MCPA

Hazards			
CI CI CI			
IUPAC name	(4-Chloro-2-methylphenoxy)acetic acid		
Other names	4-Chloro- <i>o</i> -tolyloxyacetic acid MCPA		
Identifiers			
<u>CAS</u> <u>number</u>	[<u>94-74-6]</u>		
<u>SMILES</u>	Cl-Cl=CC=C(OCC(=0)0)C(C)=C1		
Properties			
<u>Molecular</u> <u>formula</u>	C ₉ H ₉ ClO ₃		
Molar mass	200.62 g/mol		
Appearance	white to light brown solid		
Density	1.18-1.21 g/cm ³		
<u>Melting</u> point	114-118 °C (387-391 K)		
Solubility in <u>water</u>	Virtually insoluble, amine salt: 866 g/L		

	ester: 5 mg/L	
Hazards		
<u>MSDS</u>	External MSDS	
Except where noted otherwise, data are given for materials in their <u>standard state</u> (at 25 °C, 100 kPa)		

MCPA or **2-methyl-4-chlorophenoxyacetic acid** is a powerful, selective, widely-used phenoxy <u>herbicide</u>. The pure compound is a brown-colored powder.

History

Synthesis of MCPA was first reported by Synerholme and Zimmerman in 1945 and by Templeman and Foster in 1946.^[11] Templeman and Foster were searching for a compounds with similar or greater selective activity than <u>1-naphthaleneacetic acid</u> in inhibiting the growth of weeds while not adversely affecting the growth of <u>cereal</u> grains. They synthesized MCPA from the corresponding phenol by exposing it to <u>chloroacetic</u> acid and dilute base in a straightforward <u>substitution reaction</u>:^[2]

 $2\text{-methyl-4-chlorophenol} + ClCH_2CO_2H + \underline{base} \rightarrow MCPA + base \cdot HCl$

Chemical use

Because it is inexpensive, MCPA is used in various chemical applications. Its <u>carboxylic</u> <u>acid</u> group allows the formation of conjugated complexes with metals (see below). The acid functionality makes MCPA a versatile synthetic intermediate for more complex derivatives.^[3]

Commercial use

MCPA is used as an herbicide, generally as its salt or esterified forms. Used thus, it controls broadleaf weeds, including thistle and dock, in cereal crops and pasture. It is selective for plants with broad leaves, and this includes most deciduous trees. Clovers are tolerant at moderate application levels. It is currently classified as a restricted use pesticide. Its toxicity and biodegradation are topics of current research. One formulation is described by its manufacturer as "designed for specific markets that require the safest possible phenoxy product, primarily for use in the Pacific Northwest".^[4] Though not extremely toxic,^[5] it has recently been determined that MCPA can form complexes with metal ions and thereby increase their bioavailability,^[6] though there is also work being done to utilize this ability.^[7]

Brand names

The following commercial products contain MCPA.^[5]

- Agritox
- Agroxone
- Chiptox
- Chwastox
- Cornox
- Methoxone
- Rhonox
- Tigrex
- Verdone Extra (UK)
- Weed-Rhap
- Weed'n'Feed^[8]
- Weed-B-Gone
- Zero Bindii & Clover Weeder (Aus)

References

- 1. S. Budaver, ed. (1989). The Merck Index (11th ed.). Merck & Co, Inc..
- W.G. Templeman, W.A. Sexton (1946). "The Differential Effect of Synthetic Plant Growth Substances upon Plant Species. I. Seed Germination and Early Growth Responses to α-Naphthylacetic Acid and Compounds of General Formula arylOCHCOO". *Proceedings of the Royal Society of London* 133 (872): 300–313.
- A. R. Prasad, T. Ramalingam, A. B. Rao, P. V. Diwan and P. B. Sattur (1989). "Synthesis and biological evaluation of 3-aryloxyalkyl-6-aryl-7H-s-triazolo<u>3,4-b</u> [1,3,4]thiadiazines*". *European Journal of Medicinal Chemistry* **25** (2): 199–201. doi:10.1016/0223-5234(89)90116-5.
- 4. <u>"Chiptox"</u>. Nufarm. <u>http://www.nufarm.com/USAg/Chiptoxr</u>.
- 5. $\overline{a \ b}$ Extoxnet listing of MCPA
- J. Kobylecka, B. Ptaszynski, R. Rogaczewski, A. Turek (2003). "Phenoxyalkanoic acid complexes. Part I. Complexes of lead(II), cadmium(II) and copper(II) with 4-chloro-2methylphenoxyacetic acid (MCPA)". *Thermochimica Acta* 407 (1-2): 25–31. doi:10.1016/S0040-6031(03)00287-9.
- R. Kruszynski, T.J. Bartczak, B. Ptaszynski and A. Turek (2002). "A Novel Lead- bis (4-Chloro-2-Methylphenoxy)- Acetate Polymeric Complex". *Journal of Coordination Chemistry* 55 (9): 1079–1089. <u>doi:10.1080/0095897021000010035</u>.
- 8. <u>Yates Weed'n'Feed information page</u>

<u>v·d·e</u> <u>Pest control:Herbicides</u>		
<u>Anilides/Anilines</u>	acetochlor • alachlor • asulam • butachlor • diethatyl • diflufenican • dimethenamid • flamprop • metazachlor • metolachlor • pendimethalin • pretilachlor • propachlor • propanil • trifluralin	
Aromatic acids	aminopyralid • <u>chloramben</u> • <u>clopyralid</u> • <u>dicamba</u> • <u>picloram</u> •	

	pyrithiobac • quinclorac • quinmerac
Arsenicals	$\underline{cacodylic\ acid} \cdot \underline{copper\ arsenate} \cdot \underline{DSMA} \cdot \underline{MSMA}$
Organophosphorus	<u>bensulide</u> • <u>bilanafos</u> • <u>ethephon</u> • <u>fosamine</u> • <u>glufosinate</u> • <u>glyphosate</u> • <u>piperophos</u>
<u>Phenoxy</u>	$\frac{2,4-D}{2,4-DB} \cdot \underline{\text{dichlorprop}} \cdot \underline{\text{fenoprop}} \cdot \mathbf{MCPA} \cdot \underline{\text{MCPB}} \cdot \frac{2,4,5-T}{2,4,5-T}$
Pyridines	$\underline{\text{dithiopyr}} \cdot \underline{\text{fluroxypyr}} \cdot \underline{\text{imazapyr}} \cdot \underline{\text{thiazopyr}} \cdot \underline{\text{triclopyr}}$
<u>Quaternary</u>	diquat • <u>MPP</u> • paraquat
<u>Triazines</u>	$\frac{\text{ametryn} \cdot \text{atrazine} \cdot \text{cyanazine} \cdot \text{hexazinone} \cdot \text{prometon}}{\text{prometryn} \cdot \text{propazine} \cdot \text{simazine} \cdot \text{simetryn} \cdot \text{terbuthylazine} \cdot \text{terbuthylazine} \cdot \text{terbuthylazine} \cdot \text{terbutryn}}$
<u>Ureas</u>	chlortoluron • DCMU • metsulfuron-methyl
Others	$\frac{3\text{-}AT}{\text{methazole}} \cdot \frac{\text{bromoxynil}}{\text{metham sodium}} \cdot \frac{\text{DCBN}}{\text{sulfentrazone}} \cdot \frac{\text{dinoseb}}{\text{metham sodium}} \cdot \frac{\text{bromoxynil}}{\text{sulfentrazone}} \cdot \frac{\text{bromoxynil}}{sulfentra$

Retrieved from "http://en.wikipedia.org/wiki/MCPA"

Categories: Organochlorides | Carboxylic acids | Aromatic compounds | Herbicides