambient Air Quality Network 2023 Raw Data Summary	36
Appendix E PM _{2.5} Speciation Analytes	
Appendix F National and Montana Ambient Air Quality Standards	41
Appendix G Annual SO ₂ Data Requirements Rule Report	43
Appendix H Public Inspection and Comments	45

Introduction

The Montana Department of Environmental Quality (DEQ), Air Quality Bureau produces an Air Quality Monitoring Network Plan (Plan) on an annual basis in accordance with the requirements of Title 40 of the Code of Federal Regulations Part 58.10 (40 CFR 58.10). The intent of this plan is to accurately describe the ambient air monitoring sites in DEQ's statewide network, identify each site's monitoring purpose, describe how the sites fulfill national Network Design Criteria requirements (40 CFR 58, Appendix D), and describe any deviations in physical characteristics or operation from regulatory requirements. Within that context, the Plan then summarizes the results of monitoring conducted during the previous calendar year. Finally, the Plan also describes the changes DEQ anticipates making to the network in the next year.

During Plan development, DEQ evaluates its existing ambient air monitoring network and assesses how to tailor the network based on modified data needs, changing regulatory requirements, and available resources. In addition, the development process provides an opportunity for DEQ to solicit, evaluate, and respond to comments and input from the public, county agencies, and other interested parties regarding the monitoring network.

This Plan consists of three broad sections:

- Section I describes the various pollutant-specific ambient air monitoring design requirements, explains how and why DEQ has implemented each, and summarizes the results of monitoring conducted in the previous calendar year.
- Section II describes changes to the monitoring network that DEQ is proposing to make in the following year.
- Section III is comprised of appendices which provide supplemental information and data in support of specific elements outlined within this Plan.

Background

Ambient Air and Criteria Pollutants

The term 'ambient air' is defined in 40 CFR 50.1 as "that portion of the atmosphere, external to buildings, to which the general public has access." The Federal Clean Air Act requires the United States Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards (NAAQS) for six common air pollutants in the ambient air known as "criteria air pollutants." Criteria air pollutants are the most common air pollutants with known harmful human health effects. The six criteria pollutants are Ozone (O₃), Carbon Monoxide (CO), Nitrogen Dioxide (NO₂), Sulfur Dioxide (SO₂), Lead (Pb), and Particulate Matter (PM). PM concentrations in ambient air are currently regulated and measured in two size fractions, those with an aerodynamic diameter of 10 microns and less (PM₁₀), and those with an aerodynamic diameter of 2.5 microns and less (PM_{2.5}). At one Montana monitoring station, DEQ measures concentrations of an additional PM fraction referred to as PM_{coarse} or PM_{10-2.5} which is the airborne portion of PM₁₀ larger in aerometric diameter than PM_{2.5}.

For each criteria air pollutant, NAAQS limits are established and implemented to protect public health and the environment. Two types of federally mandated air quality standards may exist. Primary standards set limits to protect *public health*, including the health of at-risk populations such as people with pre-existing heart or lung disease (e.g., asthma or COPD), children, and older adults. Secondary standards set limits to protect *public welfare*, including protection against visibility impairment and damage to animals, crops, vegetation, and buildings. Montana has, in the past, adopted similar air quality standards known as the Montana Ambient Air Quality Standards (MAAQS). These standards have generally, but not completely, been superseded by more stringent NAAQS. Unique, Montana-specific MAAQS for fluoride in forage, hydrogen sulfide, and settleable PM remain in place.

Measuring Criteria Pollutants

To determine if the NAAQS are being met, federal rules implemented by the EPA require each state to establish a network of monitors to measure concentrations of the criteria pollutants in ambient air. The types, locations and numbers of required monitors within each state are based primarily on population size and density and, to a lesser degree, on measured air quality concentrations in comparison to the NAAQS. However, air pollution impacts unique to an individual state or localities within a state can lead to the operation of monitors beyond those that are required by federal rule. This dynamic is true in the state of Montana, most particularly in regard to the impacts of PM_{2.5} as discussed in detail in Sections I.G. and II.B. and E. of this document. As a result, Montana DEQ's air monitoring network is established and operated in conformance with the federal requirements as a baseline, with other types, locations and numbers of monitors added to meet the specific needs of Montana. To that end, the DEQ air monitoring network design and operation is conducted in conformity with three essential overall objectives as detailed in 40 CFR 58 Appendix D Section 1.1:

- 1. Provide air pollution data to the general public in a timely manner.
- 2. Support compliance with ambient air quality standards (the NAAQS) and emissions strategy development.
- 3. Support air pollution research studies.

The content of this Plan reflects the pursuit of these three objectives.

Designations of Higher-Populated Areas

As noted above, the federal rules directing monitoring network design focus significantly on human population size and density. When assessing these factors, the rules use population-based designations established by the federal Office of Management and Budget (OMB) and the United States Census Bureau summarized together as "Core Based Statistical Areas" (CSBAs). By federal definition, a CBSA is a geographic space defined by at least one *urbanized area* with a surrounding population. A CBSA with at least one urbanized area of 50,000 or more people is termed a *Metropolitan* or *Metro* Statistical Area (MSA), and a CBSA with at least one urbanized cluster of 10,000 to 50,000 people is termed a *Micropolitan* or *Micro* Statistical Area. In previous years and until July 21, 2023, Montana had three federally designated MSAs: Billings, Great Falls, and Missoula; and four Micropolitan Statistical Areas: Kalispell, Helena, Butte-Silver Bow, and Bozeman. On July 21, 2023, the OMB revised many CBSA designations across the United States. Subsequently, and as described in Appendix B to this Plan, there are now five federally designated MSAs in Montana: Billings, Bozeman, Great Falls, Helena, and Missoula. In addition, there are two federally designated Micro Statistical Areas in the state: Kalispell, and Butte-Silver Bow. These population-summarizing designations are used throughout this Plan document.

Metrics for NAAQS Compliance

The means of assessing whether monitored ambient air pollution concentrations are within the federal NAAQS limits is reflected in a concept referred to as a "design value." A design value is a statistic that describes the air quality status of a criteria pollutant at a given location relative to the level and form of the NAAQS. For example, if a NAAQS limit is in the form of a *three-year* average, then monitored *hourly* values cannot be directly compared to that standard to determine if the ambient air quality complies with the NAAQS. To make such a comparison, hourly measurements must be mathematically transformed into the same units as the NAAQS. In the example above, the hourly measured values must be assembled into a three-year average (the design value) so that a direct comparison may be made with the corresponding NAAQS limits. Design values for each criteria pollutant are communicated in detail in 40 CFR Part 50 and are referred to throughout this Plan document.

I. 2023 Ambient Air Monitoring Network Summary

This section summarizes the ambient air monitoring requirements for each of the criteria air pollutants and explains DEQ's implementation of those requirements through calendar year 2023. Proposed changes to the monitoring network are detailed in Section II.

A. O3 Monitoring

Required O₃ Monitoring

The minimum number of ozone (O_3) monitors required in a network is defined by the federal Design Criteria found in Section 4.1 of Appendix D to 40 CFR Part 58. Table 1 summarizes those requirements.

	Number of Monitors per MSA				
Metropolitan Statistical Area (MSA) population ⁽²⁾⁽³⁾	Most recent 3-year design value concentrations ≥ 85 percent (%) of any O ₃ NAAQS ⁽⁴⁾	Most recent 3-year design value concentrations < 85% of any O ₃ NAAQS ^(4,5)			
>10 million	4	2			
4 – 10 million	3	1			
350,000 – <4 million	2	1			
50,000 - <350,000 ⁽⁶⁾	1	0			

Table 1 - Minimum O₃ Monitoring Requirements⁽¹⁾

⁽¹⁾ From Table D-2 of Appendix D to 40 CFR Part 58.

⁽²⁾ Minimum monitoring requirements apply to Metropolitan Statistical Areas (MSAs).

⁽³⁾ Population based on latest available census figures.

⁽⁴⁾ O₃ NAAQS levels and forms are defined in 40 CFR Part 50.

⁽⁵⁾ These minimum monitoring requirements apply in the absence of a design value.

⁽⁶⁾ An MSA must contain an urbanized area of 50,000 or more people.

As introduced in the *Background* Section above, and described in Appendix B to this Plan, Montana had three designated MSAs through most of 2023, and all three of those MSAs fall within the 50,000 to 350,000 population range listed in Table 1. In the Billings MSA, DEQ conducted O₃ monitoring from 2005 to 2007 (station number 30-111-0086). Because the resulting 8-hour O₃ design value was less than 85% of the primary and secondary NAAQS, the monitoring was discontinued. However, because Billings remains Montana's largest metropolitan area and continues to grow in population, DEQ reinitiated O₃ monitoring in the Billings area, as approved by EPA in the DEQ 2022 Network Plan Process. This monitor is discussed further in the Section below titled "Changes to O₃ Monitoring."

In the Missoula MSA, O_3 monitoring has been conducted continuously since June 1 of 2010 and continues in 2024.

In the Great Falls MSA, historical monitoring data, meteorological patterns including consistently windy conditions, and professional judgment indicate that O_3 monitoring in this MSA is not warranted given the low O_3 levels monitored in the two larger MSAs. In addition, the population of Great Falls has been surpassed by other communities in Montana. DEQ resources for O_3 monitoring in the state were focused elsewhere through 2023, as described in the following.

Additional O₃ Monitoring

Beyond the monitoring efforts related to the three MSAs, DEQ has endeavored to define and track background levels of O_3 across Montana and to assess air quality impacts from petroleum exploration within the eastern portion of the state. To assess these data needs O_3 monitoring was conducted through 2023 at the sites listed in Table 2.

Station Name	AQS Code
Broadus	30-075-0001
Lewistown	30-027-0006
Malta	30-071-0010
Miles City	30-017-0005
Missoula	30-063-0024
NCore	30-049-0004
Sidney	30-083-0002

Table 2 – Montana DEQ 2023 O3 Monitoring Sites

Appendix A of this Plan provides a map displaying the locations of these sites and a table listing their physical and GPS locations.

Table 3 summarizes the 8-hour rolling average O_3 values measured at the monitoring sites operated by DEQ during the federally designated 2023 ozone season (April through September for Montana). Table 4 summarizes the 8-hour O_3 values measured at monitoring sites operated by DEQ during the entire 2023 calendar year.

	Co	Concentrations (ppm)			Values (ppm) ⁽²⁾	NAAOG
Station	Minimum	Maximum	Average	2023 ⁽³⁾	2021 – 2023	NAAQS
Broadus	0.009	0.061	0.038	0.060	0.062	
Lewistown	0.010	0.062	0.038	0.059	0.063	
Malta	0.008	0.059	0.035	0.059	0.058	
Miles City (4)	0.003	0.068	0.034	0.059	0.058 (4)	0.070
Missoula	0.003	0.058	0.030	0.055	0.058	
NCore	0.007	0.067	0.038	0.061	0.061	
Sidney	0.008	0.069	0.036	0.065	0.063	

Table 3 – 8-Hour Rolling Monitored O₃ Values for the 2023 Ozone Season ⁽¹⁾

⁽¹⁾ Ozone Monitoring Season for Montana is April through September as established under 40 CFR Part 58, Table D-3. ⁽²⁾ Design Values calculated by the US EPA Air Quality System (AQS) database.

⁽³⁾ The 2023 design value is the 4th-high max value for the year.

⁽⁴⁾ The Miles City monitoring station began reporting data to AQS as of January 1, 2022. Therefore, a complete 3-year design value is not yet available.

	Concentrations (ppm)					
Station	Minimum	Maximum	Average			
Broadus	0.007	0.061	0.035			
Lewistown	0.010	0.062	0.037			
Malta	0.007	0.065	0.033			
Miles City	0.001	0.068	0.029			
Missoula	0.000	0.058	0.023			
NCore	0.007	0.067	0.036			
Sidney	0.005	0.069	0.034			

Table 4 – 8-Hour Rolling Monitored O₃ 2023 Annual Values

As demonstrated in Tables 3 and 4, relatively minor variability continues to be observed in the monitored ambient O₃ concentrations across the state. This is particularly interesting given the spatial breadth, the significant topographic variability, and the population diversity of the monitoring sites. The seven monitoring sites (in addition to the 2005–2007 Billings site) are established in very diverse locations including large-population communities, small towns, a rural oilfield, rural settings with minimal population and no industry, and a pristine background location adjacent to a federal wilderness area. This siting diversity indicates that monitored O₃ concentrations in the ambient air across Montana represent general background levels produced principally from natural sources, stratospheric intrusion, or transported in from sources outside the state, with little anthropogenic source input from within Montana. However, increasing numbers, duration, and severity of wildfires both inside and outside state boundaries appear to be increasing measured O₃ concentrations.

Changes to O₃ Monitoring

The network analysis documented in DEQ's 2023 Annual Monitoring Plan determined that the monitoring objectives of two of the sites listed in Tables 2 through 4 were complete. Therefore, DEQ proposed, and received EPA approval, to discontinue O_3 monitoring at the Broadus and Malta sites at the end of 2023. O_3 monitoring at both of these sites was completed at midnight on December 31, 2023.

DEQ's Annual Network Plan for 2022 proposed, and received EPA concurrence, to install an O_3 monitor in Billings through funds made available as part of the "American Rescue Plan Direct Award for Enhancing Continuous Monitoring of PM_{2.5} and Other NAAQS Air Pollutants" grant. The O_3 monitor, along with an NO₂ monitor, were installed at the existing Lockwood monitoring site (30-111-0087) during calendar year 2023 to begin reporting data to the EPA AQS database on January 1, 2024.

The overall population of Montana is increasing, with notable growth in communities outside the three designated MSAs. These population changes were reflected in the OMB/Census Bureau modifications to CBSA designations in Montana published on July 21, 2023, which resulted in the assignment of new MSAs surrounding Helena and Bozeman, and modification of the Missoula MSA. DEQ believes that corresponding modifications to its O₃ monitoring network are warranted, though not required. A discussion of proposed O₃ monitoring changes in 2024 is contained in Section II.D.

O3 Related PAMS Monitoring

The monitoring directives in 40 CFR Appendix D, Section 5 contain specific requirements for the operation of Photochemical Assessment Monitoring Stations (PAMS) for ozone precursor monitoring at NCore sites located in CBSAs with a population of one million or more people. In addition, the CFR requirements call for each state with O₃ nonattainment areas classified as moderate or above and states in the Ozone Transport Region to develop and implement an Enhanced Monitoring Plan (EMP) for O₃. Montana does not meet any of these criteria, therefore neither PAMS monitoring nor an EMP is required within the state, and no PAMS monitoring is conducted in the DEQ network.

B. CO Monitoring

Required CO Monitoring

As detailed in 40 CFR 58 Appendix D Section 4.2, the requirements for CO monitoring sites are closely related to the requirements for near-road NO_2 monitoring sites (see Section I.C. of this Plan). Table 5 summarizes the number of required CO monitoring sites.

	in co wontoning requirements
Criteria ⁽²⁾	Number of Near-Road CO Monitors Required
CBSA Population \geq 1,000,000	One, collocated with an NO ₂ monitor or in an alternative location approved by the EPA Regional Administrator.

Table 5 – Minimum CO Monitoring Requirem	ients ⁽¹⁾
--	----------------------

⁽¹⁾ From Appendix D to 40 CFR Part 58, Sec 4.2.1.

⁽²⁾ CBSA populations must be based on latest available census figures.

As documented in Appendix B to this Plan, no Montana CBSAs meet the criteria listed in Table 5, and no CO monitors are required in Montana on this basis.

Historically, DEQ and local county air programs have conducted CO monitoring in various larger communities in the state where motor vehicle emissions had caused ambient air concerns. However, because of improved urban traffic patterns and the gradual upgrade of Montana's vehicle fleet to newer, cleaner-burning engines, monitored CO concentrations in Montana's ambient air were reduced and remain extremely low. As a result, DEQ discontinued its traffic-related CO monitoring with EPA approval, and no community CO monitoring is currently being conducted.

DEQ continues to operate one trace-level CO monitor at the NCore station north of Helena to track background concentrations of this pollutant over time. Section I.H of this Plan describes NCore monitoring requirements and efforts. Table 6 summarizes the CO values measured at the NCore monitoring site during 2023.

	Cone	NAAOS					
Station	Min	NAAQS					
NCore 1-hour averages	0.018	1.011	0.131	35			
NCore 8-hour averages	0.021	0.697	0.131	9			

Table 6 – Monitored CO Values for 2023 at NCore

Changes to CO Monitoring

No modifications to DEQ's CO monitoring network are proposed for 2024.

C. NO2 Monitoring

Required NO₂ Monitoring

The minimum number of NO_2 monitoring sites required by 40 CFR 58 Appendix D Section 4.3 is summarized in Table 7.

Requirement Type	Criteria ⁽¹⁾	Minimum NO ₂ Monitors Required
	CBSA Population \geq 1 million	1, for hourly maximum concentrations
Near Road Monitors ⁽²⁾	CBSA Population \geq 2.5 million	1, plus the station above for a total of 2
	CBSA Population ≥ 1 million and with 1 or more roadway segments with annual average daily traffic counts (AADT) ≥250,000	2, as in the description above
Area-Wide Monitoring ⁽³⁾	CBSA Population ≥ 1 million	1, for expected highest area concentration
Protection of Susceptible and Vulnerable Populations ⁽⁴⁾	Any area inside or outside CBSAs, nation wide	As Required by EPA Regional Administrator per 40 CFR Part 58, Appendix D Section 4.3.4.

Table	7 –	Minimum	NO_2	Monitoring	Requirements
-------	-----	---------	--------	------------	--------------

⁽¹⁾ CBSA populations must be based on the latest available census figures.

⁽²⁾ 40 CFR Part 58, Appendix D Sec 4.3.2.

⁽³⁾ 40 CFR Part 58, Appendix D Sec 4.3.3.

⁽⁴⁾ 40 CFR Part 58, Appendix D Sec 4.3.4.

As discussed in Appendix B to this Plan, no Montana communities meet any of the population criteria listed in Table 7, and no additional NO₂ monitoring has been required of DEQ by the Regional EPA Administrator; therefore, no ambient NO₂ monitors are currently required in Montana.

Additional NO₂ Monitoring

In an effort to determine NO₂ background concentrations, potential air quality impacts associated with the oil and gas industry in the eastern part of the state, and impacts of nitrogen oxides on ambient ozone concentrations, DEQ conducted NO₂ monitoring through 2023 at the sites listed in Table 8.

Station Name	AQS Code		
Broadus	30-075-0001		
Lewistown	30-027-0006		
Malta	30-071-0010		
Miles City	30-017-0005		
Sidney	30-083-0002		

Table 8 – N	Montana	DEQ	2023	O 3	Monite	oring	Sites
-------------	---------	-----	------	------------	--------	-------	-------

Table 9 summarizes the 1-hour NO_2 values measured at monitoring sites operated by the DEQ during 2023.

	Concentrations (ppb)			NAAQS Design		
Site	Min	Max	Average	2023 ⁽²⁾	2021 – 2023	NAAQS
Broadus	0	18.0	1.02	14.0	11	
Lewistown	0	19.0	0.63	10.0	9	
Miles City	0	35.0	3.56	24.0	(3)	100
Malta	0	12.0	0.93	9.0	12	
Sidney	0	22.0	1.85	12.0	12	

Table 9 – 1-Hour Monitored NO₂ Values for 2023

⁽¹⁾ Design Values are calculated by the USEPA AQS database except for Broadus and Malta.

⁽²⁾ The 2023 design value is the 98th percentile value for the year.

⁽³⁾ The Miles City monitoring station began reporting data to AQS as of January 1, 2022. Therefore, a 3-year design value is not yet available.

NOy Monitoring

Related to NO₂ monitoring, Section 4.3.6 of 40 CFR 58 Appendix D requires monitoring of NO/NO_y at NCore and PAMS monitoring sites. Per that rule, NO/NO_y monitoring "will produce conservative estimates for NO₂ that can be used to ensure tracking continued compliance with the NO₂ NAAQS;" and for providing "data on total reactive nitrogen species for understanding O₃ photochemistry." As noted in the ozone monitoring discussion above (Section I.A), PAMS monitoring is not required nor currently conducted in the DEQ network. However, DEQ is required to operate an NCore monitoring site that includes measurement of NO/NO_y. Table 10 summarizes the 1-hour NO and NO_y values measured at the DEQ NCore station in calendar year 2023.

Table 10 – 1-Hour Monitored NO and NO_y Values at NCore for 2023, in ppb.

Pollutant	Min	Max	Average
NO	0	9.1	0.055
ΝΟγ	0	25.6	1.38

Changes to NO₂ Monitoring

The network analysis documented in DEQ's 2023 Annual Monitoring Plan determined that the monitoring objectives of two of the sites listed in Table 8 were complete. Therefore, DEQ proposed, and received EPA approval, to discontinue NO₂ monitoring at the Broadus and Malta sites at the end of 2023. NO₂ monitoring at both of these sites was completed at midnight on December 31, 2023.

DEQ's Annual Network Plan for 2022 proposed, and received EPA concurrence, to install an NO_2 monitor in Billings through funds made available as part of the "American Rescue Plan Direct Award for Enhancing Continuous Monitoring of $PM_{2.5}$ and Other NAAQS Air Pollutants" grant. The NO_2 monitor, along with an O_3 monitor, were installed at the existing Lockwood monitoring site (30-111-0087) during calendar year 2023 to begin reporting data to the EPA AQS database beginning on January 1, 2024.

The overall population of Montana is increasing, with notable growth in communities outside of the three existing MSAs. These population changes were reflected in the OMB/Census Bureau modifications to CBSA designations in Montana published on July 21, 2023, which resulted in the assignment of new MSAs surrounding Helena and Bozeman, and modification of the Missoula MSA. DEQ believes that corresponding modifications to its NO₂ monitoring network are warranted, but not required. A discussion of proposed NO₂ monitoring changes in 2024 is contained in Section II.C.

D. SO2 Monitoring

Required SO₂ Monitoring

The minimum number of SO_2 monitoring sites required by Section 4.4 of Appendix D to 40 CFR 58 is summarized in Table 11.

Requirement Type	Criteria	Minimum SO ₂ Monitors Required
Population Weighted Emissions Index (PWEI ⁽²⁾⁽³⁾)	≥1,000,000	3
	≥100,000 - <1,000,000	2
	≥5,000 - <100,000	1

⁽¹⁾ From Appendix D to 40 CFR Part 58, Sec. 4.4.2.

⁽²⁾ CBSA populations must be based on latest available census figures.

⁽³⁾ CBSA PWEI means Core Based Statistical Area Population Weighted Emissions Index in units of million person-tons per year.

The EPA criteria used to determine the number of required SO₂ monitors is similar to other pollutants in that it is based upon population and pollutant concentration. However, SO₂ requires additional statistical formulations for analyzing those impacts. Two metrics are used in this analysis: the population and the total emissions of SO₂ in a defined CBSA (a county or counties with at least one urbanized area of at least 10,000 people population). The product of those factors is a metric defined as the Population Weighted Emissions Index (PWEI). The PWEI is the population in the CBSA multiplied by the annual tons of SO₂ emitted in the CBSA (using the most recent aggregated emissions data available in the National Emissions Inventory (NEI)); divided by 1,000,000. The Billings CBSA has both the highest population and the highest total SO₂ emissions of the CBSAs in the state of Montana. It is therefore the only CBSA where SO₂ monitoring could potentially be required based on these metrics. Table 12 summarizes the current PWEI for the Billings CBSA using the latest published (2020) NEI values and most recent US Census Bureau population estimates.

TONIC IE D	inings eben in men earean	
Population ⁽¹⁾ (a)	Reported Emissions ⁽²⁾ (b)	PWEI ⁽³⁾ (c)
191,435	4,295	822.21

Table 12 – Billings CBSA PWEI Calculation

⁽¹⁾ US Census Bureau *Population Estimate* as of July 1, 2023.

⁽²⁾ Aggregate tons of SO₂ per 2020 National Emissions Inventory for Yellowstone, Stillwater and Carbon Counties (the Billings MSA).

⁽³⁾ PWEI (c) = (a) x (b) ÷ 1,000,000.

 SO_2 monitoring is required within a CBSA when the calculated PWEI value is equal to or greater than 5,000 as reflected in Table 9. Based on the prescribed criteria, neither Billings nor any of the other Montana CBSAs present an SO_2 PWEI that approaches or exceeds 5,000. Based on this criterion, no DEQ SO_2 monitoring is required in Montana.

Additional SO₂ Monitoring

Beyond the CFR-required monitoring, DEQ continues to operate one long-term SO₂ monitor at the Coburn Road site in Billings (30-111-0066) as part of an approved Maintenance Plan, to provide an ongoing assessment of SO₂ compliance in the Billings area (81 FR 28718, *Re-designation Request and Associated Maintenance Plan for Billings, MT 2010 SO₂ Nonattainment Area*). The Coburn Road site, located within the former Yellowstone County (partial) SO₂ Nonattainment Area, has been in continuous operation since 1981 as a State or Local Air Monitoring Station (SLAMS) site for NAAQS comparison purposes. Additionally, DEQ operated one SO₂ monitor at the Sidney site (30-083-0002) from May 1, 2017, through 2023 to assess impacts from oil and gas production in eastern Montana, and one required trace-level background SO₂ monitor at the NCore station (30-049-0004). Section I.H describes NCore monitoring requirements in more detail.

Table 13 summarizes the 1-hour values measured at the SO_2 monitoring sites operated by DEQ during calendar year 2023.

	Cond	centrations (p	opb)	NAAQS Desig	n Values (ppb) (1)	NAAOS
Site	Min	Max	Average	2023 ⁽²⁾	2021 - 2023	NAAQS
Billings - Coburn Road	0.0	56.3	1.5	19.1	22	
NCore - Sieben's Flat	0.0	1.6	0.7	1.5	1	75
Sidney	0.0	12.4	1.1	7.2	6	

Table 13 – 1-Hour Monitored SO ₂ Values for 202
--

⁽¹⁾ Design Values are calculated by the USEPA AQS database.

⁽²⁾ The 2023 design value is the 99th percentile value for the year.

Changes to SO₂ Monitoring

DEQ's network analysis in 2023 determined that the SO₂ monitoring objective of the Sidney site was complete. Therefore, DEQ proposed and received EPA approval to discontinue SO₂ monitoring at the Sidney site at the end of 2023. SO₂ monitoring at this site was completed at midnight on December 31, 2023.

No modifications to DEQ's SO₂ monitoring network are proposed for 2024.

E. Pb Monitoring

Required Pb Monitoring

The minimum number of Pb monitoring sites required by 40 CFR 58 Appendix D Section 4.5 is summarized in Table 14.

Criteria	Minimum Number of Pb Monitors Required
Non-Airport Source emitting ≥ 0.50 tons of Pb per year	1 each
Airport Source emitting \geq 1.0 tons of Pb per year	1 each

Table 14 – Minimum Pb Monitoring Requirements ⁽¹⁾

⁽¹⁾ From Appendix D to 40 CFR Part 58, Sec 4.5(a). Monitoring must be "near" the Pb source.

The requirements in Section 4.5(a) of Appendix D to 40 CFR Part 58 specify that Pb emissions assessments for monitoring determination be based on either "the most recent National Emission Inventory (NEI) or other scientifically justifiable methods and data (such as improved emissions factors or site-specific data) taking into account logistics and the potential for population exposure."

The most recent NEI (from 2020) indicates that one non-airport source in the state of Montana reported Pb emissions in excess of the 0.50 ton/year threshold, triggering the monitoring requirement. Montana Resources, LLP, operates an open pit copper and molybdenum mine and

associated processing facilities in Butte, Montana. Montana Resources reported estimated Pb emissions of 0.82 tons to the 2020 NEI.

As communicated in the 2023 Monitoring Network Plan, in July 2023 DEQ engaged Montana Resources in an attempt to clearly define the most appropriate path forward to address their reported Pb emissions and the related source-oriented monitoring requirement. The EPA Region 8 response to the DEQ 2023 Monitoring Network Plan received on October 6, 2023, appropriately summarizes this matter:

"Every year Montana Resources estimates their total annual lead emissions and reports this value to the Toxics Release Inventory (TRI). The TRI data are then ingested and reported in the NEI when the NEI is updated. Montana Resources has been using a contractor to estimate their Pb emissions with published emission factors, but the reported values in the TRI have been relatively inconsistent since 2016. Subsequent to submitting the 2023 AMNP, MTDEQ investigated the emission calculations to see if the reported values were reasonable and reproducible. This exercise revealed calculation errors that resulted in the overestimation of the Pb emissions. EPA Region 8 and MTDEQ confirmed this information with Montana Resources. Although Region 8 and MTDEQ have not obtained the revised emission calculations, it is our understanding the new values will be well below the 0.50 tpy threshold. As a result, Montana Resources will be correcting the TRI emissions back to 2017, and the NEI should eventually reflect these lower values upon the next update."

Subsequently, on October 9, 2023, Montana Resources submitted a 37-page technical review of its lead emissions to EPA and DEQ, covering the years from 2017 through 2022. The corrected Pb emissions results were summarized in a table, reproduced here as Table 15:

Poporting Voor	Combined Lead Emissions (Stack + Fugitive)			
Reporting Year	lb/yr	tons/yr		
2017	134.24	0.067		
2018	140.08	0.070		
2019	123.17	0.062		
2020	138.96	0.069		
2021	140.52	0.070		
2022	121.94	0.061		

Table 15 – Montana	Resources,	LLC,	Updated	Pb	Emission	Releases
		,				

DEQ reviewed and confirmed Montana Resources' analysis and their corrected annual Pb emission totals. In addition, the corrected emission values are well-aligned with the results of independent ambient Pb monitoring conducted by an independent contractor (as described in the DEQ 2023 Monitoring Network Plan). Because all the reported emissions are less than the 0.50 ton/year threshold, no Pb monitoring is required near this facility or any non-airport facility in Montana.

The most recent NEI (from 2020) also indicates that no airports in Montana reported emissions more than the 1.0 tons per year of Pb threshold; thus, no airport source requires Pb monitoring in the state of Montana.

Changes to Pb Monitoring

No establishment of Pb monitors in Montana is proposed by DEQ for 2024.

F. PM₁₀ Monitoring

Required PM₁₀ Monitoring

The approximate minimum number of permanent PM_{10} monitoring sites required by Section 4.6 of Appendix D to 40 CFR 58 is shown in Table 16.

	Number of Monitors per MSA ⁽³		(1)
Population category	High concentration (2)	Medium concentration ⁽³⁾	Low concentration ⁽⁴⁾⁽⁵⁾
>1,000,000	6–10	4–8	2–4
500,000-1,000,000	4–8	2–4	1–2
250,000–500,000	3–4	1–2	0–1
100,000–250,000	1–2	0–1	0

Table 16 - Minimum		Monitoring	Requirements	(1)
--------------------	--	------------	--------------	-----

⁽¹⁾ From Table D-4 of Appendix D to 40 CFR Part 58 -- Selection of urban areas and actual numbers of stations per MSA within the ranges shown in this table will be jointly determined by EPA and the DEQ.

 $^{(2)}$ High concentration areas are those for which data exceeds the PM₁₀ NAAQS by 20 percent or more.

⁽³⁾ Medium concentration areas are those for which data exceeds 80 percent of the PM₁₀ NAAQS.

⁽⁴⁾ Low concentration areas are those for which data is less than 80 percent of the PM₁₀ NAAQS.

⁽⁵⁾ The low concentration requirements are the minimum which apply in the absence of a design value.

Currently, all designated MSAs in Montana are within the lowest population category and have historically and consistently demonstrated measured PM₁₀ concentrations in either the low or medium concentration categories in Table 16. Therefore, the present PM₁₀ network, as described in Tables 17 through 19, satisfies the PM₁₀ network design criteria.

DEQ operates PM_{10} monitors in seven areas previously designated as nonattainment for the 24-hour PM_{10} NAAQS. This monitoring is required by EPA to demonstrate the adequacy of Montana's PM_{10} maintenance plans for those areas which have been re-designated to a NAAQS attainment status. Table 17 provides a list of those sites:

Station Name	AQS Code
Butte	30-093-0005
Columbia Falls	30-029-0049
Kalispell	30-029-0047
Libby	30-053-0018
Missoula	30-063-0024
Thompson Falls	30-089-0007
Whitefish	30-029-0009

Table 17 – Montana DEQ 2023 PM10 Maintenance Plan Monitoring Sites

Additional PM₁₀ Monitoring

Beyond the CFR and Maintenance Plan required monitoring, DEQ also operated PM₁₀ monitors at five additional sites through 2023 to define and track background concentrations and spatial distribution of this pollutant within the state of Montana. These sites are listed in Table 18:

Station Name	AQS Code
Broadus	30-075-0001
Malta	30-071-0010
Miles City	30-017-0005
Lewistown	30-027-0006
Sidney	30-083-0002

Table 18 – Montana DEQ 2023 Additional PM₁₀ Monitoring Sites

Table 19 summarizes the 24-hour average values measured at all PM_{10} monitoring sites operated by DEQ in 2023.

	Concer	ntration (µg/m³)				
Site	Min	Max		AQS Estimate	d Exceedances ⁽²⁾	3-Year DV Est.	NAAQS
		IVIAX	Average	2023	3-Year	Concentration ⁽³⁾	
Broadus ⁽⁴⁾	1	137	22				
Butte	2	79	18	0	0	105	
Columbia Falls	0	66	13	0	0	66	
Kalispell	2	102	23	0	0	93	
Lewistown	0	90	9	0	0	77	150
Libby	1	113	17	0	0	96	µg/m³
Malta	0	153	11	0	0.3	141	
Miles City	1	214	12	1	0.3	79 ⁽⁵⁾	(80% = 120)
Missoula	3	58	16	0	0	93	
Sidney	1	172	13	1	0.3	84	
Thompson Falls	11	125	21	0	0.7	125	
Whitefish	1	107	21	0	0	99	

Table 19 – 24-Hour Average Monitored PM₁₀ Values for 2023⁽¹⁾

⁽¹⁾ Dataset includes all values (flagged exceptional events *included*).

 $^{(2)}$ PM₁₀ Design Values are in the form of numbers of estimated exceedances as calculated by the US EPA AQS database in accordance with the procedure in 40 CFR 50 Appendix K.

⁽³⁾ Based on PM₁₀ SIP Development Guideline-Table Look-up Method (EPA Table 6-1). See EPA-450/2-86-001.

⁽⁴⁾ This monitor is a non-Federal Equivalent Method (non-FEM) Special Purpose Monitor operated for informational purposes only and is not certified to produce NAAQS-comparison data.

⁽⁵⁾ The Miles City station has only operated for two years (2022-2023) thus this value represents the 4th-high 24-hr average for that period rather than for a true 3-year design value period.

Changes to PM₁₀ Monitoring

DEQ has a long-term dataset of measured PM₁₀ values across the state. When higher values are measured, they are normally found to result from vehicle travel down dirt roads, nearby agricultural tillage, or wildfire smoke. In January of 2024, DEQ proposed to reduce the number of PM₁₀ monitors in the state. This was done in an effort to continue appropriate and representative PM₁₀ monitoring while adjusting limited monitoring resources to focus more specifically on other criteria pollutants whose concentrations and impacts are not adequately characterized across the state, such as PM_{2.5} and ozone. The DEQ proposal focused on ending PM₁₀ monitoring at Broadus, Miles City, and Malta at the end of 2023. EPA Region 8 concurred with this proposal and communicated approval on January 9, 2024. Monitoring at these sites was completed at midnight on December 31, 2023.

No modifications to DEQ's PM₁₀ monitoring network are proposed for 2024.

G. PM_{2.5} Monitoring

Required PM_{2.5} Monitoring

The minimum number of PM_{2.5} monitoring sites required by 40 CFR 58 Appendix D Section 4.7 is shown in Table 20.

	Number of Me	nitors por MSA
MSA population ⁽²⁾	Most recent 3-year design value ≥85% of any PM _{2.5} NAAQS ⁽³⁾	Most recent 3-year design value <85% of any PM _{2.5} NAAQS ⁽³⁾⁽⁴⁾
>1,000,000	3	2
500,000 - 1,000,000	2	1
50,000 - <500,000	1	0

Table 20 – Minimum PM_{2.5} Monitoring Requirements ⁽¹⁾

⁽¹⁾ From Table D-5 of Appendix D to 40 CFR Part 58. Minimum monitoring requirements per MSA.

⁽³⁾ PM_{2.5} NAAQS levels and forms are defined in 40 CFR part 50.

⁽⁴⁾ These minimum monitoring requirements apply in the absence of a design value.

As introduced in the Background section above, and in Appendix B of this Plan, Montana had three federally designated MSAs (Billings, Missoula, and Great Falls) through most of 2023, and all three of those MSAs fall within the 50,000 to 500,000 population range listed in Table 20. Through calendar year 2023, the 3-year 24-hour 98th percentile and the 3-year average annual mean NAAQS for PM_{2.5} were 35 and 12.0 μ g/m³ respectively; and the 85% thresholds (per Table 20) for those limits are 29.75 and 10.2 μ g/m³. For the 3-year design period of 2020 through 2022, the Missoula MSA exceeded the 85% threshold for the 24-hour NAAQS, thus one PM_{2.5} monitor was required in Missoula in 2023. The continuous PM_{2.5} monitor operating at Boyd Park in Missoula (30-063-0024) fulfilled this requirement.

In addition, DEQ conducts required PM_{2.5} monitoring at its NCore site (30-049-0004, see Section I.H.) per the requirements of 40 CFR 58 Appendix D Section 4.7.1(a). Further, DEQ operates a PM_{2.5} monitor in the community of Libby (30-053-0018) as required by EPA to demonstrate the adequacy of Montana's PM_{2.5} maintenance plan for this area. The maintenance plan was established as part of the re-designation of the Libby area from nonattainment to attainment for the 24-hour PM_{2.5} NAAQS.

The PM_{2.5} monitoring criteria in 40 CFR 58 Appendix D include three additional requirements:

First, Section 4.7.2 of 40 CFR 58 Appendix D requires that states operate *continuous analyzers* in at least one-half of the <u>required</u> PM_{2.5} monitoring sites (per Table 20, above). The continuous monitors must be designated as Federal Equivalent Method (FEM) analyzers, and at least one analyzer per MSA must be collocated with an episodic (manual) FRM analyzer. As previously discussed, only one PM_{2.5} monitor was required by federal Monitoring Network Design Criteria to be operated in any Montana community in 2023. That monitor, in Missoula, is a continuous FEM instrument. It is operated as part of a larger network of continuous PM_{2.5} monitors (see the following paragraph) and therefore meets the FRM collocation requirement on a network-wide basis as provided in 40 CFR 58 Appendix A, Section 3.2.3.1-2.

PM_{2.5} is a significant pollutant in Montana. Impacts from summer wildfires, prescribed burning and wintertime inversions have established a strong need and demand for continuous, near-real time PM_{2.5} data for assessing and communicating public health impacts in addition to determining NAAQS compliance. To meet this need, DEQ's PM_{2.5} pollutant measurement network is comprised solely of continuous monitors. However, DEQ also operates an appropriate number of manual FRM PM_{2.5} monitors exclusively for *quality assurance* (QA) collocation and validation of its continuous PM_{2.5} monitoring network.

⁽²⁾ Population based on latest available census figures.

Second, Section 4.7.3 of 40 CFR 58 Appendix D requires each state to install and operate at least one PM_{2.5} site to monitor *regional background* and at least one PM_{2.5} site to monitor *regional transport*. In its 2022 Network Plan DEQ proposed the establishment of its NCore site (30-049-004) as a background and regional transport site for Montana. EPA concurred with this proposal in its response to that Network Plan submittal. The NCore site will continue to fulfill the regional and transport site criteria for 2024.

Third, Section 4.7.4 of 40 CFR 58 Appendix D requires each state to conduct PM_{2.5} chemical speciation monitoring at locations designated as part of the national Speciation Trends Network (STN) and operated as part of the Chemical Speciation Network (CSN). Two sites in Montana are currently included in the CSN: Butte (30-093-0005) and NCore (30-049-0004). Appendix E to this Plan contains a list of the chemical components for which analysis is performed on filters collected at these stations.

Additional PM_{2.5} Monitoring

Because PM_{2.5} is a pollutant of significant concern within Montana, DEQ's PM_{2.5} monitoring network goes well beyond the minimum requirements summarized in Table 20. DEQ, sometimes in partnership with county air quality programs, operated PM_{2.5} monitors in a number of locations statewide in 2023 to communicate potential PM_{2.5}-related health impacts to the public, to demonstrate continuing NAAQS compliance, and to inform local health departments' PM_{2.5} control strategies. These sites are listed in Table 21:

	Montalia BEQ E01			ioning bites
Station Name	AQS Code		Station Name	AQS Code
Billings-Lockwood	30-111-0087		Great Falls	30-013-0001
Bozeman	30-031-0019		Hamilton	30-081-0007
Broadus	30-075-0001		Havre	30-041-0002
Butte	30-093-0005		Helena	30-049-0026
Choteau*	30-099-0005		Lewistown	30-027-0006
Columbia Falls	30-029-0049		Malta	30-071-0010
Cut Bank	30-35-0022		Miles City	30-017-0005
Dillon	30-001-0003		Seeley Lake	30-063-0038
Frenchtown	30-063-0037]	Sidney	30-083-0002
Glendive*	30-021-0005		Thompson Falls	30-089-0007

Table 21 – Montana DEQ 2023 Additional PM2.5 Monitoring Sites

*These sites began operating late in 2023 and did not begin reporting to AQS until January 1, 2024.

Table 22 summarizes the 24-hour average values along with the annual and 24-hour NAAQS design values, where appropriate, as measured at the PM_{2.5} monitoring sites operated by DEQ during 2023.

		2023		NAAQS D	NAAQS		
	Conc	entration (μ	g/m³)	2023 98 th	2023 98 th 2021 - 2023		
Site	Min	Max	Average	Percentile	24-hour	Annual	CY 2023
Billings–Lockwood	0.3	112.2	6.6	28.9	29	7.8	
Bozeman ⁽²⁾	0.6	34.3	5.3				
Broadus	0.9	118.9	9.3	54.0	38	8.3	
Butte	0	44.6	7.3	24.8	38	8.3	
Choteau ⁽⁵⁾							
Columbia Falls	0	68.1	9.4	39.9	36	8.6	
Cut Bank	0	76.7	4.2	31.9	32	4.2	24-hour
Dillon	0	45	2.9	10.9	11	2.9	35 μg/m ³ (85% = 29.75)
Frenchtown	2.4	42.2	9.8	25.0	37	10.5	
Glendive ⁽⁵⁾							
Great Falls (2)	3	82.6	10.9				
Hamilton	0	39.3	5.7	21.0	46	7.8	
Havre ⁽⁴⁾	0.1	139.7	8.6				
Helena	1.2	74.9	8.4	30.4	36	8.7	
Lewistown	0	71	5	32.0	31	5.4	Annual
Libby	1.6	109	12	28.8	38	12.8	12.0 μg/m ³ (85% = 10.2)
Malta	0	123.8	7.4	50.0	32	6.0	(00/0/-)
Miles City (3)	0.3	185	8.1	47.9	31	6.7	
Missoula	0	37.1	5.3	20.0	32	6.5	
NCore	0	60.5	4.1	24.4	30	4.8	
Seeley Lake (2)	1.3	48.7	10.7				
Sidney	0	143.9	7.5	42.1	29	6.2	
Thompson Falls (2)	1.7	99	8.1]

Table 22 – 24-Hour Average Monitored PM_{2.5} Values for 2023⁽¹⁾

⁽¹⁾ Dataset includes all values (exceptional events are included).

⁽²⁾ These monitors are non-FEM monitors operated for informational purposes only and are not certified to produce NAAQS-comparison data.

⁽³⁾ The Miles City monitoring station has only operated for two years. These values represent only measurements conducted in 2022 through 2023 and not the 3-year averages specified in the NAAQS.

⁽⁴⁾ The Havre site operated for only seven months in 2023. Design values cannot yet be calculated.

⁽⁵⁾ These sites only operated for a few months in 2023, thus data summaries are not representative of the entire year and no design values can be calculated.

DEQ's PM_{2.5} monitors are intentionally located, established and operated to address any or all three of the program monitoring objectives defined in the Background section of this Plan. For the *additional* PM_{2.5} monitoring described above, DEQ employs different *methods* of continuous PM_{2.5} monitoring and assigns different geographical *spatial scales* that sites are designed to represent depending on the monitoring objectives for each site.

PM_{2.5} Monitoring Methods

PM_{2.5} monitors federally designated as "FRM" or "FEM" generate data suitable for determining compliance with the PM_{2.5} NAAQS. PM_{2.5} monitors designated as "non-FEM" provide reliable general information but cannot be used for NAAQS compliance purposes. The network description table in Appendix C of this Plan indicates a notation of the monitor method classification for all PM_{2.5} monitors operated by DEQ in the column labeled "PM".

PM_{2.5} Spatial Scales

DEQ's continuous $PM_{2.5}$ monitors are sited to represent broad regional or sub-regional geographic areas as established in Section 4.7.1(c) of Appendix D to 40 CFR 58. Data from $PM_{2.5}$ monitoring sites with spatial scales designated as smaller than "neighborhood" are generally not used for $PM_{2.5}$ NAAQS compliance review purposes in DEQ's network. Currently, the only $PM_{2.5}$

site in the Montana network of this nature is the Great Falls station (30-013-0001) which is designated a "middle" range spatial scale remaining from historical CO monitoring purposes.

Changes to PM_{2.5} Monitoring

DEQ's 2023 network analysis determined that the PM_{2.5} NAAQS monitoring objective at the Broadus site was complete, based on a long-term dataset that demonstrates that measured concentrations were not in exceedance of any NAAQS limit. However, DEQ finds value in continuing to measure PM_{2.5} concentrations in the Broadus area to represent the southeast corner of the state and to inform the public of any related health impacts. Therefore, DEQ proposed, and received EPA approval, to discontinue FEM PM_{2.5} monitoring at the Broadus site at the end of 2023. In its place, DEQ will operate a PM_{2.5} sensor at the site. The result is the acquisition of representative data at a much lower investment of resources which can be shifted to other needed areas of monitoring around the state. FEM PM_{2.5} monitoring at Broadus was completed at midnight on December 31, 2023.

As listed in Table 22, DEQ completed the installation of FEM PM_{2.5} monitors at Choteau and Glendive in 2023, and these monitors began reporting to AQS on January 1, 2024. These installations were completed using funding from the "American Rescue Plan Direct Award for Enhancing Continuous Monitoring of PM_{2.5} and Other NAAQS Air Pollutants" grant.

Significantly, EPA updated the PM_{2.5} NAAQS in early 2024, lowering the annual primary standard from 12.0 to 9.0 μ g/m³. The new NAAQS limit became effective on May 6, 2024. DEQ does not foresee or propose any monitoring network *additions* resulting from this change. However, the 3-year design values from the PM_{2.5} monitors in the Billings and Great Falls MSAs, as well as in the newly designated MSAs of Helena and Bozeman, are all believed to be greater than 85% of the new, lowered NAAQS. Therefore, per the criteria summarized in Table 20, FEM PM_{2.5} monitoring is *required* in the Billings, Bozeman, Great Falls, and Helena MSAs after May 6, 2024.

For 2024, DEQ is proposing the initiation of several equipment changes to its FEM PM_{2.5} monitoring network. These proposals are detailed in Section II.B. of this Plan.

In addition, DEQ will continue to place particular emphasis on sensor-based community and local-scale monitoring in Montana's historically underserved and at-risk populations. DEQ is continuing to expand its PM_{2.5} sensor-based monitoring capabilities in 2024 and in the foreseeable future to provide more local-based PM_{2.5} information to Montana's population. Section II.E discusses sensor network changes planned for 2024 in implementation of this initiative.

H. NCore Monitoring

Section 3 of Appendix D to 40 CFR 58 requires that each state operate at least one NCore multipollutant monitoring site. By definition, each NCore site must include monitoring equipment to measure PM_{2.5}, speciated PM_{2.5}, PM_{10-2.5}, O₃, SO₂, CO, NO (nitric oxide), NO_Y (a range of nitrogen oxide compounds), and meteorology. The majority of NCore sites across the nation are established in urban areas. In Montana however, the NCore site was established near a wilderness area as a long-term trend background site in an area believed to be relatively pristine and un-impacted by anthropogenic pollutant sources. Montana's NCore site (Sieben's Flat (a.k.a. Sleeping Giant), 30-049-0004) was established in late 2010. Data is continuously being acquired from all required monitors. Previous sections of this Plan include summaries of pollutant data monitored at NCore.

In addition to criteria pollutants, the monitoring directives in 40 CFR Appendix D Section 4.8.1 contain specific requirements for the operation of monitors for $PM_{10-2.5}$ at NCore sites. This requirement is

fully met at Montana's NCore site. Table 23 summarizes the $PM_{10-2.5}$ data collected at the DEQ NCore site during 2023.

Pollutant	Min	Max	Average
PM10-2.5	0	70	2.63

Table 23 – 1-Hour Monitored $PM_{10-2.5}$ Values at NCore for 2023, in $\mu g/m^3$.

I. General Monitoring Network Design Considerations

A. Monitors Not Meeting Siting Criteria

DEQ designs its network and operates its air monitoring sites in compliance with EPA's national requirements for ambient air monitoring sites (40 CFR Part 58, Appendices A, C, D and E). Within DEQ's network there are three sites that do not meet all the siting requirements of 40 CFR Part 58, Appendix E.

First, the Hamilton PM_{2.5} site (30-081-0007) is located within 15 meters of paved city streets, but is operated as a neighborhood-scale site and not established as a "traffic corridor" monitor as discussed in 40 CFR 58 Appendix E Section 6.3. The roads receive low traffic counts, and EPA has approved (granted a waiver) for the continued operation of this site as a neighborhood-scale site in response to previous Annual Network Plan documents submitted by DEQ.

Second, the PM₁₀ monitor located in eastern Montana at the Broadus monitoring site (30-075-0001), was established to define background concentrations of this pollutant on a neighborhood or broader scale. This site is in a remote region, and because of logistical necessity, was located near an unpaved gravel road traveled by ranching and agricultural equipment. As a result, the monitor is unduly influenced by dust generated by that road traffic and does not appropriately represent background PM₁₀ concentrations on a "regional scale" as was intended when the site was established. As described in Section I.F. above, DEQ proposed to end PM₁₀ monitoring at Broadus at the end of 2023. EPA Region 8 concurred with this proposal and communicated approval on January 9, 2024. PM₁₀ monitoring at this site was complete at midnight on December 31, 2023, and the monitor has been shut down.

Third, the Great Falls $PM_{2.5}$ site (Overlook Park, 30-013-0001) does not meet siting requirements for distance from obstructing trees. As discussed in Section II.B.3, DEQ intends to initiate a project to move the Great Falls $PM_{2.5}$ monitoring site.

B. Quality Assurance Project Plan (QAPP)

Federal rules and associated guidance establish a detailed and appropriate system of quality requirements and direction with respect to ambient monitoring; and DEQ operates its monitoring network within these requirements. Of note is the requirement in 40 CFR 58 Appendix A, Section 2, for each monitoring organization to develop and describe its quality system within a written QAPP. As projected in its 2023 Annual Monitoring Plan, DEQ completed a required 5-year update of its QAPP on June 15, 2023. The document was submitted to EPA Region 8 and posted for public access on the DEQ website. DEQ intends to perform an annual review of this QAPP in 2024.

II. 2024 Proposed Changes to the Monitoring Network

A. Overview

DEQ regards the requirement to develop and submit an Annual Monitoring Network Plan as an opportunity to review its existing air monitoring network and to plan for future needs. In the process of producing this document each year, DEQ reviews air pollutant trends, known and projected emission changes, revisions to the NAAQS and monitoring rules, and the needs of Montana's population to receive appropriate and timely information related to ambient air quality impacts. Based on that breadth of understanding, DEQ attempts to balance monitoring requirements and needs against available resources. In addition to the Network Plan, DEQ completes periodic (every 5 years) Network Assessments in accordance with 40 CFR 58.10(d). The last Network Assessment was completed in 2020.

Depending on the immediacy of the need for programmatic changes, near-term network modifications are typically proposed in the Annual Network Plan, while longer-term or broader impact evaluation and direction of DEQ's air quality surveillance system is addressed within the periodic Network Assessment. DEQ also anticipates occasional changes to the focus and direction of Montana's air monitoring network in response to federal rulemaking and nation-wide policy direction; with resulting network modification proposals following within an appropriate time window.

Montana DEQ anticipates the following potential changes to its air monitoring network for the 2024 planning period. The proposals are listed by pollutant.

B. PM_{2.5} Changes

1. Glasgow

As referenced in DEQ's 2023 Network Plan, DEQ applied for and has received an EPA direct grant in support of enhanced monitoring ("American Rescue Plan Direct Award for Enhancing Continuous Monitoring of PM_{2.5} and Other NAAQS Air Pollutants" grant). In continuing implementation of those grant funds, and as approved in the 2023 Plan, DEQ anticipates the establishment of a new FEM PM_{2.5} monitoring site in Glasgow in 2024. DEQ plans to make data from this new FEM instrument available publicly on EPA's *AirNow*, and Montana's *Today's Air* websites by August 1, 2024. DEQ will begin uploading the monitor's data to AQS starting January 1, 2025.

2. Seeley Lake

DEQ continues to be concerned that the current PM_{2.5} monitoring site is inappropriately influenced by woodsmoke emitted from a single residence located across the street from the monitor; and is not representative of air quality in the Seeley Lake community or airshed. Therefore, DEQ is proposing to initiate efforts in 2024 to move this monitor. DEQ intends to partner with the Missoula County Health Department to identify a suitable, representative site for the monitor, and establish approvals or contractual arrangements for its long-term use. This project will likely extend into CY 2025.

3. Great Falls

Because of the siting concerns described in Section I.I.A., and because of the deteriorating condition of the shelter at this site, DEQ is proposing to initiate efforts in 2024 to move this monitor. As in Seeley Lake above, initial efforts will be focused on identifying a suitable, representative site for the monitor, and establishing approvals or contractual arrangements for

its long-term use. Because this monitor is likely now required in this MSA (see Section I.G), DEQ will install a continuous FEM instrument in this location once a new site is identified and established.

4. Bozeman

DEQ believes that the PM_{2.5} monitor in this newly designated MSA is now a required FEM per the criteria in 40 CFR 58 Appendix D Section 4.7 (see Section I.G). Therefore, DEQ anticipates installing a continuous FEM instrument in this location in conjunction with the changes discussed in Sections II.C.1 and II.D.1 below.

C. NO₂ Changes

1. Bozeman

As noted in Sections I.A. and I.C., population growth in Bozeman has led to the OMB/Census Bureau modification of the Bozeman CBSA designation from a Micropolitan Statistical Area to an MSA. Gallatin County (containing Bozeman) is now the second highest populated county in Montana (see Appendix B to this Plan), and growth there is expected to continue. DEQ believes that additional and upgraded ambient air monitoring is warranted to evaluate the air quality impacts of this population growth, and to determine if long-term monitoring will be required. Therefore, DEQ is proposing to add a climate-controlled monitoring shelter at the existing High School monitoring site (30-031-0019), and the installation and operation of new NO₂/NO/NO_x, O₃ (see Section II.D.1) and PM_{2.5} (see Section II.B.5) monitors within it. This effort would be initiated in 2024, with the goal of having the new instrumentation operational and reporting to AQS by January 1, 2025. However, given the complexity of this project, DEQ is aware that it could extend further into CY 2025.

2. Missoula

As noted in Sections I.A., O_3 monitoring has been continuously conducted at the Missoula Boyd Park Site (30-063-0024) since June 1, 2020. Typically, wherever DEQ conducts O_3 monitoring it also operates a corresponding NO₂/NO/NO_x monitor to contribute to the understanding of O_3 formation and destruction at that location. However, this effort was never pursued in Missoula. Therefore, DEQ is proposing the installation and operation of a NO₂/NO/NO_x monitor in the Missoula-Boyd Park station in 2024, with anticipated data reporting to AQS by January 1, 2025.

D. O₃ Changes

1. Bozeman

Per the discussion in Section II.C.1. above, DEQ is proposing the installation and operation of a new O_3 monitor in Bozeman in 2024, with a goal of data reporting to AQS by January 1, 2025.

E. PM_{2.5} Sensor Network Changes

Statewide

Because PM_{2.5} continues to be the pollutant of greatest concern in Montana, DEQ is continuously looking for opportunities to enhance Montana's PM_{2.5} monitoring network to better capture PM_{2.5} impacts and trends in the state. DEQ is particularly focused on better communication of potential PM_{2.5}-related health impacts to all of Montana's citizens, especially those living in under-served communities and in at-risk populations. The "American Rescue Plan Direct Award for Enhancing Continuous Monitoring of PM_{2.5} and Other NAAQS Air Pollutants" (ARP) grant, referenced in Sections I.A., C., and G of this Plan, includes funding for equipment to modify and enhance DEQ's PM_{2.5} monitoring network. The anticipated installation of a new FEM PM_{2.5} monitor in Glasgow in 2024 (see Section II.B.1) is funded through the ARP grant.

In addition, DEQ has applied for and received an "Enhanced Air Quality Monitoring for Communities Grant" from EPA. DEQ's grant proposal aimed to address spatial limitations in its existing PM_{2.5} network by installing additional monitoring stations and low-cost sensors in key locations, particularly in communities where air quality information is not currently available. In application and receipt of this grant, DEQ developed a tiered approach to PM_{2.5} monitoring in the state of Montana:

- Tier 1 SLAMS/FEM continuous PM_{2.5} Monitors,
- Tier 2 Intermediate monitors such as EBAMs and higher technology sensors, and
- Tier 3 Personal sensors such as PurpleAir devices

DEQ's application for this grant included proposals for six additional FEM (Tier 1) monitors, 13 non-FEM E-BAM (Tier 2) monitors, and 164 personal PM_{2.5} sensors (Tier 3). Due to the greatly increased price of FEM monitors and E-BAMS and the availability of new sensor technology, DEQ requested and received approval to substitute mid-range (Tier 2) sensors for the proposed FEM and E-BAM monitors in the project plan for this grant. The purchase and installation of Tier 2 sensors is anticipated to begin in 2024. The purchase and installation of personal sensors (Tier 3) under this grant was initiated in 2023 and will continue in stages through the life of the grant and beyond. Appendix A to this plan provides maps of proposed PM_{2.5} sensor installations and progress to date.

DEQ's application proposal for the Community Monitoring grant described a path for transforming Montana's air quality network in a way that is practical, maintainable, and scalable for the future. The result is intended to be a monitoring network that serves more numerous and diverse communities in this expansive state through the described tiered monitoring and quality assurance approach. The application process has helped formalize DEQ's PM_{2.5} network goals and the proposal will serve as a roadmap for future years of network development.

III. Appendices

Appendix A -- Monitoring Site Locations

Montana Ambient Air Monitoring Sites, 2024 Plan

Montana Ambient Air Monitoring Site Location Summary

							CBSA
AQS No.	City - Site Name	Site Extended Name	Montana Address	Longitude	Latitude	Designation	Name and ID #
30-111-0066	Billings	Coburn Road	624 Coburn Rd.	-108.4588265	45.7865892	Metro	Billings, MT, 13740
30-111-0087	Billings	Lockwood	2320 Old Hardin Road	-108.4259948	45.8063193	Metro	Billings, MT, 13740
30-031-0019	Bozeman	High School	N 15th Avenue, H.S. Parking Lot	-111.0563273	45.6837732	Metro	Bozeman, MT, 14580
30-075-0001	Broadus	Powder River	Big Powder River Road East	-105.3702829	45.440296		
30-093-0005	Butte	Greeley School	Alley Btwn N. Park Pl. and S. Park Pl.	-112.5012714	46.0025949	Micro	Butte-Silver Bow, MT, 15580
30-099-0005	Chouteau		1098 10th St NW	-112.193629	47.82031		
30-035-0022	Cut Bank		Cut Bank Airport, 2705 Valier Hwy	-112.3670368	48.6065497		
30-001-0003	Dillon		State Hwy 91 S. and Barrett St.	-112.6425161	45.2064423		
30-029-0049	Columbia Falls	Flathead Valley	610 13th St West	-114.1892571	48.3637028	Micro	Kalispell, MT, 28060
30-063-0037	Frenchtown	Beckwith	16134 Beckwith Street	-114.2242651	47.0129068	Metro	Missoula, MT, 33540
Planned	Glasgow		5470 U.S. Rt 2	-106.641417	48.211779		
30-021-0005	Glendive		Corner of 8th St. and B Ave.	-104.7515959	47.1205989		
30-013-0001	Great Falls	Overlook Park	10th Ave. S. and 2nd St. E.	-111.3033456	47.4943197	Metro	Great Falls, MT, 24500
30-081-0007	Hamilton	PS#46	Madison and 3rd St. S.	-114.1588734	46.2436362		
30-041-0002	Havre		Btwn 13th Street and College Rd, MSUN	-109.684505	48.540334		
30-049-0026	Helena	Rossiter Pump House	1497 Sierra Rd. East	-112.0130838	46.6587565	Metro	Helena, MT, 25740
30-029-0047	Kalispell	Flathead Electric	E Center St. and Woodland Ave.	-114.3054439	48.2004933	Micro	Kalispell, MT, 28060
30-027-0006	Lewistown		303 East Aztec Drive	-109.4553425	47.048515		
30-053-0018	Libby	Courthouse Annex	418 Mineral Ave.	-115.552457	48.3917035		
30-071-0010	Malta		2309 Short Oil Road	-107.8622736	48.3175183		
30-017-0005	Miles City	Pine Hills	3636 Leighton Blvd.	-105.8127117	46.4114565		
30-063-0024	Missoula	Boyd Park	3100 Washburn Rd.	-114.0205593	46.842296	Metro	Missoula, MT, 33540
30-049-0004	NCore	Sieben's Flat	I-15 Exit 209, then Sperry Dr.	-111.9871778	46.8505192	Metro	Helena, MT, 25740
30-063-0038	Seeley Lake	Elementary School	School Lane	-113.476182	47.1756297	Metro	Missoula, MT, 33540
30-083-0002	Sidney	201	Intersection of Hwy 201 and Cnty R 326	-104.6769911	47.8679845	Micro	Helena, MT, 25740
30-089-0007	Thompson Falls	High School	Golf St and Haley Ave	-115.3237609	47.594403		
30-029-0009	Whitefish	Dead End	End of 10th St.	-114.335976	48.4005325	Micro	Kalispell, MT, 28060

PM_{2.5} Tier 2 Planned Sensor Sites, 2024-2027

PM_{2.5} Tier 3 PurpleAir Sensor Sites, 2024-2007

<u>Appendix B</u> -- Montana Core Based Statistical Areas (CBSAs)

Definition of CBSA

40 CFR 58.1: "Core-based statistical area (CBSA) is defined by the U.S. Office of Management and Budget as a statistical geographic entity consisting of the county or counties associated with at least one urbanized area/urban cluster of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration. Metropolitan Statistical Areas (MSAs) and Micropolitan Statistical Areas are the two categories of CBSAs (metropolitan areas have populations greater than 50,000; and Micropolitan areas have populations between 10,000 and 50,000). In the case of very large cities where two or more CBSAs are combined, these larger areas are referred to as combined statistical areas (CSAs). Montana does not have any CSAs.

Montana Metropolitan Statistical Areas (MSAs) as of July 21, 2023

CBSA	Map Color	State-			Population
Number	Code	County #	Name	Description	Estimate 2023
			Billings, MT	Metropolitan Statistical Area	191,435
13740		30-009	Carbon County, MT	County or equivalent	11,419
15/40		30-095	Stillwater County, MT	County or equivalent	9,173
		30-111	Yellowstone County, MT	County or equivalent	170,843
14590			Bozeman, MT	Metropolitan Statistical Area	126,409
14580		30-031	Gallatin County, MT	County or equivalent	126,409
			Missoula, MT	Metropolitan Statistical Area	126,939
33540		30-061	Mineral County, MT	County or equivalent	5,090
		30-063	Missoula County, MT	County or equivalent	121,849
24500			Great Falls, MT	Metropolitan Statistical Area	84,900
24500		30-013	Cascade County, MT	County or equivalent	84,900
			Helena, MT	Metropolitan Statistical Area	96,091
25740		30-007	Broadwater County, MT	County or equivalent	8,032
25740		30-043	Jefferson County, MT	County or equivalent	13,048
		30-049	Lewis and Clark County, MT	County or equivalent	75,011

Montana Micropolitan Statistical Areas as of July 21, 2023

CBSA	Map Color	State-			Population
Number	Code	County #	Name	Description	Estimate 2023
28060			Kalispell, MT	Micropolitan Statistical Area	113,679
28060		30-029	Flathead County, MT	County or equivalent	113,679
15590			Butte-Silver Bow, MT	Micropolitan Statistical Area	36,360
15580		30-093	Silver Bow County, MT	County or equivalent	36,360

<u>Appendix C</u> -- Monitoring Network Parameter and Equipment Summary

Site Abr.	Site Name	AQS Number	Pollutant	Parameter-POC	Code	Method Note ⁽²⁾	PM ⁽³⁾	Operating Schedule ⁽⁴⁾	Type ⁽⁵⁾	Monitoring Objective ⁽⁶⁾	Spatial Scale	2024 Change ?
CB	Billings-Coburn	30-111-0066	SO ₂	42401-1	600	37		Continuous	SLAMS	H,S	Neigh.	
	binings coburn	50 111 0000	SO ₂ - 5 min	42406-1	600	37	EENA	Continuous	SLAMS	H,S	Neigh.	
			NO	42601-1	256	31	FEIVI	Continuous	SLAMS	P	Neigh.	
LW	Billings-Lockwood	30-111-0087	NO2	42602-1	256	31		Continuous	SLAMS	Р	Neigh.	
			NOX	42603-1	256	31		Continuous	SLAMS	P	Neigh.	
			NO NO	44201-1 Planned	87	35		Continuous	SLAMS	P	Neigh.	√
			NO ₂	Planned								\checkmark
BH	Bozeman	30-031-0019	NO _x	Planned								 ✓
			03	Planned	721	4	Non	Continuous	SDM (ND)	D	Neigh	✓ ✓
PD	Broadus	30-075-0001	PIVI2.5	88101-3	183	10	FEM	Continuous	SPM	B	Regional	•
во	bioadus	50 075 0001	PM	81102-4	103	2	FEM	Continuous	SLAMS	нр	Neigh	
	B . 11.	20.002.0005	P M ₁₀	88101-3	209	8	FEM	Continuous	SLAMS	H,P, QA Coll-2	Neigh.	
DIN	Butte	30-093-0005	PM _{2.5}	88101-2	116	1	FRM	1 in 6 Coll	SLAMS	H, P QA Coll	Neigh.	
			PM _{2.5} Spc'n	Various		7		1 in 6	SLAMS CSN	H,P	Neigh.	
СН	Choteau	30-099-0005	PM _{2.5}	88101-3	209	8	FEM	Continuous	SLAMS	Р	Neigh.	
СК	Cut Bank	30-035-0022	PM _{2.5}	88101-3	209	8	FEM	Continuous	SLAMS	Р	Neigh.	
DN	Dillon	30-001-0003	PM _{2.5}	88101-3	209	8	FEM	Continuous	SLAMS	Р	Neigh.	
F\/	Flathead Valley	30-029-0040	PM ₁₀	81102-1	122	2	FEM	Continuous	SLAMS	Р	Neigh	
	natileau valley	50 025-0049	PM _{2.5}	88101-3	170	3	FEM	Continuous	SLAMS	Р	Neigh	
FT	Frenchtown	30-063-0037	PM _{2.5}	88101-3	170	3	FEM	Continuous	SLAMS	Р	Neigh.	
	Glasgow	Planned	PM 2.5	88101-3	209	8	FEM	Continuous	SLAMS	Р	Neigh.	\checkmark
GL	Glendive	30-021-0005	PM ₂₅	88101-3	209	8	FEM	Continuous	SLAMS	Р	Neigh.	
OP	Great Falls	30-012-0001	PM.	88502.2	721	4	Non	Continuous	SDM (ND)	D	Middle	1
OP		30-013-0001	r' IVI2.5	00302-3	121	4	NUT	continuous	JE IVI (INK)	r	widule	
PS	Hamilton	30-081-0007	PM _{2.5}	88101-3	170	3	FEM	Continuous	SLAMS	H,P	Neigh.	
HV	Havre	30-041-0002	PM _{2.5}	88101-1	209	8	FEM	Continuous	SLAMS	Р	Neigh.	
			PM _{2.5}	88101-3	183	10	FEM	Continuous	SLAMS	H,P, QA Coll-3	Neigh.	
RP	Helena	30-049-0026	PM _{2.5}	88101-4 88101-2	170	3	FEM	Continuous	SPM	H,P QA Cont-Coll	Neigh.	
	Kalisnell	30-029-0047	PIVI _{2.5}	81102-1	122	2	FEM	Continuous	SLAMS	H P	Neigh	
FL.	Kanspen	50 025 0047	PM	81102-1	150	9	FEM	Continuous	SLAMS	н р	Neigh	
LB	Libby	30-053-0018	P M ₁₀	88101-3	183	10	FEM	Continuous	SLAMS	H,P	Neigh.	
			NO	42601-1	599	32		Continuous	SPM	В	Regional	
			NO ₂	42602-1	599	32		Continuous	SPM	B	Regional	
LT	Lewistown	30-027-0006	0 ₃	44201-1	47	36		Continuous	SPM	B	Regional	
			PM ₁₀	81102-1	150	9	FEM	Continuous	SPM	В	Neigh.	
			PM _{2.5}	88101-3	183	10	FEM	Continuous	SPM	В	Regional	
ML	Malta	30-071-0010	PM _{2.5}	88101-3	183	10	FEM	Continuous	SPM	В	Regional	
			NO	42601-1	599	32		Continuous	SLAMS SLAMS	B	Regional	
мс	Miles City	30-017-0005	NO ₂	42603-1	599	32		Continuous	SLAMS	B	Regional	
			O ₃	44201-1	87	35		Continuous	SLAMS	В	Regional	
			PM _{2.5}	88101-3 Planned	183	10	FEM	Continuous	SLAMS	В	Regional	 ✓
			NO ₂	Planned								~
MS	Missoula	30-063-0024	NO _x	Planned				C	e			✓
			03 PM	44201-1 81102-6	47	36	FEM	Continuous	SLAMS	P H.P	Neigh.	
			PM _{2.5}	88101-3	170	3	FEM	Continuous	SLAMS	H,P	Neigh.	
			CO	42101-1	554	30		Continuous	SLAMS	В	Region	
			NOV	42601-1 42600-1	674	34 34		Continuous	SLAIVIS	В	Region	
			NO _{diff}	42600-1	674	34		Continuous	SLAMS	В	Region	
			03	44201-1	47	36		Continuous	SLAMS	В	Region	
NC	NCore	30-049-0004	SO ₂ SO ₂ - 5 min	42401-1 42406-1	600	37		Continuous	SLAIVIS	В	Region	
			PM _{2.5}	88101-3	170	3	FEM	Continuous	SLAMS	B, QA Coll-1	Region	
			PM _{2.5}	88101-1	116	1	FRM	1 in 6 / 3	SLAMS	B, QA Coll	Region	
			PM _{2.5} PM _{2.5} Spc'n	Various	110	7	r KIVI	1 in 3	SLAIVIS	B, QA COII	Region	
			PM _{10-2.5}	86101-1	185	6	FEM	Continuous	SLAMS	В	Region	
SE	Seeley Lake	30-063-0038	PM _{2.5}	88502-3	731	4	Non	Continuous	SPM (NR)	Р	Neigh.	✓
			NO	42601-1	599	32		Continuous	SLAMS	S	Neigh.	
			NO ₂	42602-1	599	32		Continuous	SLAMS	S	Neigh.	
SD	Sidney 201	30-083-0002	NO _x	42603-1	599	32		Continuous	SLAMS	S	Neigh.	
			03	44201-1 81102 1	47	36	EEN4	Continuous	SLAMS	S c	Neigh.	
			PM ₂ 5	88101-3	183	10	FEM	Continuous	SLAMS	S	Neigh.	
TF	Thompson Falls	30-089-0007	PM ₁₀	81102-3	122	2	FEM	Continuous	SLAMS	Р	Neigh.	
			PM _{2.5}	88502-3	731	4	Non	Continuous	SPM (NR)	Р	Neigh.	
DE	Whitefish	30-029-0009	PM ₁₀	81102-1	122	2	FEM	Continuous	SLAMS	Р	Neigh.	

Footnotes

Method			
(2)			
⁽²⁾ Note	1	PM	BGI-PQ200 with very sharp cut cyclone (FRM)
	2	PM	Met One BAM 1020 Beta Attenuation Monitor (PM10 FEM)
	3	PM	Met One FEM BAM 1020 Beta Attenuation Monitor with PM2.5 very sharp cut cyclone (PM2.5 FEM regulatory)
	4	PM	Met One BAM 1020 Beta Attenuation Monitor with PM2.5 sharp cut cyclone (SCC) ("FRM-like," non-regulatory)
	5	PM	Met One E-BAM Beta Attenuation Monitor with PM2.5 sharp cut (SCC) or very sharp cut cyclone (VSCC)
	6	PM	Met One BAM1020 PM10-2.5 measurement system Paired beta attenuation monitors (FEM)
	7	PM	Met One SASS / URG Speciation Air Sampling System
	8	PM	Met One 1022 FEM E-BAM Beta Attenuation Monitor with PM2.5 very sharp cut cyclone (VSCC)
	9	PM	Thermo Scientific 5014i Beta Attenuation Monitor for PM10 (FEM)
	10	PM	Thermo Scientific, 5014i Beta Attenuation Monitor for PM2.5 (FEM)
	30	СО	Thermo Model 48i-TLE Enhanced Trace Level CO analyzer
	31	NOx	Teledyne API Model N500 Trace Level Cavity-Attenuated Phase-Shift (CAPS) spectroscopy NO2
	32	NOx	Teledyne API Model T200U Trace Level Chemiluminescence analyzer NO/NOx/NO2 (FRM)
	33	NOx	Thermo Model 42i TL <u>Trace Level</u> Chemiluminescence NO/NOx/NO2 analyzer (FRM)
	34	NOy	Thermo Model 42i-Y. NO-DIF-NOy chemiluminescent specialty Trace Level gas analyzer
	35	0 ₃	Teledyne API Model T400 UV Photometric O3 analyzer (FEM)
	36	O ₃	Thermo Model 49i UV Photometric O3 analyzer (FEM)
	37	SO ₂	Teledyne API Model T100U Trace Level Ultraviolet SO2 fluorescence (FEM)
⁽³⁾ PM	Partic	ulate M	atter Monitor Type:
	FRM	Federa	al Reference Method,
	FEM	Federa	al Equivalent Method
	Non	Public	c Info Only - Not FEM or FRM method (not usable for NAAQS comparisons)

⁽⁴⁾ Operating Schedule

-	-	
	Continuous	Samples continuously, reports a result at the end of each hour
	1 in 6	Collects a 24-hour sample every 6 days
	1 in 6 / 3	One of a pair of FRM samplers. Each collects a sample every 6 days, but the pair are staggered by three days.
	1 in 6 Coll	Collects a 24-hour sample every 6 days as a collocated monitor comparison
	1 in 3	Collects a 24-hour sample every 3 days

Monitor Site Type:

⁽⁵⁾ Type	Moni	Monitor Site Type:						
	SLAMS	State or Local Air Monitoring Station						
	SPM	Special Purpose Monitor						
	SLAMS CSN	Chemical Speciation Network						
	SPM (NR)	Special Purpose Monitor, Non-Regulatory Data						

⁽⁶⁾ Monitoring Objective Descriptions

B Backgro	bund
H Highest	t Concentration
P Popula	tion Exposure
S Source	Impact
QA Coll FRM of	a FEM / FRM Collocation
QA Coll-1 BAM 10	020 for an FRM Collocation
QA Coll-2 BAM 10	022 for an FRM Collocation
QA Coll-3 Thermo	o 5014i for an FRM Collocation
QA Cont-Coll Continu	uous Thermo 5014i / Continuous BAM 1020 Collocation

<u>Appendix D</u> -- Ambient Air Quality Network 2023 Raw Data Summary

Montana DEQ Ambient Air Monitoring Network Summary

Summary for Period: 1/1/2023 through 12/31/2023 Exceptional Events Included

The data below may not be final, and can be revised upon full quality assurance review.

Billing Lochunood NO2 ppb 0 65.3 1.5 98 0 0 75 Billings Lochwood NO2 ppb 0 61.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Billings Lochwood PMC5 µg/m ¹ 0.6 0.43 0.5 0.00 0.00 1.00 Billings Lochwood PMC5 µg/m ¹ 0.0 1.80 0.0 0.00 0.00 Bindsolochwood PMC2 µg/m ¹ 0.0 1.80 0.0 0.0 1.50 Broadus PML0 µg/m ¹ 0.0 1.80 0.0 0.0 1.50 Butte PML0 µg/m ¹ 0.0 7.50 4.20 9.0 0.0 1.50 Cohesu PML7 µg/m ¹ 0.0 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60	Site	Parameter	Units	Min	Max	Average	Data Capt %	#>NAAQS	#>85% NAAQS	NAAQS
Billing: Lockwood NO2 pp 0 0.55 0.02 99 0 1.0 0.005 Billing: Lockwood PM25 µµm ² 0.3 1122 6.6 9.8 4 7 35 Borman PM25 µµm ² 0.6 148 1.8 0.0 0.0 100 Broadus NO2 pp 0.0 1.8 1.8 0.0 0.0 100 Broadus PM10 µµm ² 1.137 2.8 0.0 0.0 150 Broadus PM10 µµm ² 4.3 4.46 7.3 9.9 0.0 0.150 Butte PM25 µµm ² 4.3 4.46 7.3 9.9 2.0 0.0 1.50 Columbia Fills PM25 µµm ² 4.3 4.46 7.3 9.9 2.0 0.0 1.50 Columbia Fills PM25 µµm ² 2.1 6.1 1.7 2.0 0.0 1.50	Billings Coburn Road	SO2	ppb	0	56.3	1.5	98	0	0	75
Billing Lockwood Q20NE µg/m ¹ 0.0 0.023 999 0 1 0.07 Billings Lockwood PM25 µg/m ¹ 0.0 1.33 1.22 6.6 988 .4 77 35 Bocadus PM25 µg/m ¹ 0.0 1.83 1 899 0.0 1.01 Broadus Q20NE ppm 0.02 0.13 0.05 96 2 6.6 0.00 1.01 Broadus PM20 µg/m ¹ 0.0 1.4.6 7.3 99 2.2 .35 Butte PM25 µg/m ¹ 0.1 7.6.7 7.4 2.97 6.6 8.8 .35 Ottomin Falls PM01 µg/m ¹ 1.0 6.6 1.3 9.2 .2 .35 Columbia Falls PM01 µg/m ¹ 1.4 6.1 1.00 1.0 .35 Goldmike Falls PM25 µg/m ¹ 1.1 7.9 1.0 .35	Billings Lockwood	NO2	ppb	0	45	8	10	0	0	100
Billing Lockwood PM25 µg/m² 0.3 11.2.2 6.6 9.8 4.4 7 35 Bozeman PM25 µg/m² 0.6 3.4.3 5.3 977 0.0 2.2 35 Broadus OZONE ppb 0.02 0.133 0.035 966 2.0 6.8 0.07 Broadus PM25 µg/m² 0.9 18.9 9.3 9.1 100 1.4 35 Butte PM25 µg/m² 0.3 44.6 7.3 9.9 2. 2.3 35 Chetau PM25 µg/m² 0.1 6.6 1.3 9.2 2.2 35 Columbia Falls PM25 µg/m² 0.4 666.1 7.4 1.00 8 1.2 35 Columbia Falls PM25 µg/m² 2.4 4.2 9.8 1.00 1.0 3.3 5.5 35 Getatau PM25 µg/m² 1.4 3.3 <td< td=""><td>Billings Lockwood</td><td>OZONE</td><td>ppm</td><td>0</td><td>0.059</td><td>0.023</td><td>99</td><td>0</td><td>1</td><td>0.07</td></td<>	Billings Lockwood	OZONE	ppm	0	0.059	0.023	99	0	1	0.07
Boreman PM25 µg/m² 0.6 34.3 5.3 97 0. 2 35 Broadus NO2 pp 0.002 0.13 0.035 96 2 668 0.07 Broadus PM10 µg/m² 0.9 11.8 9.3 91 10 14 35 Botte PM25 µg/m² 0.3 44.6 7.3 99 2 2 35 Cheteau PM25 µg/m² 0.7 7.5 3.4 33 1 2 35 CutBank PM25 µg/m² 0.1666 13 92 0 0 150 Columbia Falls PM10 µg/m² 0.4 661 13 92 0 0 35 Grent Falls PM25 µg/m² 0.4 661 13 92 0 0 35 Glendive PM25 µg/m² 0.4 42.4 85 100 1 35	Billings Lockwood	PM25	μg/m ³	0.3	112.2	6.6	98	4	7	35
Broadus NO2 ppb 0 18 1 89 0 0 100 Broadus Q20NE ppm 0.002 0.133 0.035 96 2 668 0.07 Broadus PMAS µg/m ¹ 0.9 118.9 9.3 91 10 14 35 Butte PMAS µg/m ¹ 0.9 14.6 7.3 99 2 2 35 Choteau PM2S µg/m ¹ -1.6 76.7 4.2 97 6 8.8 35 Dillon PM2S µg/m ¹ -1.4 45 2.9 98 2 2 35 Columbia Falls PM2S µg/m ¹ 0 66 1.3 92 0 0 0 35 Glendve PM2S µg/m ¹ 3.8 8.6 1.9 1.2 35 Haren PM2S µg/m ¹ 1.2 1.5 99 1 2 35	Bozeman	PM25	μg/m ³	0.6	34.3	5.3	97	0	2	35
Broadus PQCNE ppm 0.002 0.133 0.035 96 2 668 0.07 Broadus PM10 µg/m 0.0 11.8 72 868 0.0 12.8 Burte PM20 µg/m 0.2 1.8 95 0.0 0.14 355 Choteau PM25 µg/m 0.3 4.6 7.8 99 2 2 355 Choteau PM25 µg/m 0.1 6.6 1.3 92 0.0 0.0 150 Dillon PM25 µg/m 0.1 6.6 1.3 92 0.0 0.0 150 Columbia Falls PM00 µg/m 0.4 6.61 1.9 96 7 0.0 0.0 353 GrentAtals PM25 µg/m 1.1 33.3 5.7 99 1.0 2.0 353 Harmino PM25 µg/m 1.2 7.4 3.3 1.0 1.0	Broadus	NO2	ppb	0	18	1	89	0	0	100
BroadusPM10µµ/m111372286021301435BroadusPM2Sµµ/m0.9118.99.39110101335BurtePM2Sµµ/m0.344.67.39922235ChoteauPM2Sµµ/m0.17.5.3.43311235ChoteauPM2Sµµ/m0.145.74.297668835DillonPM2Sµµ/m0.145.74.29760881235Columbia FallsPM2Sµµ/m0.466.19.49.40.063332.000035GenatriaPM2Sµµ/m2.14.2.16.11.7700003535GenatriaPM2Sµµ/m0.1133.77912353535GenatriaPM2Sµµ/m0.1133.7791253535HardPM2Sµµ/m0.271.1733925735HardPM2Sµµ/m0.271.1733925735IsanPM2µµ/m0.01113310000100100100100100100100100100100100100100100100100	Broadus	OZONE	ppm	0.002	0.133	0.035	96	2	68	0.07
Broadus PM25 µµm ¹ 0.9 118.9 9.3 91 10 14.4 33 Butte PM10 µµm ¹ 0 79 18 95 0 0 150 Butte PM25 µµm ¹ 0.0 76.5 3.4 33 1 2.2 35 Choteau PM25 µµm ¹ 0.1 76.7 4.2 98 2.0 0 150 Columbia Falls PM25 µµm ¹ 0.4 66.1 9.4 100 8 120 35 Columbia Falls PM25 µµm ¹ 2.1 6.1 1.7 20 0 35 Great Falls PM25 µµm ¹ 2.1 6.1 1.7 20 0 35 Great Falls PM25 µµm ¹ 2.1 7.9 1.1 2.2 35 Helena PM25 µµm ¹ 0.1 37.3 39 2.2 35 Helena P	Broadus	PM10	μg/m ³	1	137	22	86	0	2	150
Butte PM10 µµ/m² 2 79 18 95 0 0 150 Butte PM25 µµ/m² 0.3 44.6 7.3 99 2 2 35 Chteau PM25 µµ/m² 0.7 7.5 4.2 97 6 88 35 Dillon PM25 µµ/m² 1.1 45 2.9 98 2 2 35 Columbia Falls PM10 µµ/m² 0.4 65.1 9.4 100 8 12 35 Glendive PM25 µµ/m² 2.4 42.2 9.8 00 1 53 Great Falls PM25 µµ/m² 2.4 64.2 9.8 10 0 35 Heina PM25 µµ/m² 1.3 35.7 99 1 2 35 Heina PM25 µµ/m² 1.2 103 17 0 0 10 Heina PM25	Broadus	PM25	ug/m ³	0.9	118.9	9.3	91	10	14	35
Butte PM25 µµm ¹ 0.0 7.0.5 3.4 3.3 1 2.2 3.5 Cheteau PM25 µµm ¹ 0. 70.5 3.4 3.3 1 2.2 35 Cult Bank PM25 µµm ¹ 1.1 45. 7.6.7 4.2 9.8 2.2 2.2 35 Columbia Falls PM25 µµm ¹ 0.0 66 1.3 9.2 0.0 0.0 150 Columbia Falls PM25 µµm ¹ 2.4 42.2 9.8 10.00 1.0 353 Great Falls PM25 µµm ¹ 2.1 6.1 1.7 2.0 0 0 353 Great Falls PM25 µµm ¹ 1.1 35.3 5.7 9.9 1 2.2 35 Hainiton PM25 µµm ¹ 1 35.4 100 0 0 0 135 Hainiton µµm ¹ 0.1 13.0 17 90 </td <td>Butte</td> <td>PM10</td> <td>μg/m³</td> <td>2</td> <td>79</td> <td>18</td> <td>95</td> <td>0</td> <td>0</td> <td>150</td>	Butte	PM10	μg/m ³	2	79	18	95	0	0	150
Choteau PM25 μg/m ¹ 0 70.5 3.4 33 1 2 35 Cut Bark PM25 μg/m ¹ 1.1 45 2.9 98 2 2 35 Columbia Falls PM10 μg/m ¹ 0.4 66.1 3 92 0 0 150 Columbia Falls PM25 μg/m ¹ 0.4 68.1 9.4 100 8 12 35 Frenchtown PM25 μg/m ¹ 2.4 4.2 9.8 100 1 5 35 Giendive PM25 μg/m ¹ 3 3.26 109 96 7 10 35 Hamiton PM25 μg/m ¹ 1.1 7.49 8.4 100 3 8.3 35 Helena PM25CoL μg/m ¹ 1.2 10 1.0 3 8.3 0.0 1.00 1.5 35 Kalispel PM10 μg/m ¹ 0.2	Butte	PM25	ug/m ³	-0.3	44.6	7.3	99	2	2	35
Cut Bank PM25 μg/m ¹ -1.6 76.7 4.2 97 6 8 35 Dillon PM25 μg/m ¹ -1.1 45 2.9 98 2 2 35 Columbia Falls PM25 μg/m ¹ 0.4 66.1 1.7 20 0 0 150 Columbia Falls PM25 μg/m ¹ 2.4 42.2 9.8 100 1 5 35 Gendive PM25 μg/m ¹ 2.1 6.1 1.7 20 0 0 35 Gendive PM25 μg/m ¹ 2.1 39.3 5.7 99 1 2 35 Hamilton PM25 μg/m ¹ 0.2 7.1 7.3 99 2 5 35 Helena PM25 Col. μg/m ¹ 0 13 17 9 0 0 100 100 100 100 100 100 100 100 100	Choteau	PM25	$\mu g/m^3$	0	70.5	3.4	33	1	2	35
Dillon PM25 μg/m³ 1.1 45 2.9 98 2 2 35 Columbia Falls PM10 μg/m³ 0.4 68.1 9.4 100 8 122 35 Frenchtown PM25 μg/m³ 2.4 42.2 9.8 100 1 5 35 Glendive PM25 μg/m³ 2.4 42.2 9.8 100 1 5 35 Great Falls PM25 μg/m³ 3 8.26 10.9 96 7 100 35 Hawre PM25 μg/m³ 1.1 139 8.6 66 9 1.2 35 Helena PM25CoL μg/m³ 0.2 71.1 7.3 99 2 5 35 Kalispel PM10 μg/m³ 0.2 71.1 7.3 99 2 5 7 35 Lewistown O20NE ppm 0.008 0.07 0.037	Cut Bank	PM25	ug/m ³	-1.6	76.7	4.2	97	6	8	35
Columbia Falls PM10 μg/m ³ 0 66 13 92 0 0 150 Columbia Falls PM25 μg/m ³ 0.4 68.1 9.4 100 8 112 35 Giendive PM25 μg/m ³ 2.4 42.2 9.8 100 1 5 35 Giendive PM25 μg/m ³ 1 33.5 7 99 1 2 35 Hamilton PM25 μg/m ³ 0.1 139.7 8.6 66 9 12 35 Helena PM25< μg/m ³ 0.2 71.1 7.3 99 2 5 35 Kalispel PM10 μg/m ³ 0.2 71.1 7.3 99 0 0 100 Lewistown NO2 pp b 0 9 9 0 0 100 100 100 100 100 100 100 100 100 100 <th< td=""><td>Dillon</td><td>PM25</td><td>ug/m³</td><td>-1.1</td><td>45</td><td>2.9</td><td>98</td><td>2</td><td>2</td><td>35</td></th<>	Dillon	PM25	ug/m ³	-1.1	45	2.9	98	2	2	35
Columbia Falls PM25 µg/m³ 0.4 68.1 9.4 100 8 12 35 Freenchtown PM25 µg/m³ 2.4 42.2 9.8 100 1 5 35 Glendye PM25 µg/m³ 2.3 6.1 1.7 20 0 0 35 Great Falls PM25 µg/m³ 0.1 33.9 8.6 66 9 1.2 35 Hame PM25 µg/m³ 0.2 7.1.1 7.3 99 2 5 35 Helena PM25 Col. µg/m³ 0.2 7.1.1 7.3 99 2 5 35 Kalispel PM10 µg/m³ 0.2 7.1 7.3 99 2 5 35 Kalispel PM10 µg/m³ 0.2 7.1 7.3 99 2 7 35 Lewistown PM25 µg/m³ 0.2 71 135 100 <t< td=""><td>Columbia Falls</td><td>PM10</td><td>ug/m³</td><td>0</td><td>66</td><td>13</td><td>92</td><td>0</td><td>0</td><td>150</td></t<>	Columbia Falls	PM10	ug/m ³	0	66	13	92	0	0	150
Frenchtown PM25 µg/m³ 2.4 4.2.2 9.8 100 1 5 35 Glendive PM25 µg/m³ 2.1 6.1 1.7 20 0 0 25 Great Fails PM25 µg/m³ 3 82.6 10.9 96 7 10 35 Harmiton PM25 µg/m³ 1.1 39.7 8.6 66 9 12 35 Helena PM25 µg/m³ 1.2 74.9 8.4 100 3 8 35 Helena PM25 Col. µg/m³ 0.2 102 23 100 0 0 150 Lewistown OZONE ppb 0 19 1 97 0 0 150 Lewistown PM25 µg/m³ 0.2 71 5 99 5 7 35 Ubby PM10 µg/m³ 0.2 113 17 99 0 <t< td=""><td>Columbia Falls</td><td>PM25</td><td>ug/m³</td><td>-0.4</td><td>68.1</td><td>9.4</td><td>100</td><td>8</td><td>12</td><td>35</td></t<>	Columbia Falls	PM25	ug/m ³	-0.4	68.1	9.4	100	8	12	35
Glendive PM25 µµ/m³ -2.1 6.1 1.7 20 0 0 35 Great Falls PM25 µµ/m³ 1.1 39.3 5.7 99 1 2 35 Hamilton PM25 µµ/m³ 0.1 139.7 8.6 66 9 12 35 Helena PM25 µµ/m³ 0.2 71.1 7.3 99 2 5 35 Helena PM25 Col. µµ/m³ 0.2 71.1 7.3 99 2 5 35 Kalispel PM10 µµ/m³ 0.2 71.1 7.3 99 2 7 35 Lewistown NO2 ppb 0 100 0.0 0.07 0.037 97 1 35 0.07 Lewistown PM25 µµ/m³ 0.16 103 11 100 47 35 Libby PM10 µµ/m³ 1.1 13 17 99 <td>Frenchtown</td> <td>PM25</td> <td>ug/m³</td> <td>2.4</td> <td>42.2</td> <td>9.8</td> <td>100</td> <td>1</td> <td>5</td> <td>35</td>	Frenchtown	PM25	ug/m ³	2.4	42.2	9.8	100	1	5	35
Great Falls PM25 μg/m ¹ 3 82.6 10.9 96 7 10 35 Harre PM25 μg/m ¹ 1.1 39.3 5.7 99 1 2 35 Havre PM25 μg/m ¹ 0.1 139.7 8.6 66 9 12 35 Helena PM25 Col. μg/m ¹ 0.2 71.1 7.3 99 2 5 35 Kalispel PM10 μg/m ¹ 0.2 71.1 7.3 99 2 5 35 Lewistown NO2 ppb 0 19 1 97 0 0 100	Glendive	PM25	ug/m ³	-2.1	6.1	1.7	20	0	0	35
Hamilton PM25 μg/m ¹ -1 39.3 5.7 99 1 2 35 Havre PM25 μg/m ¹ 0.1 139.7 8.6 66 9 12 35 Helena PM25 Col. µg/m ¹ 0.2 71.1 77.3 99 2 5 35 Kalispel PM10 µg/m ¹ 0.2 71.1 77.3 99 2 5 35 Kalispel PM10 µg/m ¹ 0.1 97 0 0 100 130 17 99 0 0 150 Lewistown PM10 µg/m ¹ 1.6 109 12 100 4 7 35 Libby PM10 µg/m ¹ 0.05 0.10 0.033 9	Great Falls	PM25	ug/m ³	3	82.6	10.9	96	7	10	35
Havre PM25 μg/m ³ 0.1 139.7 8.6 66 9 12 35 Helena PM25 μg/m ³ 0.2 71.1 7.3 99 2 5 35 Helena PM25 Col. µg/m ³ 0.2 71.1 7.3 99 2 5 35 Kalispel PM10 µg/m ³ 0.2 71.1 7.3 99 2 5 35 Lewistown NO2 ppb 0 19 1 97 0 0 100 Lewistown PM10 µg/m ³ 0.2 71 5 99 5 7 35 Libby PM25 µg/m ³ 1.6 109 12 100 4 7 35 Libby PM25 µg/m ³ 1.6 109 12 100 4 7 35 Libby PM25 µg/m ³ 0.05 0.101 0.033 98 1	Hamilton	PM25	ug/m ³	-1	39.3	5.7	99	1	2	35
Helena PM25 µg/m ³ 1.2 74.9 8.4 100 3 8 35 Helena PM25 Col. µg/m ³ 0.2 71.1 7.3 99 2 5 35 Kalispel PM10 µg/m ³ 0.2 71.1 7.3 99 2 5 35 Lewistown NO2 Ppb 0 19 1 97 0 0 100 Lewistown OZONE ppm 0.008 0.07 0.037 97 1 35 0.07 Lewistown PM10 µg/m ³ 1 113 17 99 0 0 150 Libby PM25 µg/m ³ 1.6 109 12 100 4 7 35 Malta NO2 ppb 0 153 11 100 1 3 150 Malta PM25 µg/m ³ 0 153 14 98 0	Havre	PM25	ug/m ³	0.1	139.7	8.6	66	9	12	35
Helena PM2S Col. μg/m³ 0.2 71.1 7.3 99 2 5 35 Kalispel PM10 μg/m³ 2 102 23 100 0 0 150 Lewistown NO2 ppb 0 19 1 977 0 0 100 Lewistown PM10 μg/m³ 0.0 90 9 100 0 0 150 Lewistown PM10 μg/m³ 1 113 17 99 0 0 150 Libby PM25 μg/m³ 1.6 109 12 1 977 0 0 100 Mata NO2 ppb 0 12 1 977 0 0 100 Mata NO2 ppb 0 12 1 100 11 14 3 150 Mata PM10 μg/m³ 0.3 123.8 11 100 11	Helena	PM25	<u>не/m³</u>	1.2	74.9	8.4	100	3	8	35
Ratispel PM10 µg/m³ 2 102 103 100 0 0 150 Lewistown NO2 ppb 0 19 1 97 0 0 100 Lewistown PM10 µg/m³ 0.008 0.07 0.037 97 1 355 0.07 Lewistown PM10 µg/m³ 0.2 71 5 99 5 7 35 Libby PM25 µg/m³ 1.6 109 12 100 4 7 35 Libby PM25 µg/m³ 1.6 109 12 100 4 7 35 Malta NO2 ppb 0 12 100 4 7 35 Malta NO2 ppb 0 153 11 100 1 3 150 Malta PM25 µg/m³ 0.3 154 498 0 0 100 Miles	Helena	PM25 Col.	µв/т	0.2	71.1	7.3	99	2	5	35
Instruct Page Data	Kalispel	PM10	ug/m ³	2	102	23	100	0	0	150
Lewistown OZONE ppm 0.08 0.07 0.037 97 1 35 0.07 Lewistown PM10 µg/m³ 0 90 9 100 0 0 150 Lewistown PM25 µg/m³ 0.2 71 5 99 5 7 35 Libby PM10 µg/m³ 1 113 17 99 0 0 150 Libby PM10 µg/m³ 1 113 17 99 0 0 150 Libby PM25 µg/m³ 1.6 109 12 100 4 7 35 Malta PM25 µg/m³ 0.9 123 11 100 11 144 35 Miles City NO2 ppb 0 35 4 98 0 007 100 Miles City PM25 µg/m³ 1.1 214 12 84 1 1	Lewistown	NO2	ppb	0	19	1	97	0	0	100
LewistownPM10 $\mu g/m^3$ O.0O.0O.0O.0O.0ItoLewistownPM25 $\mu g/m^3$ -0.2715995735LibbyPM10 $\mu g/m^3$ 1113179900150LibbyPM25 $\mu g/m^3$ 1.6109121004735LibbyPM25 $\mu g/m^3$ 1.6109121004735MaltaNO2Ppb01219700100MaltaPM10 $\mu g/m^3$ 0.9123.87.4100113150MilataPM25 $\mu g/m^3$ 0.9123.87.4100111435Miles CityNO2Ppb0.010.0760.029985510.07Miles CityOZONEPpm0.0010.0760.023981140.07Miles CityPM25 $\mu g/m^3$ 1.8214128411150Miles CityPM25 $\mu g/m^3$ 3.58169900135353MissoulaPM25 $\mu g/m^3$ 1.8101113181003500Ncore Sieben's FlatCOTRACEPpb1.8101113181003500Ncore Sieben's FlatPM25 $\mu g/m^3$ -21.81.48545353 <td>Lewistown</td> <td>OZONE</td> <td>ppo</td> <td>0.008</td> <td>0.07</td> <td>0.037</td> <td>97</td> <td>1</td> <td>35</td> <td>0.07</td>	Lewistown	OZONE	ppo	0.008	0.07	0.037	97	1	35	0.07
Lewistown PM25 µg/m ³ 0.2 71 5 99 5 7 35 Libby PM10 µg/m ³ 1 113 17 99 0 0 150 Libby PM25 µg/m ³ 1.6 109 12 100 44 7 35 Malta NO2 ppb 0 12 1 97 0 0 100 Malta OZONE ppm 0.015 0.101 0.033 98 1 48 0.07 Malta PM10 µg/m ³ 0.9 123.8 7.4 100 11 14 35 Miles City NO2 ppb 0 35 4 98 0 0 100 111 14 35 Miles City PM25 µg/m ³ 1.2 14 100 10 11 35 Miles City PM10 µg/m ³ 3 58 16 99 </td <td>Lewistown</td> <td>PM10</td> <td>ug/m³</td> <td>0</td> <td>90</td> <td>9</td> <td>100</td> <td>0</td> <td>0</td> <td>150</td>	Lewistown	PM10	ug/m ³	0	90	9	100	0	0	150
Libby PM10 µg/m ³ 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.0 1.00 1.0 1.0 1.00 1.0 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <th1.0< th=""> <th1.00< th=""> 1.00</th1.00<></th1.0<>	Lewistown	PM25	µв/т	-0.2	71	5	99	5	7	35
Libby PM25 μg/m³ 1.6 1.0 1.7 1.0 4.7 35 Malta NO2 ppb 0 1.2 1.0 97 0 0 100 Malta OZONE ppm 0.005 0.101 0.033 98 1 448 0.07 Malta PM10 μg/m³ 0 153 11 100 1 3 150 Malta PM25 μg/m³ 0.9 123.8 7.4 100 11 144 35 Miles City NO2 ppb 0 35 4 98 0 0 100 Miles City OZONE ppm 0.001 0.076 0.029 98 5 51 0.07 Miles City PM25 μg/m³ 1.3 214 12 84 1 1 1.50 Missoula OZONE ppm 0 0.92 0.023 98 1 1.42	Libby	PM10	μα/m ³	1	113	17	99	0	0	150
Maita NO2 ppb O 100 110 144 35 Malta PM10 µg/m³ 0.9 123.8 7.4 100 111 144 35 Miles City NO2 ppb 0 35 4 98 0 0 100 Miles City PM25 µg/m³ 0.3 185 81. 100 10 111 35 Miles City PM25 µg/m³ 0.3 185 81. 100 10 111 35 Missoula PM10 µg/m³ -0.8 37.1 5.3 99 1 2 35 <td>Libby</td> <td>PM25</td> <td>μα/m³</td> <td>16</td> <td>109</td> <td>12</td> <td>100</td> <td>4</td> <td>7</td> <td>35</td>	Libby	PM25	μα/m ³	16	109	12	100	4	7	35
Malta OZONE ppm 0.005 0.011 0.033 98 1 48 0.07 Malta PM10 µg/m³ 0.005 0.011 0.033 98 1 48 0.07 Malta PM25 µg/m³ 0.09 123.8 7.4 100 11 144 35 Miles City NO2 ppb 0 35 4 98 0 0 100 Miles City NO2 ppm 0.001 0.076 0.029 98 5 51 0.07 Miles City PM10 µg/m³ 1 214 12 84 1	Malta	NO2	nnh	0	12	1	97	0	0	100
Maita PM10 µµ/m Good Good <t< td=""><td>Malta</td><td>OZONE</td><td>nnm</td><td>0.005</td><td>0 101</td><td>0.033</td><td>98</td><td>1</td><td>48</td><td>0.07</td></t<>	Malta	OZONE	nnm	0.005	0 101	0.033	98	1	48	0.07
Maita PM25 µg/m³ -0.9 123.8 7.4 100 1 14 35 Miles City NO2 ppb 0 35 4 98 0 00 100 Miles City OZONE ppm 0.001 0.076 0.029 98 5 51 0.07 Miles City PM10 µg/m³ 1 214 12 84 1 1 150 Miles City PM25 µg/m³ 0.3 185 8.1 100 10 111 35 Missoula OZONE ppm 0 0.092 0.023 98 1 14 0.07 Missoula PM25 µg/m³ 0.8 37.1 5.3 99 1 2 3500 NCore Siben's Flat OXP pbb 0 25.6 1.38 74 - NCore Siben's Flat OXP pb 0 0.55 4.1 85	Malta	PM10	μα/m ³	0	153	11	100	1	3	150
Miles City NO2 ppb O 35 4 98 O O 00 Miles City OZONE ppm 0.001 0.076 0.029 98 5 51 0.07 Miles City PM10 µg/m³ 1 214 12 84 1 1 150 Miles City PM25 µg/m³ 0.3 185 8.1 100 10 111 35 Miles City PM25 µg/m³ 0.3 185 8.1 100 10 111 35 Miles City PM25 µg/m³ 0.3 58 16 99 0 0 114 0.07 Missoula PM10 µg/m³ -3 58 16 99 0 0 350 Mcore -Sieben's Flat COTRACE ppb 0 25.6 1.38 74 - - NCore -Sieben's Flat OZONE ppm 0.033 0.164 <	Malta	PM25	μg/m ³	-0.9	123.8	7.4	100	11	14	35
Miles City OZONE ppm 0.001 0.076 0.029 98 5 51 0.07 Miles City PM10 µg/m³ 1 214 12 84 1 1 150 Miles City PM25 µg/m³ 0.3 185 8.1 100 10 11 35 Missoula OZONE ppm 0.0 0.092 0.023 98 1 14 0.07 Missoula OZONE ppm 0.0 0.092 0.023 98 1 14 0.07 Missoula PM10 µg/m³ 3 58 16 99 0 0 150 Missoula PM10 µg/m³ -8 37.1 5.3 99 1 2 350 NCore -Sieben's Flat NOy ppb 0 25.6 1.38 74 - NCore -Sieben's Flat PM10 µg/m³ -1 80 5 84 <t< td=""><td>Miles City</td><td>NO2</td><td>nnh</td><td>0</td><td>35</td><td>4</td><td>98</td><td>0</td><td>0</td><td>100</td></t<>	Miles City	NO2	nnh	0	35	4	98	0	0	100
Miles City PM10 µg/m³ 1 214 12 84 1 1 512 60.57 Miles City PM25 µg/m³ 0.3 185 8.1 100 10 11 355 Miles City PM25 µg/m³ 0.3 185 8.1 100 10 11 355 Missoula OZONE ppm 0 0.92 0.023 98 1 144 0.07 Missoula PM10 µg/m³ 0.8 37.1 5.3 99 0 0 150 Missoula PM25 µg/m³ 0.8 37.1 5.3 99 1 2 350 NCore Sieben's Flat COTRACE ppb 18 1011 131 81 0 0 35000 35000 NCore Sieben's Flat NOy ppb 0 25.6 1.38 74 NCore Sieben's Flat PM10 µg/m³ -1 80 5 84 0 0 35 NCore Sieben's Flat <td>Miles City</td> <td>OZONE</td> <td>nnm</td> <td>0.001</td> <td>0.076</td> <td>0.029</td> <td>98</td> <td>5</td> <td>51</td> <td>0.07</td>	Miles City	OZONE	nnm	0.001	0.076	0.029	98	5	51	0.07
Miles City PM25 µg/m³ 0.3 185 8.1 100 10 11 35 Miles City PM25 µg/m³ 0.3 185 8.1 100 10 11 35 Missoula OZONE ppm 0 0.092 0.023 98 1 14 0.07 Missoula PM10 µg/m³ 3 58 16 99 0 0 150 Missoula PM25 µg/m³ -0.8 37.1 5.3 99 1 2 35 NCore - Sieben's Flat COTRACE ppb 18 1011 131 81 0 0 35000 NCore - Sieben's Flat OZONE ppm 0.03 0.164 0.036 92 2 67 0.07 NCore - Sieben's Flat PM10 µg/m³ -1 80 5 84 0 0 150 NCore - Sieben's Flat PM25 µg/m³ -2 18	Miles City	PM10	ug/m ³	1	214	12	84	1	1	150
Minsborky Integration μg/m 0.0 100 100 111 110 111 0.07 Missoula PM10 μg/m ³ 3 58 16 99 0 0 150 Missoula PM25 μg/m ³ -0.8 37.1 5.3 99 1 2 35 NCore-Sieben's Flat COTRACE ppb 18 1011 131 81 0 0 35000 NCore-Sieben's Flat OZONE ppm 0.03 0.164 0.036 92 2 67 0.07 NCore-Sieben's Flat PM10 μg/m ³ -1 80 5 84 0 0 150 NCore-Sieben's Flat PM25 μg/m ³ -2 18 1 82	Miles City	PM25	μg/m ³	03	185	8.1	100	- 10	11	35
Missoula PM10 μg/m³ 3 58 16 99 0 0 150 Missoula PM25 μg/m³ 3 58 16 99 0 0 150 Missoula PM25 μg/m³ -0.8 37.1 5.3 99 1 2 35 NCore-Sieben's Flat COTRACE ppb 18 1011 131 81 0 0 3500 NCore-Sieben's Flat OOy ppm 0.003 0.164 0.036 92 2 67 0.07 NCore-Sieben's Flat OV ppm 0.003 0.164 0.036 92 2 67 0.07 NCore-Sieben's Flat PM10 μg/m³ -1 80 5 84 0 0 150 NCore-Sieben's Flat PM25 μg/m³ -2 18 1 82 - - - NCore-Sieben's Flat SO2 ppb 0 1.66 <	Missoula	OZONE	nnm	0.5	0.092	0.023	98	1	14	0.07
Missoula PM25 μg/m³ -0.8 37.1 5.3 99 1 2 35 NCore - Sieben's Flat CO TRACE ppb 18 1011 131 81 0 0 35000 NCore - Sieben's Flat CO TRACE ppb 18 1011 131 81 0 0 35000 NCore - Sieben's Flat NOy ppb 0 25.6 1.38 74 NCore - Sieben's Flat OZONE ppm 0.003 0.164 0.036 92 2 67 0.07 NCore - Sieben's Flat PM10 μg/m³ -1 80 5 84 0 0 150 NCore - Sieben's Flat PM25 μg/m³ -2 18 1 82 NCore - Sieben's Flat SO2 ppb 0 1.66 0.7 89 0 0 75 Seley Lake PM25 μg/m³	Missoula	PM10	ug/m ³	3	58	16	99	-	0	150
Norsenant Page	Missoula	PM25	μg/m ³	-0.8	37.1	53	99	1	2	35
Neurone Steben's Flat NOy ppb 0 25.6 1.38 74 NCore - Sieben's Flat OZONE ppm 0.003 0.164 0.036 92 2 67 0.07 NCore - Sieben's Flat OZONE ppm 0.003 0.164 0.036 92 2 67 0.07 NCore - Sieben's Flat PM10 µg/m³ -1 80 5 84 0 0 150 NCore - Sieben's Flat PM25 µg/m³ -2.9 60.5 4.1 85 4 5 35 NCore - Sieben's Flat PM25 µg/m³ -2 18 1 82 - - - - NCore - Sieben's Flat SO2 ppb 0 1.66 0.7 89 0 0 75 Seeley Lake PM25 µg/m³ 1.3 48.7 10.7 1000 8 12 124 0.07 Sidney NO2<	NCore - Siehen's Flat	COTRACE	nnh	18	1011	131	81	0	0	35000
Neuron Sieben's Flat OZONE ppm 0.003 0.164 0.036 92 2 67 0.07 NCore - Sieben's Flat PM10 μg/m³ -1 80 5 84 0 0 150 NCore - Sieben's Flat PM10 μg/m³ -1 80 5 84 0 0 150 NCore - Sieben's Flat PM25 μg/m³ -2.9 60.5 4.1 85 4 5 35 NCore - Sieben's Flat PM25 μg/m³ -2 18 1 82 - - - - NCore - Sieben's Flat SO2 ppb 0 1.6 0.7 89 0 0 75 Seeley Lake PM25 μg/m³ 1.3 48.7 10.7 100 8 12 35 Sidney NO2 ppb 0 22 2 98 0 0 100 Sidney OZONE ppm 0.033	NCore - Sieben's Flat	NOV	nnh	10	25.6	1 38	74			
NCore - Sieben's Flat PM10 μg/m³ -1 80 5 84 0 0 150 NCore - Sieben's Flat PM25 μg/m³ -2.9 60.5 4.1 85 4 5 35 NCore - Sieben's Flat PM25 μg/m³ -2.9 60.5 4.1 85 4 5 35 NCore - Sieben's Flat PM25 μg/m³ -2 18 1 82 - - - - NCore - Sieben's Flat SO2 ppb 0 1.6 0.7 89 0 0 75 Seeley Lake PM25 μg/m³ 1.3 48.7 10.7 100 8 12 35 Sidney NO2 ppb 0 22 2 98 0 0 100 Sidney NO2 ppm 0.003 0.076 0.034 98 12 124 0.07 Sidney PM10 μg/m³ -1 172 <td>NCore - Sieben's Flat</td> <td>070NF</td> <td>nnm</td> <td>0.003</td> <td>0.164</td> <td>0.036</td> <td>92</td> <td>2</td> <td>67</td> <td>0.07</td>	NCore - Sieben's Flat	070NF	nnm	0.003	0.164	0.036	92	2	67	0.07
Netrice Judice μg/m³ 1.1 0.00 0.5 0.4 0.0 0.0 0.5 NCore - Sieben's Flat PM25 μg/m³ -2.9 60.5 4.1 85 4 5 35 NCore - Sieben's Flat PM _{COARSE} μg/m³ -2 18 1 82 NCore - Sieben's Flat SO2 ppb 0 1.6 0.7 89 0 0 75 Seeley Lake PM25 μg/m³ 1.3 48.7 10.7 100 8 12 35 Sidney NO2 ppb 0 22 2 98 0 0 100 Sidney OZONE ppm 0.003 0.076 0.034 98 12 124 0.07 Sidney PM10 μg/m³ 1 172 13 1000 1 1 150 Sidney PM25 μg/m³ -0.1 143.9 7.5	NCore - Sieben's Flat	PM10	ug/m ³	-1	80	5	8/	0	0	150
NCore-Sieben's Flat PM _{COARSE} μg/m³ -2.2 18 1 83 4 -	NCore - Sieben's Flat	DM25	μg/m ³	-2.0	60.5	4.1	95	1	5	25
NCore-Sieben's FlatSO2ppb01.60.78900075Seeley LakePM25 $\mu g/m^3$ 1.348.710.710081235SidneyNO2ppb022298000100SidneyOZONEppm0.0030.0760.03498121240.07SidneyPM10 $\mu g/m^3$ 11721310011150SidneyPM25 $\mu g/m^3$ -0.1143.97.596101235SidneySO2ppb012.41940075Thompson FallsPM10 $\mu g/m^3$ 11125219400150Thompson FallsPM25 $\mu g/m^3$ 1.7998.1995535	NCore - Sieben's Flat	PM	μg/m ³	-2.3	12	4.1	82	4	5	35
Non-state Solar μg/m³ 1.3 48.7 10.7 100 8 12 35 Seeley Lake PM25 μg/m³ 1.3 48.7 10.7 100 8 12 35 Sidney NO2 ppb 0 22 2 98 0 0 100 Sidney OZONE ppm 0.003 0.076 0.034 98 12 124 0.07 Sidney PM10 μg/m³ 1 172 13 1000 1 1 150 Sidney PM25 μg/m³ -0.1 143.9 7.5 96 10 12 35 Sidney SO2 ppb 0 12.4 1 94 0 0 75 Sidney SO2 ppb 0 12.4 1 94 0 0 75 Thompson Falls PM10 μg/m³ 1.1 125 21 94 0 <th< td=""><td>NCore - Sieben's Flat</td><td>SO2</td><td>nnh</td><td>-2</td><td>1.6</td><td>0.7</td><td>80</td><td>0</td><td>0</td><td>75</td></th<>	NCore - Sieben's Flat	SO2	nnh	-2	1.6	0.7	80	0	0	75
Sidney NO2 ppb 0 22 2 98 0 0 100	Seelev Lake	PM25	μα/m ³	13	48.7	10.7	100	8	12	25
Sidney OZONE ppm 0.003 0.076 0.034 98 12 124 0.07 Sidney PM10 µg/m³ 1 172 13 100 1 1 150 Sidney PM10 µg/m³ 1 172 13 100 1 1 150 Sidney PM25 µg/m³ -0.1 143.9 7.5 96 10 12 35 Sidney SO2 ppb 0 12.4 1 94 0 0 75 Thompson Falls PM10 µg/m³ 11 125 21 94 0 0 150 Thompson Falls PM25 µg/m³ 1.7 99 8.1 99 5 5 35 Whitefich PM40 mc/m³ 1 107 21 02 0 0 0 150	Sidney	NO2	nnh	1.5	-0.7	20.7	00	0	0	100
Sidney PM10 μg/m³ 1 172 13 100 1 1 150 Sidney PM25 μg/m³ -0.1 143.9 7.5 96 10 12 35 Sidney SO2 ppb 0 12.4 1 94 0 0 75 Thompson Falls PM10 μg/m³ 11 125 21 94 0 0 150 Thompson Falls PM25 μg/m³ 1.7 99 8.1 99 5 5 35	Sidney	070NF	nnm	0.003	0.076	0.034	90	12	124	0.07
Sidney PM25 μg/m³ -1 172 13 100 1 1 150 Sidney PM25 μg/m³ -0.1 143.9 7.5 96 10 12 35 Sidney SO2 ppb 0 12.4 1 94 0 0 75 Thompson Falls PM10 μg/m³ 11 125 21 94 0 0 150 Thompson Falls PM25 μg/m³ 1.7 99 8.1 99 5 5 35 Whitefich PM40 m(m²³) 1 107 21 02 0 0 150	Sidney	DM10	ug/m ³	1	172	12	100	1	1	150
Sidney SO2 ppb 0 12.4 1 94 0 0 75 Thompson Falls PM10 μg/m³ 11 125 21 94 0 0 150 Thompson Falls PM25 μg/m³ 11 125 21 94 0 0 150 Thompson Falls PM25 μg/m³ 1.7 99 8.1 99 5 5 35	Sidney	PM25	μg/m	-0.1	1/2	7 5	100	10	12	25
Stoney SO2 μpt O 12.4 1 94 0 0 75 Thompson Falls PM10 μg/m³ 11 125 21 94 0 0 150 Thompson Falls PM25 μg/m³ 1.7 99 8.1 99 5 5 35 Whitefich PM40 μg/m³ 1 107 21 02 0 0 150	Sidney	SO2	µg/m	-0.1	12.9	1.5	04	0	12	33
Information PM10 $\mu g/m$ II I25 21 94 0 0 I50 Thompson Falls PM25 $\mu g/m^3$ 1.7 99 8.1 99 5 5 35 Whitefich PM40 m/m^3 1 107 21 00 0 150	Thompson Falls	DM10	hhn ha	11	12.4	21	94	0	0	150
Interface PWi2> μg/m 1.7 99 8.1 99 5 5 35 Whitefick DM40 μg/m ³ 1 107 21 02 0 0 450	Thompson Falls	PNACE	μg/m ⁻	17	123	21	54	- U	5	720
	Whitefich	PIVIZ 3	μg/m ³	1.7	107	0.1 21	33	5	5	35

Averaging Time	со	NO2	Ozone	PM2.5	PM 10	SO2
Short-term	1-hour	1-hour		24-hour	24-hour	1-hour
Extended	8-hour	Annual	8-hour	Annual		3-hour

NAAQS averaging times (for reference only):

Appendix E -- PM_{2.5} Speciation Analytes

Param Code	Parameter Description	Filter Type	Type Sampler		Unit Code	Unit Description
88401	Reconstructed Mass PM2.5 LC	All	Calculated	819	105	ug/m3 (LC)
68105	Avg. Ambient Temp	Teflon & Nylon	MetOne SASS/SuperSASS	810	017	Degrees C
68108	Avg. Ambient Pressure	Teflon & Nylon	MetOne SASS/SuperSASS	810	059	Millimeters (Hg)
68112	Sample Flow Rate CV	Nylon	MetOne SASS/SuperSASS	812	107	Percent
68115	Sample Volume	Nylon	MetOne SASS/SuperSASS	812	065	Cubic meter
88203	Chloride Ion	Nylon	MetOne SASS/SuperSASS	812	105	ug/m3 (LC)
88301	Ammonium Ion	Nylon	MetOne SASS/SuperSASS	812	105	ug/m3 (LC)
88303	Potassium Ion	Nylon	MetOne SASS/SuperSASS	812	105	ug/m3 (LC)
88306	Total Nitrate	Nylon	MetOne SASS/SuperSASS	812	105	ug/m3 (LC)
88403	Sulfate	Nylon	MetOne SASS/SuperSASS	812	105	ug/m3 (LC)
88502	PM2.5 mass	Teflon	MetOne SASS/SuperSASS	810	105	ug/m3 (LC)
68111	Sample Flow Rate CV	Teflon	MetOne SASS/SuperSASS	810	107	Percent
68114	Sample Volume	Teflon	MetOne SASS/SuperSASS	810	065	Cubic meter
88348	Soil PM2.5 LC	Teflon	Calculated (SASS)	818	105	ug/m3 (LC)
88102	Antimony (Sb)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88103	Arsenic (As)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88104	Aluminum (Al)	Tofler	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88100	Bromine (Br)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88110	Cadmium (Cd)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88111	Calcium (Ca)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88112	Chromium (Cr)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88113	Cobalt (Co)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88114	Copper (Cu)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88115	Chlorine (Cl)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88117	Cerium (Ce)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88118	Cesium (Cs)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88126	Iron (Fe)	Tetion	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
00120	Ledu (PD)	Toflon	MetOne SASS/SuperSASS	011	105	ug/m3 (LC)
88132	Manganese (Mn)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88136	Nickel (Ni)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88140	Magnesium (Mg)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88152	Phosphorous (P)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88154	Selenium (Se)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88160	Tin (Sn)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88161	Titanium (Ti)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88164	Vanadium (V)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88165	Silicon (Si)	Tetlon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88166	Silver (Ag)	Toflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88168	Strontium (Sr)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88169	Sulfur (S)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88176	Rubidium (Rb)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88180	Potassium (K)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88184	Sodium (Na)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
88185	Zirconium (Zr)	Teflon	MetOne SASS/SuperSASS	811	105	ug/m3 (LC)
68113	Sample Flow Rate CV	Quartz	URG 3000N	838	107	Percent
68116	Sample Volume	Quartz	URG 3000N	838	065	Cubic meter
68117	Avg. Ambient Temp	Quartz	UKG 3000N	838	017	Degrees C
88330	Avg. Ambient Pressure	Quartz	URG 3000N	838	105	winnieters (Hg)
88321	EC PM2.5 LC TOR	Quartz	URG 3000N	838	105	ug/m3 (IC)
88324	OC1 PM2.5 LC	Quartz	URG 3000N	838	105	ug/m3 (LC)
88325	OC2 PM2.5 LC	Quartz	URG 3000N	838	105	ug/m3 (LC)
88326	OC3 PM2.5 LC	Quartz	URG 3000N	838	105	ug/m3 (LC)
88327	OC4 PM2.5 LC	Quartz	URG 3000N	838	105	ug/m3 (LC)
88328	OP PM2.5 LC TOR	Quartz	URG 3000N	838	105	ug/m3 (LC)
88329	EC1 PM2.5 LC	Quartz	URG 3000N	838	105	ug/m3 (LC)
88330	EC2 PM2.5 LC	Quartz	URG 3000N	838	105	ug/m3 (LC)
88331	EC3 PM2.5 LC	Quartz	URG 3000N	838	105	ug/m3 (LC)
88355	OC CSN Unadj. PM2.5 LC TOT	Quartz	URG 3000N	838	105	ug/m3 (LC)
88370	OC CSN Unadi, PM2.5 LC TOR	Quartz	LIRG 3000N	838	105	ug/m3 (LC)
88374	OC1 CSN Unadi, PM2.51C	Quartz	URG 3000N	838	105	ug/m3 (LC)
88375	OC2 CSN Unadj. PM2.5 LC	Quartz	URG 3000N	838	105	ug/m3 (LC)
00276	OC3 CSN Unadj. PM2.5 LC	Quartz	URG 3000N	838	105	ug/m3 (LC)
003/0		Quartz	URG 3000N	838	105	ug/m3 (LC)
88377	OC4 CSN Unadj. PM2.5 LC	Quartz				
88376 88377 88378	OC4 CSN Unadj. PM2.5 LC OP CSN Unadj. PM2.5 LC TOR	Quartz	URG 3000N	838	105	ug/m3 (LC)
88376 88377 88378 88379	OC4 CSN Unadj. PM2.5 LC OP CSN Unadj. PM2.5 LC TOR OP PM2.5 LC TOT	Quartz Quartz Quartz	URG 3000N URG 3000N	838 838	105 105	ug/m3 (LC) ug/m3 (LC)
88377 88378 88379 88380	OC4 CSN Unadj. PM2.5 LC OP CSN Unadj. PM2.5 LC TOR OP PM2.5 LC TOT EC CSN Unadj. PM2.5 LC TOR	Quartz Quartz Quartz Quartz	URG 3000N URG 3000N URG 3000N	838 838 838	105 105 105	ug/m3 (LC) ug/m3 (LC) ug/m3 (LC)
88376 88377 88378 88379 88380 88381	OC4 CSN Unadj. PM2.5 LC OP CSN Unadj. PM2.5 LC TOR OP PM2.5 LC TOT EC CSN Unadj. PM2.5 LC TOR EC PM2.5 LC TOT	Quartz Quartz Quartz Quartz	URG 3000N URG 3000N URG 3000N URG 3000N	838 838 838 838	105 105 105 105	ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC)
88376 88377 88378 88379 88380 88380 88381 88382	0C4 CSN Una dj. PM2.5 LC OP CSN Una dj. PM2.5 LC TOR OP PM2.5 LC TOT EC CSN Una dj. PM2.5 LC TOR EC PM2.5 LC TOT OC PM2.5 LC TOT	Quartz Quartz Quartz Quartz Quartz Quartz	URG 3000N URG 3000N URG 3000N URG 3000N URG 3000N	838 838 838 838 838	105 105 105 105 105	ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC)
88377 88377 88378 88379 88380 88381 88382 88382 88383 88383	OC4 CSN Una dj. PM2.5 LC OP CSN Una dj. PM2.5 LC TOR CSN Una dj. PM2.5 LC TOR EC CSN Una dj. PM2.5 LC TOR EC PM2.5 LC TOT OC PM2.5 LC TOT EC1 CSN Una dj. PM2.5 LC EC2 CSN Una dj. PM2.5 LC	Quartz Quartz Quartz Quartz Quartz Quartz Quartz	URG 3000N URG 3000N URG 3000N URG 3000N URG 3000N URG 3000N URG 3000N	838 838 838 838 838 838 838 838	105 105 105 105 105 105	ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC)
88377 88377 88378 88379 88380 88381 88382 88382 88383 88384 88384	0C4 CSN Unadj. PM2.5 LC OP CSN Unadj. PM2.5 LC TOR CSN Unadj. PM2.5 LC TOR EC CSN Unadj. PM2.5 LC TOR EC PM2.5 LC TOT OC PM2.5 LC TOT EC1 CSN Unadj. PM2.5 LC EC2 CSN Unadj. PM2.5 LC EC3 CSN Unadj. PM2.5 LC	Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz	URG 3000N URG 3000N URG 3000N URG 3000N URG 3000N URG 3000N URG 3000N URG 3000N	838 838 838 838 838 838 838 838 838 838	105 105 105 105 105 105 105	ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC) ug/m3 (LC)

CSN Parameters

OC EC OP

Organic Carbon Elemental Carbon Organic Pyrolized Carbon (?)

Teflon filters are for elements. Nylon filters are for ions. Quartz filters are for carbon.

LC: Local Conditions of Temp and Press

SASS: 40

URG: 26

Total Params: 66

<u>Appendix F</u> -- National and Montana Ambient Air Quality Standards

National Ambient Air Quality Standards							
Pollutant Primary/ Averaging Level Form							
	Carbon Monoxide	primary	8-hour (Average Backward)	9 ppm	Not to be exceeded	9 ppm	
		printer,	1-hour	35 ppm	year	23 ppm	
NOv	Oxides of Nitrogen with NO₂	primary	1-hour	100 ppb	98th percentile of 1-hr daily max conc., avg'd over 3 years	0.30 ppm	
~	Indicator	primary and secondary	Annual	53 ppb ⁽²⁾	Annual Mean	0.05 ppm	
O ₃ Ozone		primary and secondary	8-hour (Average Foreward)	0.070 ppm ⁽³⁾ 40 CFR 50.19	Annual fourth- highest daily maximum 8-hr concentration,	-	
						1-hour 0.10 ppm	
	Sulfur Dioxide	primary	1-hour	75 ppb (4)	99th percentile of 1- hour daily max concentrations, avg'd over 3 years	0.50 ppm	
SO ₂		secondary	3-hour	0.5 ppm	Not to be exceeded more than once per year		
						24-hour 0.10 ppm	
			(Annual 0.02 ppm	
Pb	Lead	primary and secondary	Rolling 3 month average	0.15 μg/m ^{3 (1)}	Not to be exceeded		
		primary	Quarterly Average	1.5 μg/m ^{3 (1)}	Remains in effect only in E. Helena N.A. Area	1.5 μg/m ³	
		primary	Annual	9.0 μg/m³ ⁽⁵⁾ 40 CFR 50.20	annual mean, averaged over 3 years		
PM ₂	.5	secondary	Annual	15.0 μg/m³ 40 CFR 50.13	annual mean, averaged over 3 years		
Par	rticulate Matter	primary and secondary	24-hour	35 μg/m³ 40 CFR 50.18	98th percentile, averaged over 3 years		
PM ₁	0	primary and secondary	24-hour	150 µg/m³	Not to be exceeded more than once per year on average over 3 years	150 μg/m ³	
						Annual 50 μg/m ³	

* MAAQS also include: Fluoride in forage, monthly: 50 µg/g & grazing season: 35 µg/g; H₂S hourly: 0.05 ppm; Settleable PM 30-day avg: 10 g/m²

(1) In areas designated nonattainment for the Pb standards prior to the promulgation of the current (2008) standards, and for which implementation plans to attain or maintain the current (2008) standards have not been submitted and approved, the previous standards (1.5 µg/m3 as a calendar quarter average) also remain in effect.

(2) The level of the annual NO2 standard is 0.053 ppm. It is shown here in terms of ppb for the purposes of clearer comparison to the 1-hour standard level.

(3) Final rule signed October 1, 2015, and effective December 28, 2015. The previous (2008) O3 standards additionally remain in effect in some areas. Revocation of the previous (2008) O3 standards and transitioning to the current (2015) standards will be addressed in the implementation rule for the current standards.

(4) The previous SO2 standards (0.14 ppm 24-hour and 0.03 ppm annual) will additionally remain in effect in certain areas: (1) any area for which it is not yet 1 year since the effective date of designation under the current (2010) standards, and (2)any area for which an implementation plan providing for attainment of the current (2010) standard has not been submitted and approved and which is designated nonattainment under the previous SO2 standards or is not meeting the requirements of a SIP call under the previous SO2 standards (40 CFR 50.4(3)). A SIP call is an EPA action requiring a state to resubmit all or part of its State Implementation Plan to demonstrate attainment of the required NAAOS.

(5) Changed from 12.0 μ g/m3 on Feb 7, 2024.

Appendix G -- Annual SO₂ Data Requirements Rule Report

Annual SO₂ Data Requirements Rule Report

On August 10, 2015, EPA finalized the Data Requirements Rule (DRR) for the 2010 1-hour SO₂ primary NAAQS (40 CFR 51, Subpart BB). The SO₂ DRR required that air agencies identify and characterize air quality around large sources. Talen Montana, LLC's Colstrip Steam Electric Generating Station, a coal-fired power plant located in Rosebud County, was the sole source in Montana to which this rule applied. As required in the rule for characterizing air quality for the primary 2010 SO₂ NAAQS, Montana DEQ submitted the appropriate designation of attainment for Rosebud County to the EPA, as demonstrated through modeling, on December 20, 2016. On January 9, 2018, EPA classified Rosebud County as Attainment/Unclassifiable (40 CFR Part 81) for the 2010 SO₂ NAAQS.

The SO₂ DRR (40 CFR 51.1205), requires DEQ to submit an annual report of SO₂ emissions at Talen Montana, LLC's Colstrip Steam Electric Generating Station; an assessment of the cause of any emission increases compared with modeled emissions; and a recommendation regarding if additional modeling is needed to ensure compliance with the rule. The report may be submitted directly or included as an Appendix to the agency's Annual Network Plan document. The following information is provided to meet those requirements.

1. Summary of Emissions

Table G-1 shows a summary of the three years of actual emissions modeled for the DRR compared to 2023 actual emissions as provided by Talen Montana, LLC for each of its coal-fired emitting units.

Modeled	N	lodeled Actual SO	2 Emissions (tons/		Actual Emissions	
Emission Sources	2012	2013	2014	Average (2012-2014)	2023 Actual SO ₂ Emissions (tons/year)	Compared to Modeled Average
Unit 1	2,212.03	4,109.70	2,467.51	2,929.74	0.0	-100%
Unit 2	2,589.72	4,889.66	3,393.30	3,624.23	0.0	-100%
Unit 3	2,144.72	2,533.16	2,057.54	2,245.14	2,487.93	11%
Unit 4	2,257.88	942.34	2,303.83	1,834.68	2,487.99	35%
Colstrip Total	9,204.35	12,474.86	10,222.18	10,633.79	4,975.92	-53%

TableG-1. Emission Summary at Colstrip Steam Electric Generating Station

2. Recommendation Regarding Additional Modeling

Total actual emissions from the Colstrip plant are significantly less than the modeled emissions; therefore, no further modeling is recommended to show compliance with the 1-hour SO₂ NAAQS.

<u>Appendix H</u> -- Public Inspection and Comments

Public Inspection and Comments

This Plan was made available for a 30-day period of public inspection and comment beginning on May 24, 2024. No comments or questions were received.