

Tintina Montana, Inc. September 13, 2016

HYDROLOGICAL ASSESSMENT OF PROPOSED CEMENTED TAILINGS FACILITY BLACK BUTTE COPPER PROJECT

Prepared for:

Tintina Montana, Inc. 17 East Main Street White Sulphur Springs, MT 59645

Prepared by:

Hydrometrics, Inc. 3020 Bozeman Avenue Helena, MT 59601

June 2016

TABLE OF CONTENTS

LIST OF TABLES	iii
LIST OF FIGURES	iii
LIST OF APPENDICES	iii
LIST OF ACRONYMS	iv
1.0 INTRODUCTION	1-1
1.1 SITE BACKGROUND	1-1
2.0 HYDROGEOLOGIC INVESTIGATION	2-1
2.1 WELL INSTALLATION	2-1
2.2 AQUIFER TESTING	2-1
2.3 WATER QUALITY ANALYSES	2-3
2.3.1 Static Water Level Measurement	2-3
2.3.2 Field Parameters and Water Quality Sample Collection	2-4
3.0 FIELD INVESTIGATION RESULTS	3-1
3.1 WELL INSTALLATION	3-1
3.2 SLUG TEST RESULTS	3-2
3.3 GROUNDWATER MONITORING RESULTS	3-3
4.0 GROUNDWATER FLUX ANALYSIS	4-1
4.1 AMBIENT GROUNDWATER FLUX	4-1
4.2 GROUNDWATER INFLOW TO FOUNDATION DRAIN	4-3
5.0 SUMMARY OF RESULTS	5-1
60 REFERENCES	6-1

LIST OF TABLES

TABLE 1.	ANALYTICAL METHODS AND DETECTION LIMITS
	FOR CTF MONITORING WELL SAMPLES
	TINTINA GOLD – BLACK BUTTE PROJECT2-6
TABLE 2.	WELL COMPLETION DETAILS
TABLE 3.	SLUG TEST ANALYSIS HYDRAULIC CONDUCTIVITY
	RESULTS3-3
TABLE 4.	MARCH 2016 WATER LEVEL ELEVATIONS3-5
TABLE 5.	MARCH 2016 GROUNDWATER QUALITY DATA3-6
TABLE 6.	AMBIENT GROUNDWATER FLUX ESTIMATES4-3
TABLE 7.	SIMULATED DEWATERING RATE OF FOUNDATION DRAIN
	SYSTEM4-5
	LIST OF FIGURES
FIGURE 1.	PROJECT LOCATION MAP1-2
FIGURE 2.	CEMENTED TAILINGS FACILITY1-4
FIGURE 3.	POTENTIOMETRIC SURFACE MAP3-4
FIGURE 4.	GROUNDWATER FLUX ZONES4-2
FIGURE 5.	SCHEMATIC OF CTF DEWATERING SIMULATION4-4
	LIST OF APPENDICES
APPENDIX A	WELL LOGS
APPENDIX B	SLUG TEST ANALYSES
APPENDIX C	LABORATORY ANALYTICAL REPORT
APPENDIX D	CTF DEWATERING ANALYSES

LIST OF ACRONYMS

AMSL Average Mean Sea Level

BGS Below Ground Surface

BMP Below Measuring Point

CTF Cemented Tailings Facility

GPM Gallons Per Minute

HSU Hydro-stratigraphic Unit

ID Inside Diameter

MDEQ Montana Department of Environmental Quality

MW Monitoring Well

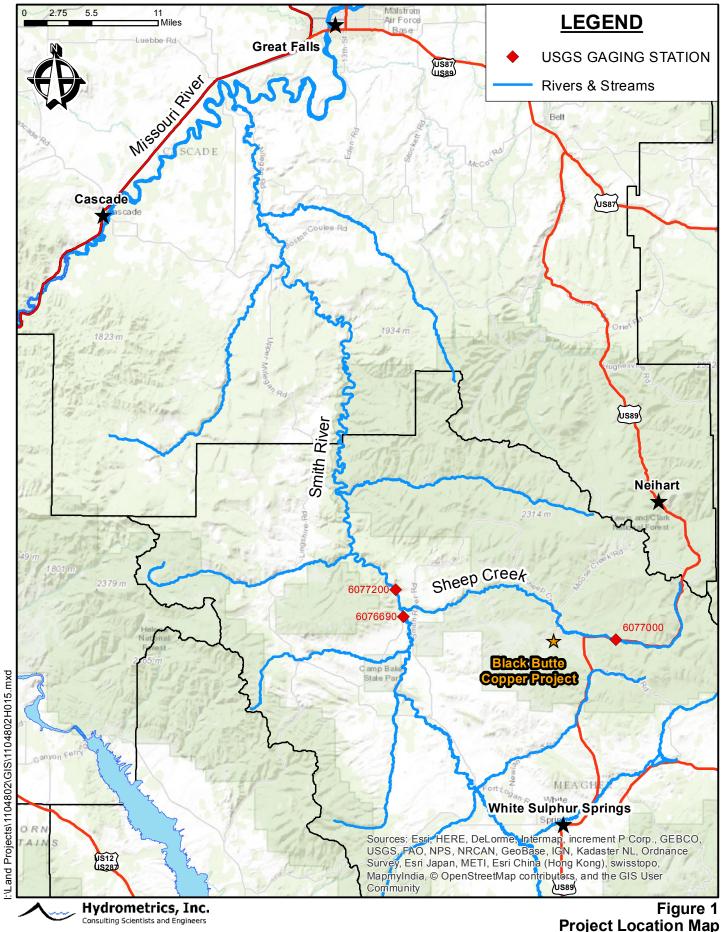
NFS National Sanitation Foundation

SC Specific Conductivity

iv

HYDROLOGICAL ASSESSMENT OF PROPOSED CEMENTED TAILINGS FACILITY BLACK BUTTE COPPER PROJECT

1.0 INTRODUCTION


Hydrometrics, Inc. conducted a hydrological assessment of the groundwater system in the vicinity of the proposed Cemented Tailings Facility (CTF). The purpose of this assessment was to characterize the groundwater system beneath the CTF including determining the depth at which water will be encountered in the CTF excavation, quantify the amount of water moving through the CTF excavation, and establish baseline water quality.

The scope of this assessment consisted of installation of four monitoring wells to the lowest depth of the CTF excavation, slug testing, groundwater level monitoring, estimating ambient flux of the groundwater system, and evaluate dewatering rates of the designed CTF underdrain system. A brief description of the methods used for each task and the results of the hydrological assessment are summarized in Sections 2 through 4.

1.1 SITE BACKGROUND

The Black Butte Copper Project is located approximately 16 miles north of White Sulphur Springs, Montana in Meagher County (Figure 1). The project is in the early stages of permitting an underground copper deposit and is collecting baseline data to for use in project development. The ore body consists of a massive sulfide deposit within the Newland Formation of the Precambrian Belt Supergroup. The Newland Formation can be divided into a lower member that consists of primarily dolomitic shale and an upper member of interstratified shales and carbonates (Nelson, 1963).


6/8/16\12:49 PM

Project Location Map
Black Butte Copper Project
Meagher County, Montana

Tintina Resources submitted a mine operations permit application to the Montana Department of Environmental Quality (MDEQ) in December 2015. The application included a CTF for surface storage of approximately 55% of all the tailings generated in the mill over the 13 year active mine life. The location of the CTF is shown on Figure 2. The CTF will also store 100% of the waste rock that is brought to surface. The excavation of the CTF includes a foundation drain system that will collect groundwater, infiltrated meteoric water, and seepage (if any) through the double HDPE-lined that might be collected in the foundation drain collection pond (Tintina Montana, 2015).

6/8/16\12:49 PM

Hydrometrics, Inc.
Consulting Scientists and Engineers

Figure 2
Cemented Tailings Facility
Black Butte Copper Project
Meagher County, Montana

2.0 HYDROGEOLOGIC INVESTIGATION

Hydrometrics conducted this hydrologic field investigation in March of 2016. The field investigation and methods used for well installation and water quality analyses are described in Sections 2.1 and 2.2, respectively.

2.1 WELL INSTALLATION

Four new wells were installed and tested for this investigation (Figure 2); one in the northern portion of the CTF where the excavation will be the deepest (MW-10), two in the middle of the CTF near the geologic contact between the shale and granodiorite (MW-11) and just above spring SP-5 (MW-12), and one near the southern end portion of the CTF in the vicinity of a developed spring (DS-1). The locations of the monitoring wells are shown on Figure 2 and well completion details are summarized in Table 1. *Environmental West Exploration* was contracted to drill the wells using air-rotary (tubex) drilling techniques. All drilling was supervised by a qualified scientist and detailed lithologic and construction logs were recorded on field forms and in a project field book. Well locations and measuring point elevations were surveyed by WWC Engineering the week of March 27, 2016. Well completion details are described in Section 3.1 of this report.

2.2 AQUIFER TESTING

The initial scope of work included conducting pneumatic slug tests on all four wells to estimate the hydraulic conductivity of the units within the excavation of the CTF. However, pneumatic tests could not be conducted on well MW-10 and MW-13 as the static water levels were within the screened interval, which inhibits the use of pneumatic methods. Therefore, other aquifer testing methods were used on MW-10 and MW-13. A standard slug-out test was conducted on well MW-13; however, it was determined that a standard slug-out test at well MW-10 was not feasible as the data from drilling indicated that the formation has a very low transmissivity and the water level would take days to recover after lowering the slug into the water column in preparation for the rising head test. Therefore, a rising head/pump down test was conducted at MW-10. The methods of the aquifer testing are summarized below and the results are summarized in Section 3.2 of this report.

-1 6/8/16\12:49 PM

<u>Pneumatic Slug Test:</u> A pneumatic slug test uses air pressure to depress the water in a well, then instantaneously releases the air at which time the water level recovers at a rate that is equivalent to the hydraulic conductivity of the aquifer. The recovery of the water level is monitored to determine the hydraulic conductivity of the aquifer in the vicinity of the well. Below is a summary of the procedures used to conduct pneumatic slug testing at the Black Butte Copper Site:

- 1. The static water level was measured and compared to the screened interval to determine the amount of water above the well screen.
- 2. A pneumatic slug test apparatus was used to seal the well and control the pressure in the well throughout the test.
- 3. The well was instrumented with a pressure transducer set at a depth below the proposed water level displacement; the transducer cable was sealed with a rubber gasket where it passed through the pneumatic slug test apparatus.
- 4. The transducer was set to record water levels at a 0.5 second interval prior to pressurizing the well.
- 5. The well was then pressurized using a compressor, which forced the water level downward in the well.
- 6. The pressure applied to the well was monitored using a pressure gauge that displayed the pressure placed on the wellhead in inches of water.
- 7. The water level was allowed to stabilize at an elevation above the top of the well screen so that the injected air would not escape from the well via the screen.
- 8. Once the pressure applied to the well and the transducer readings were stable, the air was then released from the well through a 4-inch diameter gate valve resulting in an instantaneous change in pressure in the well.
- 9. The water level recovery was recorded with a Solinst-Levelogger pressure transducer.

Multiple tests were conducted to ensure reproducible results. The water level was allowed to fully recover prior to conducting the next test.

The standard slug-out test was conducted by instrumenting the well with a pressure transducer set near the bottom of the well and set to record water levels at a 0.5 second interval. A 20-foot slug (1.5 inch PVC filled with sand) was lowered into the well and the water table was allowed to recover from adding the slug. Once the water table recovered, the slug was quickly removed from the well and the water level was recorded with a Solinst-Levelogger pressure transducer. Multiple tests were conducted to ensure reproducible results; the water level was allowed to fully recover prior to conducting the next test.

The test on MW-10 was performed during groundwater sampling and was conducted in a manner similar to a bail down test, but used a pump instead of a bailer to remove the water from the well. The pump was lowered slowly to near the bottom of the well to limit disturbance to the water level. The pump was turned on at a rate of 1 gpm until the water table reached the pump intake, at which time the pump was removed from the well and the water level recovery was recorded with a Solinst-Levelogger pressure transducer. Only one test was performed on MW-10 as it took approximately three days for the water table to recover to within a foot of the pre-test water level. Analysis of the slug tests is discussed in Section 3.2.

2.3 WATER QUALITY ANALYSES

Groundwater monitoring was conducted at the four new wells on March 29, 2016. Water quality monitoring consisted of collection of field parameters and water quality samples from each CTF monitoring well. The collection of groundwater samples generally consist of the following three steps:

- 1. Measurement of static water level;
- 2. Well purging and monitoring for field parameter stabilization; and
- 3. Water quality sample collection.

2.3.1 Static Water Level Measurement

Prior to collection of samples or removal/introduction of any equipment into the well, the static water level was measured at each well using an electric water level probe to determine

the depth of groundwater below a specified measuring point (top of PVC well casing). Water level measurements were combined with surveyed measuring point elevations to compute groundwater elevations at each monitoring point.

2.3.2 Field Parameters and Water Quality Sample Collection

Field parameters and water quality samples were collected by installing a 12-volt submersible pump to purge and sample all of the CTF monitoring wells. Purging consisted of removing three well volumes while routinely monitoring field parameters (pH, dissolved oxygen, temperature, and specific conductance) during the removal of each well volume. Field instruments were calibrated according to factory instructions, with calibrations results recorded on calibration forms. Well MW-10 went dry soon after purging began, a grab sample was collected from the initial discharge volume and field parameters were collected with the remaining water. In the other three wells, samples for laboratory analysis were collected after a minimum of three well volumes had been removed and successive field parameter measurements agree to within the stability criteria given below.

Criteria for field parameter stabilization are as follows:

Parameter (Units)	Stability Criteria
pH (standard units)	± 0.1 s.u.
Water temperature (°C)	± 0.2 °C
Specific conductance (µmhos/cm)	\pm 5% (SC \leq 100 \text{ \text{\mu}mhos/cm})
specific conductance (µmnos/cm)	\pm 3% (SC > 100 \text{ \text{µmhos/cm}})
Dissolved oxygen (mg/L)	\pm 0.3 mg/L

NOTE: Stability criteria obtained from USGS National Field Manual for the Collection of Water Quality Data: Chapter A4, Collection of Water Samples (September 1999).

Following well purging, final field parameter measurements were collected and recorded, and groundwater quality samples were obtained. Samples for trace constituents were filtered through a 0.45 μ m filter prior to preservation to allow analysis for the dissolved fraction. Sample containers were rinsed three times with sample water prior to sample collection, then preserved as appropriate for the intended analysis (e.g., nitric acid preservation to pH <2 for metals analysis), and stored on ice in coolers at approximately $4\pm2^{\circ}$ C during transport.

2-4 6/8/16\12:49 PM

Groundwater sampling equipment re-used between monitoring locations (12-volt or Grundfos sampling pump and short piece of discharge line) were thoroughly decontaminated between uses. Equipment decontamination consisted of the following steps:

- Rinse with approximately two gallons of soapy water (Alconox or other non-phosphate detergent); and
- Rinse with approximately two gallons of distilled water.

Water quality samples were submitted to Energy Laboratories in Helena, Montana for analysis of physical parameters, common constituents, nutrients, and a comprehensive suite of trace constituents as listed in Table 1.

2-5 6/8/16\12:49 PM

TABLE 1. ANALYTICAL METHODS AND DETECTION LIMITS FOR CTF MONITORING WELL SAMPLES
TINTINA GOLD – BLACK BUTTE PROJECT

Parameter	Analytical Method ⁽¹⁾	Project-Required Detection Limit (mg/L)
Physical Parameters		, B /
TDS	SM 2540C	10
Common Ions		
Alkalinity	SM 2320B	4
Sulfate	300.0	1
Chloride	300.0/SM 4500CL-B	1
Fluoride	A4500-F C	0.1
Calcium	215.1/200.7	1
Magnesium	242.1/200.7	1
Sodium	273.1/200.7	1
Potassium	258.1/200.7	1
Nutrients	2001,200.	-
Nitrate+Nitrite as N	353.2	0.01
Trace Constituents (Dissolv		0.01
Aluminum (Al)	200.7/200.8	0.009
Antimony (Sb)	200.7/200.8	0.0005
Arsenic (As)	200.8/SM 3114B	0.001
Arsenic (III/V) ³	E1632A Mod	0.001
Barium (Ba)	200.7/200.8	0.003
Beryllium (Be)	200.7/200.8	0.0008
Cadmium (Cd)	200.7/200.8	0.00003
Chromium (Cr)	200.7/200.8	0.00
Cobalt (Co)	200.7/200.8	0.01
Copper (Cu)	200.7/200.8	0.002
Iron (Fe)	200.7/200.8	0.002
Lead (Pb)	200.7/200.8	0.0003
Manganese (Mn)	200.7/200.8	0.005
Mercury (Hg)	245.2/245.1/200.8/SM 3112B	0.000005
• •	243.2/243.1/200.8/SIVI 3112B 200.7/200.8	0.000
Molybdenum (Mo) Nickel (Ni)	200.7/200.8	0.002
	200.7/200.8 200.7/200.8/SM 3114B	
Selenium (Se)		0.0002
Silver (Ag)	200.7/200.8	0.02
Strontium (Sr)	200.7/200.8	0.0002
Thallium (Tl)	200.7/200.8	0.0002
Uranium	200.7/200.8	0.008
Zinc (Zn)	200.7/200.8	0.002
Field Parameters	HE COD 27/ 44/ 46	NY A
Stream Flow	HF-SOP-37/-44/-46	NA 0.1
Iron (II/III) ³	HACH	0.1
Water Temperature	HF-SOP-20	0.1 °C
Dissolved Oxygen (DO)	HF-SOP-22	0.1 mg/L
pH	HF-SOP-20	0.1 s.u.
Specific Conductance (SC)	HF-SOP-79	1 μmhos/cm

⁽¹⁾ Analytical methods are from *Standard Methods for the Examination of Water and Wastewater* (SM) or EPA's *Methods for Chemical Analysis of Water and Waste* (1983).

⁽²⁾ Samples to be analyzed for dissolved constituents will be field-filtered through a 0.45 μm filter.

⁽³⁾ Arsenic will be analyzed on select samples as marked on the C-O-C.

3.0 FIELD INVESTIGATION RESULTS

3.1 WELL INSTALLATION

The completion details for the CTF monitoring wells are summarized in Table 2 and well logs are included in Appendix A.

TABLE 2. WELL COMPLETION DETAILS

W.D	Northing (meters)	Easting (meters)	Ground Surface Elev. (feet, amsl)	Measuring Point Elev. (feet, amsl)	Total	Screen	Sand Pack
Well Name		UTM Zone 12 North		Depth (feet, bgs)	Interval (feet, bgs)	Interval (feet, bgs)	
MW-10	5179215.05	506578.57	5882.78	5886.11	90	70-90	67-90
MW-11	5179117.47	506464.72	5854.74	5857.86	70	50-70	46-70
MW-12	5179010.38	506412.82	5841.51	5844.75	60	40-60	37-60
MW-13	5178855.81	506477.79	5819.07	5822.48	40	20-40	17-40

Monitoring well MW-10 encountered granodiorite from the surface to the completion depth. The granodiorite was highly fractured and weathered at the surface with oxidized fractured surfaces on chips; the weathering decreased with depth with more competent (less fractured) granodiorite below 30 feet. The borehole at MW-10 did not encounter any water during drilling; however, the water level came up slightly (about 1 foot) one day after well completion. Eventually, the water level in well MW-10 came up to approximately the middle of the screen (75.88 feet, bmp).

Monitoring wells MW-11 and MW-12 were both advanced through shales at the surface and granodiorite at depth. Well MW-11 has dark grey dolomitic shale from the surface to 20 feet below ground surface (bgs) with weathered shales near the contact with the granodiorite (20-35 feet bgs); no water was encountered in the shale unit. The MW-11 borehole encountered weathered granodiorite from 35-55 feet and dark grey unaltered granodiorite from 55 to 70 bgs. A trace of water (about 0.5 gpm) was observed from the MW-11 borehole at 45 feet; there was no observed increase in water below 45 feet. Similar to MW-11, well MW-12 encountered grey dolomitic shale from the surface to 20 feet bgs. The MW-12 borehole then

encountered layers of dolostone interbedded in dolomitic shales from 20 to 35 feet and granodiorite from 35 to 61 feet. The granodiorite was weathered in the first five feet with unaltered granodiorite from 40 feet to depth. The borehole was dry from the surface to 35 feet at which depth it started to encounter intermittent wet and dry zones, the borehole made about 0.5 gpm at the bottom of the hole.

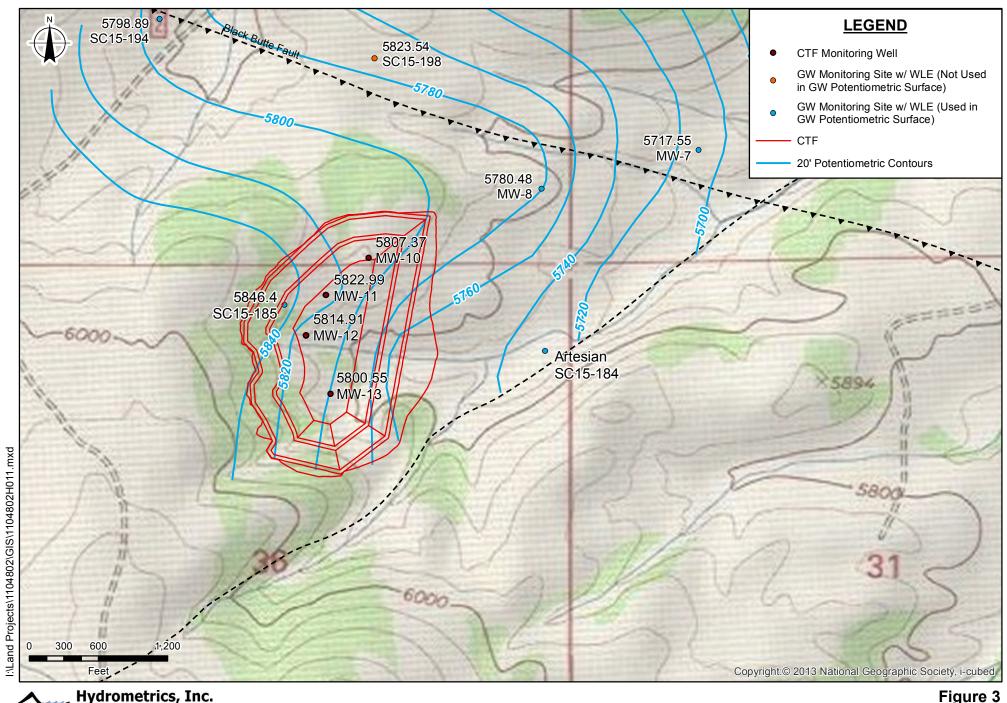
Monitoring well MW-13 encountered approximately five feet of topsoil, which is underlain by grey and tan weathered dolomitic shale to 20 feet. The shale continues to 30 feet, however, there is no evidence of weathering below 20 feet. The well borehole was advanced through dark grey limestone from 30 to 40 feet. The borehole started making water (<1 gpm) at approximately 29.5 feet, near the contact with the limestone.

The four CTF monitoring wells were constructed with 2-inch ID (inside diameter) NFS-approved schedule 40 PVC with flush threaded joint couplings and 0.020-inch factory slotted screen. The borehole annulus was backfilled with silica sand from the well bottom to three to four feet above the top of the screen to provide a filter pack. The remainder of the borehole annulus was backfilled with bentonite grout and/or chips/pellets to seal the borehole annulus and prevent fluid migration along the outer well casing. All wells were installed by a licensed monitor well constructor and all construction and grouting details were consistent with State of Montana monitoring well construction regulations (ARM 36.21.800). Well completion details are summarized below and well logs are included in the Appendix A.

3.2 SLUG TEST RESULTS

Slug test results were analyzed using AQTESOLV (v.4.50) to estimate aquifer hydraulic conductivities. The data were analyzed using the Bouwer-Rice (1976) straight line solution for slug tests (all solutions can be found in Appendix B). The average hydraulic conductivity estimates from the wells completed in granodiorite (MW-10, -11, and -12) ranged from 0.001 to 9 ft/day (Table 3). Well MW-12 had the highest hydraulic conductivity and MW-10 had the lowest. Well MW-12 is completed near the contact of the granodiorite and shale and exhibited numerous fractures that produced water in the screen interval and represents an highly fractured zone and likely does not represent the bulk permeability of the granodiorite;

whereas well MW-10 is completed in an area with minimal fracturing and likely represents the primary permeability for granodiorite with only minor secondary permeability. Well MW-11 has an average hydraulic conductivity of 0.4 ft/day, which likely represents a bulk permeability of the shallow/moderately weathered granodiorite. Well MW-13 is the only well completed in shale within the planned CTF excavation. The slug test analysis estimates a hydraulic conductivity of approximately 2 ft/day for the shallow shales encountered by MW-13 in this area.


TABLE 3. SLUG TEST ANALYSIS HYDRAULIC CONDUCTIVITY RESULTS

	Hydraulic Conductivity (K) (ft/day)					
Well	Test 1	Test 3	Average			
MW-10	0.001	NA	NA	0.001		
MW-11	0.4	0.4	0.4	0.4		
MW-12	8	9	10	9		
MW-13	1.4	1.9	NA	2		

3.3 GROUNDWATER MONITORING RESULTS

Water level data collected from the four CTF monitoring wells during slug testing were used with the survey data to determine the water level elevation at each well (Table 4). The water level elevation data was added to the project scale potentiometric map used in the Mine Operating Permit Application (Tintina Montana, 2015), and the potentiometric surface was expanded to the area around the CTF (Figure 3). The water level elevations in the area of the CTF are highly variable, as can be seen in the northern portion of the CTF where well MW-11 appears to be completed near a groundwater divide between wells MW-10 and MW-12. MW-11 sits on a slope below MW-10 and upslope of MW-12, which is an unlikely area for a groundwater divide as less recharge is anticipated on a sloped topography. This suggests the variable water level elevations may be characteristic of a localized surficial groundwater system or may be the result of groundwater occurring in separate perched zones.

3-3

Consulting Scientists and Engineers

Figure 3
Potentiometric Surface Map
Black Butte Copper Project
Meagher County, Montana

Although there is evidence that the CTF wells are completed in a localized or perched zones where local lithology and fracture controlled permeability affects water levels, the potentiometric map (by definition) assumes the wells are completed in a well-connected groundwater system. The potentiometric surface shows that the groundwater flow potential in the northern portion of the CTF is generally southeast, whereas the flow potential is to the east in the southern portion of the CTF.

TABLE 4. MARCH 2016 WATER LEVEL ELEVATIONS

Well Name	Ground Surface Elev. (feet amsl)	Measuring Point Elev. (feet amsl)	Static Water Level (feet bmp)	Water Level Elevation (feet amsl)
MW-10	5882.78	5886.11	79.21	5806.90
MW-11	5854.74	5857.86	34.70	5823.16
MW-12	5841.51	5844.75	30.26	5814.49
MW-13	5819.07	5822.48	22.32	5800.16

Water quality results from the four monitoring wells are shown in Table 5 and the analytical report is included in Appendix C. The general chemistry shows that water from wells MW-10, -12, and -13 is a calcium bicarbonate water with low concentrations of magnesium and sulfate and other ions being near or below the detection limit. Well MW-11 is also a calcium bicarbonate type water; however, it has elevated sulfate concentrations (31 mg/L) compared to the other wells (8-18 mg/L). All of the wells have near neutral pH and specific conductance concentrations ranging from 364 to 434 µmhos/cm. Dissolved metals concentrations were all below the human health standard. Concentrations for most dissolved trace constituents at wells MW-11, -12, and -13 were below or at the detection limit; trace constituents above the detection limit include dissolved barium and strontium in all three wells, selenium in wells MW-12 and -13, and dissolved aluminum, iron, and manganese in MW-11 and MW-13. Dissolved trace constituents were elevated in well MW-10 compared to the other CTF wells. The elevated trace constituents is likely due to sediment present in

3-5

6/8/16\12:49 PM

TABLE 5. MARCH 2016 GROUNDWATER QUALITY DATA

Site Code	MW-13	MW-12	MW-12 DUP	MW-11	MW-10	Groundwater Human Health Standard
Field Sample ID (BBC-1603-)	300	301	302	303	304	
Date	3/29/2016	3/29/2016	3/29/2016	3/29/2016	3/29/2016	
FIELD PARAMETERS	T	T	T	T	T	Ī
Static Water Level (ft)	22.28	30.2		34.56	79.1	
pH (s.u.)	6.74	7.34		7.42	7.56	
Specific Conductance (µmhos/cm)	434	420		393	364	
Temperature (C)	5.9	7		7	7.4	
Dissolved Oxygen (mg/L)	6.32	6.27		5.66	6.24	
GENERAL PARAMETERS (mg/L)						
Total Suspended Solids	26	<10	<10	48	516	
Total Dissolved Solids	248	227	228	238	244	
COMMON IONS (mg/L)						
Alkalinity as CaCO3	220	210	210	170	180	
Sulfate	18	13	13	31	8	
Chloride	1	<1	<1	2	4	
Fluoride	0.1	0.1	0.1	0.1	0.4	4
Calcium	59	58	58	41	46	
Magnesium	20	19	19	11	17	
Sodium	1	2	2	21	11	
Potassium	<1	<1	<1	2	7	
NUTRIENTS (mg/L)						
Nitrate and Nitrite as N	0.18	0.15	0.15	0.38	0.50	10
DISSOLVED TRACE CONSTITUES	NTS (mg/L)					
Aluminum	0.036	< 0.009	< 0.009	0.263	3.66	
Antimony	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.006
Arsenic	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.01
Barium	0.056	0.054	0.054	0.148	0.211	1
Beryllium	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	0.004
Cadmium	< 0.00003	< 0.00003	< 0.00003	< 0.00003	0.00008	0.005
Chromium	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.1
Cobalt	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Copper	< 0.002	< 0.002	< 0.002	< 0.002	0.01	1.3
Iron	0.02	< 0.02	< 0.02	0.07	3.58	
Lead	< 0.0003	< 0.0003	< 0.0003	< 0.0003	0.0021	0.015
Manganese	0.010	< 0.005	< 0.005	0.005	0.168	
Mercury	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.0000066	0.002
Molybdenum	< 0.002	< 0.002	< 0.002	< 0.002	0.012	
Nickel	< 0.001	< 0.001	< 0.001	< 0.001	0.009	0.1
Selenium	0.0002	0.0002	< 0.0002	< 0.0002	0.0002	0.05
Silver	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.1
Strontium	0.103	0.141	0.141	0.261	0.796	4
Thallium	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.002
Uranium	< 0.008	< 0.008	< 0.008	< 0.008	0.008	0.03
Zinc	< 0.002	< 0.002	< 0.002	< 0.002	0.015	2

6/8/16\12:49 PM

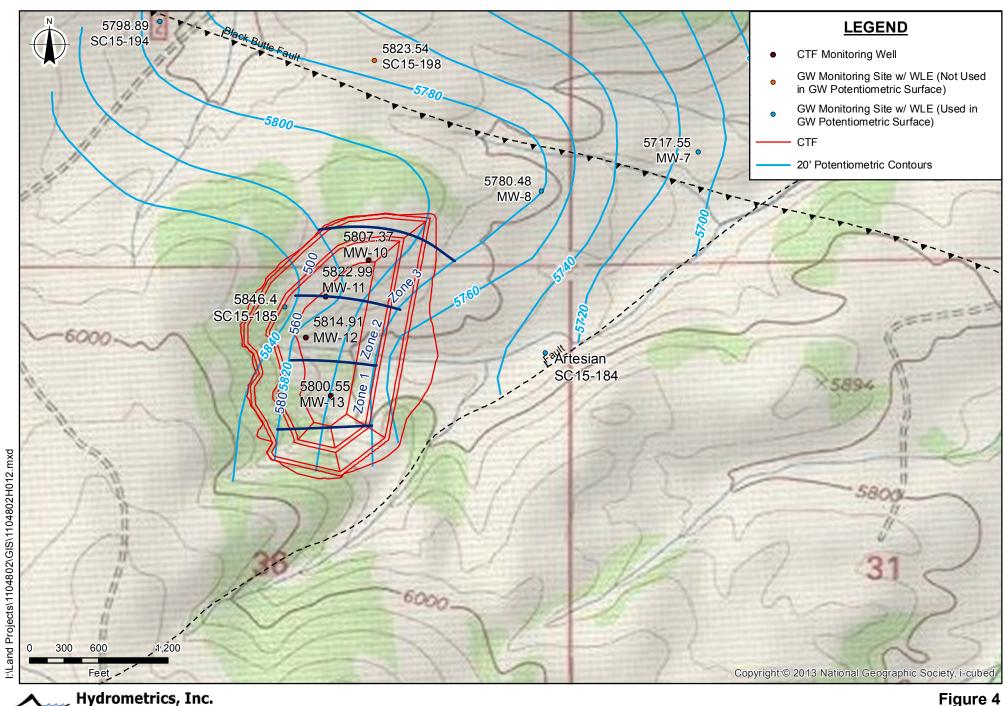
the sample container as noted in the analytical report (see Appendix C), which states the following:

"Sample H16030522-005 (BBC-1603-304) for dissolved metals had sediment present in the sample container. Per EPA method 200.7 and 200.8, if a precipitate is formed during acidification, transport or storage the sample aliquot must be treated prior to analysis. The sample was digested using EPA 200.2. The sample was analyzed by EPA 200.7 and EPA 200.8 and the results were within duplication. abc 5/4/16"

The concentrations of trace constituents in MW-10 are likely anomalous due to the sediment found in the sample bottle, as it is highly unlikely that concentrations of dissolved aluminum could be 3.66 mg/L in water with a pH of 7.56. Similar observations can be made about the concentrations reported for dissolved iron, manganese, lead, and zinc. Two possible explanations for the "sediment" in the sample and elevated dissolved trace constituents include filter breakthrough or colloidal sediment passing through the filter. Colloidal sediment may also explain wells MW-11 and MW-13 having concentrations of dissolved aluminum above the detection limit. Wells MW-10, -11, and -13 all had elevated suspended solids; concentrations of dissolved aluminum correlate well with the concentrations of suspended solids suggesting that some of the suspended solids may be passing through the 0.45µ filter and elevating the trace constituents. All of the CTF monitoring wells will be incorporated into the quarterly baseline monitoring program. Sampling procedures will be evaluated in the 2016 second quarter event to determine if the sampling method could be a cause of the sediment and possibly elevated dissolved metals concentrations in the filtered sample.

3-7 6/8/16\12:49 PM

4.0 GROUNDWATER FLUX ANALYSIS


The results of the CTF groundwater investigation were used to estimate the ambient groundwater flux through the excavation of the CTF and the groundwater capture or inflow to the foundation drain system. Although there is evidence that this may be a surficial localized system or separate perched zones (e.g., water level elevations at MW-10, -11, and -12), the groundwater flux estimates were conducted assuming the groundwater in the area of the CTF is connected between hydro-stratigraphic units (HSUs), which provides a conservative analysis.

4.1 AMBIENT GROUNDWATER FLUX

The groundwater flux within the proposed CTF excavation can be estimated from potentiometric and hydraulic conductivity data using a simple Darcy's Law calculation. The lithology and slug testing in the area suggests there are multiple HSUs in the area of the CTF. For the purpose of estimating groundwater flux, the area within the CTF excavation was divided into three zones (Figure 4). The three zones represent different HSUs as follows:

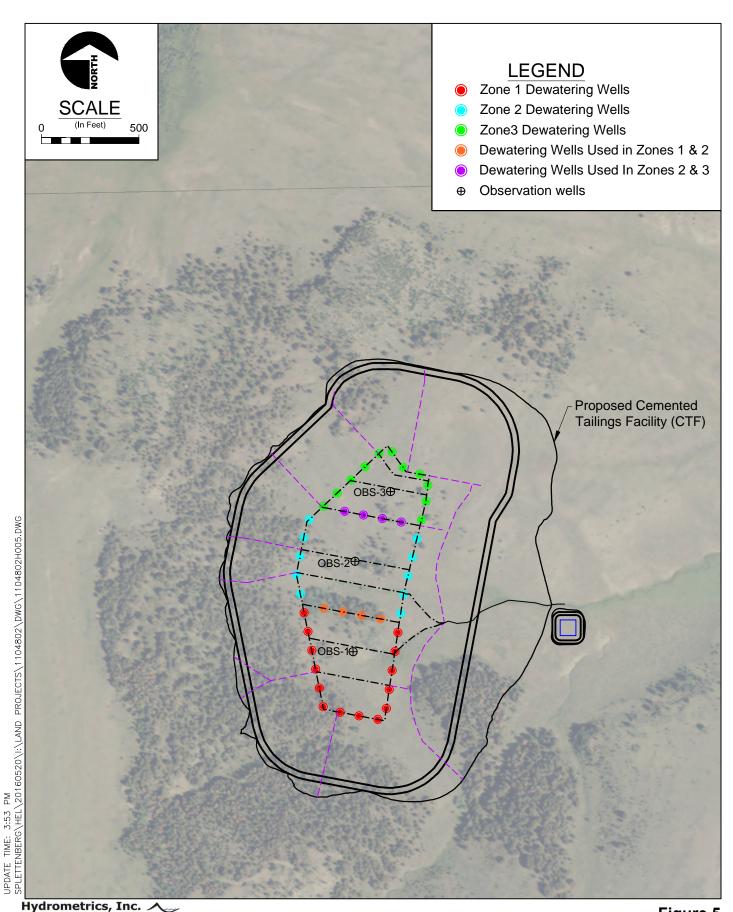
- Zone 1 shale encountered at MW-13;
- Zone 2 higher permeable granodiorite; and
- Zone 3 moderate permeable granodiorite.

The hydraulic conductivity used for each zone was based on the slug testing. As discussed above, the hydraulic conductivity at MW-10 and MW-12 likely represent the lower and higher permeability ranges for shallow granodiorite, respectively. Since Darcy's Law assumes a porous media, it is necessary to estimate the bulk permeability of the HSUs. It was assumed that the hydraulic conductivity derived from the aquifer tests provide a bulk permeability of the borehole. Zone 1 was assumed to have a bulk permeability based on the hydraulic conductivity at well MW-13 (2 ft/day). Since Zone 2 has a mixture of shale and granodiorite, the hydraulic conductivity of this zone was assumed to be the average conductivity of the four CTF wells (3 ft/day). Zone 3 was assigned a hydraulic conductivity

Consulting Scientists and Engineers

Figure 4
Groundwater Flux Zones
Black Butte Copper Project
Meagher County, Montana

(0.4 ft/day) based on the results of the MW-11 slug tests, as this is believed to represent the bulk permeability of the shallow granodiorite. The flux of each zone was calculated based on the width, average saturated thickness, and gradient of each zone as summarized in Table 6. The total ambient flux beneath the CTF is estimated at 20 gpm with Zone 2 providing 60% of the flux and Zones 1 and 3 providing 30% and 10%, respectively.


TABLE 6. AMBIENT GROUNDWATER FLUX ESTIMATES

Parameter	Zone 1	Zone 2	Zone 3
K (ft/day)	2	3	0.4
Gradient	0.06	0.07	0.06
Width (ft)	600	580	600
Thickness (ft)	15	20	25
Flux (gpm)	6	12	2
	Total Flux (gpm)		20

4.2 GROUNDWATER INFLOW TO FOUNDATION DRAIN

The groundwater inflow to the proposed foundation drain system was estimated based on an analytical model analysis using the software AQTESOLV 4.5. Separate analytical analyses were conducted by simulating vertical wells approximately every 100 feet along the foundation drain near the bottom of the CTF excavation for the three different zones within the CTF. Figure 5 shows the design of the well field generated to simulate the foundation drain for each zone. In this model, the wells that are adjacent to the different dewatering zones were used to estimate the dewatering of each of the zones they border. The dewatering assessments were conducted using the Moench (1984) drawdown solution in AQTESOLV to simulate drawdown in the center of each dewatering zone (identified as observation wells in Figure 5). The pumping rates for all of the wells used in each zone were adjusted until the drawdown in the center of the dewatering zone was at or slightly greater than the average saturated thickness of each zone. The analysis assumes the saturated thickness does not change due to dewatering, which is a conservative assumption as the smaller the saturated thickness the less flux can be transmitted through the HSU. Table 7 summarizes the parameters used and the total dewatering rate for the three zones. The AQTESOLV drawdown graphs are provided in Appendix D.

3 6/8/16\12:49 PM

Consulting Scientists and Engineers

Figure 5
Schematic of CTF Dewatering Simulation
Black Butte Copper Project
Meagher County, Montana

TABLE 7. SIMULATED DEWATERING RATE OF FOUNDATION DRAIN SYSTEM

Dewatering Zone	Number of Pumping Wells	Pumping Rate (gpm)	Hydraulic Conductivity (ft/day)	Minimum Drawdown (feet)	Total Dewatering Rate (gpm)
Zone-1	18	0.2	2	15	4
Zone-2	19	0.45	3	20	9
Zone-3	15	0.13	0.4	25	2
Total Dewatering Rate (gpm)					15

Based on the conservative assumptions used in the ambient groundwater flux and dewatering analyses, Tintina should anticipate an average groundwater flux to the foundation drain system ranging between 15 and 20 gpm; which is well within the capacity of the foundation drain system capacity (350 gpm, 22 liters/sec). Short-term higher flows should be anticipated during spring runoff and large precipitation events; however, these should be well within the capacity of the foundation drain system.

5 6/8/16\12:49 PM

5.0 SUMMARY OF RESULTS

The CTF investigation provides some essential information related to the hydrological system that the CTF excavation will encounter and provides assurance that the foundation drain system is sufficient to dewater the groundwater beneath the CTF. The monitoring wells in the northern half of the CTF (MW-10 through MW-12) were all completed in granodiorite; wells completed in this area have a large range in hydraulic conductivity (0.001 ft/day to 9 ft/day). Well MW-13 is located in the southern portion of the CTF and encountered moderately permeable shales, with an average hydraulic conductivity of 2 ft/day. Although there is some evidence that groundwater may be present in the area in a series of perched zones, the water levels in the wells indicate the groundwater table in the vicinity of the CTF is anticipated to range between <10 feet and approximately 30 feet above the base of the proposed CTF excavation.

Groundwater flux through the area of the CTF and the dewatering analyses were estimated assuming the wells are completed in a well-connected aquifer system. Ambient groundwater flux is estimated at approximately 20 gpm. The dewatering analysis estimates an inflow rate to the foundation drain system of approximately 15 gpm; which is well within the design flow rate of the foundation drain system (350 gpm). Although higher flow rates may occur seasonally, the flow rates are not anticipated to exceed the capacity of the foundation drain system based on hydraulic conductivities encountered at the monitoring wells.

Groundwater collected by the foundation drain system is anticipated to be of good quality based on the water quality results from the four monitoring wells. In general, the water is anticipated to be a calcium bicarbonate type water, with possibly a small sulfate signature (31 mg/L) based on the water quality at MW-11. The baseline groundwater quality within the CTF excavation is below the human health standard for all constituents.

1 6/8/16\12:49 PM

6.0 REFERENCES

- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- MDEQ, 2010. Circular DEQ-7. Montana Numeric Water Quality Standards, August 2010.
- Moench, A.F., 1984. Double-porosity models for a fissured groundwater reservoir with fracture skin, Water Resources Research, vol. 20, no. 7, pp. 831-846.
- Nelson, W.H. 1963. Geology of the Duck Creek Pass quadrangle, U.S. Geological Survey Bulletin 1121J, 56 p.
- Tintina Montana, Inc., 2015. Mine Operating Permit Application Black Butte Copper Project, Meagher County, MT, December 2015

6/8/16\12:49 PM

APPENDIX A

WELL LOGS

Hydrometrics, Inc.Consulting Scientists and Engineers

Monitoring Well

Hole Name: MW-10

Date Hole Started: 3/16/16 Date Hole Finished: 3/16/16

Helena, Montana

Client: Tintina Resources					
Project: Black Butte Copper P	roject				
County: Meagher State: MT					
Property Owner: Bar Z Ranch Inc					

Legal Description: SE, SW, SW S25, T12N, R06E

Location Description: North end of CTF toe

Recorded By: Ashton Montrone Drilling Company: Environmental West

Driller: Randy Drilling Method: Odex Drilling Fluids Used: Air

Purpose of Hole: Install Monitor Well

Target Aquifer: CTF Toe

Hole Diameter (in): 6 Total Depth Drilled (ft): 90

WELL COMPLETION	Y/N	DESCRIPTION	<u>INTERVAL</u>
Well Installed?	Υ	2-inch, flush threaded, Sch 40, PVC	+2 to 90
Surface Casing Used?	Υ	6-inch, steel casing	+2 to 3
Screen/Perforations?	Υ	0.020-inch slot, Sch 40 PVC	70-90
Sand Pack?	Υ	10/20 Silica Sand	67-90
Annular Seal?	Υ	Bentonite Chips	0.5-67
Surface Seal?	Υ	Portland Cement	+0.5-0.5
DEVELOPMENT/SAMPL	<u> ING</u>		
Well Developed?	Ν		
Water Samples Taken?	Υ	Commons, Nutrients, Metals	
Boring Samples Taken?	Υ	chips	Every 5 feet

Northing: 5179215.045 Easting: 506578.567

Surface Casing Height (ft): 2 Static Water Level Below MP: 79.21

Date: 3/28/16 Riser Height (ft): 2

MP Description: Top of PVC Ground Surface Elevation (ft): 5882.78

MP Height Above or Below Ground (ft): 2 MP Elevation (ft): 5886.11

Remarks: Borehole was dry during drilling; water level at 91.4' below measuring point (TD 92.5), water level up to 79.21 ten days after well completion. Insufficient water to develop.

	WELL CONSTRUCTION	SAMPLE NOTES	GRAPHICS	GEOLOGICAL DESCRIPTION
	0.0 Bentonite Grout	NOTES	`, ′ - GR/	0.0 - 30.0' Granodiorite
				Granodiorite, grey and tan with mafic minerals, clay seam from 4-5' and 19.5-20', highly weathered near surface with less weahtering with depth. Dry
			(-//-	
				30.0 - 90.0' Granodiorite Granodiorite, grey and tan, redish staining 45 to 55 feet, drilling hard. Dry during drilling.
/16			(-)(-	
Z.GDI 5/18				
J HYDHLN	67.0		(-)(-	
NDARD_REV4 K:\GINT\PROJECTS\11048\GPJ HYDHLNZ\GDT 5/19/16	70.0			
			/-//-	
.V4 K:\GIN!			- / / -]	
DAKD_KE				

Hydrometrics, Inc. Consulting Scientists and Engineers

Y/N

Υ

Υ

Υ

Monitoring Well

Hole Name: MW-11

Date Hole Started: 3/16/16 Date Hole Finished: 3/16/16

INTERVAL

+2 to 70

+2 to 3

50-70

46-70

0.5 - 46

+0.5-0.5

Consulting Scientists and Engineers Helena, Montana

Client: Tintina Resources				
Project: Black Butte Copper Project				
County: Meagher	State:	MT		
Property Owner: Bar 7 Ranch Inc.				

Legal Description: NE, NW, NW S26, T12N, R06E

Location Description: Middle of CTF toe

Recorded By: Ashton Montrone

Drilling Company: Environmental West

Driller: Randy

Driller: Randy
Drilling Method: Odex
Drilling Fluids Used: Air

Purpose of Hole: Install Monitor Well

Target Aquifer: CTF Toe
Hole Diameter (in): 6
Total Depth Drilled (ft): 70

Surface Seal?	Υ
DEVELOPMENT/SAMP	LING

WELL COMPLETION

Surface Casing Used?

Screen/Perforations?

Well Installed?

Sand Pack?

Annular Seal?

Well Developed? Y surge and pump

Water Samples Taken? Y Commons, Nutrients, Metals

Boring Samples Taken? Y chips Every 5 feet

DESCRIPTION

6-inch, steel casing

10/20 Silica Sand

Bentonite Chips

Portland Cement

2-inch, flush threaded, Sch 40, PVC

0.020-inch slot, Sch 40 PVC

Northing: 5179117.473 Easting: 506464.724

Static Water Level Below MP: 34.70 Surface Casing Height (ft): 2

Date: 3/28/16 Riser Height (ft): 2

MP Description: Top of PVC Ground Surface Elevation (ft): 5854.74

MP Height Above or Below Ground (ft): 2 MP Elevation (ft): 5857.86

Remarks:

WELL CONSTRUCTION GRAPHICS SAMPLE GEOLOGICAL DESCRIPTION **NOTES** 0.0 Bentonite Grout 0.0 - 2.0' Topsoil Dark brown, soil transitioning to shale with depth, dry. 2.0 - 20.0' Shale Blue grey, dolomitic shale, small fracture located at 11 feet with no water associated, dry. 20.0 - 35.0' Weathered Shale Tan, reddish brown, weathered/altered shale. Dry 35.0 - 55.0' Granodiorite Grey, reddish orange weathered granodiorite. making water at 45 feet (0.5 10/20 Silica Sand 0.020 Slot Screen 55.0 - 70.0' Granodiorite Dark greay, highly competent granodiorite. No increase in flow. 70.0 Bottom of Hole

Hydrometrics, Inc. Consulting Scientists and Engineers

Monitoring Well

Hole Name: MW-12

Date Hole Started: 3/15/16 Date Hole Finished: 3/15/16

Every 5 feet

Helena, Montana

Client: Tintina Resources				
Project: Black Butte Copper Project				
County: Meagher State: N				
Property Owner: Bar Z Ranch Inc				

Legal Description: NE, NW, NW S26, T12N, R06E

Location Description: Middle of CTF toe

Recorded By: Ashton Montrone Drilling Company: Environmental West

Driller: Randy Drilling Method: Odex Drilling Fluids Used: Air

Purpose of Hole: Install Monitor Well

Target Aquifer: CTF Toe Hole Diameter (in): 6

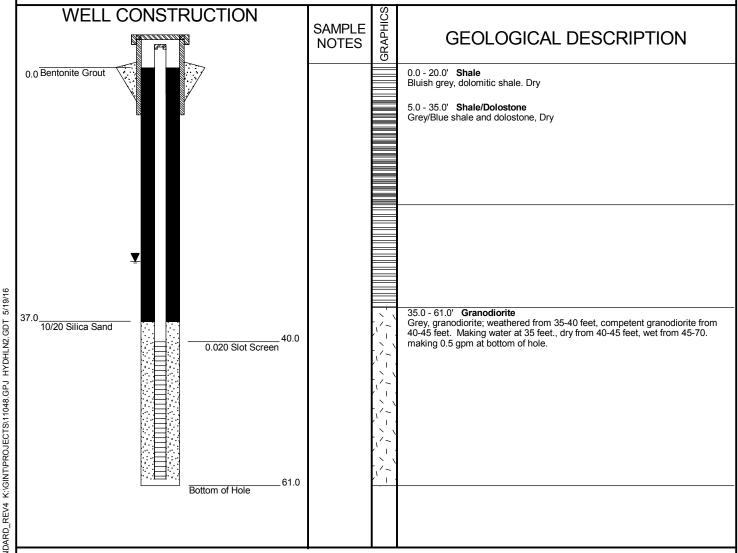
Total Depth Drilled (ft): 61

WELL COMPLETION	Y/N	<u>DESCRIPTION</u>	<u>INTERVAL</u>	
Well Installed?	Υ	2-inch, flush threaded, Sch 40, PVC	+2 to 60	
Surface Casing Used?	Υ	6-inch, steel casing	+2 to 3	
Screen/Perforations?	Υ	0.020-inch slot, Sch 40 PVC	40-60	
Sand Pack?	Υ	10/20 Silica Sand	37-60	
Annular Seal?	Υ	Bentonite Chips	0.5-37	
Surface Seal?	Υ	Portland Cement	+0.5-0.5	
<u>DEVELOPMENT/SAMPLING</u>				
Well Developed?	Υ	surge and pump		
Water Samples Taken?	Υ	Commons, Nutrients, Metals		

Northing: 5179010.377 Easting: 506412.822

Boring Samples Taken? Y

Static Water Level Below MP: 30.26 Surface Casing Height (ft): 2


Date: 3/28/16 Riser Height (ft): 2

chips

MP Description: Top of PVC Ground Surface Elevation (ft): 5841.51

MP Height Above or Below Ground (ft): 2 MP Elevation (ft): 5844.75

Remarks:

Hydrometrics, Inc. Consulting Scientists and Engineers

Monitoring Well

Hole Name: MW-13

Date Hole Started: 3/15/16 Date Hole Finished: 3/15/16

Every 5 feet

Client: Tintina Resources Project: Black Butte Copper Project State: MT County: Meagher Property Owner: Bar Z Ranch Inc

Legal Description: SE, NW, NW S26, T12N, R06E

Helena, Montana

Location Description: South of CTF toe

Recorded By: Ashton Montrone Drilling Company: Environmental West

Driller: Randy Drilling Method: Odex Drilling Fluids Used: Air

Purpose of Hole: Install Monitor Well

Target Aquifer: CTF Toe Hole Diameter (in): 6

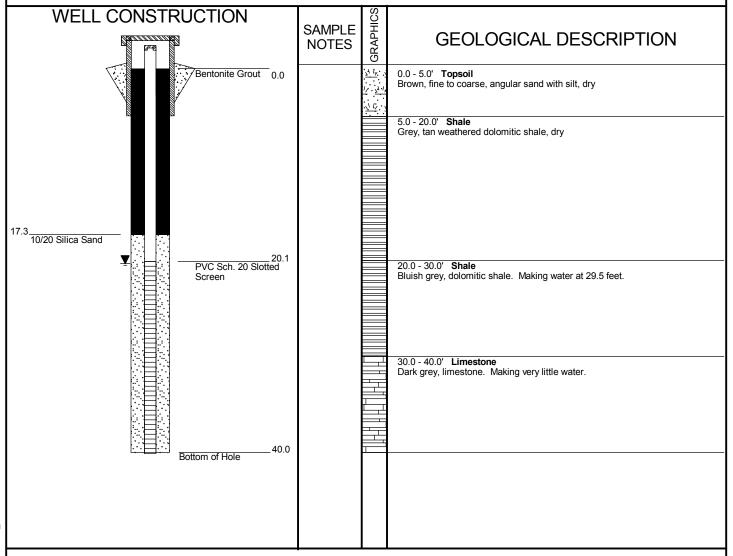
Total Depth Drilled (ft): 40

WELL COMPLETION	Y/N	DESCRIPTION	<u>INTERVAL</u>	
Well Installed?	Υ	2-inch, flush threaded, Sch 40, PVC	+2 to 40	
Surface Casing Used?	Υ	6-inch, steel casing	+2 to 3	
Screen/Perforations?	Υ	0.020-inch slot, Sch 40 PVC	20-40	
Sand Pack?	Υ	10/20 Silica Sand	17-40	
Annular Seal?	Υ	Bentonite Chips	0.5-17	
Surface Seal?	Υ	Portland Cement	+0.5-0.5	
<u>DEVELOPMENT/SAMPLING</u>				
Well Developed?	Υ	surge and pump		
Water Samples Taken?	Υ	Commons, Nutrients, Metals		

Northing: 5178855.811 Easting: 506477.787

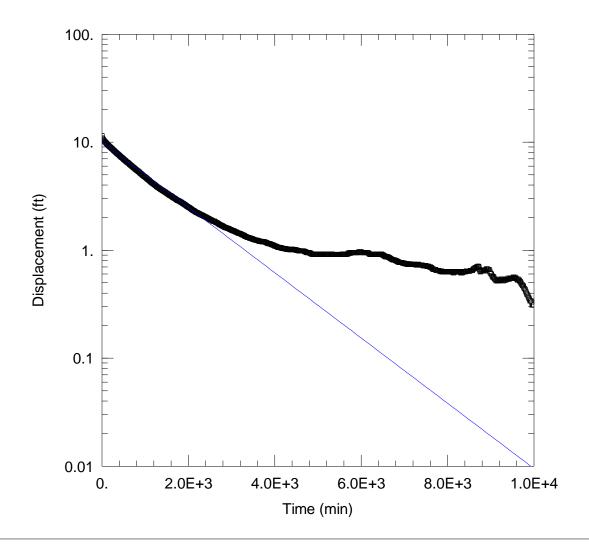
Boring Samples Taken? Y

Static Water Level Below MP: 22.32 Surface Casing Height (ft): 2


Date: 3/28/16 Riser Height (ft): 2

chips

MP Description: Top of PVC Ground Surface Elevation (ft): 5819.07


MP Height Above or Below Ground (ft): 2 MP Elevation (ft): 5822.48

Remarks:

APPENDIX B

SLUG TEST ANALYSES

WELL TEST ANALYSIS

Data Set: K:\...\MW-10_BouwerRice.aqt

Date: 05/20/16 Time: 11:54:15

PROJECT INFORMATION

Company: Hydrometrics

Project: 11048
Test Well: MW-10
Test Date: Forward

AQUIFER DATA

Saturated Thickness: 11.47 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-10)

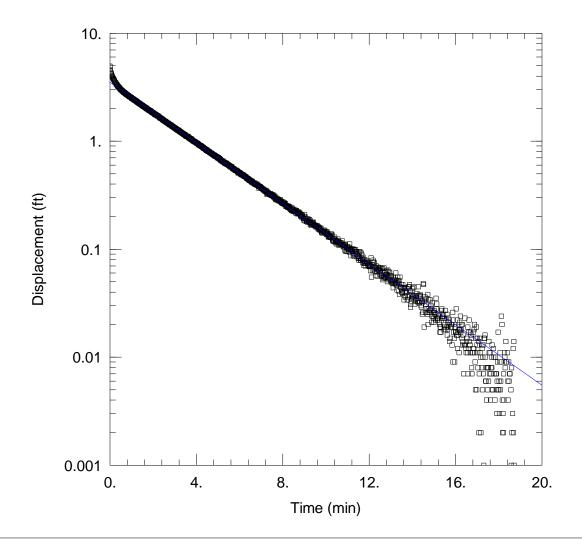
Initial Displacement: 11.47 ft

Total Well Penetration Depth: 13.4 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 11.47 ft

Screen Length: 13.4 ft Well Radius: 0.0833 ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 0.001022 ft/day

y0 = 10.01 ft

Data Set: K:\...\MW_11_BouwerRice.aqt

Date: 05/20/16 Time: 11:54:59

PROJECT INFORMATION

Company: Hydrometrics

Project: 11048
Test Well: MW-11
Test Date: Forward

AQUIFER DATA

Saturated Thickness: 30. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-11)

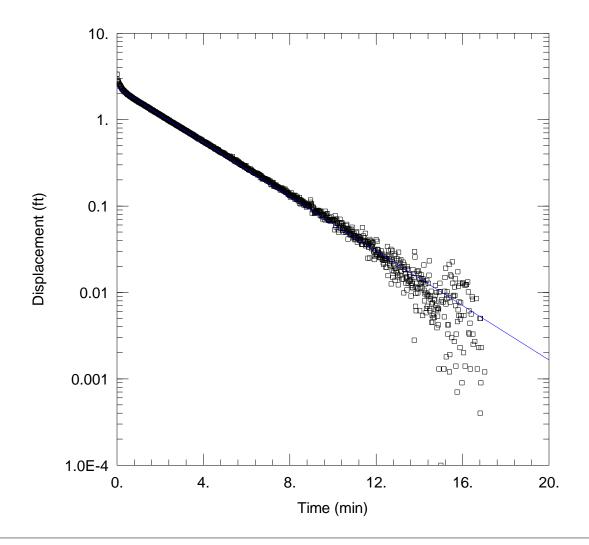
Initial Displacement: 4.948 ft

Total Well Penetration Depth: 37.8 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 37.8 ft

Screen Length: 20. ft Well Radius: 0.08333 ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 0.3809 ft/day

y0 = 3.519 ft

Data Set: K:\...\MW_11_Bouwer_Rice.aqt

Date: 05/20/16 Time: 11:55:43

PROJECT INFORMATION

Company: Hydrometrics

Project: 11048
Test Well: MW-11
Test Date: Forward

AQUIFER DATA

Saturated Thickness: 30. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-11)

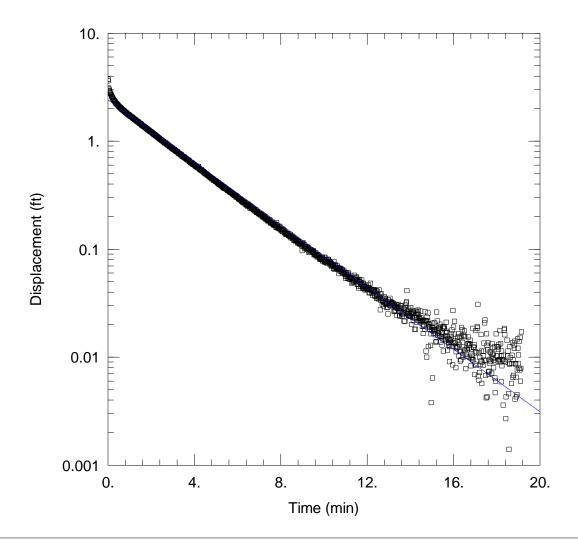
Initial Displacement: 3.355 ft

Total Well Penetration Depth: 37.8 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 37.8 ft

Screen Length: 20. ft Well Radius: 0.08333 ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 0.4275 ft/day y0

y0 = 2.328 ft

Data Set: K:\...\MW_11_Bouwer_Rice.aqt

Date: 05/20/16 Time: 11:56:16

PROJECT INFORMATION

Company: Hydrometrics

Project: 11048
Test Well: MW-11
Test Date: Forward

AQUIFER DATA

Saturated Thickness: 30. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-11)

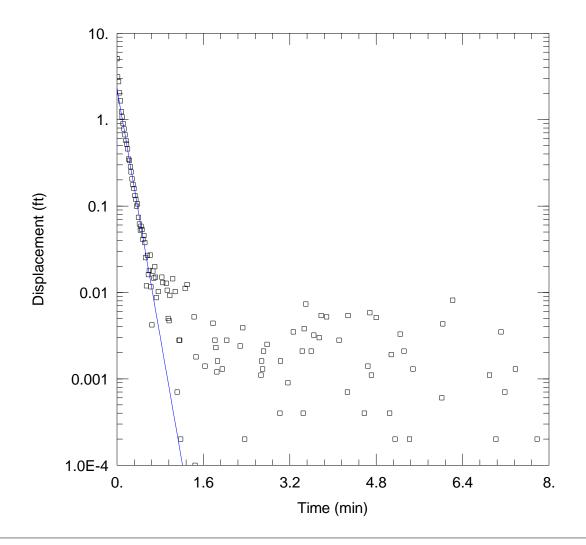
Initial Displacement: 3.753 ft

Total Well Penetration Depth: 37.8 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 37.8 ft

Screen Length: 20. ft Well Radius: 0.08333 ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 0.392 ft/day

y0 = 2.415 ft

Data Set: K:\...\MW_12_Bouwer_Rice.aqt

Date: 05/20/16 Time: 12:02:43

PROJECT INFORMATION

Company: Hydrometrics

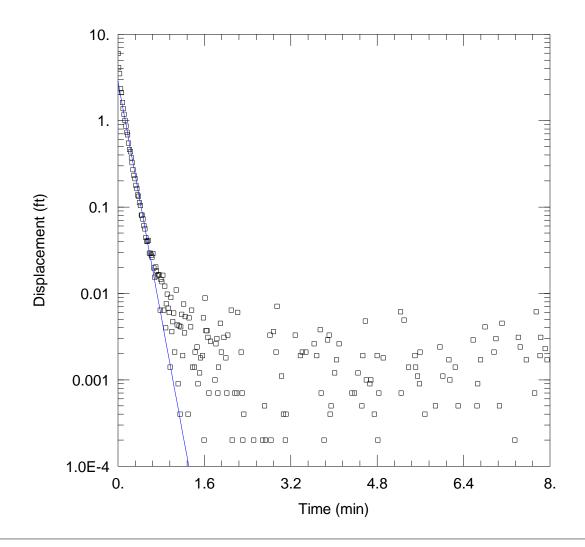
Project: 11048
Test Well: MW-12
Test Date: Forward

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-12)

Initial Displacement: 5.095 ft Static Water Column Height: 32.24 ft


Total Well Penetration Depth: 32.24 ft Screen Length: 20. ft

Casing Radius: 0.0833 ft Well Radius: 0.2 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 7.949 ft/day y0 = 2.308 ft

Data Set: K:\...\MW_12_Bouwer_Rice.aqt

Date: 05/20/16 Time: 12:03:30

PROJECT INFORMATION

Company: Hydrometrics

Project: 11048
Test Well: MW-12
Test Date: Forward

AQUIFER DATA

Saturated Thickness: 30. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-12)

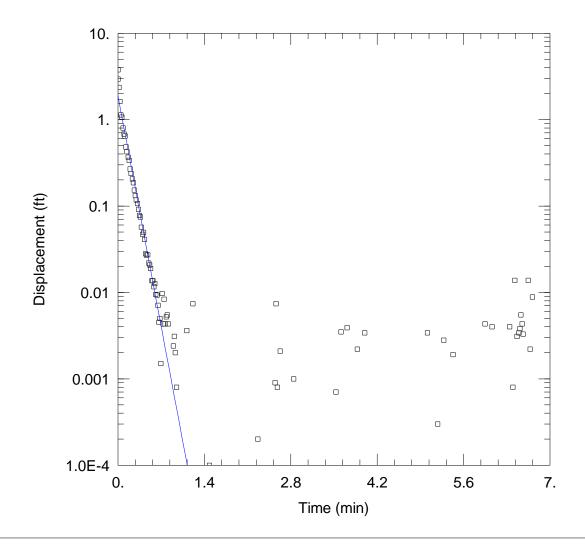
Initial Displacement: 5.95 ft

Total Well Penetration Depth: 32.24 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 32.24 ft

Screen Length: 20. ft Well Radius: 0.0833 ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 9.028 ft/day

y0 = 2.877 ft

Data Set: K:\...\MW_12_BouwerRice.aqt

Date: 05/20/16 Time: 12:04:07

PROJECT INFORMATION

Company: Hydrometrics

Project: 11048
Test Well: MW-12
Test Date: Forward

AQUIFER DATA

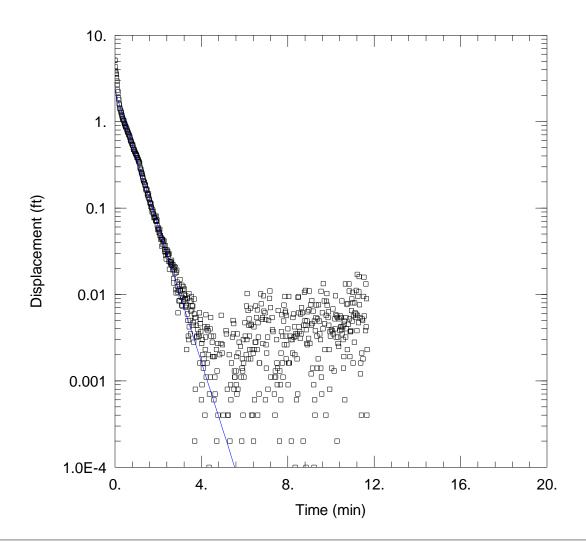
Saturated Thickness: 30. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-12)

Initial Displacement: 3.762 ft

Total Well Penetration Depth: 32.24 ft

Casing Radius: 0.0833 ft


Static Water Column Height: 32.24 ft

Screen Length: 20. ft Well Radius: 0.0833 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 10.11 ft/day y0 = 1.881 ft

Data Set: K:\...\MW-13_Bouwer_Rice.aqt

Date: 05/20/16 Time: 12:07:09

PROJECT INFORMATION

Company: Hydrometrics

Project: 11048
Test Well: MW-13
Test Date: Forward

AQUIFER DATA

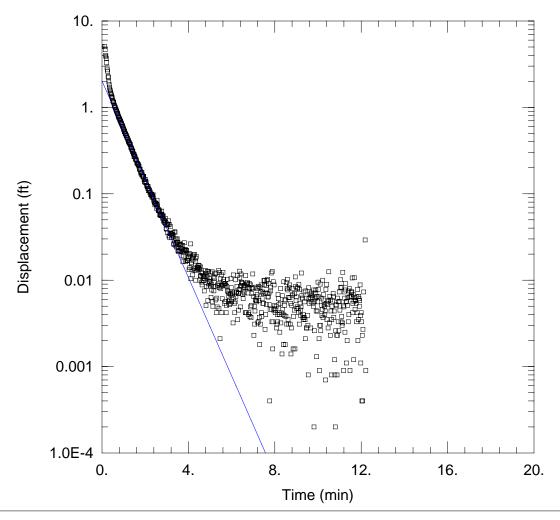
Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-13)

Initial Displacement: 5.129 ft

Total Well Penetration Depth: 20. ft

Casing Radius: 0.0833 ft


Static Water Column Height: 20. ft

Screen Length: <u>20.</u> ft Well Radius: 0.0833 ft

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 1.943 ft/day y0 = 2.294 ft

Data Set: K:\...\MW-13_BouwerRice.aqt

Date: 05/31/16 Time: 11:11:58

PROJECT INFORMATION

Company: Hydrometrics

Project: 11048
Test Well: MW-13
Test Date: Forward

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-13)

Initial Displacement: 5.064 ft

Total Well Penetration Depth: 20. ft

Casing Radius: 0.08333 ft

Static Water Column Height: 20. ft

Screen Length: 20. ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Unconfined

K = 1.407 ft/day y0 = 2.022 ft

Solution Method: Bouwer-Rice

APPENDIX C

LABORATORY ANALYTICAL REPORT

ANALYTICAL SUMMARY REPORT

April 11, 2016

Tintina Resources Inc PO Box 431

White Sulphur Springs, MT 59645

Work Order: H16030522 Quote ID: H1216 - Surface and Groundwater Sampling

Project Name: 11048 Black Butte Copper Project

Energy Laboratories Inc Helena MT received the following 9 samples for Tintina Resources Inc on 3/31/2016 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H16030522-001	BBC-1603-300	03/29/16 10:	45 03/31/16	Groundwater	Metals by ICP/ICPMS, Dissolved Alkalinity Conductivity Mercury, Dissolved Fluoride Anions by Ion Chromatography Nitrogen, Nitrate + Nitrite Digestion, Mercury by CVAA Solids, Total Dissolved Solids, Total Suspended
H16030522-002	BBC-1603-301	03/29/16 11:	25 03/31/16	Groundwater	Same As Above
H16030522-003	BBC-1603-302	03/29/16 11:	40 03/31/16	Groundwater	Same As Above
H16030522-004	BBC-1603-303	03/29/16 12:	20 03/31/16	Groundwater	Same As Above
H16030522-005	BBC-1603-304	03/29/16 13:	30 03/31/16	Groundwater	Metals by ICP/ICPMS, Dissolved Alkalinity Conductivity Mercury, Dissolved Fluoride Anions by Ion Chromatography Nitrogen, Nitrate + Nitrite Metals Digestion by EPA 200.2 Digestion, Mercury by CVAA Solids, Total Dissolved Solids, Total Suspended
H16030522-006	BBC-1603-407	03/30/16 11:	40 03/31/16	Groundwater	Metals by ICP/ICPMS, Dissolved Alkalinity Conductivity Mercury, Dissolved Fluoride Anions by Ion Chromatography Nitrogen, Nitrate + Nitrite Digestion, Mercury by CVAA Solids, Total Dissolved Solids, Total Suspended
H16030522-007	BBC-1603-409	03/30/16 12:	45 03/31/16	Groundwater	Same As Above
H16030522-008	BBC-1603-410	03/30/16 13:	00 03/31/16	Groundwater	Same As Above
H16030522-009	BBC-1603-411	03/30/16 14:	30 03/31/16	Groundwater	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

ANALYTICAL SUMMARY REPORT

If you have any questions regarding these test results, please call.

Report Approved By:

CLIENT: Tintina Resources Inc

Project: 11048 Black Butte Copper Project

Work Order: H16030522 CASE NARRATIVE

Sample H16030522-005 (BBC-1603-304) for dissolved metals had sediment present in the sample container. Per EPA method 200.7 and 200.8, if a precipitate is formed during acidification, trasport or storage the sample aliquot must be treated prior to analysis. The sample was digested using EPA 200.2. The sample was analyzed by EPA 200.7 and EPA 200.8 and the resits were within duplication. abc 5/4/16

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tintina Resources Inc

Project:11048 Black Butte Copper ProjectCollection Date:03/29/16 10:45Lab ID:H16030522-001DateReceived:03/31/16Client Sample ID:BBC-1603-300Matrix:Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES		,					00/01/10 11 10 / 00
Solids, Total Suspended TSS @ 105 C		mg/L		10		A2540 D	03/31/16 14:19 / SRW
Solids, Total Dissolved TDS @ 180 C	248	mg/L		10		A2540 C	03/31/16 14:12 / SRW
INORGANICS							
Alkalinity, Total as CaCO3	220	mg/L		4		A2320 B	03/31/16 15:18 / SRW
Chloride	1	mg/L		1		E300.0	03/31/16 19:22 / SRW
Sulfate	18	mg/L		1		E300.0	03/31/16 19:22 / SRW
Fluoride	0.1	mg/L		0.1	4	A4500-F C	04/04/16 12:26 / SRW
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.18	mg/L		0.01		E353.2	04/01/16 09:55 / cmm
METALS, DISSOLVED							
Aluminum	0.036	mg/L		0.009		E200.8	04/01/16 12:21 / dck
Antimony	ND	mg/L		0.0005		E200.8	04/01/16 12:21 / dck
Arsenic	ND	mg/L		0.001		E200.8	04/01/16 12:21 / dck
Barium	0.056	mg/L		0.003		E200.8	04/01/16 12:21 / dck
Beryllium	ND	mg/L		0.0008		E200.8	04/01/16 12:21 / dck
Cadmium	ND	mg/L		0.00003		E200.8	04/01/16 12:21 / dck
Calcium	59	mg/L		1		E200.7	04/04/16 14:21 / sld
Chromium	ND	mg/L		0.01		E200.8	04/01/16 12:21 / dck
Cobalt	ND	mg/L		0.01		E200.8	04/01/16 12:21 / dck
Copper	ND	mg/L		0.002		E200.8	04/01/16 12:21 / dck
Iron	0.02	mg/L		0.02		E200.8	04/01/16 12:21 / dck
Lead	ND	mg/L		0.0003		E200.8	04/01/16 12:21 / dck
Magnesium	20	mg/L		1		E200.8	04/01/16 12:21 / dck
Manganese	0.010	mg/L		0.005		E200.8	04/01/16 12:21 / dck
Mercury	ND	mg/L		5E-06		E245.1	04/04/16 16:16 / rgk
Molybdenum	ND	mg/L		0.002		E200.8	04/01/16 12:21 / dck
Nickel	ND	mg/L		0.001		E200.8	04/01/16 12:21 / dck
Potassium	ND	mg/L		1		E200.8	04/01/16 12:21 / dck
Selenium	0.0002	mg/L		0.0002		E200.8	04/01/16 12:21 / dck
Silver	ND	mg/L		0.02		E200.8	04/01/16 12:21 / dck
Sodium	1	mg/L		1		E200.8	04/01/16 12:21 / dck
Strontium	0.103	mg/L		0.0002		E200.8	04/01/16 12:21 / dck
Thallium	ND	mg/L		0.0002		E200.8	04/01/16 12:21 / dck
Uranium	ND	3		0.008		E200.8	04/01/16 12:21 / dck
Zinc	ND	mg/L		0.002		E200.8	04/01/16 12:21 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

DateReceived: 03/31/16

Collection Date: 03/29/16 11:25

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tintina Resources Inc

Project: 11048 Black Butte Copper Project
Lab ID: H16030522-002

Client Sample ID: BBC-1603-301 Matrix: Groundwater

Angliago	D 14	11-16-	0	D.I	MCL/ QCL	Mathad	Analysis Data / Dy
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		10		A2540 D	03/31/16 14:19 / SRW
Solids, Total Dissolved TDS @ 180 C		mg/L		10		A2540 C	03/31/16 14:12 / SRW
•		Ü					
INORGANICS		,					
Alkalinity, Total as CaCO3		mg/L		4		A2320 B	03/31/16 15:26 / SRW
Chloride		mg/L		1		E300.0	03/31/16 19:33 / SRW
Sulfate		mg/L		1		E300.0	03/31/16 19:33 / SRW
Fluoride	0.1	mg/L		0.1	4	A4500-F C	04/04/16 12:26 / SRW
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.15	mg/L		0.01		E353.2	04/01/16 09:59 / cmm
METALS, DISSOLVED							
Aluminum	ND	mg/L		0.009		E200.8	04/01/16 12:34 / dck
Antimony	ND	mg/L		0.0005		E200.8	04/01/16 12:34 / dck
Arsenic	ND	mg/L		0.001		E200.8	04/01/16 12:34 / dck
Barium	0.054	mg/L		0.003		E200.8	04/01/16 12:34 / dck
Beryllium	ND	mg/L		0.0008		E200.8	04/01/16 12:34 / dck
Cadmium	ND	mg/L		0.00003		E200.8	04/01/16 12:34 / dck
Calcium	58	mg/L		1		E200.7	04/04/16 14:43 / sld
Chromium	ND	mg/L		0.01		E200.8	04/01/16 12:34 / dck
Cobalt	ND	mg/L		0.01		E200.8	04/01/16 12:34 / dck
Copper	ND	mg/L		0.002		E200.8	04/01/16 12:34 / dck
Iron	ND	mg/L		0.02		E200.8	04/01/16 12:34 / dck
Lead	ND	mg/L		0.0003		E200.8	04/01/16 12:34 / dck
Magnesium	19	mg/L		1		E200.8	04/01/16 12:34 / dck
Manganese		mg/L		0.005		E200.8	04/01/16 12:34 / dck
Mercury	ND	mg/L		5E-06		E245.1	04/04/16 16:19 / rgk
Molybdenum		mg/L		0.002		E200.8	04/01/16 12:34 / dck
Nickel	ND	mg/L		0.001		E200.8	04/01/16 12:34 / dck
Potassium		mg/L		1		E200.8	04/01/16 12:34 / dck
Selenium	0.0002	mg/L		0.0002		E200.8	04/01/16 12:34 / dck
Silver		mg/L		0.02		E200.8	04/01/16 12:34 / dck
Sodium		mg/L		1		E200.8	04/01/16 12:34 / dck
Strontium	0.141	_		0.0002		E200.8	04/01/16 12:34 / dck
Thallium		mg/L		0.0002		E200.8	04/01/16 12:34 / dck
Uranium		mg/L		0.008		E200.8	04/01/16 12:34 / dck
Zinc	ND	mg/L		0.002		E200.8	04/01/16 12:34 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tintina Resources Inc

 Project:
 11048 Black Butte Copper Project
 Collection Date:
 03/29/16 11:40

 Lab ID:
 H16030522-003
 DateReceived:
 03/31/16

Client Sample ID: BBC-1603-302 Matrix: Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
DUVELCAL PROPERTIES							
PHYSICAL PROPERTIES	ND	/1		40		10540 D	00/04/40 44:00 / CDW
Solids, Total Dissolved TDS @ 105 C		mg/L		10 10		A2540 D A2540 C	03/31/16 14:20 / SRW 03/31/16 14:12 / SRW
Solids, Total Dissolved TDS @ 180 C	220	mg/L		10		A2540 C	03/31/10 14:12 / SRW
INORGANICS							
Alkalinity, Total as CaCO3	210	mg/L		4		A2320 B	03/31/16 15:42 / SRW
Chloride	ND	mg/L		1		E300.0	03/31/16 19:44 / SRW
Sulfate	13	mg/L		1		E300.0	03/31/16 19:44 / SRW
Fluoride	0.1	mg/L		0.1	4	A4500-F C	04/04/16 12:27 / SRW
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.15	mg/L		0.01		E353.2	04/01/16 10:00 / cmm
METALS, DISSOLVED							
Aluminum	ND	mg/L		0.009		E200.8	04/01/16 12:37 / dck
Antimony	ND	mg/L		0.0005		E200.8	04/01/16 12:37 / dck
Arsenic	ND	mg/L		0.001		E200.8	04/01/16 12:37 / dck
Barium	0.054	mg/L		0.003		E200.8	04/01/16 12:37 / dck
Beryllium	ND	mg/L		0.0008		E200.8	04/01/16 12:37 / dck
Cadmium	ND	mg/L		0.00003		E200.8	04/01/16 12:37 / dck
Calcium	58	mg/L		1		E200.7	04/04/16 14:47 / sld
Chromium	ND	mg/L		0.01		E200.8	04/01/16 12:37 / dck
Cobalt	ND	mg/L		0.01		E200.8	04/01/16 12:37 / dck
Copper	ND	mg/L		0.002		E200.8	04/01/16 12:37 / dck
Iron	ND	mg/L		0.02		E200.8	04/01/16 12:37 / dck
Lead	ND	mg/L		0.0003		E200.8	04/01/16 12:37 / dck
Magnesium	19	mg/L		1		E200.8	04/01/16 12:37 / dck
Manganese	ND	mg/L		0.005		E200.8	04/01/16 12:37 / dck
Mercury	ND	mg/L		5E-06		E245.1	04/04/16 16:28 / rgk
Molybdenum	ND	mg/L		0.002		E200.8	04/01/16 12:37 / dck
Nickel	ND	mg/L		0.001		E200.8	04/01/16 12:37 / dck
Potassium	ND	mg/L		1		E200.8	04/01/16 12:37 / dck
Selenium	ND	mg/L		0.0002		E200.8	04/01/16 12:37 / dck
Silver	ND	mg/L		0.02		E200.8	04/01/16 12:37 / dck
Sodium		mg/L		1		E200.8	04/01/16 12:37 / dck
Strontium	0.141	mg/L		0.0002		E200.8	04/01/16 12:37 / dck
Thallium	ND	mg/L		0.0002		E200.8	04/01/16 12:37 / dck
Uranium	ND	mg/L		0.008		E200.8	04/01/16 12:37 / dck
Zinc	ND	mg/L		0.002		E200.8	04/01/16 12:37 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tintina Resources Inc

 Project:
 11048 Black Butte Copper Project
 Collection Date:
 03/29/16 12:20

 Lab ID:
 H16030522-004
 DateReceived:
 03/31/16

Client Sample ID: BBC-1603-303 Matrix: Groundwater

Analyses	Dogult	Unito	Qualifiers	RL	MCL/ QCL	Method	Analysis Data / By
Analyses	Result	Units	Quaimers	KL	QCL	Metriod	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	48	mg/L		10		A2540 D	03/31/16 14:20 / SRW
Solids, Total Dissolved TDS @ 180 C		mg/L		10		A2540 C	03/31/16 14:12 / SRW
		Ü					
INORGANICS	470	,,				1 0000 B	00/04/40 45 50 / 00/4
Alkalinity, Total as CaCO3		mg/L		4		A2320 B	03/31/16 15:50 / SRW
Chloride		mg/L		1		E300.0	03/31/16 19:55 / SRW
Sulfate		mg/L		1		E300.0	03/31/16 19:55 / SRW
Fluoride	0.1	mg/L		0.1	4	A4500-F C	04/04/16 12:27 / SRW
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.38	mg/L		0.01		E353.2	04/01/16 10:01 / cmm
METALS, DISSOLVED							
Aluminum	0.263	mg/L		0.009		E200.8	04/01/16 12:41 / dck
Antimony	ND	mg/L		0.0005		E200.8	04/01/16 12:41 / dck
Arsenic	ND	mg/L		0.001		E200.8	04/01/16 12:41 / dck
Barium	0.148	mg/L		0.003		E200.8	04/01/16 12:41 / dck
Beryllium	ND	mg/L		0.0008		E200.8	04/01/16 12:41 / dck
Cadmium	ND	mg/L		0.00003		E200.8	04/01/16 12:41 / dck
Calcium	41	mg/L		1		E200.8	04/01/16 12:41 / dck
Chromium	ND	mg/L		0.01		E200.8	04/01/16 12:41 / dck
Cobalt	ND	mg/L		0.01		E200.8	04/01/16 12:41 / dck
Copper	ND	mg/L		0.002		E200.8	04/01/16 12:41 / dck
Iron	0.07	mg/L		0.02		E200.8	04/01/16 12:41 / dck
Lead	ND	mg/L		0.0003		E200.8	04/01/16 12:41 / dck
Magnesium	11	mg/L		1		E200.8	04/01/16 12:41 / dck
Manganese	0.005	mg/L		0.005		E200.8	04/01/16 12:41 / dck
Mercury	ND	mg/L		5E-06		E245.1	04/04/16 16:31 / rgk
Molybdenum		mg/L		0.002		E200.8	04/01/16 12:41 / dck
Nickel	ND	mg/L		0.001		E200.8	04/01/16 12:41 / dck
Potassium	2	mg/L		1		E200.8	04/01/16 12:41 / dck
Selenium	ND	mg/L		0.0002		E200.8	04/01/16 12:41 / dck
Silver		mg/L		0.02		E200.8	04/01/16 12:41 / dck
Sodium	21	mg/L		1		E200.8	04/01/16 12:41 / dck
Strontium	0.261	mg/L		0.0002		E200.8	04/01/16 12:41 / dck
Thallium		mg/L		0.0002		E200.8	04/01/16 12:41 / dck
Uranium	ND	mg/L		0.008		E200.8	04/01/16 12:41 / dck
Zinc	ND	mg/L		0.002		E200.8	04/01/16 12:41 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tintina Resources Inc

Project: 11048 Black Butte Copper Project Collection Date: 03/29/16 13:30 Lab ID: H16030522-005 DateReceived: 03/31/16

Client Sample ID: BBC-1603-304 Matrix: Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C		mg/L	D	40		A2540 D	03/31/16 14:20 / SRW
Solids, Total Dissolved TDS @ 180 C	244	mg/L		40		A2540 C	03/31/16 14:13 / SRW
INORGANICS							
Alkalinity, Total as CaCO3	180	mg/L		4		A2320 B	03/31/16 15:56 / SRW
Chloride		mg/L		1		E300.0	03/31/16 20:06 / SRW
Sulfate	8	mg/L		1		E300.0	03/31/16 20:06 / SRW
Fluoride	0.4	mg/L		0.1	4	A4500-F C	04/04/16 12:27 / SRW
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.50	mg/L		0.01		E353.2	04/01/16 10:02 / cmm
METALS, DISSOLVED							
Aluminum	3.66	mg/L	D	0.02		E200.7	04/05/16 10:27 / sld
Antimony	ND	mg/L		0.0005		E200.8	04/05/16 15:13 / dck
Arsenic		mg/L		0.001		E200.8	04/05/16 15:13 / dck
Barium	0.211	mg/L		0.003		E200.8	04/05/16 15:13 / dck
Beryllium	ND	mg/L		0.0008		E200.8	04/05/16 15:13 / dck
Cadmium	0.00008	mg/L		0.00003		E200.8	04/05/16 15:13 / dck
Calcium	46	mg/L		1		E200.7	04/05/16 10:27 / sld
Chromium	0.01	mg/L		0.01		E200.8	04/05/16 15:13 / dck
Cobalt	ND	mg/L		0.01		E200.8	04/05/16 15:13 / dck
Copper	0.010	mg/L		0.002		E200.8	04/05/16 15:13 / dck
Iron	3.58	mg/L		0.02		E200.7	04/05/16 10:27 / sld
Lead	0.0021	mg/L		0.0003		E200.8	04/05/16 15:13 / dck
Magnesium	17	mg/L		1		E200.7	04/05/16 10:27 / sld
Manganese	0.168	mg/L		0.005		E200.7	04/05/16 10:27 / sld
Mercury	6.6E-06	U		5E-06		E245.1	04/04/16 16:34 / rgk
Molybdenum	0.012	mg/L		0.002		E200.8	04/05/16 15:13 / dck
Nickel	0.009	mg/L		0.001		E200.8	04/05/16 15:13 / dck
Potassium	7	mg/L		1		E200.7	04/05/16 10:27 / sld
Selenium	0.0002	mg/L		0.0002		E200.8	04/06/16 15:55 / dck
Silver	ND	mg/L		0.02		E200.8	04/05/16 15:13 / dck
Sodium	11	mg/L		1		E200.7	04/05/16 10:27 / sld
Strontium	0.796	-		0.0002		E200.7	04/05/16 10:27 / sld
Thallium		mg/L		0.0002		E200.8	04/05/16 15:13 / dck
Uranium	0.008	mg/L		0.008		E200.8	04/05/16 15:13 / dck
Zinc	0.015	mg/L		0.002		E200.8	04/05/16 15:13 / dck

Report RL - Analyte reporting limit. **Definitions:**

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

DateReceived: 03/31/16

Collection Date: 03/30/16 11:40

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tintina Resources Inc

Project: 11048 Black Butte Copper Project
Lab ID: H16030522-006

Client Sample ID: BBC-1603-407 Matrix: Groundwater

Analyses	Result	Unite	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
- Filaly 3003	Result	Onits	Qualificis	11.5		Wethou	Analysis bate / by
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		10		A2540 D	03/31/16 14:20 / SRW
Solids, Total Dissolved TDS @ 180 C	257	mg/L		10		A2540 C	03/31/16 14:13 / SRW
INORGANICS							
Alkalinity, Total as CaCO3	200	mg/L		4		A2320 B	03/31/16 16:03 / SRW
Chloride		mg/L		1		E300.0	03/31/16 20:17 / SRW
Sulfate		mg/L		1		E300.0	03/31/16 20:17 / SRW
Fluoride		mg/L		0.1	4	A4500-F C	04/04/16 12:28 / SRW
MUTDIENTS							
NUTRIENTS	0.25	a/I		0.01		F252.2	04/04/46 40:02 / amm
Nitrogen, Nitrate+Nitrite as N	0.25	mg/L		0.01		E353.2	04/01/16 10:03 / cmm
METALS, DISSOLVED							
Aluminum	ND	mg/L		0.009		E200.8	04/01/16 12:57 / dck
Antimony	ND	mg/L		0.0005		E200.8	04/01/16 12:57 / dck
Arsenic	ND	mg/L		0.001		E200.8	04/01/16 12:57 / dck
Barium	0.109	mg/L		0.003		E200.8	04/01/16 12:57 / dck
Beryllium	ND	mg/L		0.0008		E200.8	04/01/16 12:57 / dck
Cadmium	ND	mg/L		0.00003		E200.8	04/01/16 12:57 / dck
Calcium	49	mg/L		1		E200.8	04/01/16 12:57 / dck
Chromium	ND	mg/L		0.01		E200.8	04/01/16 12:57 / dck
Cobalt		mg/L		0.01		E200.8	04/01/16 12:57 / dck
Copper		mg/L		0.002		E200.8	04/01/16 12:57 / dck
Iron	ND	mg/L		0.02		E200.8	04/01/16 12:57 / dck
Lead	ND	mg/L		0.0003		E200.8	04/01/16 12:57 / dck
Magnesium	26	mg/L		1		E200.8	04/01/16 12:57 / dck
Manganese	0.006	mg/L		0.005		E200.8	04/01/16 12:57 / dck
Mercury	ND	mg/L		5E-06		E245.1	04/04/16 16:36 / rgk
Molybdenum	ND	mg/L		0.002		E200.8	04/01/16 12:57 / dck
Nickel		mg/L		0.001		E200.8	04/01/16 12:57 / dck
Potassium	2	mg/L		1		E200.8	04/01/16 12:57 / dck
Selenium	0.0005	mg/L		0.0002 E200.8		E200.8	04/01/16 12:57 / dck
Silver	ND	mg/L		0.02		E200.8	04/01/16 12:57 / dck
Sodium		mg/L		1		E200.8	04/01/16 12:57 / dck
Strontium	0.0711			0.0002		E200.8	04/01/16 12:57 / dck
Thallium	0.0003	mg/L		0.0002		E200.8	04/01/16 12:57 / dck
Uranium	ND	mg/L		0.008		E200.8	04/01/16 12:57 / dck
Zinc	0.002	mg/L		0.002		E200.8	04/01/16 12:57 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Tintina Resources Inc

Project: 11048 Black Butte Copper Project

Lab ID: H16030522-007

Client Sample ID: BBC-1603-409

Collection Date: 03/30/16 12:45
DateReceived: 03/31/16
Matrix: Groundwater

Report Date: 04/11/16

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		10		A2540 D	03/31/16 14:21 / SRW
Solids, Total Dissolved TDS @ 180 C	231	•		10		A2540 C	03/31/16 14:13 / SRW
Condo, Fotal Discolved FDC C Fot C	201	9/ =		10		7120100	00/01/10 11:10/ 01:11
INORGANICS							
Alkalinity, Total as CaCO3		mg/L		4		A2320 B	03/31/16 16:09 / SRW
Chloride		mg/L		1		E300.0	03/31/16 20:28 / SRW
Sulfate	16	mg/L		1		E300.0	03/31/16 20:28 / SRW
Fluoride	0.1	mg/L		0.1	4	A4500-F C	04/04/16 12:28 / SRW
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.26	mg/L		0.01		E353.2	04/01/16 10:05 / cmm
METALS, DISSOLVED							
Aluminum	ND	mg/L		0.009		E200.8	04/01/16 13:00 / dck
Antimony	ND	mg/L		0.0005		E200.8	04/01/16 13:00 / dck
Arsenic	ND	mg/L		0.001		E200.8	04/01/16 13:00 / dck
Barium	0.046	mg/L		0.003		E200.8	04/01/16 13:00 / dck
Beryllium	ND	mg/L		8000.0		E200.8	04/01/16 13:00 / dck
Cadmium	ND	mg/L		0.00003		E200.8	04/01/16 13:00 / dck
Calcium	56	mg/L		1		E200.7	04/04/16 14:51 / sld
Chromium	ND	mg/L		0.01		E200.8	04/01/16 13:00 / dck
Cobalt	ND	mg/L		0.01		E200.8	04/01/16 13:00 / dck
Copper	ND	mg/L		0.002		E200.8	04/01/16 13:00 / dck
Iron	ND	mg/L		0.02		E200.8	04/01/16 13:00 / dck
Lead	ND	mg/L		0.0003		E200.8	04/01/16 13:00 / dck
Magnesium	20	mg/L		1		E200.8	04/01/16 13:00 / dck
Manganese	ND	mg/L		0.005		E200.8	04/01/16 13:00 / dck
Mercury	ND	mg/L		5E-06		E245.1	04/04/16 16:39 / rgk
Molybdenum	ND	mg/L		0.002		E200.8	04/01/16 13:00 / dck
Nickel	ND	mg/L		0.001		E200.8	04/01/16 13:00 / dck
Potassium		mg/L		1		E200.8	04/01/16 13:00 / dck
Selenium	0.0002	mg/L		0.0002		E200.8	04/01/16 13:00 / dck
Silver	ND	mg/L		0.02		E200.8	04/01/16 13:00 / dck
Sodium	1	mg/L		1		E200.8	04/01/16 13:00 / dck
Strontium	0.0991	mg/L		0.0002		E200.8	04/01/16 13:00 / dck
Thallium	ND	mg/L		0.0002		E200.8	04/01/16 13:00 / dck
Uranium		mg/L		0.008		E200.8	04/01/16 13:00 / dck
Zinc	0.020	mg/L		0.002		E200.8	04/01/16 13:00 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date: 04/11/16Project:11048 Black Butte Copper ProjectCollection Date: 03/30/16 13:00

 Lab ID:
 H16030522-008
 DateReceived:
 03/31/16

 Client Sample ID:
 BBC-1603-410
 Matrix:
 Groundwater

Austron	5 4		o ""	ъ.	MCL/	Made at	Accelerie Date / Dec
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		10		A2540 D	03/31/16 14:21 / SRW
Solids, Total Dissolved TDS @ 180 C	230	mg/L		10		A2540 C	03/31/16 14:13 / SRW
INORGANICS							
Alkalinity, Total as CaCO3	210	mg/L		4		A2320 B	03/31/16 16:16 / SRW
Chloride		mg/L		1		E300.0	03/31/16 20:40 / SRW
Sulfate		mg/L		1		E300.0	03/31/16 20:40 / SRW
Fluoride		mg/L		0.1	4	A4500-F C	04/04/16 12:29 / SRW
Tidolide	0.1	mg/L		0.1	7	A43001 0	04/04/10 12.23 / OKW
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.26	mg/L		0.01		E353.2	04/01/16 10:06 / cmm
METALS, DISSOLVED							
Aluminum	ND	mg/L		0.009		E200.8	04/01/16 13:10 / dck
Antimony	ND	mg/L		0.0005		E200.8	04/01/16 13:10 / dck
Arsenic	ND	mg/L		0.001		E200.8	04/01/16 13:10 / dck
Barium	0.044	mg/L		0.003		E200.8	04/01/16 13:10 / dck
Beryllium	ND	mg/L		0.0008		E200.8	04/01/16 13:10 / dck
Cadmium	ND	mg/L		0.00003		E200.8	04/01/16 13:10 / dck
Calcium	56	mg/L		1		E200.7	04/04/16 14:54 / sld
Chromium	ND	mg/L		0.01		E200.8	04/01/16 13:10 / dck
Cobalt	ND	mg/L		0.01		E200.8	04/01/16 13:10 / dck
Copper	ND	mg/L		0.002		E200.8	04/01/16 13:10 / dck
Iron	ND	mg/L		0.02		E200.8	04/01/16 13:10 / dck
Lead	ND	mg/L		0.0003		E200.8	04/01/16 13:10 / dck
Magnesium	20	mg/L		1		E200.8	04/01/16 13:10 / dck
Manganese	ND	mg/L		0.005		E200.8	04/01/16 13:10 / dck
Mercury	ND	mg/L		5E-06		E245.1	04/04/16 16:42 / rgk
Molybdenum	ND	mg/L		0.002		E200.8	04/01/16 13:10 / dck
Nickel	ND	mg/L		0.001		E200.8	04/01/16 13:10 / dck
Potassium		mg/L		1		E200.8	04/01/16 13:10 / dck
Selenium	0.0002	mg/L		0.0002		E200.8	04/01/16 13:10 / dck
Silver	ND	mg/L		0.02		E200.8	04/01/16 13:10 / dck
Sodium	1	mg/L		1		E200.8	04/01/16 13:10 / dck
Strontium	0.0977	mg/L		0.0002		E200.8	04/01/16 13:10 / dck
Thallium		mg/L		0.0002		E200.8	04/01/16 13:10 / dck
Uranium		mg/L		0.008		E200.8	04/01/16 13:10 / dck
Zinc	0.021	mg/L		0.002		E200.8	04/01/16 13:10 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date: 04/11/16Project:11048 Black Butte Copper ProjectCollection Date: 03/30/16 14:30

 Lab ID:
 H16030522-009
 DateReceived:
 03/31/16

 Client Sample ID:
 BBC-1603-411
 Matrix:
 Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Solids, Total Suspended TSS @ 105 C	ND	mg/L		10		A2540 D	03/31/16 14:21 / SRW
Solids, Total Dissolved TDS @ 180 C	187	mg/L		10		A2540 C	03/31/16 14:13 / SRW
INORGANICS							
Alkalinity, Total as CaCO3	170	mg/L		4		A2320 B	03/31/16 16:23 / SRW
Chloride	1	mg/L		1		E300.0	03/31/16 20:51 / SRW
Sulfate	11	mg/L		1		E300.0	03/31/16 20:51 / SRW
Fluoride	0.3	mg/L		0.1	4	A4500-F C	04/04/16 12:31 / SRW
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.32	mg/L		0.01		E353.2	04/01/16 10:07 / cmm
METALS, DISSOLVED							
Aluminum	ND	mg/L		0.009		E200.8	04/01/16 13:13 / dck
Antimony	ND	mg/L		0.0005		E200.8	04/01/16 13:13 / dck
Arsenic	0.004	mg/L		0.001		E200.8	04/01/16 13:13 / dck
Barium	0.112	mg/L		0.003		E200.8	04/01/16 13:13 / dck
Beryllium	ND	mg/L		0.0008		E200.8	04/01/16 13:13 / dck
Cadmium	ND	mg/L		0.00003		E200.8	04/01/16 13:13 / dck
Calcium	43	mg/L		1		E200.8	04/01/16 13:13 / dck
Chromium	ND	mg/L		0.01		E200.8	04/01/16 13:13 / dck
Cobalt	ND	mg/L		0.01		E200.8	04/01/16 13:13 / dck
Copper	ND	mg/L		0.002		E200.8	04/01/16 13:13 / dck
Iron	ND	mg/L		0.02		E200.8	04/01/16 13:13 / dck
Lead	ND	mg/L		0.0003		E200.8	04/01/16 13:13 / dck
Magnesium	15	mg/L		1		E200.8	04/01/16 13:13 / dck
Manganese	ND	mg/L		0.005		E200.8	04/01/16 13:13 / dck
Mercury	ND	mg/L		5E-06		E245.1	04/04/16 16:45 / rgk
Molybdenum	ND	mg/L		0.002		E200.8	04/01/16 13:13 / dck
Nickel	ND	mg/L		0.001		E200.8	04/01/16 13:13 / dck
Potassium	3	mg/L		1		E200.8	04/01/16 13:13 / dck
Selenium	0.0004	mg/L		0.0002		E200.8	04/01/16 13:13 / dck
Silver	ND	mg/L		0.02		E200.8	04/01/16 13:13 / dck
Sodium		mg/L		1		E200.8	04/01/16 13:13 / dck
Strontium	0.165			0.0002		E200.8	04/01/16 13:13 / dck
Thallium	0.0010	mg/L		0.0002		E200.8	04/01/16 13:13 / dck
Uranium	ND	mg/L		0.008		E200.8	04/01/16 13:13 / dck
Zinc	ND	mg/L		0.002		E200.8	04/01/16 13:13 / dck

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A2320 B									Batch:	R114128
Lab ID:	MB	Me	thod Blank				Run: PHSC	_101-H_160331 <i>A</i>	١	03/31/	16 13:38
Alkalinity,	Total as CaCO3		2	mg/L	0.2						
Lab ID:	LCS	Lab	ooratory Cor	ntrol Sample			Run: PHSC	_101-H_160331 <i>A</i>	\	03/31/	16 13:44
Alkalinity,	Total as CaCO3		600	mg/L	4.0	100	90	110			
Lab ID:	H16030519-003ADU	P Sar	mple Duplica	ate			Run: PHSC	_101-H_160331 <i>A</i>	١.	03/31/	16 14:19
Alkalinity,	Total as CaCO3		260	mg/L	4.0				0.6	10	
Lab ID:	H16030522-002ADU	P Sar	mple Duplica	ate			Run: PHSC	_101-H_160331 <i>A</i>	\	03/31/	16 15:34
Alkalinity,	Total as CaCO3		220	mg/L	4.0				1.1	10	

Prepared by Helena, MT Branch

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 C								Batch: TDS	160331A
Lab ID: MB-1_160331A	Method Blank				Run: ACCU	l-124 (14410200)	_16033	03/31/	16 14:11
Solids, Total Dissolved TDS @ 18	30 C 3	mg/L	3						
Lab ID: LCS-2_160331A	Laboratory Co	ntrol Sample			Run: ACCU	l-124 (14410200)	_16033	03/31/	16 14:11
Solids, Total Dissolved TDS @ 18	30 C 2020	mg/L	20	101	90	110			
Lab ID: H16030522-001A DUI	P Sample Duplic	ate			Run: ACCU	J-124 (14410200)	_16033	03/31/	16 14:12
Solids, Total Dissolved TDS @ 18	30 C 256	mg/L	10				3.2	5	
Lab ID: H16030519-001A DUI	P Sample Duplic	ate			Run: ACCU	J-124 (14410200)	_16033	03/31/	16 14:14
Solids, Total Dissolved TDS @ 18	80 C 776	mg/L	20				0.0	5	

Prepared by Helena, MT Branch

Analyte	Cou	nt Res	ult	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A2540 D									Batch: TSS	160331A
Lab ID:	MB-1_160331A	Method B	lank				Run: ACCU	l-124 (14410200)	_16033	03/31/	16 14:18
Solids, Tot	al Suspended TSS @ 105 C		ND	mg/L	0.1						
Lab ID:	LCS-2_160331A	Laborator	y Con	trol Sample			Run: ACCU	l-124 (14410200)	_16033	03/31/	16 14:19
Solids, Tot	al Suspended TSS @ 105 C	9	3.0	mg/L	10	93	80	120			
Lab ID:	H16030522-001ADUP	Sample D	uplica	ate			Run: ACCU	J-124 (14410200)	_16033	03/31/	16 14:19
Solids, Tot	al Suspended TSS @ 105 C	2	5.0	mg/L	10				3.9	5	
Lab ID:	H16030517-001BDUP	Sample D	uplica	ate			Run: ACCU	J-124 (14410200)	_16033	03/31/	16 14:22
Solids, Tot	al Suspended TSS @ 105 C	•	103	mg/L	33				3.3	5	

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-F C								Analytic	al Run: PH2_	_160404A
Lab ID:	ICV1_160404A	Init	ial Calibratio	n Verificati	on Standard					04/04/	/16 12:22
Fluoride			8.0	mg/L	0.1	104	90	110			
Lab ID:	CCV1_160404A	Co	ntinuing Cal	bration Ver	ification Standar	d				04/04/	/16 12:29
Fluoride			0.2	mg/L	0.1	92	90	110			
Method:	A4500-F C								Bat	ch: 160404A	-F-ISE-W
Lab ID:	MBLK1_160404A	Me	thod Blank				Run: PH2_	160404A		04/04/	/16 12:23
Fluoride			ND	mg/L	0.01						
Lab ID:	H16030504-001AMS	Sai	mple Matrix	Spike			Run: PH2_	160404A		04/04/	/16 12:24
Fluoride			8.0	mg/L	0.1	106	85	115			
Lab ID:	H16030504-002ADUF	S Saı	mple Duplica	ate			Run: PH2_	160404A		04/04/	/16 12:25
Fluoride			0.4	mg/L	0.1				0.0	10	
Lab ID:	H16030527-001BDUF	S Saı	mple Duplica	ate			Run: PH2_	160404A		04/04/	/16 12:33
Fluoride			0.6	mg/L	0.1				1.5	10	

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
E200.7							Ana	alytical Ru	ın: ICP2-HE_	_160404B
ICV	Init	ial Calibratio	on Verification	Standard					04/04/	16 13:02
		40.5	mg/L	1.0	101	95	105			
CCV-1	Co	ntinuing Cal	ibration Verifi	cation Standar	rd				04/04/	16 13:05
		25.3	mg/L	1.0	101	95	105			
ICSA	Inte	erference Cl	heck Sample	A					04/04/	16 13:40
		470	mg/L	1.0	94	80	120			
ICSAB	Inte	erference Cl	heck Sample	AB					04/04/	16 13:44
		471	mg/L	1.0	94	80	120			
CCV	Co	ntinuing Cal	ibration Verifi	cation Standar	·d				04/04/	16 13:52
		25.8	mg/L	1.0	103	90	110			
CCV	Co	ntinuing Cal	ibration Verifi	cation Standar	·d				04/04/	16 14:36
		24.9	mg/L	1.0	100	90	110			
E200.7									Batch:	R114224
MB	Me	thod Blank				Run: ICP2-	HE_160404B		04/04/	16 13:59
		0.06	mg/L	0.02						
LFB	Lak	ooratory For	tified Blank			Run: ICP2-	HE_160404B		04/04/	16 14:03
		50.7	mg/L	1.0	101	85	115			
H16030515-001BMS2	. Sai	mple Matrix	Spike			Run: ICP2-	HE_160404B		04/04/	16 14:14
		107	mg/L	1.0	100	70	130			
H16030515-001BMSD) Sai	mple Matrix	Spike Duplica	ate		Run: ICP2-	HE_160404B		04/04/	16 14:18
		106	mg/L	1.0	98	70	130	1.0	20	
H16030522-001BMS2	! Sai	mple Matrix	Spike			Run: ICP2-	HE_160404B		04/04/	16 14:29
		109	mg/L	1.0	99	70	130			
H16030522-001BMSD) Sai	mple Matrix	Spike Duplica	ate		Run: ICP2-	HE_160404B		04/04/	16 14:32
		108	mg/L	1.0	97	70	130	0.8	20	
	ICV CCV-1 ICSA ICSAB CCV CCV E200.7 MB LFB H16030515-001BMS2 H16030522-001BMS2	E200.7 ICV Init CCV-1 Col ICSA Inte ICSAB Inte CCV Col CCV Col E200.7 MB Me LFB Lat H16030515-001BMS2 Sal H16030522-001BMS2 Sal	E200.7 ICV	CCV-1	E200.7 ICV	ICV	Initial Calibration	Initial Calibration	CCV-1	E200.7

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimi	t Qual
Method:	E200.7							Ana	alytical Run: ICP2-H	E_160405A
Lab ID:	ICV	8 Init	ial Calibrati	on Verificatio	n Standard				04/0	5/16 08:57
Aluminum			4.04	mg/L	0.10	101	95	105		
Calcium			41.1	mg/L	1.0	103	95	105		
Iron			4.08	mg/L	0.020	102	95	105		
Magnesiur	n		40.7	mg/L	1.0	102	95	105		
Manganes			4.04	mg/L	0.010	101	95	105		
Potassium			40.5	mg/L	1.0	101	95	105		
Sodium			40.4	mg/L	1.0	101	95	105		
Strontium			0.799	mg/L	0.10	100	95	105		
Lab ID:	CCV-1	8 Co	ntinuing Ca	libration Verif	ication Standa	rd			04/0	5/16 09:00
Aluminum			2.52	mg/L	0.10	101	95	105		
Calcium			25.8	mg/L	1.0	103	95	105		
Iron			2.56	mg/L	0.020	102	95	105		
Magnesiur	n		25.4	mg/L	1.0	102	95	105		
Manganes			2.52	mg/L	0.010	101	95	105		
Potassium			25.1	mg/L	1.0	101	95	105		
Sodium			25.1	mg/L	1.0	100	95	105		
Strontium			2.51	mg/L	0.10	100	95	105		
Lab ID:	ICSA	8 Inte	erference C	heck Sample	Α				04/0	5/16 09:35
Aluminum			521	mg/L	0.10	104	80	120		
Calcium			487	mg/L	1.0	97	80	120		
Iron			192	mg/L	0.020	96	80	120		
Magnesiur	n		513	mg/L	1.0	103	80	120		
Manganes	е		-0.00211	mg/L	0.010		0	0		
Potassium	ı		-0.0129	mg/L	1.0		0	0		
Sodium			0.0587	mg/L	1.0		0	0		
Strontium			0.00486	mg/L	0.10		0	0		
Lab ID:	ICSAB	8 Inte	erference C	heck Sample	AB				04/0	5/16 09:39
Aluminum			528	mg/L	0.10	106	80	120		
Calcium			496	mg/L	1.0	99	80	120		
Iron			195	mg/L	0.020	98	80	120		
Magnesiur	n		523	mg/L	1.0	105	80	120		
Manganes	е		0.491	mg/L	0.010	98	80	120		
Potassium	ı		19.8	mg/L	1.0	99	80	120		
Sodium			19.7	mg/L	1.0	99	80	120		
Strontium			1.03	mg/L	0.10	103	80	120		
Lab ID:	CCV	8 Co	ntinuing Ca	libration Verif	ication Standa	rd			04/0	5/16 09:47
Aluminum			2.55	mg/L	0.10	102	90	110		
Calcium			26.2	mg/L	1.0	105	90	110		
Iron			2.60	mg/L	0.020	104	90	110		
Magnesiur	n		25.7	mg/L	1.0	103	90	110		
Manganes			2.53	mg/L	0.010	101	90	110		
ivianganes	е		2.53	mg/L	0.010	101	90	110		

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD I	RPDLimit	Qual
Method:	E200.7							Ana	alytical Rur	: ICP2-HE	_160405A
Lab ID:	CCV	8 Co	ntinuing Cal	bration Verificati	on Standa	rd				04/05/	/16 09:47
Potassium			24.6	mg/L	1.0	98	90	110			
Sodium			24.4	mg/L	1.0	98	90	110			
Strontium			2.55	mg/L	0.10	102	90	110			
Method:	E200.7									Bat	ch: 32458
Lab ID:	MB-32458	8 Me	thod Blank				Run: ICP2-	HE_160405A		04/05/	/16 10:19
Aluminum			ND	mg/L	0.02						
Calcium			ND	mg/L	0.04						
Iron			0.004	mg/L	0.003						
Magnesium	ı		ND	mg/L	0.01						
Manganese	Э		ND	mg/L	0.0007						
Potassium			ND	mg/L	0.04						
Sodium			0.02	mg/L	0.02						
Strontium			ND	mg/L	0.0003						
Lab ID:	LCS-32458	8 Lat	ooratory Cor	trol Sample			Run: ICP2-	HE_160405A		04/05/	/16 10:23
Aluminum			2.65	mg/L	0.030	106	85	115			
Calcium			27.8	mg/L	1.0	111	85	115			
Iron			2.72	mg/L	0.020	109	85	115			
Magnesium	1		27.1	mg/L	1.0	109	85	115			
Manganese			2.69	mg/L	0.0010	108	85	115			
Potassium			26.9	mg/L	1.0	107	85	115			
Sodium			26.6	mg/L	1.0	106	85	115			
Strontium			0.540	mg/L	0.010	108	85	115			
Lab ID:	H16040010-001CMS3	3 8 Sa	mple Matrix	Spike			Run: ICP2-	HE_160405A		04/05/	/16 10:45
Aluminum			2.67	mg/L	0.030	105	70	130			
Calcium			89.6	mg/L	1.0	108	70	130			
Iron			2.70	mg/L	0.020	107	70	130			
Magnesium	1		64.1	mg/L	1.0	107	70	130			
Manganese			2.62	mg/L	0.0010	105	70	130			
Potassium			30.0	mg/L	1.0	105	70	130			
Sodium			71.2	mg/L	1.0	106	70	130			
Strontium			2.84	mg/L	0.010		70	130			Α
Lab ID:	H16040010-001CMSI	D 8 Sa	mple Matrix	Spike Duplicate			Run: ICP2-	HE_160405A		04/05/	/16 10:49
Aluminum			2.75	mg/L	0.030	108	70	130	3.2	20	
Calcium			89.3	mg/L	1.0	107	70	130	0.4	20	
Iron			2.75	mg/L	0.020	109	70	130	2.0	20	
Magnesium	1		64.1	mg/L	1.0	108	70	130	0.1	20	
Manganese			2.67	mg/L	0.0010	107	70	130	1.9	20	
Potassium	-		30.3	mg/L	1.0	106	70	130	0.7	20	
Sodium			70.4	mg/L	1.0	103	70	130	1.1	20	
Strontium			2.83	mg/L	0.010	103	70	130	0.4	20	Α
Strontium			2.00	g/ =	0.010		70	100	5.4	20	,,

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit Qual
Method: E200.8						Analytic	cal Run: ICPMS204-B_160401
Lab ID: ICV STD	24 Initial Calibrati	on Verificatio	n Standard				04/01/16 10:50
Aluminum	0.292	mg/L	0.10	97	90	110	
Antimony	0.0562	mg/L	0.050	94	90	110	
Arsenic	0.0586	mg/L	0.0050	98	90	110	
Barium	0.0571	mg/L	0.10	95	90	110	
Beryllium	0.0298	mg/L	0.0010	100	90	110	
Cadmium	0.0291	mg/L	0.0010	97	90	110	
Calcium	2.93	mg/L	0.50	98	90	110	
Chromium	0.0580	mg/L	0.010	97	90	110	
Cobalt	0.0586	mg/L	0.010	98	90	110	
Copper	0.0598	mg/L	0.010	100	90	110	
Iron	0.291	mg/L	0.020	97	90	110	
Lead	0.0575	mg/L	0.010	96	90	110	
Magnesium	2.97	mg/L	0.50	99	90	110	
Manganese	0.293	mg/L	0.010	98	90	110	
Molybdenum	0.0558	mg/L	0.0050	93	90	110	
Nickel	0.0590	mg/L	0.010	98	90	110	
Potassium	2.91	mg/L	0.50	97	90	110	
Selenium	0.0601	mg/L	0.0050	100	90	110	
Silver	0.0288	mg/L	0.0050	96	90	110	
Sodium	3.00	mg/L	0.50	100	90	110	
Strontium	0.0583	mg/L	0.10	97	90	110	
Thallium	0.0581	mg/L	0.10	97	90	110	
Uranium	0.0570	mg/L	0.0010	95	90	110	
Zinc	0.0602	mg/L	0.010	100	90	110	
Lab ID: ICSA	24 Interference C	heck Sample	e A				04/01/16 10:53
Aluminum	40.5	mg/L	0.10	101	70	130	
Antimony	0.000213	mg/L	0.050				
Arsenic	1.60E-05	mg/L	0.0050				
Barium	0.000142	mg/L	0.10				
Beryllium	1.00E-06	mg/L	0.0010				
Cadmium	0.000575	mg/L	0.0010				
Calcium	119	mg/L	0.50	99	70	130	
Chromium	0.00133	mg/L	0.010				
Cobalt	2.70E-05	mg/L	0.010				
Copper	0.000376	mg/L	0.010				
Iron	97.8	mg/L	0.020	98	70	130	
Lead	0.000237	mg/L	0.010				
Magnesium	40.6	mg/L	0.50	102	70	130	
=	8.90E-05	mg/L	0.010				
Manganese	0.830	mg/L	0.0050	104	70	130	
Molybdenum	0.000						
=	0.000234	mg/L	0.010				
Molybdenum		mg/L mg/L	0.010 0.50	101	70	130	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method: E200.8						Analytic	al Run: ICPMS204-B	_160401A
Lab ID: ICSA	24 Interference C	heck Sample	Α				04/01	/16 10:53
Silver	0.000155	mg/L	0.0050					
Sodium	102	mg/L	0.50	102	70	130		
Strontium	0.000813	mg/L	0.10					
Thallium	4.50E-05	mg/L	0.10					
Uranium	0.000107	mg/L	0.0010					
Zinc	0.000431	mg/L	0.010					
Lab ID: ICSAB	24 Interference C	heck Sample	AB				04/01	/16 10:56
Aluminum	40.5	mg/L	0.10	101	70	130		
Antimony	0.000130	mg/L	0.050		0	0		
Arsenic	0.0105	mg/L	0.0050	105	70	130		
Barium	0.000127	mg/L	0.10		0	0		
Beryllium	1.00E-06	mg/L	0.0010		0	0		
Cadmium	0.0106	mg/L	0.0010	106	70	130		
Calcium	119	mg/L	0.50	99	70	130		
Chromium	0.0218	mg/L	0.010	109	70	130		
Cobalt	0.0206	mg/L	0.010	103	70	130		
Copper	0.0205	mg/L	0.010	103	70	130		
Iron	98.5	mg/L	0.020	98	70	130		
Lead	0.000229	mg/L	0.010		0	0		
Magnesium	40.6	mg/L	0.50	101	70	130		
Manganese	0.0204	mg/L	0.010	102	70	130		
Molybdenum	0.838	mg/L	0.0050	105	70	130		
Nickel	0.0206	mg/L	0.010	103	70	130		
Potassium	39.8	mg/L	0.50	99	70	130		
Selenium	0.0106	mg/L	0.0050	105	70	130		
Silver	0.0194	mg/L	0.0050	97	70	130		
Sodium	102	mg/L	0.50	102	70	130		
Strontium	0.000747	mg/L	0.10		0	0		
Thallium	1.70E-05	mg/L	0.10		0	0		
Uranium	1.40E-05	mg/L	0.0010		0	0		
Zinc	0.0104	mg/L	0.010	104	70	130		
Method: E200.8							Batch	: R114185
Lab ID: LRB	24 Method Blank				Run: ICPM	S204-B_160401	A 04/01	/16 12:04
Aluminum	0.0007	mg/L	0.0005					
Antimony	4E-05	mg/L	3E-05					
Arsenic	ND	mg/L	6E-05					
Barium	ND	mg/L	0.0001					
Beryllium	ND	mg/L	5E-05					
Cadmium	ND	mg/L	1E-05					
Calcium	ND	mg/L	0.006					
Chromium	5E-05	mg/L	3E-05					
Cobalt	ND	mg/L	2E-05					

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Method: Lab ID: Copper	E200.8									
									Batch:	R114185
Copper	LRB	24 Me	thod Blank				Run: ICPM	S204-B_160401A	04/01	/16 12:04
			8E-05	mg/L	6E-05					
Iron			0.002	mg/L	0.0002					
Lead			6E-06	mg/L	5E-06					
Magnesiun	n		ND	mg/L	0.0009					
Manganes	е		ND	mg/L	6E-05					
Molybdenu	ım		6E-05	mg/L	2E-05					
Nickel			ND	mg/L	4E-05					
Potassium			ND	mg/L	0.01					
Selenium			ND	mg/L	4E-05					
Silver			3E-05	mg/L	9E-06					
Sodium			0.02	mg/L	0.002					
Strontium			ND	mg/L	2E-05					
Thallium			ND	mg/L	5E-06					
Uranium			ND	mg/L	6E-06					
Zinc			ND	mg/L	0.0002					
Lab ID:	LFB	24 Lal	ooratory For	tified Blank			Run: ICPM	S204-B_160401A	04/01	/16 12:08
Aluminum			0.0478	mg/L	0.10	94	85	115		
Antimony			0.0441	mg/L	0.050	88	85	115		
Arsenic			0.0471	mg/L	0.0050	94	85	115		
Barium			0.0474	mg/L	0.10	95	85	115		
Beryllium			0.0475	mg/L	0.0010	95	85	115		
Cadmium			0.0480	mg/L	0.0010	96	85	115		
Calcium			0.983	mg/L	0.50	98	85	115		
Chromium			0.0474	mg/L	0.010	95	85	115		
Cobalt			0.0482	mg/L	0.010	96	85	115		
Copper			0.0488	mg/L	0.010	97	85	115		
Iron			0.140	mg/L	0.020	92	85	115		
Lead			0.0488	mg/L	0.010	98	85	115		
Magnesiun	n		0.966	mg/L	0.50	97	85	115		
Manganes			0.0470	mg/L	0.010	94	85	115		
Molybdenu			0.0448	mg/L	0.0050	89	85	115		
Nickel			0.0484	mg/L	0.010	97	85	115		
Potassium			0.950	mg/L	0.50	95	85	115		
Selenium			0.0484	mg/L	0.0050	97	85	115		
Silver			0.0196	mg/L	0.0050	98	85	115		
Sodium			0.972	mg/L	0.50	96	85	115		
Strontium			0.0475	mg/L	0.10	95	85	115		
Thallium			0.0488	mg/L	0.10	98	85	115		
Uranium			0.0471	mg/L	0.0010	94	85	115		
Zinc			0.0497	mg/L	0.010	99	85	115		
Lab ID:	H16030522-001B	MS 24 Sa	mple Matrix	Spike			Run: ICPM	S204-B_160401A	04/01	/16 12:24
Aluminum		· Oa	0.0787	mg/L	0.030	86	70	130	J-7/U I	.0 12.24

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8								Batch:	R114185
Lab ID: H16030522-001BMS	24 Sample Matri	ix Spike			Run: ICPM	S204-B_160401	4	04/01/	/16 12:24
Antimony	0.0450	mg/L	0.0010	90	70	130			
Arsenic	0.0557	mg/L	0.0010	111	70	130			
Barium	0.101	mg/L	0.050	90	70	130			
Beryllium	0.0480	mg/L	0.0010	96	70	130			
Cadmium	0.0483	mg/L	0.0010	97	70	130			
Calcium	56.7	mg/L	1.0		70	130			ΑE
Chromium	0.0472	mg/L	0.0050	94	70	130			
Cobalt	0.0470	mg/L	0.0050	94	70	130			
Copper	0.0476	mg/L	0.0050	95	70	130			
Iron	0.159	mg/L	0.020	92	70	130			
Lead	0.0473	mg/L	0.0010	94	70	130			
Magnesium	20.4	mg/L	1.0		70	130			Α
Manganese	0.0569	mg/L	0.0010	93	70	130			
Molybdenum	0.0461	mg/L	0.0010	91	70	130			
Nickel	0.0475	mg/L	0.0050	95	70	130			
Potassium	1.75	mg/L	1.0	94	70	130			
Selenium	0.0625	mg/L	0.0010	124	70	130			
Silver	0.0184	mg/L	0.0010	92	70	130			
Sodium	2.36	mg/L	1.0	89	70	130			
Strontium	0.145	mg/L	0.010	84	70	130			
Thallium	0.0480	mg/L	0.00050	96	70	130			
Uranium	0.0459	mg/L	0.00030	90	70	130			
Zinc	0.0501	mg/L	0.010	98	70	130			
Lab ID: H16030522-001BMS	D 24 Sample Matri	ix Spike Dι	ıplicate		Run: ICPM	S204-B_160401/	4	04/01/	/16 12:27
Aluminum	0.0763	mg/L	0.030	81	70	130	3.1	20	
Antimony	0.0456	mg/L	0.0010	91	70	130	1.4	20	
Arsenic	0.0562	mg/L	0.0010	112	70	130	1.0	20	
Barium	0.0999	mg/L	0.050	89	70	130	0.8	20	
Beryllium	0.0487	mg/L	0.0010	97	70	130	1.3	20	
Cadmium	0.0483	mg/L	0.0010	97	70	130	0.0	20	
Calcium	56.6	mg/L	1.0		70	130	0.2	20	ΑE
Chromium	0.0478	mg/L	0.0050	95	70	130	1.3	20	
Cobalt	0.0478	mg/L	0.0050	95	70	130	1.7	20	
Copper	0.0478	mg/L	0.0050	95	70	130	0.5	20	
Iron	0.160		0.020	93	70	130	1.0	20	
Lead	0.0472	-	0.0010	94	70	130	0.0	20	
Magnesium	20.3	mg/L	1.0		70	130	0.2	20	Α
Manganese	0.0578	mg/L	0.0010	95	70	130	1.5	20	
Molybdenum	0.0464		0.0010	91	70	130	0.6	20	
Nickel	0.0480	-	0.0050	96	70	130	1.0	20	
Potassium	1.75	mg/L	1.0	95	70	130	0.2	20	
Selenium	0.0641	mg/L	0.0010	128	70	130	2.5	20	
Silver	0.0191	mg/L	0.0010	96	70	130	3.5	20	
Silver	0.0191	mg/L	0.0010	96	70	130	3.5	20	

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

E - Estimated value. Result exceeds the instrument upper quantitation limit.

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Batch: I	R114185
Lab ID:	H16030522-001BMS	D 24 Sam	ple Matrix	Spike Duplicate			Run: ICPM	S204-B_160401A		04/01/1	16 12:27
Sodium			2.37	mg/L	1.0	91	70	130	0.8	20	
Strontium			0.145	mg/L	0.010	85	70	130	0.4	20	
Thallium			0.0484	mg/L	0.00050	97	70	130	0.9	20	
Uranium			0.0460	mg/L	0.00030	91	70	130	0.3	20	
Zinc			0.0505	mg/L	0.010	99	70	130	0.8	20	

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	E200.8							Analytic	al Run: ICPMS204-B	_160405A
Lab ID:	ICV STD	15 Initia	al Calibrati	on Verificatio	n Standard				04/05	/16 11:04
Antimony			0.0575	mg/L	0.050	96	90	110		
Arsenic			0.0616	mg/L	0.0050	103	90	110		
Barium			0.0590	mg/L	0.10	98	90	110		
Beryllium			0.0296	mg/L	0.0010	99	90	110		
Cadmium			0.0301	mg/L	0.0010	100	90	110		
Chromium			0.0604	mg/L	0.010	101	90	110		
Cobalt			0.0606	mg/L	0.010	101	90	110		
Copper			0.0614	mg/L	0.010	102	90	110		
Lead			0.0589	mg/L	0.010	98	90	110		
Molybdenu	ım		0.0574	mg/L	0.0050	96	90	110		
Nickel			0.0611	mg/L	0.010	102	90	110		
Silver			0.0302	mg/L	0.0050	101	90	110		
Thallium			0.0590	mg/L	0.10	98	90	110		
Uranium			0.0561	mg/L	0.0010	94	90	110		
Zinc			0.0610	mg/L	0.010	102	90	110		
Lab ID:	ICSA	15 Inte	rference C	heck Sample	· A				04/05	/16 11:07
Antimony		C	0.000188	mg/L	0.050					
Arsenic		C	0.000109	mg/L	0.0050					
Barium		C	0.000125	mg/L	0.10					
Beryllium		2	2.40E-05	mg/L	0.0010					
Cadmium		C	0.000634	mg/L	0.0010					
Chromium			0.00138	mg/L	0.010					
Cobalt		3	3.60E-05	mg/L	0.010					
Copper		C	0.000479	mg/L	0.010					
Lead		C	0.000220	mg/L	0.010					
Molybdenu	ım		0.832	mg/L	0.0050	104	70	130		
Nickel		C	0.000233	mg/L	0.010					
Silver		(0.000179	mg/L	0.0050					
Thallium		3	3.70E-05	mg/L	0.10					
Uranium		7	7.50E-05	mg/L	0.0010					
Zinc		(0.000629	mg/L	0.010					
Lab ID:	ICSAB	15 Inter	rference C	heck Sample	AB				04/05	/16 11:10
Antimony		C	0.000126	mg/L	0.050		0	0		
Arsenic			0.0108	mg/L	0.0050	107	70	130		
Barium		C	0.000129	mg/L	0.10		0	0		
Beryllium		•	1.50E-05	mg/L	0.0010		0	0		
Cadmium			0.0107	mg/L	0.0010	107	70	130		
Chromium			0.0226	mg/L	0.010	113	70	130		
Cobalt			0.0214	mg/L	0.010	107	70	130		
Copper			0.0213	mg/L	0.010	107	70	130		
Lead		C	0.000228	mg/L	0.010		0	0		
Molybdenu	100		0.866	mg/L	0.0050	108	70	130		

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytica	al Run: I	CPMS204-B_	_160405A
Lab ID:	ICSAB	15 Inte	erference C	heck Sample AB						04/05/	16 11:10
Nickel			0.0210	mg/L	0.010	105	70	130			
Silver			0.0202	mg/L	0.0050	101	70	130			
Thallium			1.90E-05	mg/L	0.10		0	0			
Uranium			1.50E-05	mg/L	0.0010		0	0			
Zinc			0.00999	mg/L	0.010	100	70	130			
Method:	E200.8									Bate	ch: 32458
Lab ID:	MB-32458	24 Me	thod Blank				Run: ICPM	S204-B_160405	Α	04/05/	16 15:00
Aluminum			ND	mg/L	0.002						
Antimony			0.0001	mg/L	6E-05						
Arsenic			7E-05	mg/L	7E-05						
Barium			5E-05	mg/L	5E-05						
Beryllium			ND	mg/L	7E-05						
Cadmium			ND	mg/L	1E-05						
Calcium			ND	mg/L	0.009						
Chromium			0.0001	mg/L	4E-05						
Cobalt			ND	mg/L	3E-05						
Copper			0.0003	mg/L	5E-05						
Iron			0.003	mg/L	0.002						
Lead			2E-05	mg/L	2E-05						
Magnesiun	n		ND	mg/L	0.002						
Manganes	е		0.0002	mg/L	0.0002						
Molybdenu	ım		5E-05	mg/L	3E-05						
Nickel			ND	mg/L	3E-05						
Potassium			ND	mg/L	0.01						
Selenium			ND	mg/L	0.0003						
Silver			5E-05	mg/L	1E-05						
Sodium			0.01	mg/L	0.005						
Strontium			2E-05	mg/L	1E-05						
Thallium			ND	mg/L	2E-05						
Uranium			ND	mg/L	1E-05						
Zinc			0.0009	mg/L	0.0003						
Lab ID:	LCS-32458	24 Lat	oratory Co	ntrol Sample			Run: ICPM	S204-B_160405	A	04/05/	16 15:03
Aluminum			2.52	mg/L	0.030	101	85	115			
Antimony			0.529	mg/L	0.0010	106	85	115			
Arsenic			0.531	mg/L	0.0010	106	85	115			
Barium			0.531	mg/L	0.050	106	85	115			
Beryllium			0.256	mg/L	0.0010	102	85	115			
Cadmium			0.265	mg/L	0.0010	106	85	115			
Calcium			26.1	mg/L	1.0	104	85	115			
Chromium			0.520	mg/L	0.0050	104	85	115			
Cobalt			0.524	mg/L	0.0050	105	85	115			
Copper			0.518	mg/L	0.0050	104	85	115			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Bato	ch: 32458
Lab ID:	LCS-32458	24 La	24 Laboratory Control Sample			Run: ICPMS204-B_160405A				04/05/	16 15:03
Iron			2.59	mg/L	0.020	103	85	115			
Lead			0.548	mg/L	0.0010	110	85	115			
Magnesiur	m		26.0	mg/L	1.0	104	85	115			
Manganes	e		2.58	mg/L	0.0010	103	85	115			
Molybdenu	um		0.533	mg/L	0.0010	107	85	115			
Nickel			0.519	mg/L	0.0050	104	85	115			
Potassium	1		26.1	mg/L	1.0	104	85	115			
Selenium			0.517	mg/L	0.0010	103	85	115			
Silver			0.0533	mg/L	0.0010	106	85	115			
Sodium			26.3	mg/L	1.0	105	85	115			
Strontium			0.514	mg/L	0.010	103	85	115			
Thallium			0.553	mg/L	0.00050	111	85	115			
Uranium			0.521	mg/L	0.00030	104	85	115			
Zinc			0.513	mg/L	0.010	102	85	115			
Lab ID:	H16040010-001CMS3 24 Sample Matrix Spike					Run: ICPMS204-B_160405A				04/05/	16 15:19
Aluminum			2.43	mg/L	0.030	95	70	130			
Antimony			0.512	mg/L	0.0010	102	70	130			
Arsenic			0.504	mg/L	0.0010	100	70	130			
Barium			0.656	mg/L	0.050	102	70	130			
Beryllium			0.234	mg/L	0.0010	93	70	130			
Cadmium			0.244	mg/L	0.0010	98	70	130			
Calcium			83.8	mg/L	1.0	107	70	130			
Chromium	1		0.497	mg/L	0.0050	99	70	130			
Cobalt			0.493	mg/L	0.0050	99	70	130			
Copper			0.482	mg/L	0.0050	96	70	130			
Iron			2.48	mg/L	0.020	98	70	130			
Lead			0.513	mg/L	0.0010	103	70	130			
Magnesiur	m		58.0	mg/L	1.0	97	70	130			
Manganes	e		2.46	mg/L	0.0010	98	70	130			
Molybdenu	um		0.525	mg/L	0.0010	104	70	130			
Nickel			0.487	mg/L	0.0050	97	70	130			
Potassium	1		28.4	mg/L	1.0	99	70	130			
Selenium			0.476	mg/L	0.0010	94	70	130			
Silver			0.0493	mg/L	0.0010	99	70	130			
Sodium			66.8	mg/L	1.0	99	70	130			
Strontium			2.63	mg/L	0.010		70	130			Α
Thallium			0.521	mg/L	0.00050	104	70	130			
Uranium			0.521	mg/L	0.00030	102	70	130			
Zinc			0.463	mg/L	0.010	92	70	130			
Lab ID:	H16040010-001CMSD 24 Sample Matrix Spike Duplica			te	Run: ICPMS204-B_160405A				04/05/	16 15:23	
Aluminum			2.53	mg/L	0.030	100	70	130	4.3	20	
Antimony			0.510	mg/L	0.0010	102	70	130	0.4	20	

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Bato	ch: 32458
Lab ID:	H16040010-001CMSE	24 San	nple Matrix	Spike Duplicate			Run: ICPM	S204-B_160405A		04/05/	16 15:23
Arsenic			0.517	mg/L	0.0010	103	70	130	2.6	20	
Barium			0.665	mg/L	0.050	104	70	130	1.5	20	
Beryllium			0.240	mg/L	0.0010	96	70	130	2.9	20	
Cadmium			0.250	mg/L	0.0010	100	70	130	2.2	20	
Calcium			83.4	mg/L	1.0	106	70	130	0.4	20	
Chromium			0.511	mg/L	0.0050	102	70	130	2.7	20	
Cobalt			0.503	mg/L	0.0050	101	70	130	2.1	20	
Copper			0.493	mg/L	0.0050	98	70	130	2.3	20	
Iron			2.56	mg/L	0.020	101	70	130	2.8	20	
Lead			0.525	mg/L	0.0010	105	70	130	2.3	20	
Magnesium	1		58.5	mg/L	1.0	99	70	130	0.9	20	
Manganese)		2.51	mg/L	0.0010	100	70	130	2.2	20	
Molybdenu	m		0.534	mg/L	0.0010	106	70	130	1.6	20	
Nickel			0.499	mg/L	0.0050	100	70	130	2.4	20	
Potassium			29.1	mg/L	1.0	102	70	130	2.6	20	
Selenium			0.495	mg/L	0.0010	97	70	130	3.8	20	
Silver			0.0507	mg/L	0.0010	101	70	130	2.7	20	
Sodium			67.5	mg/L	1.0	102	70	130	1.1	20	
Strontium			2.63	mg/L	0.010		70	130	0.0	20	Α
Thallium			0.536	mg/L	0.00050	107	70	130	2.8	20	
Uranium			0.522	mg/L	0.00030	103	70	130	0.2	20	
Zinc			0.474	mg/L	0.010	95	70	130	2.5	20	

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte		Count R	esult	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytical	Run: I	CPMS204-B_	_160406B
Lab ID:	ICV STD	Initial C	Calibratio	n Verificat	ion Standard					04/06/	/16 11:10
Selenium		0	.0577	mg/L	0.0050	96	90	110			
Lab ID:	ICSA	Interfer	ence Ch	eck Samp	le A					04/06/	/16 11:13
Selenium		0.00	00430	mg/L	0.0050						
Lab ID:	ICSAB	Interfer	ence Ch	eck Samp	le AB					04/06/	/16 11:16
Selenium		0	.0103	mg/L	0.0050	103	70	130			
Method:	E200.8									Bat	ch: 32458
Lab ID:	MB-32458	24 Method	Blank				Run: ICPM	S204-B_160406B		04/06/	/16 15:51
Aluminum			0.002	mg/L	0.0005						
Antimony			ND	mg/L	3E-05						
Arsenic			ND	mg/L	6E-05						
Barium			ND	mg/L	0.0001						
Beryllium			ND	mg/L	5E-05						
Cadmium			ND	mg/L	1E-05						
Calcium			800.0	mg/L	0.006						
Chromium			ND	mg/L	3E-05						
Cobalt			ND	mg/L	2E-05						
Copper			ND	mg/L	6E-05						
Iron			ND	mg/L	0.0002						
Lead		•	1E-05	mg/L	5E-06						
Magnesiun	n	0	.0009	mg/L	0.0009						
Manganes	е		ND	mg/L	6E-05						
Molybdenu	ım		ND	mg/L	2E-05						
Nickel			ND	mg/L	4E-05						
Potassium			0.02	mg/L	0.01						
Selenium			ND	mg/L	4E-05						
Silver			ND	mg/L	9E-06						
Sodium			ND	mg/L	0.002						
Strontium			ND	mg/L	2E-05						
Thallium			ND	mg/L	5E-06						
Uranium			ND	mg/L	6E-06						
Zinc			0.001	mg/L	0.0002						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E245.1							Analytica	l Run: I	HGCV202-H_	_160404A
Lab ID:	ICV	Initi	al Calibratio	n Verificat	ion Standard					04/04/	16 15:50
Mercury			0.000210	mg/L	0.00010	105	90	110			
Lab ID:	CCV1	Cor	ntinuing Cal	bration Ve	rification Standa	rd				04/04/	16 16:01
Mercury			0.000206	mg/L	0.00010	103	90	110			
Method:	E245.1									Bato	ch: 32459
Lab ID:	MB-32459	Met	thod Blank				Run: HGCV	/202-H_160404A		04/04/	16 16:10
Mercury			2E-06	mg/L	1E-06						
Lab ID:	LCS-32459	Lab	oratory Cor	ntrol Sampl	e		Run: HGCV	/202-H_160404A		04/04/	16 16:13
Mercury			0.000154	mg/L	0.00010	101	90	110			
Lab ID:	H16030522-002BMS	Sar	mple Matrix	Spike			Run: HGCV	/202-H_160404A		04/04/	16 16:22
Mercury			0.000159	mg/L	0.00010	105	70	130			
Lab ID:	H16030522-002BMS	D Sar	mple Matrix	Spike Dup	licate		Run: HGCV	/202-H_160404A		04/04/	16 16:25
Mercury			0.000147	mg/L	0.00010	97	70	130	7.7	20	
Lab ID:	H16030539-002BMS	Sar	mple Matrix	Spike			Run: HGCV	/202-H_160404A		04/04/	16 16:57
Mercury			0.00015	mg/L	0.00010	101	70	130			
Lab ID:	H16030539-002BMS	D Sar	nple Matrix	Spike Dup	licate		Run: HGCV	/202-H_160404A		04/04/	16 17:00
Mercury			0.00016	mg/L	0.00010	104	70	130	3.4	20	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0							Ar	nalytical R	un: IC102-H_	_160331A
Lab ID:	ICV	2 Init	ial Calibration	on Verification	Standard					03/31/	16 13:48
Chloride			103	mg/L	1.0	103	90	110			
Sulfate			402	mg/L	1.0	100	90	110			
Lab ID:	CCV033116-3	2 Co	ntinuing Cal	libration Verifica	ation Standa	rd				03/31/	16 18:37
Chloride			102	mg/L	1.0	102	90	110			
Sulfate			402	mg/L	1.0	101	90	110			
Method:	E300.0									Batch:	R114169
Lab ID:	ICB	2 Me	thod Blank				Run: IC102	-H_160331A		03/31/	16 13:37
Chloride			0.04	mg/L	0.006						
Sulfate			ND	mg/L	0.05						
Lab ID:	LFB	2 Lal	ooratory For	tified Blank			Run: IC102	-H_160331A		03/31/	16 13:59
Chloride			47.7	mg/L	1.0	95	90	110			
Sulfate			209	mg/L	1.0	104	90	110			
Lab ID:	H16030519-009AMS	2 Sa	mple Matrix	Spike			Run: IC102	-H_160331A		03/31/	16 18:15
Chloride			112	mg/L	1.0	99	90	110			
Sulfate			293	mg/L	1.0	101	90	110			
Lab ID:	H16030519-009AMSI	D 2 Sa	mple Matrix	Spike Duplicat	е		Run: IC102	-H_160331A		03/31/	16 18:26
Chloride			114	mg/L	1.0	103	90	110	1.7	20	
Sulfate			296	mg/L	1.0	102	90	110	1.0	20	
Lab ID:	H16030522-009AMS	2 Sa	mple Matrix	Spike			Run: IC102	-H_160331A		03/31/	16 21:02
Chloride			49.8	mg/L	1.0	97	90	110			
Sulfate			219	mg/L	1.0	104	90	110			
Lab ID:	H16030522-009AMSI	D 2 Sa	mple Matrix	Spike Duplicat	е		Run: IC102	-H_160331A		03/31/	16 21:13
Chloride			50.7	mg/L	1.0	98	90	110	1.7	20	
Sulfate			221	mg/L	1.0	105	90	110	0.8	20	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:Tintina Resources IncReport Date:04/11/16Project:11048 Black Butte Copper ProjectWork Order:H16030522

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E353.2							Analy	tical Run	: FIA203-HE_	_160401A
Lab ID:	ICV	Initi	ial Calibration	on Verificati	on Standard					04/01/	16 09:50
Nitrogen,	Nitrate+Nitrite as N		0.915	mg/L	0.010	91	90	110			
Lab ID:	ICB	Initi	ial Calibration	on Blank, In	strument Blank					04/01/	16 09:51
Nitrogen,	Nitrate+Nitrite as N		-0.00841	mg/L	0.010		0	0			
Method:	E353.2									Batch:	R114171
Lab ID:	LFB	Lab	oratory For	tified Blank			Run: FIA20	3-HE_160401A	١	04/01/	16 09:53
Nitrogen,	Nitrate+Nitrite as N		1.02	mg/L	0.011	102	90	110			
Lab ID:	H16030522-001CMS	Sar	mple Matrix	Spike			Run: FIA20	3-HE_160401A	١	04/01/	16 09:56
Nitrogen,	Nitrate+Nitrite as N		1.24	mg/L	0.011	106	90	110			
Lab ID:	H16030522-001CMS	D Sar	mple Matrix	Spike Dupl	icate		Run: FIA20	3-HE_160401A	١	04/01/	16 09:57
Nitrogen,	Nitrate+Nitrite as N		1.25	mg/L	0.011	106	90	110	0.6	20	
Lab ID:	H16030527-001CMS	Sar	mple Matrix	Spike			Run: FIA20	3-HE_160401A	١	04/01/	16 10:12
Nitrogen,	Nitrate+Nitrite as N		1.72	mg/L	0.011	108	90	110			
Lab ID:	H16030527-001CMS	D Sar	mple Matrix	Spike Dupl	icate		Run: FIA20	3-HE_160401A	١	04/01/	16 10:13
Nitrogen,	Nitrate+Nitrite as N		1.70	mg/L	0.011	105	90	110	1.4	20	

Qualifiers:

RL - Analyte reporting limit.

Work Order Receipt Checklist

Tintina Resources Inc

H16030522

Login completed by:	Stephanie Dull		Date	Received: 3/31/2016
Reviewed by:	BL2000\rwilliams		Re	ceived by: bjs
Reviewed Date:	4/4/2016		Car	rier name: Hand Del
Shipping container/cooler in	good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on all sl	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes 🔽	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🔽	No 🗌	
Chain of custody agrees with	n sample labels?	Yes	No 🗹	
Samples in proper container	/bottle?	Yes 🔽	No 🗌	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌	
All samples received within h (Exclude analyses that are countries such as pH, DO, Res Cl, Su	onsidered field parameters	Yes √	No 🗌	
Temp Blank received in all si	hipping container(s)/cooler(s)?	Yes 🗸	No 🗌	Not Applicable
Container/Temp Blank tempe	erature:	-0.6°C On Ice		
Water - VOA vials have zero	headspace?	Yes	No 🗌	Not Applicable
Water - pH acceptable upon	receipt?	Yes 🗸	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as -dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

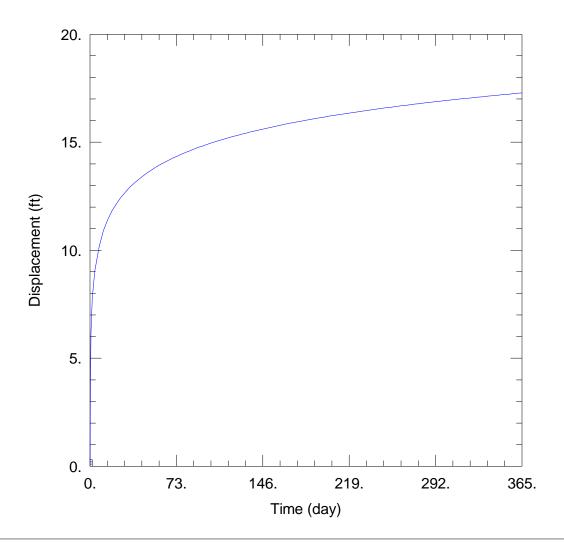
Collection date on COC for samples 407, 409, 410, and 411 is 3/20/2016. Date on sample bottles is 3/30/2016. Logged in with date from sample bottles. Sample ID on COC is BBC-1603-304 collected on 3/29/2016 at 13:30. ID on bottle is BBC1603303 collected on 3/29/2016 at 13:30. Logged in with ID from COC. Sample IDs on bottles do not contain dashes between numbers. Logged in with IDs from COC. 3/31/2016 sld

CHAIN OF CUSTODY RECORD

Hydrometrics, Inc. 3020 Bozeman Ave. · Helena, MT 59601 · (406) 443-4150

	Signature	□ Accepted □ Declined			ō	QA / QC Dept. at address at top of page	QA / QC Dept. at address at top of p	QA /	cn .	HFORM-1 07/11 Action Print 406-442-7595	HFORM Action Pri
				,				3			
		ther	33116 6:30 and other	331	المح	Jarah					
	detection limits tions □ Cover letter	Enclosed: ▲ Parameter sheet w/detection limits □ QA / AC standard mixing instructions □ Cove	Date / Time Encl		y by	Received for Laboratory by (Signature)	Date / Time R	g	mature)	Relinquished (Signature)	Relina
	J. La	0.6 cooly	1	Remarks	3)	Received by (Signature)	Date / Time R	D	Inature)	Relinquished (<i>Signature</i>)	Relina
	Air Bill #	Traffine	g"7 44"	£	a de la composição de l)	3/3/16/1030	3/3/	, ,	1	11
FedEx UPS	ed via: Bus	P.O. #		Lab	<u>"</u>	Received by (Signature)	Date / Time R	D	inature)	Relinquished (Signature)	Relino
				K	K	K	Hr.	K	K	1430	K
							410			1300	
				-			409		_	1245	
				X	×	W	1603-407	1386-1	X	3/20/11/140	3/20/1
				\	(K	304	K	ı∈	1330	K
						-	303			1228	
3						~	302			1146	
					-		30/			1125	
H16030522				/ 	X	o w	-1603-300	33c	×	3/29/16/1045	3/29/1
REMARKS		Total Reco. BTEX TPH	Total	Commons Nutrients Diss. Mete	Come	CON- TAINERS	SAMPLE NUMBER	SAM	COMP	TIME	DATE
		40/e Meta	VaOy	13.50°		NO.			ignature)	SAMPLERS: (Signature)	SAME
Pag		Als UF/		<u> </u>	 .		7	ck Butte	Black	જે	840/1
e 34 c	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ \so^* / / /	/////					NAME	PROJECT NAME	NO.	PROJ. NO.
35		(406) 443-4150	3020 Bozeman Ave. • Helena, MT 59601 • (406	/e. • Helena	ozeman Av	3020 B		CHAIN OF CUSTODY RECORD	זטטוט	407 00	CHAI

TABLE 3. ANALYTICAL METHODS AND DETECTION LIMITS FOR SURFACE WATER AND GROUNDWATER SAMPLES


Parameter	Analytical Method ⁽¹⁾	Project-Required Detection Limit (mg/L)
Physical Parameters		
TDS	SM 2540C	10
TSS	SM 2540C	10
Carrier Various Value (Carrier Value)	企业的企业的	the production of the comment of the comments.
Alkalinity	SM 2320B	4
Sulfate	300.0	1
Chloride	300.0/SM 4500CL-B	1
Fluoride	A4500-F C	0.1
Calcium	215.1/200.7	1
Magnesium	242,1/200.7	1
Sodium	273.1/200.7	1
Potassium	258.1/200.7	1
Nutricata		en e
Nitrate+Nitrite as N	353.2	0.01
THE CHECKETS OF	AND RESIDENCE STORY AND	nam Dissilvedt GW
Dimetred) ⁽²⁾		
Aluminum (Al)	200.7/200.8	0.009
Antimony (Sb)	200.7/200.8	0.0005
Arsenic (As)	200.8/SM 3114B	0.001
Barium (Ba)	200.7/200.8	0.003
Beryllium (Be)	200.7/200.8	0.0008
Cadmium (Cd)	200.7/200.8	0.00003
Chromium (Cr)	200.7/200.8	0.01
Cobalt (Co)	200.7/200.8	0.01
Copper (Cu)	200.7/200.8	0.002
Iron (Fe)	200.7/200.8	0.02
Lead (Pb)	200.7/200.8	0.0003
Manganese (Mn)	200.7/200.8	0.005
Mercury (Hg)	245,2/245,1/200,8/SM 3112B	0.000005
Molybdenum (Mo)	200.7/200.8	0.002
Nickel (Ni)	200.7/200.8	0.001
Selenium (Se)	200.7/200.8/SM 3114B	0.0002
Silver (Ag)	200.7/200.8	0.02
Strontium (Sr)	200.7/200.8	0.0002
Thallium (Tl)	200.7/200.8	0.0002
Uranium	200.7/200.8	0.008
Zinc (Zn)	200.7/200.8	0.002
		and the state of t
Stream Flow	HF-SOP-37/-44/-46	NA NA
Water Temperature	HF-SOP-20	0.1 °C
Dissolved Oxygen (DO)	HF-SOP-22	w 0.1 mg/L
рН	HF-SOP-20	0.1 s.u.
Specific Conductance (SC)	HF-SOP-79	l μmhos/cm

⁽I) Analytical methods are from Standard Methods for the Examination of Water and Wastewater (SM) or EPA's Methods for Chemical Analysis of Water and Waste (1983).

⁽²⁾ Samples to be analyzed for dissolved constituents will be field-filtered through a 0.45 µm filter.

APPENDIX D

CTF DEWATERING ANALYSES

WELL TEST ANALYSIS

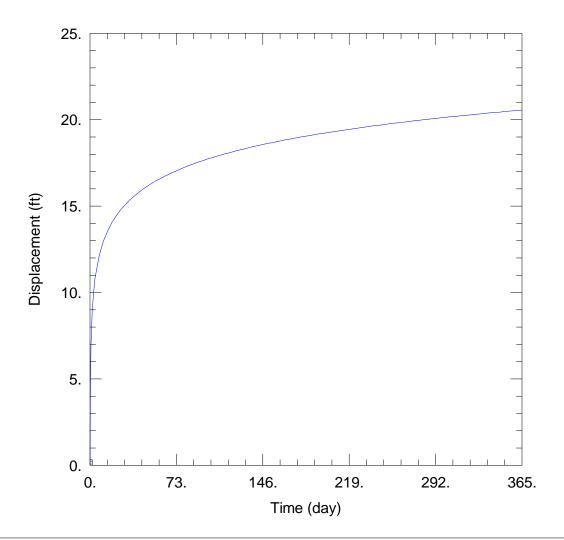
Data Set: K:\project\11048\GW\2016 CTF Monitoring Wells\CTFZone1Moench.aqt

Date: 05/20/16 Time: 08:14:31

AQUIFER DATA

Saturated Thickness: 15. ft Slab Block Thickness: 1. ft

SOLUTION


Aquifer Model: Fractured

Solution Method: Moench w/slab blocks

Ss = $1.0E-6 \text{ ft}^{-1}$ = 2. ft/day $Ss' = \frac{1.0E-6}{1.0E-6} \text{ ft}^{-1}$ = 3.0E-6 ft/day

Sw = -3.225Sf = $\overline{20}$.

 $r(w) = \overline{0.5 \text{ ft}}$ $r(c) = \overline{0.5} ft$

WELL TEST ANALYSIS

Data Set: K:\project\11048\GW\2016 CTF Monitoring Wells\CTFZone2_Moench.aqt

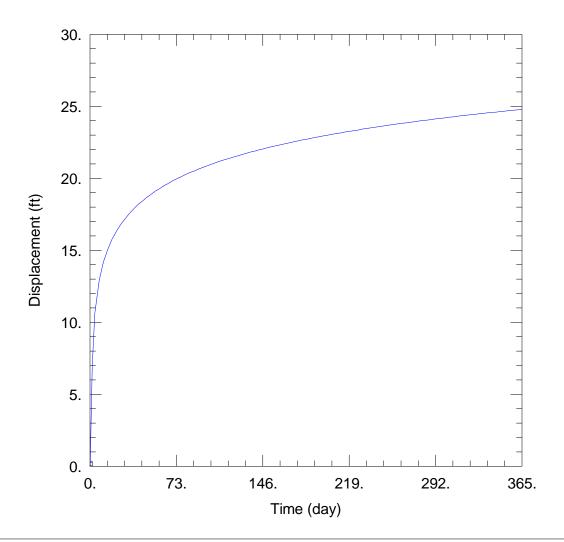
Date: 05/20/16 Time: 11:26:23

AQUIFER DATA

Saturated Thickness: 20. ft Slab Block Thickness: 1. ft

SOLUTION

Aquifer Model: Fractured


Solution Method: Moench w/slab blocks

Ss = $\frac{1.0E-6}{1.0E-6}$ ft⁻¹

Sf = $\overline{20}$.

 $r(c) = \frac{0.5}{0.5} ft$

 $K = \underline{3.} \text{ ft/day}$ $K' = \underline{10.} \text{ ft/day}$ $Sw = \underline{-3.225}$ $r(w) = \underline{0.5} \text{ ft}$

WELL TEST ANALYSIS

Data Set: K:\project\11048\GW\2016 CTF Monitoring Wells\CTFZone3Moench.aqt

Date: 05/20/16 Time: 11:28:01

AQUIFER DATA

Saturated Thickness: 25. ft Slab Block Thickness: 1. ft

SOLUTION

Aquifer Model: Fractured

Solution Method: Moench w/slab blocks

 $K = \underline{0.4} \text{ ft/day}$ K' = 0.001 ft/day

Ss = $\frac{1.0E-6}{1.0E-6}$ ft⁻¹ Ss' = $\frac{1.0E-6}{1.0E-6}$ ft⁻¹

Sw = -3.225

Sf = $\overline{20}$.

 $r(w) = \overline{0.5 \text{ ft}}$

 $r(c) = \overline{0.5} ft$