NITROGEN & PHOSPHORUS REMOVAL: REVIEW

GRANT WEAVER, PE & WASTEWATER OPERATOR

HELENA, MONTANA
JUNE 9 & 10, 2015

www.cleanwaterops.com
Optimizing wastewater treatment for nutrient removal

Yesterday
Operators Make a Difference!
Nitrogen Removal
 Wastewater Habitats
 Design Theory
 Process Control
Phosphorus Removal
 Habitats, Theory & Process Control
Why Nutrient Removal is Important to Montana Case Studies

Today
Cost-Savings / Sludge Reduction Modifications
Review
Group Discussion & Design
Nitrogen Removal – Step 1
Nitrification: Ammonia (NH$_4$) removal
Ammonia Removal - Nitrification

Create a Habitat to motivate and support Bacteria that remove Ammonia (NH$_4$)

- Dissolved Oxygen (DO)
- +100 ORP
- Low BOD
- High MLSS (High MCRT / SRT; Low F:M)
- Alkalinity to keep pH from dropping
- Time (HRT)
Ammonia (NH₄) Removal

Ammonia (NH₄)
Ammonia (NH_4) Removal

Oxygen

Ammonia (NH_4)
Ammonia (NH$_4$) Removal

Oxygen

Ammonia (NH$_4$)

Alkalinity
Ammonia \((NH_4)\) Removal

Oxygen

Ammonia \((NH_4)\) → Nitrite \((NO_2)\)

Alkalinity
Ammonia (NH_4) Removal

- Ammonia (NH_4)
- Nitrite (NO_2)
- Oxygen
- Alkalinity
Ammonia (NH$_4$) Removal

- Ammonia (NH$_4$)
- Nitrite (NO$_2$)
- Nitrate (NO$_3$)

Steps:
1. Ammonia (NH$_4$) is oxidized by oxygen to nitrite (NO$_2$) and alkalinity.
2. Nitrite (NO$_2$) is further oxidized by oxygen to nitrate (NO$_3$).
Ammonia (NH₄) Removal

- Oxygen

Ammonia (NH₄)

- Alkalinity

Nitrite (NO₂)

- Oxygen

Nitrate (NO₃)

Nitrification Habitat
- High DO / ORP
- Low BOD
- Plenty of Alkalinity
- High Sludge Age
- Long Retention time
Given the right habitat in which to prosper ...

Nitrifying bacteria will lower Ammonia (NH₄) to 0.5 mg/L or Less

And, add Nitrate (NO₃) into the waste stream
Nitrogen Removal – Step 2
Denitrification: Nitrate (NO$_3$) removal
Nitrate (NO$_3$) Removal - Denitrification

Create a Habitat so the Bacteria that Remove Nitrate (NO$_3$) will be motivated to do it...

- Little to Zero DO
- -100 ORP
- Surplus BOD (High F:M)
- Time (HRT)

They give back one-half of the Alkalinity that the Nitrifiers removed
Nitrate (NO₃) Removal

Nitrate
(NO₃)
Nitrate (NO_3^-) Removal

BOD

Nitrate
(NO_3^-)
Nitrate \((NO_3)\) Removal

BOD → Nitrate \((NO_3)\) → Oxygen
Nitrate (NO$_3^-$) Removal

- BOD
- Nitrate (NO$_3^-$)
- Oxygen
- Alkalinity
Nitrate (NO$_3$) Removal

Nitrate (NO$_3$) \rightarrow Nitrogen Gas (N$_2$) \rightarrow Oxygen \rightarrow Alkalinity \rightarrow BOD
Nitrate (NO₃) Removal

Nitrate (NO₃) → Nitrogen Gas (N₂)

Denitrification Habitat
- Low DO / ORP
- High BOD
- Adequate Retention time
- Gives back alkalinity

BOD

Oxygen

Alkalinity
Nitrate Removal Habitat

When given the right environmental conditions ...

Denitrifying bacteria will reduce Nitrate (NO₃) to 2.0 mg/L, maybe less

Nitrogen Gas will escape into the atmosphere

Effluent total-N will be very low
Recapping what we’ve discussed

Ammonia (NH₄) Removal - Nitrification
- High DO & ORP
- Low BOD
- Plenty of Alkalinity
- High MCRT, High Sludge Age, Low F:M
- Long Retention time

Nitrate (NO₃) Removal - Denitrification
- Low DO & ORP
- High BOD
- Long Retention time
- Gives back alkalinity
To get the most out of your treatment plant, make it a great place for bacteria to live...
Habitats

Anaerobic Zone
Volatile Fatty Acid (VFA) Production and VFA Uptake by PAOs (Phosphate Accumulating Organisms)...

followed by

Aerobic Zone
Phosphorus Uptake by PAOs ("Luxury Uptake")
Anaerobic Zone -
Volatile Fatty Acid (VFA) formation

One family of bacteria create VFAs
... PAOs “eat” the VFAs

AND

. . . . In the process, the PAO bacteria release some of their Phosphorus
Aerobic Zone

Phosphorus Accumulating Organisms (PAO) concentrate soluble Phosphorus.

PAOs contain 3 times as much Phosphorus as “regular” bacteria do.

The phosphorus concentration in the mixed liquor increases from less than 2% total-P to as much as 5% total-P.
Phosphorus: Soluble and Particulate

Soluble Phosphorus
Convert to TSS (Particulate)
Biological P removal
Chemical P removal

Particulate Phosphorus
Remove phosphorus by removing TSS
Phosphorus Removal Strategy

Convert up to 0.05 mg/L of Soluble Phosphorus to TSS (Particulate)

Biologically

Chemically

Particulate Phosphorus

Remove as much TSS as necessary to meet Phosphorus Limit

Rule of Thumb: $2 \text{ mg/L TSS} = 0.1 \text{ mg/L t-P}$
TSS Removal Requirements

If all but 0.05 mg/L of Soluble Phosphorus is Converted to Particulate Phosphorus (Biologically and/or Chemically)

And, if Effluent TSS is 5% total-Phosphorus, Effluent TSS cannot exceed the numbers shown in the table...

<table>
<thead>
<tr>
<th>P Limit</th>
<th>max TSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>0.3</td>
<td>5</td>
</tr>
<tr>
<td>0.4</td>
<td>7</td>
</tr>
<tr>
<td>0.5</td>
<td>9</td>
</tr>
<tr>
<td>0.6</td>
<td>11</td>
</tr>
<tr>
<td>0.7</td>
<td>13</td>
</tr>
<tr>
<td>0.8</td>
<td>15</td>
</tr>
<tr>
<td>0.9</td>
<td>17</td>
</tr>
<tr>
<td>1.0</td>
<td>19</td>
</tr>
<tr>
<td>1.1</td>
<td>21</td>
</tr>
<tr>
<td>1.2</td>
<td>23</td>
</tr>
<tr>
<td>1.3</td>
<td>25</td>
</tr>
<tr>
<td>1.4</td>
<td>27</td>
</tr>
<tr>
<td>1.5</td>
<td>29</td>
</tr>
</tbody>
</table>
The Water Planet Company

Making clean water affordable