APPENDIX F – DAILY LOADS

F1.0 OVERVIEW

In this appendix the TMDL is expressed using daily loads to satisfy an additional EPA required TMDL element. Daily loads should not be considered absolute limits for a given day and may be refined in the future as part of the adaptive management process. The TMDLs may not be feasible at all locations within the watershed but if the allocations are followed, pollutant loads are expected to be reduced to a degree that the targets are met and beneficial uses are no longer impaired. It is not expected that daily loads will drive implementation activities.

In this appendix, daily loads are presented for sediment and temperature. Given the nature of nutrient analysis, targets, and loading, daily loads for nutrients are inherently described via the TMDLs in **Section 7.0** of the main document.

F2.0 SEDIMENT DAILY LOAD

The preferred approach for calculating daily sediment loads is to use a nearby water quality gage with a long-term dataset for flow and suspended sediment. Within the Boulder River watershed, there are only two long-term gage stations: Boulder River near Boulder (06033000) and Cataract Creek near Basin (06031950). Neither of these gage stations have a record of suspended sediment data.

Although no suspended sediment data is associated with these gages, the average daily hydrograph can be used to infer an estimated daily sediment load. A daily sediment load was determined using the means of daily mean values for discharge in cfs per day from a USGS gage station on the Boulder River. The USGS station Boulder River near Boulder (06033000) was selected to represent the daily variability in flows in the Boulder River watershed. It is assumed in this representation that the sediment loads will generally follow the hydrograph, as increased flows often reflect increased runoff that carries sediment from upland erosion and is more likely to influence bank erosion. Therefore, the percentage of the mean of daily mean value for discharge, in relation to the sum of the mean of daily mean discharge values can be derived and applied to the sediment loads for a watershed of interest.

The mean of daily mean values for discharge, in cfs, was calculated based on approximately 70 years of record (October 1, 1928 – September 30, 2012) from the Boulder River USGS station (**Table F-1**). **Figure F-1** visually represents the average daily percentage of the total yearly discharge for each day of the calendar year.

To conserve resources, this appendix only provides the base data from the USGS stream gage, and the daily percentages of the total annual load. For specific streams, all daily TMDLs may be derived by using the daily percentages in **Table F-2** and the TMDLs expressed as an average annual load, which are discussed in **Section 5.6** of the main document. For example, the total allowable annual sediment load for Basin Creek was estimated to be 523 tons. To determine the TMDL for Basin Creek on January 1, this value is multiplied by 0.062% which provides a daily load of 0.3 tons.

Figure F-1. Average daily percentage of the total mean yearly discharge

Figure F-1 illustrates the shape of the average hydrograph for the Boulder River, driven by climate and precipitation, and typical of many western Montana streams. In general, it appears that flows (and thereby increased sediment loads) increase in the spring as winter snowpack in the high elevations melts and drains to the waterways below. Peak flows typically occur in the month of May, followed by a declining hydrograph into August where flows near baseflow levels. The small rise in flow in late September through October likely represents the end of irrigation season and a slight increase in flow levels due to the discontinuation of water withdrawals and/or recharge from groundwater inputs.

The approach outlined above provides a simple approximation for a reasonable portioning of the total annual load among days throughout the year. It is acknowledged that a direct linear relationship between sediment load and the hydrograph may not exist. Sediment loading is frequently episodic and dependent on many differing physical, climatological, and anthropogenic factors. However, the approach for daily loads in this context does provide us with insight into those times of the year where sediment loading is most likely to occur, and thereby gives us a guide for assessment and management of sediment loading in the watershed.

F3.0 TEMPERATURE DAILY LOAD

Because of the dynamic temperature conditions throughout the course of a day, the temperature TMDL is the thermal load, at an instantaneous moment, associated with the stream temperature when in compliance with Montana's water quality standards. The temperature standard for the Boulder River and High Ore Creek is defined as follows: For waters classified as B-1, the maximum allowable increase over the naturally occurring temperature is 1° F, if the naturally occurring temperature is less than 66° F. Within the naturally occurring temperature range of 66° F to 66.5° F, the allowable increase cannot exceed 67° F. If the naturally occurring temperature is greater than 66.5° F, the maximum allowable increase is 0.5° F.

The daily load for temperature is therefore the thermal load to the stream over 24 hours that is associated with all reasonable land, soil, and water conservation practices. A total maximum daily heat load can be calculated using average daily temperature values representative of conditions where the temperature standard is met and applying them to Equation F-1 below. However, the resultant daily load is not particularly useful from a management perspective. Fish are most distressed by warm water

temperatures that typically peak during summer afternoons. Providing thermal loads based upon an average daily temperature does not necessarily identify the thermal loads that would be most detrimental to fish during the hottest periods of the day, but it does provide a value for the total thermal load allowed over the course of 24 hours as required by EPA. Daily thermal loads will be met through achievement of targets and allocations for the Boulder River and High Ore Creek temperature TMDLs.

Equation F-1

Total Maximum Daily Load (TMDL) = $(\Delta - 32)^{\circ}Q^{\circ}(1.36^{\circ}10^{\circ})$

Where:

TMDL = allowed thermal load per day in kilocalories, above waters melting point Δ = allowed average daily temperature (F) Q = instantaneous discharge (cfs) 1.36*10⁶ = conversion factor

Day of	Mean of daily mean values for each day of record in cfs											
month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	27	30	32	82	253	594	187	45	26	31	39	34
2	27	30	32	87	252	592	179	43	27	32	37	34
3	27	29	33	88	266	605	174	44	26	33	38	33
4	27	29	33	94	295	605	167	41	25	33	39	32
5	27	30	34	107	310	587	155	41	25	34	39	31
6	27	30	34	112	319	590	149	40	25	36	38	31
7	27	29	34	116	336	578	143	38	24	36	39	30
8	28	30	35	116	341	566	133	36	24	36	40	29
9	28	32	36	118	350	553	123	34	26	35	39	30
10	27	30	38	118	366	532	116	33	28	35	38	30
11	27	31	39	126	378	513	115	33	27	36	38	29
12	27	30	40	133	396	501	110	32	27	37	37	29
13	26	30	42	144	414	490	106	33	28	37	38	29
14	27	30	43	157	431	464	100	32	27	37	37	29
15	27	30	44	166	432	435	90	31	28	38	36	29
16	27	30	47	170	457	442	82	31	28	38	36	28
17	28	30	47	175	499	456	79	30	28	38	35	28
18	28	30	50	188	518	414	80	29	30	38	36	28
19	27	30	52	194	547	380	74	28	30	38	35	27
20	27	30	52	204	571	356	70	28	31	39	34	27
21	27	30	54	210	588	332	66	27	31	40	33	27
22	27	31	57	225	594	318	62	30	33	40	32	27
23	26	31	59	238	593	296	59	29	31	39	32	28
24	27	32	59	238	605	278	56	29	32	40	33	29
25	27	34	62	234	612	268	53	27	32	40	34	28
26	27	34	66	227	611	262	53	28	32	40	33	27
27	27	32	72	229	603	244	55	28	32	39	33	27
28	26	32	70	232	618	233	53	27	32	40	33	27
29	27	32	69	240	622	215	53	28	32	39	33	27
30	27		71	251	619	201	51	27	32	38	33	27
31	28		74		607		48	27		39		27

Table F-1. Mean of daily mean values for each day for 69 - 71 years of record in, cfs (Calculation Period 1928-10-01 -> 2012-09-30)

Day of month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	0.062	0.069	0.073	0.188	0.580	1.363	0.429	0.103	0.060	0.071	0.089	0.078
2	0.062	0.069	0.073	0.200	0.578	1.358	0.411	0.099	0.062	0.073	0.085	0.078
3	0.062	0.067	0.076	0.202	0.610	1.388	0.399	0.101	0.060	0.076	0.087	0.076
4	0.062	0.067	0.076	0.216	0.677	1.388	0.383	0.094	0.057	0.076	0.089	0.073
5	0.062	0.069	0.078	0.245	0.711	1.347	0.356	0.094	0.057	0.078	0.089	0.071
6	0.062	0.069	0.078	0.257	0.732	1.353	0.342	0.092	0.057	0.083	0.087	0.071
7	0.062	0.067	0.078	0.266	0.771	1.326	0.328	0.087	0.055	0.083	0.089	0.069
8	0.064	0.069	0.080	0.266	0.782	1.298	0.305	0.083	0.055	0.083	0.092	0.067
9	0.064	0.073	0.083	0.271	0.803	1.269	0.282	0.078	0.060	0.080	0.089	0.069
10	0.062	0.069	0.087	0.271	0.840	1.220	0.266	0.076	0.064	0.080	0.087	0.069
11	0.062	0.071	0.089	0.289	0.867	1.177	0.264	0.076	0.062	0.083	0.087	0.067
12	0.062	0.069	0.092	0.305	0.908	1.149	0.252	0.073	0.062	0.085	0.085	0.067
13	0.060	0.069	0.096	0.330	0.950	1.124	0.243	0.076	0.064	0.085	0.087	0.067
14	0.062	0.069	0.099	0.360	0.989	1.064	0.229	0.073	0.062	0.085	0.085	0.067
15	0.062	0.069	0.101	0.381	0.991	0.998	0.206	0.071	0.064	0.087	0.083	0.067
16	0.062	0.069	0.108	0.390	1.048	1.014	0.188	0.071	0.064	0.087	0.083	0.064
17	0.064	0.069	0.108	0.401	1.145	1.046	0.181	0.069	0.064	0.087	0.080	0.064
18	0.064	0.069	0.115	0.431	1.188	0.950	0.184	0.067	0.069	0.087	0.083	0.064
19	0.062	0.069	0.119	0.445	1.255	0.872	0.170	0.064	0.069	0.087	0.080	0.062
20	0.062	0.069	0.119	0.468	1.310	0.817	0.161	0.064	0.071	0.089	0.078	0.062
21	0.062	0.069	0.124	0.482	1.349	0.762	0.151	0.062	0.071	0.092	0.076	0.062
22	0.062	0.071	0.131	0.516	1.363	0.729	0.142	0.069	0.076	0.092	0.073	0.062
23	0.060	0.071	0.135	0.546	1.360	0.679	0.135	0.067	0.071	0.089	0.073	0.064
24	0.062	0.073	0.135	0.546	1.388	0.638	0.128	0.067	0.073	0.092	0.076	0.067
25	0.062	0.078	0.142	0.537	1.404	0.615	0.122	0.062	0.073	0.092	0.078	0.064
26	0.062	0.078	0.151	0.521	1.402	0.601	0.122	0.064	0.073	0.092	0.076	0.062
27	0.062	0.073	0.165	0.525	1.383	0.560	0.126	0.064	0.073	0.089	0.076	0.062
28	0.060	0.073	0.161	0.532	1.418	0.534	0.122	0.062	0.073	0.092	0.076	0.062
29	0.062	0.073	0.158	0.551	1.427	0.493	0.122	0.064	0.073	0.089	0.076	0.062
30	0.062	0.000	0.163	0.576	1.420	0.461	0.117	0.062	0.073	0.087	0.076	0.062
31	0.064	0.000	0.170	0.000	1.392	0.000	0.110	0.062	0.000	0.089	0.000	0.062

Table F-2. Percentage of mean of daily mean values per day based on the sum of all mean of daily mean values