WELL COMPLETION REPORT FOR SAND COULEE WATER DISTRICT PUBLIC WATER SUPPLY WELL NO. 6

Prepared for:

Tom Henderson **Montana Department of Environmental Quality** Abandoned Mine Lands Program P.O. Box 200901 Helena, MT 59620-0901

> Prepared by: **Hydrometrics, Inc.** 3020 Bozeman Avenue Helena, MT 59601

> > October 2016

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF FIGURES	ii
LIST OF APPENDICES	iii
1.0 PROJECT DESCRIPTION	1-1
2.0 WELL INSTALLATION	2-1
3.0 AQUIFER TESTING	3-1
3.1 72-HOUR PUMPING TEST	3-1
4.0 WATER QUALITY TESTING	4-1
5.0 REFERENCES	5-1

LIST OF TABLES

TABLE 2-1.	CHRONOLOGIC DESCRIPTION OF COMPLETION AND	
	TESTING OF SAND COULEE WATER DISTRICT WELL 6	2-2
TABLE 2-2.	SUMMARY OF GROUT MATERIALS USED	2-5
TABLE 4-1.	SUMMARY OF LABORATORY ANALYTICAL RESULTS	4-2

LIST OF FIGURES

FIGURE 2-1.	LOCATION MAP	2-3
FIGURE 3-1.	BACKGROUND WATER LEVEL VERSUS BAROMETRIC	
	PRESSURE	3-3
FIGURE 3-2.	BACKGROUND WATER LEVEL TREND	3-4
FIGURE 3-3.	WELL 6 PUMPING TEST DRAWDOWN TREND	3-6
FIGURE 3-4.	THEIS SOLUTION CURVE MATCHING RESULTS	3-7
FIGURE 3-5.	GRINGARTEN-RAMEY SOLUTION CURVE MATCHING	
	RESULTS	3-8

LIST OF APPENDICES

APPENDIX A	WATER RIGHT ABSTRACTS
APPENDIX B	WELL LOG
APPENDIX C	ENERGY LABORATORY ANALYTICAL REPORT
APPENDIX D	PRELIMINARY ASSESSMENT FORM FOR GROUNDWATER
	UNDER THE DIRECT INFLUENCE OF SURFACE WATER
APPENDIX E	REDUNDANT WELL CONSTRUCTION NOTICE

WELL COMPLETION REPORT FOR SAND COULEE WATER DISTRICT PUBLIC WATER SUPPLY WELL NO. 6

1.0 PROJECT DESCRIPTION

The Montana Department of Environmental Quality (DEQ) Abandoned Mine Lands Section contracted Hydrometrics, Inc. (Hydrometrics) to oversee installation and testing of a backup public water supply well for the Sand Coulee Water District (Water District). Historically, the Water District has had chronic water shortages due in part to dewatering of the Kootenai Formation by an extensive network of abandoned coal mines. In June 2012, DEQ constructed a new well (Well 5) for the Water District into the Madison Aquifer; the well is capable of supplying sufficient water for the Water District's current and future needs (Hydrometrics, 2012). The Water District currently has two water rights on this well. The original water right (WR No. 41QJ 30063857) is a ground water certificate for 10 acre-feet and a maximum flow rate of 35 gallons per minute (gpm). The Water District received a supplemental water right (WR No. 41QJ 30066324) for 48 acre-feet and maximum flow rate of 121 gpm in July 2014 giving them a combined flow rate of 156 gpm and a total of 58 acre-feet of annual production for Well #5 (Appendix A).

The Water District currently relies on wells completed in the Kootenai Formation for a backup for Well 5. These wells have shown depleted source capacity over time and currently do not meet the DEQ-1 requirements for a backup groundwater source which requires the backup well(s) to be able to meet the maximum daily demand with the largest capacity well out of commission.

The objective for this project was to drill and complete a second 8-inch diameter public water supply well into the Madison aquifer with a targeted completion depth of 800 feet below

ground surface (bgs). The design yield for the well is 156 gpm with a maximum capacity of 234 gpm for purposes of testing. The proposed well design specified drilling an oversized 11-inch hole to 440 feet, setting 8-inch casing, and grouting the annular space to provide a robust seal through the shallow groundwater system before advancing the drill hole into the Madison aquifer to the proposed completion depth of 800 feet. Well design plans were submitted to the DEQ Public Water Supply Division for approval prior to drilling. An electronic copy of the DEQ approval letter is included on a DVD at the end of this report.

Hydrometrics developed the engineering designs for the well, supervised the well installation, and conducted the aquifer testing and water quality sampling for this project. Tom Henderson of the DEQ Remediation Division reviewed design submittals and provided field oversight in conjunction with Hydrometrics' staff. Boland Drilling located in Great Falls, Montana was awarded the contract to drill and complete the well and instrument it for aquifer testing based on an open bidding process. Chris Boland was the project manager for Boland Drilling, and his son Christopher was the driller and acted as their on-site supervisor.

2.0 WELL INSTALLATION

Drilling was initiated on May 4, 2016 and completed on May 12, 2016. A chronological description of drilling activities is provided in Table 2-1 and a detailed well log providing descriptions of stratigraphy and well construction is in Appendix B. Below is a summary of the drilling conditions, geology, and well construction.

The new well is referred to as Well 6 based on the Water District's sequential numbering system for their existing wells. The new well is located within the Water District's existing well field immediately west of Sand Coulee (Figure 2-1). The well field has in place an existing protective zone through ownership (shown in Figure 2-1) that encompasses the 100 foot control zone for the new well.

Drilling encountered unconsolidated clayey soils to a depth of 5 feet underlain by bedrock of the Kootenai Formation, which is composed of a mixed sequence of sandstone, siltstone and shale to a depth of 175 feet bgs. Prior to 2012, the Kootenai Formation was the primary source of water to the Water District's existing well field. The Kootenai Formation produced approximately 30 gpm of flow to the drill hole at a depth of 160 feet. There was no additional groundwater inflow observed from the Kootenai Formation below 160 feet.

At 175 to 180 feet bgs, there was a transition from the Kootenai sandstone to black shale of the Morrison Formation. Minor amounts of coal were encountered from 180 to 200 feet bgs. Shales, siltstones, and mudstones of the Morrison Formation continue to the upper contact of the Swift Formation at a depth of 360 feet. There were no significant water producing zones in the Morrison formation.

TABLE 2-1. CHRONOLOGIC DESCRIPTION OF COMPLETION ANDTESTING OF SAND COULEE WATER DISTRICT WELL 6

Date	Hydrometrics Present	Description
		Boland initiates drilling. Set 12" surface casing to 19.5', Set temporary 8" casing to 23'. Drilled
05/04/16	yes	8-inch borehole to 175', hole producing approx. 30 gpm.
		Advanced 8-inch borehole to 370' with good circulation. Lost circulation at 375', advanced
		borehole to 390' with continued lost circulation. Pulled 8-inch bit to start reaming borehole
05/05/16	yes	with 11" drill bit.
05/06/16	no	Continue reaming 11" borehole to 375'
05/09/16	no	Finished reaming 11" borehole to 390'; delayed setting 8" casing due to hard rain
05/10/16	no	Set 100' of 8" steel casing, difficulties with continued rain and wet conditions
		Set 8" casing to 390' and start drill/drive casing. Casing drove to 425' at end of day. Still in
05/11/16	yes	fractured bedrock.
		Finalized drill and drive of 8" casing into competent bedrock to 434'. Placed bentonite pellets
		in bottom annulus followed by 40 bags of cement, 6 bags of sand, and 1 bag of bentonite
05/12/16	yes	chips.
05/13/16	yes	Additional grouting: 40 bags of cement, 6 bags of sand, and 1 bag of bentonite chips.
		Four grout additions: 1) 30 gallons of bentonite pellets, followed by 80 bags of cement mixed
		with 24 bags of sand and 10 bags of bentonite chips. 2) Cement mixture - with 80 bags cement,
		28 bags of sand and 7 bags of bentonite. 3) Cement mixture - with 81 bags cement and 10 bags
05/16/16	no	of bentonite. 4) Cement mixture - with 80 bags cement, 25 bags sand and 7 bags bentonite.
		Finalized sealing fractures and annulus with 3 additional batches of sealing. 1) Cement mixture -
		137 bags cement, 50 bags sand, and 10 bags bentonite. 2) Cement mixture - 128 bags cement,
		50 bags sand, and 60 bags bentonite. 3) Final cement mixture - 40 bags cement, 10 bags sand
05/17/16	yes	and 1 bag of bentonite.
		Resumed drilling. Drilled from 434 to 454'; lost circulation again at 450'. Conducted air-lift
		flow test; well did not produce water when drill bit was below casing. Moved bit up into casing
		and well produced 35 gpm. Installed submersible pump to verify water production of well.
05/18/16	yes	Pumped 160 gpm with less than one foot of drawdown. Will complete well at this depth.
05/21/16	yes	Set datalogger pressure transducers to collect background data.
		Initiated 72-hour pumping test at average pumping rate of 165 gpm. Produced less than 0.2' of
05/24/16	yes	drawdown in well.
		Completed pumping test and collected water quality samples.
		Well fully recovered within a few min. Pulled transducer from well. Submitted samples to
05/27/16	yes	Energy Labs in Helena, MT for water quality analysis.
05/21/16	20	Roland removes drop pipe and pump from well
02/31/10	110	boland removes drop pipe and pump nom wen.

The Swift formation extends to a depth of 375 feet. The Swift Formation at this location consists of a very fine to medium grained sandstone, siltstone, and dirty limestone. The Swift Formation is highly fractured and problematic to drill due to loss of circulation in the open fractures. When circulation was lost, the drilling was not advanced any further to avoid having cuttings drop on top of the bit and potentially having the bit being wedged in the borehole.

Eight-inch steel casing was placed in the 11-inch borehole to 427 feet and then driven into competent bedrock to a depth of 434 feet. The annular space between the casing and borehole was sealed with cement/bentonite grout from 427 feet to the ground surface to prevent cross circulation of groundwater between the shallow formations and the Madison limestone. Because the eight-inch casing had to be driven into competent bedrock, grout was top loaded into the hole rather than pressure grouted though the bottom of the casing as originally proposed. A detailed description of the grout additions and materials used is provided in Table 2-2. The initial grouting failed to fill the annular space due to grout losses to open fractures in the formation (Table 2-2). Repeated grouting was required to bring the annular seal up to the surface. Grouting was ultimately successful in sealing the casing to the surface. A total of 37.95 cubic yards of cement were used to grout the casing annulus (details in Table 2-2).

Once grouting was completed and the overlying groundwater sources were sealed off, no groundwater entered the drill hole from the top of the Madison. Hard competent limestone was encountered below the eight-inch casing from 434 to 442 feet bgs. A fractured zone was encountered from 442 feet with increasing fractures to 453 feet where circulation was lost in the borehole. The drill stem was raised up into the casing to approximately 430 feet and the well started to produce about 35 gpm. Since lost circulation typically is an indication of high transmissive material and air can be lost to the formation during air-lift flow tests, the drill bit was removed from the well and a pump was installed in the well to a depth of 403 feet bgs to more accurately assess the productivity of the well. The water level was measured at 373 feet below the measuring point (bmp) prior to starting the pump. The well was pumped at approximately 160 gpm for 30 min with less than one foot of drawdown on April 18, 2016.

Date	DEQ Present	Hydrometrics Present	Description	cement (94-lb bag)	sand (50-lb/bag)	CaCl (50-lb bag)	Bentonite Chips (50-lb bag)	Bentonite Pellets (5-gal bucket)
5/12/2016	no	yes	grout well annulus/formation fractures	40	6	1	1	0
5/13/2016	no	yes	grout well annulus/formation fractures	40	6	1	1	2
5/16/2016	no	no	grout well annulus/formation fractures	321	77	8	34	6
5/17/2016	no	yes	grout well annulus	305	110	8	71	0
Subtotal				706	199	18	107	8

TABLE 2-2. SUMMARY OF GROUT MATERIALS USED

The well production was tested again the following day (April 19th) at 160 gpm and there was less than 0.1 feet of drawdown in the well. Based on this information, it was determined that the well would supply sufficient quantity of water for a backup well and the well was not advanced to greater depths as originally specified.

3.0 AQUIFER TESTING

Boland Drilling installed the pump, generator, and discharge line for the aquifer test. A 30 horsepower Grundfos submersible pump with a rated capacity of 160 gpm was set at a depth of 403 feet using 2-inch galvanized riser pipe, with a check valve above the pump. A 1-inch I.D. PVC stilling tube was also installed in the well for measuring water levels during testing. The stilling tube was set 5 feet above the pump. Hydrometrics installed a 30 psi Solinst transducer/datalogger in the stilling tube at a depth of 397 feet to record water level fluctuations during testing. A Neptune totalizer flow meter and a regulating valve were installed at the well head to measure and adjust discharge rates. Two-inch diameter PVC piping was laid from the well head to "Straight Ditch" in Sand Coulee to route discharge water during the pumping test to the existing surface water drainage approximately 1,000 feet to the east; this discharge line was the main discharge line for the pumping test. A secondary discharge line was installed into the discharge system through a two-inch wye and a regulating valve to allow for additional discharge if the friction losses in the main discharge line were a limiting factor on the flow discharging from the well. The secondary discharge line discharged to the water tank discharge area located approximately 250 feet to the southeast of Well 6. The layout of the discharge lines is shown on Figure 2-1.

3.1 72-HOUR PUMPING TEST

Hydrometrics recorded background water level measurements and barometric data from May 21st until the 72-hour pumping test was initiated on May 24, 2016. The pumping was started at 1:35 pm on May 24th. The pump was operated at its full capacity during the test, which produced an average yield of 165 gpm over the duration of the test. Water level measurements in the test well were recorded on an increasing schedule that logged water levels at an initial frequency of 1 reading per second, gradually decreasing in frequency to a maximum interval of 1 reading every 10 minutes. Periodic manual water level measurements were taken with an electronic water level indicator for confirmation.

Background water level data was compared to barometric pressure data from the Malmstrom Airforce Base weather station. The data shows that water levels in the pumping well are affected by changes in barometric pressure as is evident to the inverse trends in water levels and barometric pressure (Figure 3-1). After removing barometric pressure changes from the water level data the background water level data was evaluated for regional trends. Figure 3-2 shows the background water level data has a general upward trend approximately 24 hours (1440 mins) prior the start of the test. A linear regression of the final ~17 hours of the background data was used to evaluate background trends, resulting in an average increasing background trend of approximately $3x10^{-5}$ ft/min.

Pumping produced a brief drawdown surge in the well followed by an oscillatory response within the first few minutes of the test with up to 1 foot of fluctuations within the oscillations. The oscillatory response is an "underdamped" response attributable to inertial effects following a rapid change in water levels in a highly permeable aquifer. The pressure transducer gradually slipped in the stilling well from approximately 100 to 170 minutes after pumping began; the transducer secured further and remained stable after approximately 170 minutes into the pumping test. Manual measurements collected prior to and after the transducer slipped were used to correct the pressure transducer data. Water level drawdown fluctuated between 0.2 and 0.3 feet at the end of the test when background trends were accounted for. The fluctuations in water levels throughout the pumping period may be attributable to turbulent flow in large fractures or voids. Approximately 30 minutes prior to the end of the drawdown test the generator inadvertently shutdown. Due to the inadvertent shutdown, the datalogger transducer was not reset to record water levels at a high frequency to monitor the rapid water level recovery for the initial part of the recovery phase. Manual water levels were collected approximately 4 minutes after the pump was shut down and the transducer was started at a 1 second sample frequency approximately 20 minutes after pumping had ceased. Water levels were mostly recovered prior to manual measurements being collected and were fully recovered prior to the transducer being restarted. The pump was restarted approximately 70 minutes after the generator shutdown to collect water quality samples. Water was purged from the well for 10 minutes at 165 gpm prior to collecting the water quality sample.

Water level data collected from the pumping well were corrected for the transducer slipping in the stilling well. The barometric effects on water levels and the background trend were removed from the water level data prior to analyzing the drawdown data. Figure 3-3 shows the drawdown trends over time during the pumping and recovery tests. The drawdown and discharge data are included in electronic form on the attached DVD. Water level data was corrected for background water level trends and analyzed using AQTESOLV (v.4.5) to calculate the resultant hydraulic conductivity of the aquifer. Applying a fit to the drawdown curve was hindered due to the water levels fluctuating within 30% to 50% of the total drawdown. The data were analyzed using both an equivalent porous media approach (Theis, 1935) and a bedrock solution (Gringarten and Ramey, 1974). Both methods yield hydraulic conductivity estimates on the order of 5,000 to 6,000 feet/day. Graphical curve matching results are shown in Figures 3-4 and 3-5. The 72-hour pumping test results indicate that the fracture system intercepted by this well has a very high hydraulic conductivity, which is consistent with the high yields seen in Well-5 which is completed through the same interval.

4.0 WATER QUALITY TESTING

The Phase II and Phase V rules of the federal Safe Drinking Water Act require community water supplies to monitor for radionuclides, volatile organic compounds (VOCs), synthetic organic chemicals (SOCs), inorganic compounds (IOCs), and microbiological contaminants. Hydrometrics collected water quality samples at the completion of the 72-hour pumping test and submitted the samples under standard chain of custody protocol to Energy Laboratories in Helena, Montana for analysis of Phase II and Phase V VOCs, SOCs, IOCs, and radionuclides. Microbiological testing will be conducted after the piping and pump are installed and the well has been disinfected. Analytical results are summarized in Table 4-1 and the complete laboratory analytical report and chain of custody documentation is included in Appendix C.

The water quality results meet applicable regulatory limits for all constituents and show concentrations of VOCs, SOCs, and metals near or below the detection limit. The water has a high hardness (291 mg/L), which is typical of water derived from the Madison aquifer. High hardness does not adversely affect water quality but may cause scaling on plumbing fixtures and appliances, such as water heaters.

In addition to monitoring for Phase II and Phase V rule contaminants, DEQ requires public water supply wells to be evaluated to determine whether the groundwater source is under the direct influence of surface water (GWUDISW assessment). Sources that have a direct surface water influence have an increased risk of contamination from pathogenic organisms (Giardia lamblia, Cryptosporidium, viruses, and bacteria); therefore, DEQ has developed a screening process to determine whether there is significant risk that a source is directly influenced by surface water and whether it will be subject to the Surface Water Treatment Rule requirements. DEQ has a preliminary assessment (PA) form that can be used to establish that a source is not directly connected to surface water if it is sufficiently deep, the well has an adequate seal and there is a large set-back from surrounding surface water bodies.

Parameter	Results	Units	Reporting Limit	Regulatory Limit	
pH	7.6	s.u.		6.50-8.50	
Conductivity	622	umhos/cm	1		
Total Alkalinity	190	mg/L	4		
Calcium	74	mg/L	1		
Magnesium	26	mg/L	1		
Potassium	3	mg/L	1		
Sodium	13	mg/L	1		
Sulfate	131	mg/L	1		
Chloride	6	mg/L	1		
Fluoride	0.6	mg/L	0.1	4	
Nitrate+nitrite as N	0.39	mg/L	0.01	10	
Hardness	291	mg/L	1		
METALS					
Mercury	ND	mg/L	0.0001	0.002	
Antimony	ND	mg/L	0.002	0.006	
Barium	ND	mg/L	0.1	2	
Berylium	ND	mg/L	0.001	0.004	
Cadmium	ND	mg/L	0.001	0.005	
Chromium	ND	mg/L	0.01	0.1	
Iron	ND	mg/L	0.03		
Nickel	ND	mg/L	0.01		
Selenium	0.002	mg/L	0.001	0.05	
Thallium	ND	mg/L	0.001	0.002	
Arsenic	0.002	mg/L	0.001	0.01	
RADIONUCLIDES					
Gross Alpha	3.1	pCi/L		15	
Gross Alpha Adjusted	2.1	pCi/L		15	
Radium 226	0.3	pCi/L		5	
Radium 228	0.3	pCi/L		5	
Radium 226 + 228	0.7	pCi/L		5	
Uranium	0.002	mg/L	0.001	0.03	
VOLATILE ORGANIC	C COMPO	UNDS	All below d	etection limits	
SEMI-VOLATILE CO	MPOUND	S	All below d	etection limits	
HERBICIDES	All below d	etection limits			

TABLE 4-1. SUMMARY OF LABORATORY ANALYTICAL RESULTS

Note: ND = *Not Detected at applicable reporting limits.*

Hydrometrics completed the PA Form, a copy of which is included in Appendix D. The resultant ranking classifies the source as groundwater that does not require further evaluation, based on the large depth to the Madison aquifer, the inclusion of an adequate annular seal and the set-back to surface water.

Aquifer and water quality testing indicates that the capacity of the new well exceeds the required design flow of 156 gpm, and that water quality meets applicable requirements for a community water supply well. The Water District has submitted a Redundant Well Construction Notice to the Montana Department of Natural Resources and Conservation to add Well 6 to the two water rights the Water District currently has for the Madison Aquifer. A copy of the redundant well construction notice is included in Appendix E. A final round of microbiological testing will be required prior to putting the well to use, but given the depth of the aquifer and the well completion characteristics problems with microbiological contaminants at this site are not anticipated.

5.0 REFERENCES

- Gringarten, A.C. and H.J. Ramey, 1974. Unsteady state pressure distributions created by a well with a single horizontal fracture, partial penetration or restricted entry, Soc. Petrol. Engrs. J., pp. 413-426.
- Hydrometrics, Inc., 2012. Sand Coulee Water District Public Water Supply Well Installation Final Report. Prepared for MTDEQ Remediation Division, August 2012.
- Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524.

APPENDIX A

WATER RIGHT ABSTRACTS

STATE OF MONTANA

DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION

1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

GENERAL ABSTRACT

Water Right Number:	41QJ 30063857 GROUND WATER CERTIFICATE								
	Version:	1 ORIGINAL	RIGHT						
	,	Version Status:	ACTIV	Έ					
Owners: SAND COULEE WATER DISTRICT PO BOX 97									
	SAND COULEE, MT 59472-0097								
Priority Date:	AUGUST 14, 2012 at 01:35 P.M.								
Enforceable Priorit	y Date: AL	JGUST 14, 201	2 at 01	:35 P.M					
Purpose (use):	MUNICIPA	L.							
Maximum Flow Rate:	35.00 GPN	1							
Maximum Volume:	10.00 AC-FT								
Source Name:	GROUND	WATER							
Source Type:	GROL	JNDWATER							
Point of Diversion and M	eans of Dive	rsion:							
<u>ID</u> 1	<u>Govt Lot</u>	<u>Qtr Sec</u> NENESE	<u>Sec</u> 14	<u>Тwp</u> 19N	<u>Rge</u> 4E	County CASCADE			
Period of Diversion	JANUARY	1 TO DECEM	3ER 31						
Diversion Means:	WELL								
Well Depth:	785.00 FE	ET							
Static Water Level	: 373.00 FE	ET							
Casing Diameter:	8.00 INCH	ES							
Purpose (Use):	MUNICIPA	AL.		Pur Cla	pose rificati	WELL #5			
Volume:	10.00 AC-	FT							
Period of Use:	JANUARY	1 to DECEMB	ER 31						
Place of Use:									
ID Acres 1 2 3 4	<u>Govt Lot</u>	<u>Qtr Sec</u> E2SESE SW S2NW	<u>Sec</u> 14 13 13	<u>Twp</u> 19N 19N 19N	<u>Rge</u> 4E 4E 4E	County CASCADE CASCADE CASCADE			

Remarks:

ASSOCIATED RIGHT

WATER RIGHTS #: 41QJ-5056, 41QJ-5057, 41QJ-5058, 41QJ-6174, 41QJ-70692, AND 41QJ-213044 ARE ASSOCIATED. THEY HAVE OVERLAPPING PLACES OF USE.

IMPORTANT INFORMATION

WATER WILL BE PUMPED TO AN EXISTING WATER STORAGE TANK LOCATED IN SWNWSW S13, T19N, R4E.

IMPORTANT INFORMATION

THIS WELL IS DRILLED INTO THE MADISON FORMATION, AND IS PHYSICALLY MANIFOLDED INTO THE DISTRICT'S EXISTING WATER SUPPLY SYSTEM. THE WELL IS INTENDED TO SUPPLEMENT WATER PROVIDED BY THE DISTRICT'S OTHER WELLS (DRILLED INTO THE KOOTENAI FORMATION). THE DISTRICT WILL DISCONTINUE USE OF THIS WELL EACH YEAR ONCE THE 10 ACRE-FOOT (3,258,510-GALLON) MAXIMUM VOLUME IS REACHED. FLOW METERS WILL BE INSTALLED SUMMER OF 2013.

STATE OF MONTANA

DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION

1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

GENERAL ABSTRACT

Water Right Number:	41QJ 3006 Version:	6324 PRO I ORIGINAL	VISIONA RIGHT	AL PERI	VIT		
Owners:	SAND COU PO BOX 9 SAND COU	Version Status JLEE WATER 7 JLEE, MT 594	: ACTIV R DISTR 172-009	'E ICT 7			
Priority Date:	MAY 16, 20	013 at 10:08 A	\. М.				
Enforceable Priorit	ty Date: MA	AY 16, 2013 a	t 10:08 A	٩.M.			
Purpose (use):	MUNICIPA	L					
Maximum Flow Rate:	121.00 GPI	M					
Maximum Volume:	48.00 AC-F	T					
Source Name:	GROUND	VATER					
Source Type:	GROL	INDWATER					
Point of Diversion and M	eans of Diver	sion:					
<u>ID</u> 1	<u>Govt Lot</u>	<u>Qtr Sec</u> SENESE	<u>Sec</u> 14	<u>Twp</u> 19N	<u>Rge</u> 4E	<u>County</u> CASCADE	
Period of Diversion Diversion Means: Well Depth: Static Water Level Casing Diameter:	: JANUARY WELL 785.00 FEI : 371.00 FEI 8.00 INCH	1 TO DECEM ET ET ES	IBER 31			Flow Rate	: 121.00 GPM
Purpose (Use):	MUNICIPA	L		Pu Cla	rpose rificati	on:	TOWN OF SAND COULEE - WELL #5
Climatic Area:	3 - MODEI	RATE					
Volume:	48.00 AC-	FT					
Period of Use:	JANUARY	1 to DECEME	3ER 31				
Place of Use:							
ID Acres				an a		a .	
1 2 3 4 5	<u>Govt Lot</u>	<u>Qtr Sec</u> E2SESE SW S2NW NWSE SWNE	<u>Sec</u> 14 13 13 13 13	<u>Twp</u> 19N 19N 19N 19N 19N	<u>Rge</u> 4E 4E 4E 4E 4E	County CASCADE CASCADE CASCADE CASCADE CASCADE	

Remarks:

ASSOCIATED RIGHT

THIS RIGHT IS ASSOCIATED WITH 41QJ 5057 00, 41QJ 6174 00, 41QJ 70692 00, AND 41QJ 30063857. THESE RIGHTS SHARE THE SAME PLACE OF USE IN THE TOWN'S WATER DISTRIBUTION SYSTEM.

IMPORTANT INFORMATION

41QJ 30063857 DIVERTS UP TO 35 GPM AND 10 AF FROM THE SAME WELL OF THIS PERMIT (WELL #5). TOGETHER, 41QJ 30066324 AND 41QJ 30063857 MAY DIVERT UP TO 156 GPM AND 58 AF FROM WELL #5 (MADISON AQUIFER WELL).

IMPORTANT INFORMATION

WATER WILL BE PUMPED TO A WATER STORAGE TANK LOCATED IN THE NENESE OF SEC 14, T19N, R4E, CASCADE COUNTY.

IMPORTANT INFORMATION

THE APPROPRIATOR SHALL INSTALL A DEPARTMENT APPROVED IN-LINE FLOW METER AT A POINT IN THE DELIVERY LINE APPROVED BY THE DEPARTMENT. WATER MUST NOT BE DIVERTED FROM THE MADISON AQUIFER WELL UNDER PERMIT NO. 41QJ 30066324 UNTIL THE REQUIRED MEASURING DEVICE IS IN PLACE AND OPERATING. ON A FORM PROVIDED BY THE DEPARTMENT, THE APPROPRIATOR SHALL KEEP A WRITTEN MONTHLY RECORD OF THE FLOW RATE AND VOLUME OF ALL WATER DIVERTED, INCLUDING THE PERIOD OF TIME. RECORDS WILL BE USED IN COMBINATION WITH MEASUREMENT RECORDS FROM THE KOOTENAI AQUIFER WELLS OF CHANGE APPLICATION

Remarks:

41QJ 30066325 TO DEMONSTRATE DIVERSIONS DO NOT EXCEED THE COMBINED AUTHORIZED FLOW OF UP TO 156 GPM AND UP TO 58 AF PER YEAR. RECORDS SHALL BE SUBMITTED BY JANUARY 31 OF EACH YEAR AND UPON REQUEST AT OTHER TIMES DURING THE YEAR. FAILURE TO SUBMIT REPORTS MAY BE CAUSE FOR REVOCATION OF A PERMIT OR CHANGE. THE RECORDS MUST BE SENT TO THE WATER RESOURCES REGIONAL OFFICE. THE APPROPRIATOR SHALL MAINTAIN THE MEASURING DEVICE SO IT ALWAYS OPERATES PROPERLY AND MEASURES FLOW RATE AND VOLUME ACCURATELY.

IMPORTANT INFORMATION

THIS IS A COMBINED APPROPRIATION WITH CHANGE AUTHORIZATION 41QJ 30066325, WHERE THE MITIGATION FOR THIS PERMIT IS PROVIDED BY THREE WATER RIGHTS: 41QJ 5057-00, 41QJ 6174-00, AND 41QJ 70692-00.

APPENDIX B

WELL LOG

Hydrometrics, Consulting Scientists and Eng	Inc. /			Hole Na	me: Well-6
Helena, Montana				Date Hole Started: 5/4/16	Date Hole Finished: 5/18/16
Client: Sand Coulee Water District/DEQ	WELL COMPLETION	<u>Y/N</u>	DESCRIPTIO	<u>N</u>	INTERVAL
Project: 10039	Well Installed?	Y	8-inch, steel c	asing	0-434
County: Cascade State: Montana	Surface Casing Used	l? Y	12-inch tempo	orary surface casing	0-20
Property Owner: Sand Coulee Water District	Screen/Perforations?	Υ	Open Hole		434-453
Legal Description: T19N, R4E,S14 NESE	Sand Pack?	Y	None		
Location Description: Sand Coulee Water District Well Field	Annular Seal? Surface Seal?	Y Y	Bentonite/Cer Bentonite/Cer	nent Grout nent Grout	0-434 0-20'
Recorded By: Doug Parker	DEVELOPMENT/SAM	<u>MPLING</u>			
Drilling Company: Boland Drilling	Well Developed?	Y	2 hrs pumping	g at 160 gpm	
Driller: Christopher Boland	Water Samples Take	n? Y	IOC, VOC, SO	C	
Drilling Method: Air Rotary	Boring Samples Take	en? N			
Drilling Fluids Used: Water	Northing: 47.398067		Easting: -1	11.177032	
Purpose of Hole: Public Water Supply Well	Static Water Level Be	low MP:	373.3	Surface Casing I	Height (ft): +2
Target Aquifer: Madison Aquifer	Date: 5/21/16			Ground Surface	Elevation (ft): 3688
Hole Diameter (in): 8 in	MP Description: Top	of Steel		MP Elevation (ft)	:
Total Depth Drilled (ft): 453	MP Height Above or E	Below Gro	ound (ft):		
Remarks: 12-inch diameter temporary casing set to 20 then annular space completely sealed to ground surfac and completed open hole. 72-hr pumping test condcuto	D feet, then 11-inch diar e with cement/bentonite ed at 163 gpm produced	neter bor grout. [d <0.25 ft	ehole completed rill hole advance of drawdown an	to 427 feet. 8-inch casin d through the Madison lin d recovered in less than 7	ng driven to 434 feet and nestone from 434 to 453 feet I minute.
		GRAPHICS	GEO	LOGICAL DES	CRIPTION
	-inch Steel Casing cement annular	F X X X X	eddish/brown clar	y/clay-loam, slightly moist	
sea	1	×× ××∖	an siltstone and v	ery fine grained sandstone.	[Kootenai Fm]
20		× × \\	loist at 10'		
			0.0 - 45.0' Siltsto	one //tan: mostly bard, some clay	vev soft lavers dry
_30			ayered light green		yey solt layers, ury
		× × × ×			
_40		× × × ×			
-		× × × × · · · · 4	5.0 - 50.0' Sands	stone	
_50			ed brown, fine to rey shale. Making	medium grained, hard sand very little water @ 45'. Dril	stone; with minor layers of ler adding water below 45'.
60			0.0 - 60.0' Siltsto Grev to tan. hard si	one Itstone with some soft laver	s: lavers of verv fine grained
_		×× \s	andstone.	·····	
_70			ed/brown soft clays	ystone.	
-		6	5.0 - 105.0' Shal	e w hard shale	,
_80			lealann to dark gre	y, naru shale.	
-					
90					
_```					
		1 Y	05.0 - 120.0' Sar ellow/brown at top an shale stringers.	ndstone o then tan, fine grained sanc	Istone, making minor water.
		· · · · · × × 1	20.0 - 125.0' Silt	stone	
		×× ↓	ight tan, hard silts	tone.	/
		1 li	∠5.0 - 175.0° Sar ght grey, very fine	grained, hard sandstone.	
150		: b	ecoming coarser	(fine to medium grained); lig	ht and dark grey (salt &
				Continued Next Page	Sheet 1 of 3

DOMESTIC_WELL2 K:\GINT\PROJECTS\10039.GPJ HYDHLN2.GDT 8/2/16

Hydrometrics, Inc. . Consulting Scientists and Engineers

Helena, Montana

DOMESTIC_WELL2 K:\GINT\PROJECTS\10039.GPJ HYDHLN2.GDT 8/2/16

Hole Name: Well-6

Date Hole Started: 5/4/16

Date Hole Finished: 5/18/16

	S	
	GRAPHIC	GEOLOGICAL DESCRIPTION
_		pepper) color.
_160	· · · · · · · · · ·	making ~30 gpm
	· · · · · · · · · · · · · · ·	
		175.0 - 180.0' Sandstone/Shale
		Transistion from sandstone (as above) to light grey shale and claystone
_190		Dark grey to black shale with coal stringers
200		
	X X	200.0 - 205.0' Shale Black shale & soft light greay siltstone
		Light grey, soft clayey slitstone
_220	× × × × × ×	
230	× × × × × ×	
	× × × × × ×	minor light grey/green sandy layers
	× × × × × ×	
_250	× × × ×	245.0 - 295.0 'Siltstone/Shale light grey to grey/green, hard, siltstone and shale. Minor very fine sandy lavers
260	x x x x x	
	× × × × × ×	
	× × × × × ×	
_280	× × × × × ×	
290	× × × ×	
	x x × ×	295.0 - 335.0' Siltstone
		light grey and yellowish brown siltstone
_310	$\hat{x} \hat{x}$ $x \hat{x}$ $x \hat{x}$	I an, hard siltstone Yellow/brown, grey and reddish brown siltstone
	× × × × × ×	
	× × × × × ×	i an, nard slitstone light grey siltstone and claystone
	× × × × × ×	tan, mixed with red/brown clayey siltstone
_340	\hat{x} \hat{x} x \hat{x}	light grey, silty claystone.
		mica within clayey soft matrix
	× × × × × ×	
	×. ×. 	360.0 - 375.0' Sandstone Tan with yellow/brown and red/brown, hard, very fine to fine grained
_370	· · · · ·	sandstone. [Swift Fm]
	· · · · ·	375.0 - 425.0' Limestone Tan limestone with sandstone, siltstone and shale, highly fractured and
		voids; lost circulation.
		Continued Next Page Sheet 2 of 3

APPENDIX C

ENERGY LABORATORY ANALYTICAL REPORT

ANALYTICAL SUMMARY REPORT

June 17, 2016

MT DEQ-Abandoned Mines PO Box 200901 Helena, MT 59620-0901

Work Order: H16050548

Project Name: 10039 Sand Coulee

Energy Laboratories Inc Helena MT received the following 2 samples for MT DEQ-Abandoned Mines on 5/31/2016 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H16050548-001	SAC-1605-001	05/27/16 14	00 05/31/16	Drinking Water	Metals by ICP/ICPMS, Drinking Water Alkalinity Conductivity Mercury, Drinking Water Fluoride 515.4-Herbicides, Chlorinated SDWA Hardness as CaCO3 Anions by Ion Chromatography Total Uranium Nitrogen, Nitrate + Nitrite pH Drinking Water Metals Digestion by EPA 200.2 Herbicide Liquid-Liquid Microextraction Digestion, Mercury by CVAA Pesticides, Carbamates SDWA Gross Alpha Calculated Gross Alpha, Gross Beta Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved Semi-Volatile Organic Compounds Extraction 525-Semi-Volatile Organics, SDWA
H16050548-002	TB 5562	05/27/16 14	:00 05/31/16	Trip Blank	524-Purgeable Organics, SDWA

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

LABORATORIES	Trust our People. Trust our Data. www.energylab.com	Billings, MT 800.735.4489 • Casper, WY 888.235.0515 College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711
CLIENT:	MT DEQ-Abandoned Mines	Report Date: 06/17/16
Project:	10039 Sand Coulee	
Work Order:	H16050548	CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, 2393 Salt Creek Hwy., Casper, WY, EPA Number WY00002 and WY00937.

Comments imported for SUBBED Workorder: C16060079

COMBINED RA226+RA228 CALCULATION

The result for the combined Ra226/228 calculation is performed by adding the Ra226 activity to the Ra228 activity. If one or both of these activities is negative or less than the 40CFR_DL, one half the 40CFR_DL is substituted for the respective value below the 40CFR_DL. This may produce a value for the combined Radium activities larger than the sum of the two original activities. This method of calculating the sum of the activities for these two radionuclides is in accordance with the guidance in 40CFR141.26(a)(4).

End of comments imported for SUBBED Workorder: C16060079

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

 Client:
 MT DEQ-Abandoned Mines
 Report Date:
 06/17/16

 Project:
 10039 Sand Coulee
 Collection Date:
 05/27/16 14:00

 Lab ID:
 H16050548-001
 DateReceived:
 05/31/16

 Client Sample ID:
 SAC-1605-001
 Matrix:
 Drinking Water

					MCL/		Analysis Date / By
Analyses	Result	Units	Qualifiers	RL	QCL	Method	
PHYSICAL PROPERTIES							
Н	7.6	s.u.	н	0.1		A4500-H B	06/01/16 10:36 / SRW
Conductivity @ 25 C	622	umhos/cm		1		A2510 B	06/01/16 10:36 / SRW
Solids, Total Dissolved TDS @ 180 C	406	mg/L		10		A2540 C	06/03/16 10:13 / MAC
INORGANICS							
Alkalinity, Total as CaCO3	190	mg/L		4		A2320 B	06/01/16 19:40 / SRW
Bicarbonate as HCO3	230	mg/L		4		A2320 B	06/01/16 19:40 / SRW
Carbonate as CO3	ND	mg/L		4		A2320 B	06/01/16 19:40 / SRW
Chloride	6	mg/L		1		E300.0	06/02/16 12:07 / SRW
Sulfate	131	mg/L		1		E300.0	06/02/16 12:07 / SRW
Fluoride	0.6	mg/L		0.1	4	A4500-F C	06/06/16 14:48 / SRW
Hardness as CaCO3	291	mg/L		1		A2340 B	06/06/16 09:32 / sld
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	0.39	mg/L		0.01	10	E353.2	06/01/16 11:00 / cmm
METALS, TOTAL (CONTRACT LAB M	T00945)						
Antimony	ND	mg/L		0.001	0.006	E200.8	06/01/16 12:06 / dck
Arsenic	0.002	mg/L		0.001	0.01	E200.8	06/01/16 12:06 / dck
Barium	ND	mg/L		0.05	2	E200.8	06/01/16 12:06 / dck
Beryllium	ND	mg/L		0.001	0.004	E200.8	06/01/16 12:06 / dck
Cadmium	ND	mg/L		0.001	0.005	E200.8	06/01/16 12:06 / dck
Calcium	74	mg/L		1		E200.7	06/03/16 17:17 / sld
Chromium	ND	mg/L		0.005	0.1	E200.8	06/01/16 12:06 / dck
Magnesium	26	mg/L		1		E200.7	06/03/16 17:17 / sld
Nickel	ND	mg/L		0.005		E200.8	06/01/16 12:06 / dck
Potassium	3	mg/L		1		E200.7	06/03/16 17:17 / sld
Selenium	0.002	mg/L		0.001	0.05	E200.8	06/01/16 12:06 / dck
Sodium	13	mg/L		1		E200.7	06/03/16 17:17 / sld
Thallium	ND	mg/L		0.0005	0.002	E200.8	06/01/16 12:06 / dck
RADIONUCLIDES - TOTAL							
Uranium	0.002	mg/L		0.001	0.03	E200.8	06/08/16 22:38 / eli-ca
RADIONUCLIDES - TOTAL							
Gross Alpha	3.1	pCi/L			15	E900.0	06/10/16 14:46 / eli-c
Gross Alpha precision (±)	2.6	pCi/L				E900.0	06/10/16 14:46 / eli-c
Gross Alpha MDC	1.9	pCi/L				E900.0	06/10/16 14:46 / eli-c
Gross Alpha - Adjusted	2.1	pCi/L			15	E900.0	06/13/16 09:49 / eli-ca
Gross Alpha - Adjusted precision (±)	2.6	pCi/L				E900.0	06/13/16 09:49 / eli-ca
Gross Alpha - Adjusted MDC	1.9	pCi/L			_	E900.0	06/13/16 09:49 / eli-ca
Radium 226	0.3	pCi/L			5	E903.0	06/13/16 14:33 / eli-c
Radium 226 precision (±)	0.1	pCi/L				E903.0	06/13/16 14:33 / eli-c
Radium 226 MDC	0.1	pCi/L				E903.0	06/13/16 14:33 / eli-c

RL - Analyte reporting limit.

Report

Definitions:

QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

ND - Not d

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

H - Analysis performed past recommended holding time.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

 Client:
 MT DEQ-Abandoned Mines
 Report Date:
 06/17/16

 Project:
 10039 Sand Coulee
 Collection Date:
 05/27/16 14:00

 Lab ID:
 H16050548-001
 DateReceived:
 05/31/16

 Client Sample ID:
 SAC-1605-001
 Matrix:
 Drinking Water

					MCL/		Analysis Date / By
Analyses	Result	Units	Qualifiers	RL	QCL	Method	
RADIONUCLIDES - TOTAL							
Radium 228	0.3	pCi/L	U		5	RA-05	06/10/16 12:17 / eli-c
Radium 228 precision (+)	0.7	pCi/l	Ū.		Ū	RA-05	06/10/16 12:17 / eli-c
Radium 228 MDC	0.7	pCi/l				RA-05	06/10/16 12:17 / eli-c
Radium $226 + Radium 228$	0.7	pCi/l	U			A7500-RA	06/14/16 13:01 / eli-ca
Radium 226 + Radium 228 precision (+)	0.7	pCi/l	Ū.			A7500-RA	06/14/16 13:01 / eli-ca
Radium 226 + Radium 228 MDC	0.7	pCi/l				A7500-RA	06/14/16 13:01 / eli-ca
- See case narrative regarding combined Ra226	+Ra228 calcula	tion.					
DRINKING WATER METALS ANALYSE	S						
Mercury	ND	mg/L		0.0001	0.002	E245.1	06/02/16 12:34 / rgk
VOLATILE ORGANIC COMPOUNDS							
Benzene	ND	ug/L		0.50	5	E524.2	06/03/16 14:10 / kjw
Bromobenzene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Bromochloromethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Bromodichloromethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Bromoform	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Bromomethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
n-Butylbenzene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
sec-Butylbenzene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
tert-Butylbenzene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Carbon tetrachloride	ND	ug/L		0.50	5	E524.2	06/03/16 14:10 / kjw
1,2-Dichloroethane	ND	ug/L		0.50	5	E524.2	06/03/16 14:10 / kjw
Chlorobenzene	ND	ug/L		0.50	100	E524.2	06/03/16 14:10 / kjw
Chlorodibromomethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Chloroethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Chloroform	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Chloromethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
2-Chlorotoluene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
4-Chlorotoluene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
1,2-Dibromo-3-chloropropane	ND	ug/L		1.0	0.2	E524.2	06/03/16 14:10 / kjw
Dibromomethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
1,2-Dichlorobenzene	ND	ug/L		0.50	600	E524.2	06/03/16 14:10 / kjw
1,3-Dichlorobenzene	0.068	ug/L	J	0.50		E524.2	06/03/16 14:10 / kjw
1,4-Dichlorobenzene	ND	ug/L		0.50	75	E524.2	06/03/16 14:10 / kjw
Dichlorodifluoromethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
1,1-Dichloroethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
1,2-Dibromoethane	ND	ug/L		0.50	0.05	E524.2	06/03/16 14:10 / kjw
1,1-Dichloroethene	ND	ug/L		0.50	7	E524.2	06/03/16 14:10 / kjw
cis-1,2-Dichloroethene	ND	ug/L		0.50	70	E524.2	06/03/16 14:10 / kjw
trans-1,2-Dichloroethene	ND	ug/L		0.50	100	E524.2	06/03/16 14:10 / kjw
1,2-Dichloropropane	ND	ug/L		0.50	5	E524.2	06/03/16 14:10 / kjw
1,3-Dichloropropane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

J - Estimated value. The analyte was present but less than the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Helena, MT Branch

 Client:
 MT DEQ-Abandoned Mines
 Report Date:
 06/17/16

 Project:
 10039 Sand Coulee
 Collection Date:
 05/27/16 14:00

 Lab ID:
 H16050548-001
 DateReceived:
 05/31/16

 Client Sample ID:
 SAC-1605-001
 Matrix:
 Drinking Water

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
2.2-Dichloropropane	ND	ua/L		0.50		E524.2	06/03/16 14:10 / kiw
1.1-Dichloropropene	ND	ua/L		0.50		E524.2	06/03/16 14:10 / kiw
cis-1.3-Dichloropropene	ND	ua/L		0.50		E524.2	06/03/16 14:10 / kiw
trans-1,3-Dichloropropene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Ethylbenzene	ND	uq/L		0.50	700	E524.2	06/03/16 14:10 / kjw
Hexachlorobutadiene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Isopropylbenzene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
p-Isopropyltoluene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Methyl tert-butyl ether (MTBE)	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Methylene chloride	ND	ug/L		0.50	5	E524.2	06/03/16 14:10 / kjw
Naphthalene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
n-Propylbenzene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Styrene	ND	ug/L		0.50	100	E524.2	06/03/16 14:10 / kjw
1,1,1,2-Tetrachloroethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
1,1,2,2-Tetrachloroethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Tetrachloroethene	ND	ug/L		0.50	5	E524.2	06/03/16 14:10 / kjw
Toluene	0.17	ug/L	J	0.50	1000	E524.2	06/03/16 14:10 / kjw
1,2,3-Trichlorobenzene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
1,2,4-Trichlorobenzene	ND	ug/L		0.50	70	E524.2	06/03/16 14:10 / kjw
1,1,1-Trichloroethane	ND	ug/L		0.50	200	E524.2	06/03/16 14:10 / kjw
1,1,2-Trichloroethane	ND	ug/L		0.50	5	E524.2	06/03/16 14:10 / kjw
Trichloroethene	ND	ug/L		0.50	5	E524.2	06/03/16 14:10 / kjw
Trichlorofluoromethane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
1,2,3-Trichloropropane	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
1,2,4-Trimethylbenzene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
1,3,5-Trimethylbenzene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Vinyl chloride	ND	ug/L		0.50	2	E524.2	06/03/16 14:10 / kjw
m+p-Xylenes	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
o-Xylene	ND	ug/L		0.50		E524.2	06/03/16 14:10 / kjw
Trihalomethanes, Total	ND	ug/L		0.50	80	E524.2	06/03/16 14:10 / kjw
Xylenes, Total	ND	ug/L		0.50	10000	E524.2	06/03/16 14:10 / kjw
Surr: p-Bromofluorobenzene	100	%REC		70-130		E524.2	06/03/16 14:10 / kjw
Surr: 1,2-Dichloroethane-d4	122	%REC		70-130		E524.2	06/03/16 14:10 / kjw
Surr: Toluene-d8	91.0	%REC		70-130		E524.2	06/03/16 14:10 / kjw
SEMI-VOLATILE ORGANIC COMPOUNDS							
Alachlor	ND	ug/L		0.10	2	E525.2	06/07/16 00:22 / eli-b
Aldrin	ND	ug/L		0.10		E525.2	06/07/16 00:22 / eli-b
Atrazine	ND	ug/L		0.10	3	E525.2	06/07/16 00:22 / eli-b
Benzo(a)pyrene	ND	ug/L		0.10	0.2	E525.2	06/07/16 00:22 / eli-b
Butachlor	ND	ug/L		0.10		E525.2	06/07/16 00:22 / eli-b
Chlordane	ND	ug/L		1.0	2	E525.2	06/07/16 00:22 / eli-b
di(2-ethylhexyl)Adipate	ND	ug/L		0.50	400	E525.2	06/07/16 00:22 / eli-b

ReportRL - AnDefinitions:OCL - C

RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.

J - Estimated value. The analyte was present but less than the reporting limit.

Prepared by Helena, MT Branch

 Client:
 MT DEQ-Abandoned Mines
 Report Date:
 06/17/16

 Project:
 10039 Sand Coulee
 Collection Date:
 05/27/16 14:00

 Lab ID:
 H16050548-001
 DateReceived:
 05/31/16

 Client Sample ID:
 SAC-1605-001
 Matrix:
 Drinking Water

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
SEMI-VOLATILE ORGANIC COMPOUND	S						
di(2-ethylhexyl)Phthalate	ND	ug/L		2.0	6	E525.2	06/07/16 00:22 / eli-b
Dieldrin	ND	ug/L		0.10		E525.2	06/07/16 00:22 / eli-b
Endrin	ND	ug/L		0.10	2	E525.2	06/07/16 00:22 / eli-b
gamma-BHC (Lindane)	ND	ug/L		0.10	0.2	E525.2	06/07/16 00:22 / eli-b
Heptachlor	ND	ug/L		0.10	0.4	E525.2	06/07/16 00:22 / eli-b
Heptachlor epoxide	ND	ug/L		0.10	0.2	E525.2	06/07/16 00:22 / eli-b
Hexachlorobenzene	ND	ug/L		0.10	1	E525.2	06/07/16 00:22 / eli-b
Hexachlorocyclopentadiene	ND	ug/L		0.10	50	E525.2	06/07/16 00:22 / eli-b
Methoxychlor	ND	ug/L		0.10	40	E525.2	06/07/16 00:22 / eli-b
Metolachlor	ND	ug/L		0.10		E525.2	06/07/16 00:22 / eli-b
Metribuzin	ND	ug/L		0.10		E525.2	06/07/16 00:22 / eli-b
Propachlor	ND	ug/L		0.10		E525.2	06/07/16 00:22 / eli-b
Simazine	ND	ug/L		0.10	4	E525.2	06/07/16 00:22 / eli-b
Toxaphene	ND	ug/L		2.0	3	E525.2	06/07/16 00:22 / eli-b
Surr: 1,3-Dimethyl-2-nitrobenzene	98.0	%REC		70-130		E525.2	06/07/16 00:22 / eli-b
Surr: Perylene-d12	94.0	%REC		70-130		E525.2	06/07/16 00:22 / eli-b
Surr: Pyrene-d10	95.0	%REC		70-130		E525.2	06/07/16 00:22 / eli-b
Surr: Triphenylphosphate	115	%REC		70-130		E525.2	06/07/16 00:22 / eli-b
PESTICIDES, BY HPLC (CONTRACT LA	B WY0000	02)					
Aldicarb	ND	ug/L		0.40	3	E531.1	06/07/16 20:37 / eli-ca
Aldicarb sulfone	ND	ug/L		0.40	2	E531.1	06/07/16 20:37 / eli-ca
Aldicarb sulfoxide	ND	ug/L		0.40	4	E531.1	06/07/16 20:37 / eli-ca
Carbaryl	ND	ug/L		0.40		E531.1	06/07/16 20:37 / eli-ca
Carbofuran	ND	ug/L		0.40	40	E531.1	06/07/16 20:37 / eli-ca
3-Hydroxycarbofuran	ND	ug/L		0.40		E531.1	06/07/16 20:37 / eli-ca
Methiocarb	ND	ug/L		0.40		E531.1	06/07/16 20:37 / eli-ca
Methomyl	ND	ug/L		0.40		E531.1	06/07/16 20:37 / eli-ca
Oxamyl	ND	ug/L		0.40	200	E531.1	06/07/16 20:37 / eli-ca
Baygon	ND	ug/L		0.40		E531.1	06/07/16 20:37 / eli-ca
Surr: BDMC	97.0	%REC		70-130		E531.1	06/07/16 20:37 / eli-ca
HERBICIDES							
2,4,5-TP (Silvex)	ND	ug/L		0.25	50	E515.4	06/07/16 03:09 / eli-b
2,4-D	ND	ug/L		1.0	70	E515.4	06/07/16 03:09 / eli-b
2,4-DB	ND	ug/L		1.0		E515.4	06/07/16 03:09 / eli-b
Dalapon	ND	ug/L		2.5	200	E515.4	06/07/16 03:44 / eli-b
Dicamba	ND	ug/L		1.0		E515.4	06/07/16 03:09 / eli-b
Dichlorprop	ND	ug/L		1.0		E515.4	06/07/16 03:09 / eli-b
Dinoseb	ND	ug/L		1.0	7	E515.4	06/07/16 03:09 / eli-b
Pentachlorophenol	ND	ug/L		0.10	1	E515.4	06/07/16 03:09 / eli-b
Picloram	ND	ug/L		0.50	500	E515.4	06/07/16 03:09 / eli-b
Surr: 2,4-Dichlorophenylacetic acid	102	%REC		70-130		E515.4	06/07/16 03:09 / eli-b

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.

Prepared by Helena, MT Branch

Client:	MT DEQ-Abandoned Mines	Report Date:	06/17/16
Project:	10039 Sand Coulee	Collection Date:	05/27/16 14:00
Lab ID:	H16050548-002	DateReceived:	05/31/16
Client Sample ID:	TB 5562	Matrix:	Trip Blank

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
Benzene	ND	ua/L		0.50	5	E524.2	06/03/16 12:58 / kiw
Bromobenzene	ND	ua/L		0.50	-	E524.2	06/03/16 12:58 / kiw
Bromochloromethane	ND	ua/L		0.50		E524.2	06/03/16 12:58 / kiw
Bromodichloromethane	ND	ua/L		0.50		E524.2	06/03/16 12:58 / kiw
Bromoform	ND	ua/L		0.50		E524.2	06/03/16 12:58 / kiw
Bromomethane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
n-Butylbenzene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
sec-Butylbenzene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
tert-Butylbenzene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Carbon tetrachloride	ND	ug/L		0.50	5	E524.2	06/03/16 12:58 / kjw
1,2-Dichloroethane	ND	ug/L		0.50	5	E524.2	06/03/16 12:58 / kjw
Chlorobenzene	ND	ug/L		0.50	100	E524.2	06/03/16 12:58 / kjw
Chlorodibromomethane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Chloroethane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Chloroform	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Chloromethane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
2-Chlorotoluene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
4-Chlorotoluene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,2-Dibromo-3-chloropropane	ND	ug/L		1.0	0.2	E524.2	06/03/16 12:58 / kjw
Dibromomethane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,2-Dichlorobenzene	ND	ug/L		0.50	600	E524.2	06/03/16 12:58 / kjw
1,3-Dichlorobenzene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,4-Dichlorobenzene	ND	ug/L		0.50	75	E524.2	06/03/16 12:58 / kjw
Dichlorodifluoromethane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,1-Dichloroethane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,2-Dibromoethane	ND	ug/L		0.50	0.05	E524.2	06/03/16 12:58 / kjw
1,1-Dichloroethene	ND	ug/L		0.50	7	E524.2	06/03/16 12:58 / kjw
cis-1,2-Dichloroethene	ND	ug/L		0.50	70	E524.2	06/03/16 12:58 / kjw
trans-1,2-Dichloroethene	ND	ug/L		0.50	100	E524.2	06/03/16 12:58 / kjw
1,2-Dichloropropane	ND	ug/L		0.50	5	E524.2	06/03/16 12:58 / kjw
1,3-Dichloropropane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
2,2-Dichloropropane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,1-Dichloropropene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
cis-1,3-Dichloropropene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
trans-1,3-Dichloropropene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Ethylbenzene	ND	ug/L		0.50	700	E524.2	06/03/16 12:58 / kjw
Hexachlorobutadiene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Isopropylbenzene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
p-Isopropyltoluene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Methyl tert-butyl ether (MTBE)	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Methylene chloride	ND	ug/L		0.50	5	E524.2	06/03/16 12:58 / kjw
Naphthalene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
n-Propylbenzene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.

Prepared by Helena, MT Branch

 Client:
 MT DEQ-Abandoned Mines
 Report Date:
 06/17/16

 Project:
 10039 Sand Coulee
 Collection Date:
 05/27/16 14:00

 Lab ID:
 H16050548-002
 DateReceived:
 05/31/16

 Client Sample ID:
 TB 5562
 Matrix:
 Trip Blank

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
Styrene	ND	ug/L		0.50	100	E524.2	06/03/16 12:58 / kjw
1,1,1,2-Tetrachloroethane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,1,2,2-Tetrachloroethane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Tetrachloroethene	ND	ug/L		0.50	5	E524.2	06/03/16 12:58 / kjw
Toluene	ND	ug/L		0.50	1000	E524.2	06/03/16 12:58 / kjw
1,2,3-Trichlorobenzene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,2,4-Trichlorobenzene	ND	ug/L		0.50	70	E524.2	06/03/16 12:58 / kjw
1,1,1-Trichloroethane	ND	ug/L		0.50	200	E524.2	06/03/16 12:58 / kjw
1,1,2-Trichloroethane	ND	ug/L		0.50	5	E524.2	06/03/16 12:58 / kjw
Trichloroethene	ND	ug/L		0.50	5	E524.2	06/03/16 12:58 / kjw
Trichlorofluoromethane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,2,3-Trichloropropane	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,2,4-Trimethylbenzene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
1,3,5-Trimethylbenzene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Vinyl chloride	ND	ug/L		0.50	2	E524.2	06/03/16 12:58 / kjw
m+p-Xylenes	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
o-Xylene	ND	ug/L		0.50		E524.2	06/03/16 12:58 / kjw
Trihalomethanes, Total	ND	ug/L		0.50	80	E524.2	06/03/16 12:58 / kjw
Xylenes, Total	ND	ug/L		0.50	10000	E524.2	06/03/16 12:58 / kjw
Surr: p-Bromofluorobenzene	110	%REC		70-130		E524.2	06/03/16 12:58 / kjw
Surr: 1,2-Dichloroethane-d4	118	%REC		70-130		E524.2	06/03/16 12:58 / kjw
Surr: Toluene-d8	97.0	%REC		70-130		E524.2	06/03/16 12:58 / kjw

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

QA/QC Summary Report

Client: MT DEQ-Abandoned Mines								Report	Date	06/17/16	
Project:	Project: 10039 Sand Coulee							Work	Order	: H1605054	48
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A2320 B									Batch:	R115666
Lab ID:	МВ	Me	thod Blank				Run: PHSC	_101-H_160601A	`	06/01	/16 17:28
Alkalinity,	Total as CaCO3		2	mg/L	0.2						
Lab ID:	LCS	Lat	ooratory Cor	ntrol Sample			Run: PHSC	_101-H_160601A	۱	06/01	/16 17:34
Alkalinity,	Total as CaCO3		620	mg/L	4.0	103	90	110			
Lab ID:	H16050548-001ADUF	3 Sa	mple Duplica	ate			Run: PHSC	_101-H_160601A	۱	06/01	/16 19:46
Alkalinity,	Total as CaCO3		190	mg/L	4.0				0.2	10	
Bicarbona	ate as HCO3		230	mg/L	4.0				0.2	10	
Carbonate	e as CO3		0.30	mg/L	4.0					10	

Prepared by Helena, MT Branch

Client:	MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date: 06/17/16 Work Order: H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A2510 B							Analytical	Run: P	HSC_101-H	_160601A
Lab ID:	CCV - SC 1413	Co	ntinuing C	alibration Verific	ation Standar	ď				06/01/	/16 10:16
Conductiv	ity @ 25 C		1410	umhos/cm	1.0	100	90	110			
Method:	A2510 B									Batch:	R115666
Lab ID:	SC 150	Init	ial Calibra	tion Verification	Standard		Run: PHSC	_101-H_160601	Ą	06/01/	/16 08:27
Conductiv	ity @ 25 C		153	umhos/cm	1.0	102	90	110			
Lab ID:	SC 5000	Init	ial Calibra	tion Verification	Standard		Run: PHSC	_101-H_160601	Ą	06/01/	/16 08:30
Conductiv	ity @ 25 C		4920	umhos/cm	1.0	98	90	110			
Lab ID:	SC 20000	Init	ial Calibra	tion Verification	Standard		Run: PHSC	_101-H_160601	Ą	06/01/	/16 08:32
Conductiv	ity @ 25 C		19600	umhos/cm	1.0	98	90	110			
Lab ID:	SC 1000	Lat	ooratory C	ontrol Sample			Run: PHSC	_101-H_160601	Ą	06/01/	/16 08:35
Conductiv	ity @ 25 C		1010	umhos/cm	1.0	101	90	110			
Lab ID:	H16050547-043BDU	P Sa	mple Dupl	icate			Run: PHSC	_101-H_160601	Ą	06/01/	/16 10:23
Conductiv	ity @ 25 C		2210	umhos/cm	1.0				0.3	10	

Prepared by Helena, MT Branch

Project: 10039 Sand Coulee

Report Date: 06/17/16 **Work Order:** H16050548

· · · , · · ·										
Analyte	e Cou	int Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method	I: A2540 C								Batch: TDS	S160603A
Lab ID:	MB-1_160603A	Method Blank				Run: ACCU	J-124 (14410200)_16060	06/03/	/16 10:12
Solids,	Total Dissolved TDS @ 180 C	8	mg/L	3						
Lab ID:	LCS-2_160603A	Laboratory Cor	ntrol Sample			Run: ACCU	J-124 (14410200)_16060	06/03/	/16 10:13
Solids,	Total Dissolved TDS @ 180 C	2000	mg/L	20	100	90	110			
Lab ID:	H16050548-001A DUP	Sample Duplic	ate			Run: ACCU	J-124 (14410200)_16060	06/03/	/16 10:21
Solids,	Total Dissolved TDS @ 180 C	398	mg/L	10				2.0	5	

Client:	MT DEQ-Abandoned	l Mines						Rep	ort Date:	06/17/16	
Project:	10039 Sand Coulee							Wo	rk Order:	H160505	48
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-F C								Analytic	al Run: PH2	_160606A
Lab ID:	ICV1_160606A	Initi	al Calibratio	on Verificat	tion Standard					06/06	/16 14:44
Fluoride			0.8	mg/L	0.1	103	90	110			
Method:	A4500-F C								Bat	ch: 160606/	-F-ISE-W
Lab ID:	MBLK1_160606A	Met	hod Blank				Run: PH2_	160606A		06/06	/16 14:46
Fluoride			ND	mg/L	0.01						
Lab ID:	H16050548-001ADU	Sar	nple Duplic	ate			Run: PH2_	160606A		06/06	/16 14:49
Fluoride			0.6	mg/L	0.1				0.0	10	
Lab ID:	H16050548-001AMS	Sar	nple Matrix	Spike			Run: PH2_	160606A		06/06	/16 14:49
Fluoride			1.6	mg/L	0.2	98	85	115			

Client:	MT DEQ-Abandoned	d Mines						Repo	ort Date:	06/17/16	
Project:	10039 Sand Coulee							Wor	k Order:	H160505	48
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-H B							Analytic	al Run: P	HSC_101-H	_160601A
Lab ID:	рН 7	Initi	al Calibratio	on Verificatio	n Standard					06/01	/16 08:24
рН			7.0	s.u.	0.1	100	98	102			
Lab ID:	CCV - pH 7	Со	ntinuing Cal	ibration Veri	fication Standa	rd				06/01	/16 10:13
рН			7.0	s.u.	0.1	100	98	102			
Lab ID:	CCV - pH 7	Cor	ntinuing Cal	ibration Veri	fication Standa	rd				06/01	/16 10:38
рН			7.0	s.u.	0.1	100	98	102			
Method:	A4500-H B									Batch	R115666
Lab ID:	H16050547-043BDU	P Sar	mple Duplic	ate			Run: PHSC	_101-H_16060	01A	06/01	/16 10:23
pН			8.4	s.u.	0.1				0.1	3	

Prepared by Helena, MT Branch

Project: 10039 Sand Coulee

Report Date: 06/17/16 Work Order: H16050548

Analyte		Coun	t Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimi	t Qual
Method:	E200.7							Ana	alytical Run: ICP2-H	E_160603A
Lab ID:	ICV	4	Initial Calibratio	on Verificatio	on Standard				06/0)3/16 09:41
Calcium			39.8	mg/L	1.0	99	95	105		
Magnesium			39.3	mg/L	1.0	98	95	105		
Potassium			40.3	mg/L	1.0	101	95	105		
Sodium			40.4	mg/L	1.0	101	95	105		
Lab ID:	CCV-1	4	Continuing Cal	ibration Ver	ification Standa	rd			06/0)3/16 09:45
Calcium			25.0	mg/L	1.0	100	95	105		
Magnesium			24.5	mg/L	1.0	98	95	105		
Potassium			24.9	mg/L	1.0	100	95	105		
Sodium			24.9	mg/L	1.0	100	95	105		
Lab ID:	ICSA	4	Interference Ch	neck Sample	e A				06/0)3/16 10:20
Calcium			468	mg/L	1.0	94	80	120		
Magnesium			489	mg/L	1.0	98	80	120		
Potassium			0.0437	mg/L	1.0		0	0		
Sodium			0.0404	mg/L	1.0		0	0		
Lab ID:	ICSAB	4	Interference Ch	neck Sample	e AB				06/0)3/16 10:24
Calcium			462	mg/L	1.0	92	80	120		
Magnesium			487	mg/L	1.0	97	80	120		
Potassium			19.7	mg/L	1.0	98	80	120		
Sodium			19.6	mg/L	1.0	98	80	120		
Lab ID:	ссу	4	Continuing Cal	ibration Ver	ification Standa	rd			06/0	03/16 17:03
Calcium			24.4	mg/L	1.0	98	90	110		
Magnesium			24.1	mg/L	1.0	96	90	110		
Potassium			25.1	mg/L	1.0	100	90	110		
Sodium			25.1	mg/L	1.0	100	90	110		
Method:	E200.7								Bato	h: R115744
Lab ID:	MB	4	Method Blank				Run: ICP2-	HE_160603A	06/0	03/16 10:39
Calcium			ND	mg/L	0.03					
Magnesium			ND	mg/L	0.003					
Potassium			ND	mg/L	0.03					
Sodium			0.02	mg/L	0.02					
Lab ID:	LFB	4	Laboratory For	tified Blank			Run: ICP2-	HE_160603A	06/0)3/16 10:43
Calcium			49.9	mg/L	1.0	100	85	115		
Magnesium			48.8	mg/L	1.0	98	85	115		
Potassium			49.6	mg/L	1.0	99	85	115		
Sodium			49.3	mg/L	1.0	99	85	115		
Lab ID:	H16050544-001BMS2	2 4	Sample Matrix	Spike			Run: ICP2-	HE_160603A	06/0	03/16 17:10
Calcium			89.8	mg/L	1.0	92	70	130		
Magnesium			60.1	mg/L	1.0	93	70	130		
Potassium			51.4	mg/L	1.0	98	70	130		

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Client:	MT DEQ-Abandoned	Mines					Report Date: 06/17/16 Work Order: H16050548 C Low Limit High Limit RPD RPDLimit Qua Batch: R115						
Project:	10039 Sand Coulee							Wor	k Order:	: H1605054	48		
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual		
Method:	E200.7									Batch:	R115744		
Lab ID:	H16050544-001BMS	2 4 Sar	nple Matrix	Spike			Run: ICP2-	HE_160603A		06/03/	/16 17:10		
Sodium			57.4	mg/L	1.0	99	70	130					
Lab ID:	H16050544-001BMSI	D 4 Sar	nple Matrix	Spike Duplicate			Run: ICP2-	HE_160603A		06/03/	/16 17:14		
Calcium			90.3	mg/L	1.0	93	70	130	0.5	20			
Magnesiu	um		60.4	mg/L	1.0	94	70	130	0.6	20			
Potassiur	m		51.5	mg/L	1.0	99	70	130	0.3	20			
Sodium			57.6	mg/L	1.0	99	70	130	0.3	20			
Lab ID:	H16060036-001BMS	2 4 Sar	nple Matrix	Spike			Run: ICP2-	HE_160603A		06/03/	/16 17:36		
Calcium			124	mg/L	1.0	91	70	130					
Magnesiu	um		78.7	mg/L	1.0	93	70	130					
Potassiur	m		52.4	mg/L	1.0	94	70	130					
Sodium			50.2	mg/L	1.0	95	70	130					
Lab ID:	H16060036-001BMSI	D 4 Sar	nple Matrix	Spike Duplicate			Run: ICP2-	HE_160603A		06/03/	/16 17:40		
Calcium			124	mg/L	1.0	91	70	130	0.0	20			
Magnesiu	um		78.5	mg/L	1.0	93	70	130	0.3	20			
Potassiur	m		54.1	mg/L	1.0	97	70	130	3.1	20			
Sodium			51.9	mg/L	1.0	98	70	130	3.3	20			

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date:	06/17/16
Work Order:	H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	E200.8							Analytica	al Run: ICPMS204-B_	_160601A
Lab ID:	ICV STD	9 Initia	al Calibratio	n Verifica	tion Standard				06/01/	16 10:54
Antimony			0.0599	mg/L	0.0030	100	90	110		
Arsenic			0.0616	mg/L	0.0050	103	90	110		
Barium			0.0602	mg/L	0.10	100	90	110		
Beryllium			0.0305	mg/L	0.0010	102	90	110		
Cadmium			0.0316	mg/L	0.0010	105	90	110		
Chromium			0.0610	mg/L	0.010	102	90	110		
Nickel			0.0608	mg/L	0.010	101	90	110		
Selenium			0.0622	mg/L	0.0050	104	90	110		
Thallium			0.0592	mg/L	0.0010	99	90	110		
Lab ID:	ICSA	9 Inte	rference Ch	eck Sam	ole A				06/01/	'16 10:57
Antimony		(0.000219	mg/L	0.0030					
Arsenic		(0.000309	mg/L	0.0050					
Barium		(0.000141	mg/L	0.10					
Beryllium		:	2.90E-05	mg/L	0.0010					
Cadmium			0.00165	mg/L	0.0010					
Chromium		-(0.000703	mg/L	0.010					
Nickel			0.00457	mg/L	0.010					
Selenium		-9	9.00E-05	mg/L	0.0050					
Thallium			7.80E-05	mg/L	0.0010					
Lab ID:	ICSAB	9 Inte	rference Ch	eck Sam	ble AB				06/01/	'16 11:02
Antimony		4	4.90E-05	mg/L	0.0030		0	0		
Arsenic			0.0104	mg/L	0.0050	104	70	130		
Barium		(0.000187	mg/L	0.10		0	0		
Beryllium		-	7.00E-06	mg/L	0.0010		0	0		
Cadmium			0.0115	mg/L	0.0010	115	70	130		
Chromium			0.0190	mg/L	0.010	95	70	130		
Nickel			0.0242	mg/L	0.010	121	70	130		
Selenium			0.00892	mg/L	0.0050	89	70	130		
Thallium		-'	1.40E-05	mg/L	0.0010		0	0		
Method:	E200.8								Batch:	R115675
Lab ID:	LRB	9 Met	hod Blank				Run: ICPM	S204-B_160601	A 06/01/	16 11:17
Antimony			ND	mg/L	4E-05					
Arsenic			0.0004	mg/L	0.0003					
Barium			ND	mg/L	8E-05					
Beryllium			ND	mg/L	2E-05					
Cadmium			ND	mg/L	2E-05					
Chromium			ND	mg/L	0.0002					
Nickel			ND	mg/L	5E-05					
Selenium			ND	mg/L	0.0006					
Thallium			ND	mg/L	1E-05					

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date:	06/17/16
Work Order:	H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Batch:	R115675
Lab ID:	LFB	9 Lat	ooratory Fo	rtified Blank			Run: ICPM	S204-B_160601	Ą	06/01	/16 11:19
Antimony			0.0473	mg/L	0.0030	95	85	115			
Arsenic			0.0505	mg/L	0.0050	100	85	115			
Barium			0.0476	mg/L	0.10	95	85	115			
Beryllium			0.0492	mg/L	0.0010	98	85	115			
Cadmium			0.0503	mg/L	0.0010	101	85	115			
Chromium			0.0466	mg/L	0.010	93	85	115			
Nickel			0.0490	mg/L	0.010	98	85	115			
Selenium			0.0518	mg/L	0.0050	104	85	115			
Thallium			0.0474	mg/L	0.0010	95	85	115			
Lab ID:	H16050506-001AMS	9 Sai	mple Matrix	Spike			Run: ICPM	S204-B_160601	A	06/01	/16 11:55
Antimony			0.0491	mg/L	0.0010	98	70	130			
Arsenic			0.0560	mg/L	0.0010	108	70	130			
Barium			0.0848	mg/L	0.050	98	70	130			
Beryllium			0.0466	mg/L	0.0010	93	70	130			
Cadmium			0.0497	mg/L	0.0010	99	70	130			
Chromium			0.0468	mg/L	0.0050	94	70	130			
Nickel			0.0530	mg/L	0.0050	97	70	130			
Selenium			0.0584	mg/L	0.0010	112	70	130			
Thallium			0.0483	mg/L	0.00050	97	70	130			
Lab ID:	H16050506-001AMSI	D 9 Sai	mple Matrix	Spike Dup	licate		Run: ICPM	S204-B_160601	Ą	06/01	/16 11:58
Antimony			0.0503	mg/L	0.0010	100	70	130	2.3	20	
Arsenic			0.0569	mg/L	0.0010	110	70	130	1.6	20	
Barium			0.0861	mg/L	0.050	100	70	130	1.5	20	
Beryllium			0.0473	mg/L	0.0010	95	70	130	1.5	20	
Cadmium			0.0505	mg/L	0.0010	101	70	130	1.6	20	
Chromium			0.0481	mg/L	0.0050	96	70	130	2.6	20	
Nickel			0.0541	mg/L	0.0050	99	70	130	1.9	20	
Selenium			0.0600	mg/L	0.0010	115	70	130	2.7	20	
Thallium			0.0497	mg/L	0.00050	99	70	130	2.8	20	

Client:	MT DEQ-Abandoned	d Mines						Rep	ort Date:	: 06/17/16	
Project:	10039 Sand Coulee							Report Date: 06/17/16 Work Order: H16050548 w Limit High Limit RPD RPDLimit Qual Analytical Run: SUB-C212460 06/08/16 16:27 06/08/16 16:27 90 110 06/08/16 21:42 06/08/16 21:42 90 110 06/09/16 03:48 06/09/16 03:48 90 110 Batch: C_47628 n: SUB-C212460 06/08/16 18:13 113 n: SUB-C212460 06/08/16 18:44 85			
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8								Analytic	al Run: SUB	-C212460
Lab ID:	ICV	Init	ial Calibrati	on Verificatio	on Standard					06/08	/16 16:27
Uranium			0.0495	mg/L	0.00030	99	90	110			
Lab ID:	ICV	Init	ial Calibrati	on Verificatio	on Standard					06/08	/16 21:42
Uranium			0.0506	mg/L	0.00030	101	90	110			
Lab ID:	ICV	Init	ial Calibrati	on Verificatio	on Standard					06/09	/16 03:48
Uranium			0.0494	mg/L	0.00030	99	90	110			
Method:	E200.8									Batch:	C_47628
Lab ID:	MB-47628	Me	thod Blank				Run: SUB-	C212460		06/08	/16 18:13
Uranium			0.0002	mg/L	4E-06						
Lab ID:	LCS3-47628	Lat	poratory Co	ntrol Sample	9		Run: SUB-	C212460		06/08	/16 18:44
Uranium			0.513	mg/L	0.00030	103	85	115			
Lab ID:	C16060108-004AMS	3 Sai	mple Matrix	Spike			Run: SUB-	C212460		06/08	/16 23:34
Uranium			0.527	mg/L	0.0010	105	70	130			
Lab ID:	C16060108-004AMS	D Sa	mple Matrix	Spike Dupli	cate		Run: SUB-	C212460		06/08	/16 23:39
Uranium			0.536	mg/L	0.0010	107	70	130	1.7	20	

Client:	MT DEQ-Abandoned	d Mines						Report	Date	: 06/17/16	
Project:	10039 Sand Coulee							Work	Order	: H1605054	48
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E245.1							Analytica	I Run:	HGCV202-H	_160602A
Lab ID:	ICV	Init	ial Calibratio	on Verificat	ion Standard					06/02/	/16 10:45
Mercury			0.000192	mg/L	0.00010	96	90	110			
Lab ID:	CCV	Co	ntinuing Cal	libration Ve	rification Standa	rd				06/02/	/16 12:07
Mercury			0.000205	mg/L	0.00010	102	90	110			
Method:	E245.1									Bat	ch: 33118
Lab ID:	MB-33118	Me	thod Blank				Run: HGC\	/202-H_160602A		06/02/	/16 12:12
Mercury			ND	mg/L	1E-06						
Lab ID:	LCS-33118	Lal	poratory Co	ntrol Samp	le		Run: HGC\	/202-H_160602A		06/02/	/16 12:14
Mercury			0.000159	mg/L	0.00010	106	90	110			
Lab ID:	H16050541-011BMS	Sa	mple Matrix	Spike			Run: HGC\	/202-H_160602A		06/02/	/16 12:19
Mercury			0.000154	mg/L	0.00010	102	70	130			
Lab ID:	H16050541-011BMS	D Sa	mple Matrix	Spike Dup	licate		Run: HGC\	/202-H_160602A		06/02/	/16 12:22
Mercury			0.000145	mg/L	0.00010	97	70	130	5.5	20	

QA/QC Summary Report

Client:	MT DEQ-Abandoned	l Mines						Repo	ort Date:	06/17/16	
Project:	10039 Sand Coulee							Wor	k Order:	H160505	48
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0							An	alytical R	un: IC102-H	_160601A
Lab ID:	ICV	2 Ir	nitial Calibratio	on Verification	Standard					06/01	/16 11:27
Chloride			101	mg/L	1.0	101	90	110			
Sulfate			406	mg/L	1.0	101	90	110			
Lab ID:	CCV060116-8	2 C	ontinuing Cal	ibration Verific	ation Standa	rd				06/02	/16 10:05
Chloride			101	mg/L	1.0	101	90	110			
Sulfate			409	mg/L	1.0	102	90	110			
Method:	E300.0									Batch	R115712
Lab ID:	ICB	2 N	lethod Blank				Run: IC102	2-H_160601A		06/01	/16 11:16
Chloride			0.01	mg/L	0.006						
Sulfate			ND	mg/L	0.05						
Lab ID:	LFB	2 L	aboratory For	tified Blank			Run: IC102	2-H_160601A		06/01	/16 11:38
Chloride			47.2	mg/L	1.0	94	90	110			
Sulfate			208	mg/L	1.0	104	90	110			
Lab ID:	H16050548-001AMS	2 S	ample Matrix	Spike			Run: IC102	2-H_160601A		06/02	/16 12:18
Chloride			56.4	mg/L	1.0	100	90	110			
Sulfate			333	mg/L	1.0	101	90	110			
Lab ID:	H16050548-001AMSI	D 2 S	ample Matrix	Spike Duplicat	te		Run: IC102	2-H_160601A		06/02	/16 12:29
Chloride			56.5	mg/L	1.0	101	90	110	0.2	20	
Sulfate			338	mg/L	1.0	103	90	110	1.4	20	

Client: MT DEQ-Abandoned	d Mines						Repo	rt Date:	: 06/17/16	
Project: 10039 Sand Coulee							Work	Order	: H160505	48
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2							Analyt	ical Run	: FIA203-HE	_160601A
Lab ID: ICV	Initia	al Calibrati	on Verification	Standard					06/01	/16 09:38
Nitrogen, Nitrate+Nitrite as N		0.919	mg/L	0.010	92	90	110			
Lab ID: ICB	Initia	al Calibrati	on Blank, Instru	ument Blank					06/01	/16 09:39
Nitrogen, Nitrate+Nitrite as N		0.00769	mg/L	0.010		0	0			
Lab ID: CCV	Con	tinuing Ca	libration Verific	ation Standa	rd				06/01	/16 10:47
Nitrogen, Nitrate+Nitrite as N		0.522	mg/L	0.010	104	90	110			
Method: E353.2									Batch	: R115672
Lab ID: LFB	Lab	oratory For	rtified Blank			Run: FIA20	3-HE_160601A		06/01	/16 09:40
Nitrogen, Nitrate+Nitrite as N		0.956	mg/L	0.011	96	90	110			
Lab ID: H16050515-002CMS	Sam	ple Matrix	Spike			Run: FIA20	3-HE_160601A		06/01	/16 11:06
Nitrogen, Nitrate+Nitrite as N		0.917	mg/L	0.011	91	90	110			
Lab ID: H16050515-002CMS	D Sam	ple Matrix	Spike Duplicat	e		Run: FIA20	3-HE_160601A		06/01	/16 11:07
Nitrogen, Nitrate+Nitrite as N		0.951	mg/L	0.011	94	90	110	3.7	20	

Prepared by Helena, MT Branch

Client:	MT DEQ-Abando	oned Mines						Repo	ort Date:	06/17/16	
Project:	10039 Sand Cou	llee						Wor	k Order:	H160505	48
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E515.4								Ar	alytical Run	: B_99802
Lab ID:	CAL1-99802	9 Co	ntinuing Cal	libration Verific	ation Standa	rd				06/06	/16 22:26
2,4,5-TP	(Silvex)		0.258	ug/L	0.25	103	50	150			
2,4-D			0.925	ug/L	1.0	93	50	150			
2,4-DB			1.34	ug/L	1.0	134	50	150			
Dicamba	a		0.460	ug/L	1.0	92	50	150			
Dichlorp	rop		1.01	ug/L	1.0	101	50	150			
Dinoseb			1.14	ug/L	1.0	114	50	150			
Pentach	lorophenol		0.116	ug/L	0.10	116	50	150			
Picloram	ı		0.425	ug/L	0.50	85	50	150			
Surr: 2	2,4-Dichlorophenylac	etic acid				100	70	130			
Method:	E515.4								Ar	alytical Run	: B_99802
Lab ID:	CAL1-99802	Co	ntinuing Cal	libration Verific	ation Standa	rd				06/06	/16 23:01
Dalapon			1.20	ug/L	2.5	120	50	150			
Method:	E515.4									Batch	: B_99802
Lab ID:	LCS-99802	9 Lal	boratory Co	ntrol Sample			Run: SUB-I	3262045		06/06	/16 23:01
2,4,5-TP	(Silvex)		1.20	ug/L	0.25	96	70	130			
2,4-D			4.46	ug/L	1.0	89	70	130			
2,4-DB			4.13	ug/L	1.0	83	70	130			
Dicamba	a		1.85	ug/L	1.0	74	70	130			
Dichlorp	rop		4.38	ug/L	1.0	88	70	130			
Dinoseb			4.01	ug/L	1.0	80	70	130			
Pentach	lorophenol		0.413	ug/L	0.10	83	70	130			
Picloram	า		4.36	ug/L	0.50	87	70	130			
Surr: 2	2,4-Dichlorophenylac	etic acid				84	70	130			
Lab ID:	MB-99802	9 Me	thod Blank				Run: SUB-I	3262045		06/06	/16 23:37
2,4,5-TP	(Silvex)		ND	ug/L	0.25						
2,4-D			ND	ug/L	1.0						
2,4-DB			ND	ug/L	1.0						
Dicamba	a		ND	ug/L	1.0						
Dichlorp	rop		ND	ug/L	1.0						
Dinoseb			ND	ug/L	1.0						
Pentach	lorophenol		ND	ug/L	0.10						
Picloram) 2.4. Disklanska suda	atio anial	ND	ug/L	0.50	100	70	400			
Surr: 2	2,4-Dichlorophenylac	etic acid				100	70	130			
Lab ID:	B16051901-001E	OMS 9 Sa	mple Matrix	Spike			Run: SUB-I	3262045		06/07	/16 05:29
2,4,5-TP	P (Silvex)		1.18	ug/L	0.25	94	70	130			
2,4-D			4.35	ug/L	1.0	87	70	130			
2,4-DB			4.12	ug/L	1.0	82	70	130			
Dicamba	a		1.81	ug/L	1.0	72	70	130			
Dichlorp	rop		4.42	ug/L	1.0	88	70	130			
Dinoseb			3.93	ug/L	1.0	79	70	130			
Pentach	Iorophenol		0.416	ug/L	0.10	83	70	130			

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Client:	MT DEQ-Abandoned	d Mine	es					Repo	ort Date:	06/17/16	
Project:	10039 Sand Coulee							Wor	k Order:	H160505	48
Analyte		Cour	nt Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E515.4									Batch	B_99802
Lab ID:	B16051901-001DMS	9	Sample Matrix	Spike			Run: SUB-E	3262045		06/07	/16 05:29
Picloram			4.30	ug/L	0.50	86	70	130			
Surr: 2,	4-Dichlorophenylacetic	acid		-		83	70	130			
Lab ID:	B16051901-001DMS	D 9	Sample Matrix	Spike Duplic	ate		Run: SUB-E	3262045		06/07	/16 06:04
2,4,5-TP (Silvex)		1.19	ug/L	0.25	95	70	130	0.8	30	
2,4-D			4.57	ug/L	1.0	91	70	130	4.9	30	
2,4-DB			4.03	ug/L	1.0	81	70	130	2.2	30	
Dicamba			1.80	ug/L	1.0	72	70	130	0.6	30	
Dichlorpro	p		4.44	ug/L	1.0	89	70	130	0.5	30	
Dinoseb			4.00	ug/L	1.0	80	70	130	1.8	30	
Pentachlo	rophenol		0.416	ug/L	0.10	83	70	130	0.0	30	
Picloram			4.35	ug/L	0.50	87	70	130	1.2	30	
Surr: 2,	4-Dichlorophenylacetic	acid				83	70	130			
Lab ID:	CAL3-99802	9	Continuing Ca	libration Verifi	cation Standar	d	Run: SUB-E	3262045		06/07	/16 07:14
2,4,5-TP (Silvex)		0.793	ug/L	0.25	106	70	130			
2,4-D			3.53	ug/L	1.0	118	70	130			
2,4-DB			2.92	ug/L	1.0	97	70	130			
Dicamba			1.45	ug/L	1.0	97	70	130			
Dichlorpro	p		3.25	ug/L	1.0	108	70	130			
Dinoseb			3.16	ug/L	1.0	105	70	130			
Pentachlo	rophenol		0.310	ug/L	0.10	103	70	130			
Picloram			1.50	ug/L	0.50	100	70	130			
Surr: 2,	4-Dichlorophenylacetic	acid		-		97	70	130			
Lab ID:	LCS-99802		Laboratory Co	ntrol Sample			Run: SUB-E	3262047		06/06	/16 23:37
Dalapon			3.69	ug/L	2.5	74	70	130			
Lab ID:	MB-99802		Method Blank				Run: SUB-E	3262047		06/07	/16 00:12
Dalapon			ND	ug/L	2.5						
Lab ID:	B16051901-001DMS		Sample Matrix	Spike			Run: SUB-E	3262047		06/07	/16 06:04
Dalapon			4.50	ug/L	2.5	90	70	130			
Lab ID:	B16051901-001DMS	D	Sample Matrix	Spike Duplic	ate		Run: SUB-E	3262047		06/07	/16 06:39
Dalapon			4.48	ug/L	2.5	90	70	130	0.4	30	
Lab ID:	CAL3-99802		Continuing Ca	libration Verifi	ication Standar	d	Run: SUB-	3262047		06/07	/16 07:49
Dalapon			2.98	ua/L	2.5	99	70	130			

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date:	06/17/16
Work Order:	H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	E524.2								Analytical Run:	R115740
Lab ID:	060316_CCV_3	65 Con	tinuing Cal	ibration V	erification Standa	ď			06/03/	/16 10:23
Benzene			4.76	ug/L	0.50	95	70	130		
Bromobenz	zene		5.00	ug/L	0.50	100	70	130		
Bromochlo	romethane		4.56	ug/L	0.50	91	70	130		
Bromodich	loromethane		5.28	ug/L	0.50	106	70	130		
Bromoform	1		3.82	ug/L	0.50	76	70	130		
Bromometh	hane		5.04	ug/L	0.50	101	70	130		
n-Butylben	zene		5.32	ug/L	0.50	106	70	130		
sec-Butylbe	enzene		5.24	ug/L	0.50	105	70	130		
tert-Butylbe	enzene		5.28	ug/L	0.50	106	70	130		
Carbon tet	rachloride		4.88	ug/L	0.50	98	70	130		
1,2-Dichlor	oethane		4.36	ug/L	0.50	87	70	130		
Chlorobenz	zene		4.64	ug/L	0.50	93	70	130		
Chlorodibro	omomethane		4.76	ug/L	0.50	95	70	130		
Chloroetha	ne		5.52	ug/L	0.50	110	70	130		
Chloroform	1		4.40	ug/L	0.50	88	70	130		
Chlorometh	nane		5.48	ug/L	0.50	110	70	130		
2-Chlorotol	uene		5.32	ug/L	0.50	106	70	130		
4-Chlorotol	uene		5.40	ug/L	0.50	108	70	130		
1,2-Dibrom	io-3-chloropropane		4.48	ug/L	1.0	90	70	130		
Dibromome	ethane		4.72	ug/L	0.50	94	70	130		
1,2-Dichlor	obenzene		4.76	ug/L	0.50	95	70	130		
1,3-Dichlor	obenzene		4.84	ug/L	0.50	97	70	130		
1,4-Dichlor	obenzene		4.56	ug/L	0.50	91	70	130		
Dichlorodif	luoromethane		5.48	ug/L	0.50	110	70	130		
1,1-Dichlor	oethane		4.64	ug/L	0.50	93	70	130		
1,2-Dibrom	oethane		4.80	ug/L	0.50	96	70	130		
1,1-Dichlor	oethene		4.56	ug/L	0.50	91	70	130		
cis-1,2-Dic	hloroethene		4.76	ug/L	0.50	95	70	130		
trans-1,2-D	Dichloroethene		5.08	ug/L	0.50	102	70	130		
1,2-Dichlor	opropane		5.04	ug/L	0.50	101	70	130		
1,3-Dichlor	opropane		4.56	ug/L	0.50	91	70	130		
2,2-Dichlor	opropane		5.04	ug/L	0.50	101	70	130		
1,1-Dichlor	opropene		4.60	ug/L	0.50	92	70	130		
cis-1,3-Dic	hloropropene		5.20	ug/L	0.50	104	70	130		
trans-1,3-D	oichloropropene		4.68	ug/L	0.50	94	70	130		
Ethylbenze	ene		5.32	ug/L	0.50	106	70	130		
Hexachloro	butadiene		5.12	ug/L	0.50	102	70	130		
Isopropylbe	enzene		5.36	ug/L	0.50	107	70	130		
p-Isopropy	Itoluene		5.16	ug/L	0.50	103	70	130		
Methyl tert-	-butyl ether (MTBE)		4.56	ug/L	0.50	91	70	130		
Methylene	chloride		3.61	ug/L	0.50	72	70	130		
Naphthaler	ne		4.16	ug/L	0.50	83	70	130		
n-Propylbe	nzene		4.96	ug/L	0.50	99	70	130		
Styrene			5.32	ug/L	0.50	106	70	130		

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date:	06/17/16
Work Order:	H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	E524.2								Analytical Run:	R115740
Lab ID:	060316_CCV_3	65 Co	ntinuing Cal	libration Verif	fication Standa	rd			06/03/	/16 10:23
1,1,1,2-Te	etrachloroethane		5.36	ug/L	0.50	107	70	130		
1,1,2,2-Te	etrachloroethane		4.64	ug/L	0.50	93	70	130		
Tetrachlor	oethene		5.36	ug/L	0.50	107	70	130		
Toluene			5.20	ug/L	0.50	104	70	130		
1,2,3-Trich	hlorobenzene		4.40	ug/L	0.50	88	70	130		
1,2,4-Trich	hlorobenzene		4.64	ug/L	0.50	93	70	130		
1,1,1-Trich	hloroethane		4.48	ug/L	0.50	90	70	130		
1,1,2-Trich	hloroethane		4.52	ug/L	0.50	90	70	130		
Trichloroe	thene		5.12	ug/L	0.50	102	70	130		
Trichlorofl	uoromethane		5.76	ug/L	0.50	115	70	130		
1,2,3-Trich	hloropropane		4.56	ug/L	0.50	91	70	130		
1.2.4-Trim	nethvlbenzene		5.24	ua/L	0.50	105	70	130		
1.3.5-Trim	ethylbenzene		5.16	ug/L	0.50	103	70	130		
Vinvl chlor	ride		4.84	ug/L	0.50	97	70	130		
m+p-Xvler	nes		10.1	ug/l	0.50	101	70	130		
o-Xvlene			5.12	ug/L	0.50	102	70	130		
Trihalome	thanes Total		18.3	ug/L	0.50	91	70	130		
Xvlenes 1	Fotal		15.2	ug/L	0.50	102	70	130		
Surr p-	Bromofluorobenzene		10.2	49/L	0.50	105	70	130		
Surr: 1	2-Dichloroethane-d4				0.50	100	70	130		
Surr: To	oluene-d8				0.50	100	70	130		
					0.00	100	10	100		
Method:	E524.2								Batch:	R115740
Lab ID:	060316_LCS_4	65 Lab	oratory Co	ntrol Sample			Run: 1SAT	URN_160603A	06/03/	/16 11:06
Benzene			4.52	ug/L	0.50	90	70	130		
Bromober	izene		4.48	ug/L	0.50	90	70	130		
Bromochle	oromethane		5.08	ug/L	0.50	102	70	130		
Bromodich	hloromethane		4.52	ug/L	0.50	90	70	130		
Bromoforr	n		4.28	ug/L	0.50	86	70	130		
Bromome	thane		5.76	ug/L	0.50	115	70	130		
n-Butylber	nzene		4.96	ug/L	0.50	99	70	130		
sec-Butylk	penzene		4.40	ug/L	0.50	88	70	130		
tert-Butylb	enzene		4.48	ug/L	0.50	90	70	130		
Carbon te	trachloride		4.72	ug/L	0.50	94	70	130		
1,2-Dichlo	roethane		4.32	ug/L	0.50	86	70	130		
Chloroben	izene		4.24	ug/L	0.50	85	70	130		
Chlorodib	romomethane		4.24	ug/L	0.50	85	70	130		
Chloroetha	ane		5.48	ug/L	0.50	110	70	130		
Chloroforr	n		4.16	ug/L	0.50	83	70	130		
Chloromet	thane		5.84	ug/L	0.50	117	70	130		
2-Chloroto	bluene		4.72	ug/L	0.50	94	70	130		
4-Chloroto	bluene		5.00	ug/L	0.50	100	70	130		
1,2-Dibror	no-3-chloropropane		4.12	ug/L	1.0	82	70	130		
Dibromom	nethane		4.32	ug/L	0.50	86	70	130		

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date:	06/17/16
Work Order:	H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E524.2									Batch:	R115740
Lab ID:	060316_LCS_4	65 La	boratory Cor	ntrol Sample			Run: 1SAT	URN_160603A		06/03/	/16 11:06
1,2-Dichlo	robenzene		4.44	ug/L	0.50	89	70	130			
1,3-Dichlo	robenzene		4.44	ug/L	0.50	89	70	130			
1,4-Dichlo	robenzene		4.16	ug/L	0.50	83	70	130			
Dichlorodif	fluoromethane		5.44	ug/L	0.50	109	70	130			
1,1-Dichlo	roethane		4.44	ug/L	0.50	89	70	130			
1,2-Dibron	noethane		4.16	ug/L	0.50	83	70	130			
1,1-Dichlo	roethene		4.20	ug/L	0.50	84	70	130			
cis-1,2-Dic	chloroethene		4.68	ug/L	0.50	94	70	130			
trans-1,2-D	Dichloroethene		4.84	ug/L	0.50	97	70	130			
1,2-Dichlo	ropropane		4.60	ug/L	0.50	92	70	130			
1,3-Dichlo	ropropane		4.64	ug/L	0.50	93	70	130			
2,2-Dichlo	ropropane		5.16	ug/L	0.50	103	70	130			
1,1-Dichlo	ropropene		4.28	ug/L	0.50	86	70	130			
cis-1,3-Dic	chloropropene		4.52	ug/L	0.50	90	70	130			
trans-1,3-E	Dichloropropene		4.08	ug/L	0.50	82	70	130			
Ethylbenze	ene		4.72	ug/L	0.50	94	70	130			
Hexachlor	obutadiene		4.32	ug/L	0.50	86	70	130			
Isopropylb	enzene		4.64	ug/L	0.50	93	70	130			
p-Isopropy	ltoluene		4.92	ug/L	0.50	98	70	130			
Methyl tert	-butyl ether (MTBE)		4.76	ug/L	0.50	95	70	130			
Methylene	chloride		3.70	ug/L	0.50	74	70	130			
Naphthale	ne		3.70	ug/L	0.50	74	70	130			
n-Propylbe	enzene		4.64	ug/L	0.50	93	70	130			
Styrene			4.68	ug/L	0.50	94	70	130			
1,1,1,2-Te	trachloroethane		4.60	ug/L	0.50	92	70	130			
1,1,2,2-Te	trachloroethane		4.24	ug/L	0.50	85	70	130			
Tetrachlor	oethene		4.76	ug/L	0.50	95	70	130			
Toluene			4.76	ug/L	0.50	95	70	130			
1,2,3-Trich	lorobenzene		3.98	ug/L	0.50	80	70	130			
1,2,4-Trich	lorobenzene		4.40	ug/L	0.50	88	70	130			
1,1,1-Trich	loroethane		4.60	ug/L	0.50	92	70	130			
1,1,2-Trich	loroethane		4.08	ug/L	0.50	82	70	130			
Trichloroet	thene		4.64	ug/L	0.50	93	70	130			
Trichloroflu	uoromethane		5.52	ug/L	0.50	110	70	130			
1,2,3-Trich	loropropane		4.08	ug/L	0.50	82	70	130			
1,2,4-Trim	ethylbenzene		4.84	ug/L	0.50	97	70	130			
1,3,5-Trim	ethylbenzene		4.80	ug/L	0.50	96	70	130			
Vinyl chlor	ide		5.32	ug/L	0.50	106	70	130			
m+p-Xyler	nes		9.04	ug/L	0.50	90	70	130			
o-Xylene			4.92	ug/L	0.50	98	70	130			
Trihalomet	thanes, Total		17.2	ug/L	0.50	86	70	130			
Xylenes, T	otal		14.0	ug/L	0.50	93	70	130			
Surr: p-	Bromofluorobenzene				0.50	101	70	130			
Surr: 1,2	2-Dichloroethane-d4				0.50	104	70	130			

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Count

QA/QC Summary Report

Prepared by Helena, MT Branch

Units

Result

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

E524.2

Analyte

Method:

		Report Date: 06/17/16				
		Wor	k Order:	H1605054	48	
RL	%REC Low Limit	High Limit	RPD	RPDLimit	Qual	
				Batch:	R115740	

Lab ID:	060316_LCS_4	65 Laboratory Cor	trol Sample		F	Run: 1SATURN_	_160603A	06/03/16 11:06
Surr: 1	Foluene-d8			0.50	102	70	130	
l ah ID:	060316 MBLK 7	65 Method Blank			ſ	Pup: 19ATHPN	1606034	06/03/16 12:22
Benzene	000010_111211(_)		ua/l	0.50			_100003A	00/00/10 12:22
Bromobe	nzene		ug/L	0.50				
Bromoch	loromethane		ug/L	0.50				
Bromodi	chloromethane		ug/L	0.50				
Bromofo	rm		ug/L	0.50				
Bromom	ethane		ug/L	0.50				
n-Butylbe			ug/L	0.50				
sec-Buty	lbenzene	ND	ug/L	0.50				
tert-Buty	benzene	ND	ug/L	0.50				
Carbon t	etrachloride	ND	ug/L	0.50				
1 2-Dichl	oroethane	ND	ug/L	0.50				
Chlorobe	inzene	ND	ug/L	0.50				
Chlorodi	promomethane	ND	ug/L	0.50				
Chloroet	hane	ND	ug/L	0.50				
Chlorofo	rm	ND	ug/L	0.50				
Chlorom	ethane	ND	ug/L	0.50				
2-Chloro	toluene	ND	ug/L	0.50				
4-Chloro	toluene	ND	ug/L	0.50				
1.2-Dibro	omo-3-chloropropane	ND	ua/L	1.0				
Dibromo	methane	ND	ug/L	0.50				
1,2-Dichl	orobenzene	ND	ug/L	0.50				
1,3-Dichl	orobenzene	ND	ug/L	0.50				
1,4-Dichl	orobenzene	ND	ug/L	0.50				
Dichloro	difluoromethane	ND	ug/L	0.50				
1,1-Dichl	oroethane	ND	ug/L	0.50				
1,2-Dibro	omoethane	ND	ug/L	0.50				
1,1-Dichl	oroethene	ND	ug/L	0.50				
cis-1,2-D	ichloroethene	ND	ug/L	0.50				
trans-1,2	-Dichloroethene	ND	ug/L	0.50				
1,2-Dichl	oropropane	ND	ug/L	0.50				
1,3-Dichl	oropropane	ND	ug/L	0.50				
2,2-Dichl	oropropane	ND	ug/L	0.50				
1,1-Dichl	oropropene	ND	ug/L	0.50				
cis-1,3-D	ichloropropene	ND	ug/L	0.50				
trans-1,3	-Dichloropropene	ND	ug/L	0.50				
Ethylben	zene	ND	ug/L	0.50				
Hexachlo	probutadiene	ND	ug/L	0.50				
Isopropy	lbenzene	ND	ug/L	0.50				
p-Isoprop	oyltoluene	ND	ug/L	0.50				
Methyl te	ert-butyl ether (MTBE)	ND	ug/L	0.50				
Methylen	e chloride	ND	ug/L	0.50				

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Count

Result

65 Method Blank

Units

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

060316_MBLK_7

Project: 10039 Sand Coulee

E524.2

Analyte

Method:

Lab ID:

		Report Date: 06/17/16					
		Wor	k Order:	H1605054	48		
RL	%REC Low Lin	nit High Limit	RPD	RPDLimit	Qual		
				Batch:	R115740		
	Run: 1S	ATURN_160603A		06/03/	16 12:22		
0.50							

Naphthalene	ND	ug/L	0.50				
n-Propylbenzene	ND	ug/L	0.50				
Styrene	ND	ug/L	0.50				
1,1,1,2-Tetrachloroethane	ND	ug/L	0.50				
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50				
Tetrachloroethene	ND	ug/L	0.50				
Toluene	ND	ug/L	0.50				
1,2,3-Trichlorobenzene	ND	ug/L	0.50				
1,2,4-Trichlorobenzene	ND	ug/L	0.50				
1,1,1-Trichloroethane	ND	ug/L	0.50				
1,1,2-Trichloroethane	ND	ug/L	0.50				
Trichloroethene	ND	ug/L	0.50				
Trichlorofluoromethane	ND	ug/L	0.50				
1,2,3-Trichloropropane	ND	ug/L	0.50				
1,2,4-Trimethylbenzene	ND	ug/L	0.50				
1,3,5-Trimethylbenzene	ND	ug/L	0.50				
Vinyl chloride	ND	ug/L	0.50				
m+p-Xylenes	ND	ug/L	0.50				
o-Xylene	ND	ug/L	0.50				
Trihalomethanes, Total	ND	ug/L	0.50				
Xylenes, Total	ND	ug/L	0.50				
Surr: p-Bromofluorobenzene			0.50	108	70	130	
Surr: 1,2-Dichloroethane-d4			0.50	117	70	130	
Surr: Toluene-d8			0.50	93	70	130	
Lab ID: H16050548-001F	65 Sample Duplic	ate		Run: 1SATURN 160603A		N_160603A	06/03/16 15:25
Benzene	ND	ug/L	0.50				20
Bromobenzene	ND	ug/L	0.50				20
Bromochloromethane	ND	ug/L	0.50				20
Bromodichloromethane	ND	ug/L	0.50				20
Bromoform	ND	ug/L	0.50				20
Bromomethane	ND	ug/L	0.50				20
n-Butylbenzene	ND	ug/L	0.50				20
sec-Butylbenzene	ND	ug/L	0.50				20
tert-Butylbenzene	ND	ug/L	0.50				20
Carbon tetrachloride	ND	ug/L	0.50				20
1,2-Dichloroethane	ND	ug/L	0.50				20
Chlorobenzene	ND	ug/L	0.50				20
Chlorodibromomethane	ND	ug/L	0.50				20
Chloroethane	ND	ug/L	0.50				20
Chloroform	ND	ug/L	0.50				20
Chloromethane	ND	ug/L	0.50				20
2-Chlorotoluene	ND	ug/L	0.50				20
4-Chlorotoluene	ND	ug/L	0.50				20

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date:	06/17/16
Work Order:	H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E524.2									Batch:	R115740
Lab ID:	H16050548-001F	65 San	nple Duplic	ate			Run: 1SAT	JRN_160603A		06/03/	16 15:25
1,2-Dibror	no-3-chloropropane		ND	ug/L	1.0					20	
Dibromom	nethane		ND	ug/L	0.50					20	
1,2-Dichlo	orobenzene		ND	ug/L	0.50					20	
1,3-Dichlo	robenzene		0.0720	ug/L	0.50					20	
1,4-Dichlo	robenzene		ND	ug/L	0.50					20	
Dichlorodi	fluoromethane		ND	ug/L	0.50					20	
1,1-Dichlo	oroethane		ND	ug/L	0.50					20	
1,2-Dibror	noethane		ND	ug/L	0.50					20	
1,1-Dichlo	roethene		ND	ug/L	0.50					20	
cis-1,2-Die	chloroethene		ND	ug/L	0.50					20	
trans-1,2-l	Dichloroethene		ND	ug/L	0.50					20	
1,2-Dichlo	ropropane		ND	ug/L	0.50					20	
1,3-Dichlo	ropropane		ND	ug/L	0.50					20	
2,2-Dichlo	ropropane		ND	ug/L	0.50					20	
1,1-Dichlo	ropropene		ND	ug/L	0.50					20	
cis-1,3-Dio	chloropropene		ND	ug/L	0.50					20	
trans-1,3-l	Dichloropropene		ND	ug/L	0.50					20	
Ethylbenz	ene		ND	ug/L	0.50					20	
Hexachlor	obutadiene		ND	ug/L	0.50					20	
Isopropylb	penzene		ND	ug/L	0.50					20	
p-Isopropy	ltoluene		ND	ug/L	0.50					20	
Methyl ter	t-butyl ether (MTBE)		ND	ug/L	0.50					20	
Methylene	e chloride		ND	ug/L	0.50					20	
Naphthale	ene		ND	ug/L	0.50					20	
n-Propylbe	enzene		ND	ug/L	0.50					20	
Styrene			ND	ug/L	0.50					20	
1,1,1,2-Te	etrachloroethane		ND	ug/L	0.50					20	
1,1,2,2-Te	etrachloroethane		ND	ug/L	0.50					20	
Tetrachlor	oethene		ND	ug/L	0.50					20	
Toluene			0.167	ug/L	0.50					20	
1,2,3-Tricl	hlorobenzene		ND	ug/L	0.50					20	
1,2,4-Tricl	hlorobenzene		ND	ug/L	0.50					20	
1,1,1-Tricl	hloroethane		ND	ug/L	0.50					20	
1,1,2-Tricl	hloroethane		ND	ug/L	0.50					20	
Trichloroe	thene		ND	ug/L	0.50					20	
Trichlorofl	uoromethane		ND	ug/L	0.50					20	
1,2,3-Tricl	hloropropane		ND	ug/L	0.50					20	
1,2,4-Trim	nethylbenzene		ND	ug/L	0.50					20	
1,3,5-Trim	nethylbenzene		ND	ug/L	0.50					20	
Vinyl chlo	ride		ND	ug/L	0.50					20	
m+p-Xyle	nes		ND	ug/L	0.50					20	
o-Xylene	. <u> </u>		ND	ug/L	0.50					20	
Trihalome	thanes, Total		ND	ug/L	0.50					20	
Xylenes, 7	lotal		ND	ug/L	0.50					20	

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Helena, MT Branch

Project: 10039 Sand Coulee

Report Date: 06/17/16 Work Order: H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E524.2									Batch:	R115740
Lab ID:	H16050548-001F	65 Sar	nple Duplica	ate			Run: 1SAT	URN_160603A		06/03	/16 15:25
Surr: p-	Bromofluorobenzene				0.50	103	70	130			
Surr: 1,2	2-Dichloroethane-d4				0.50	104	70	130			
Surr: To	oluene-d8				0.50	94	70	130			

Report Date: 06/17/16

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project:	10039 Sand Coule	e						Worl	• Order:	H160505	48
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E525.2									Batch:	B_99793
Lab ID:	MB-99793	25 Me	thod Blank				Run: SUB-E	3262080		06/06	/16 18:33
Alachlor			ND	ug/L	0.10						
Aldrin			ND	ug/L	0.10						
Atrazine			ND	ug/L	0.10						
Benzo(a)p	pyrene		ND	ug/L	0.10						
Butachlor			ND	ug/L	0.10						
Chlordane	е		ND	ug/L	1.0						
di(2-ethyll	hexyl)Adipate		ND	ug/L	0.50						
di(2-ethyll	hexyl)Phthalate		ND	ug/L	0.60						
Dieldrin			ND	ug/L	0.10						
Endrin			ND	ug/L	0.10						
gamma-B	BHC (Lindane)		ND	ug/L	0.10						
Heptachlo	or		ND	ug/L	0.10						
Heptachlo	or epoxide		ND	ug/L	0.10						
Hexachlo	robenzene		ND	ug/L	0.10						
Hexachlo	rocyclopentadiene		ND	ug/L	0.10						
Methoxyc	hlor		ND	ug/L	0.10						
Metolachl	or		ND	ug/L	0.10						
Metribuzir	n		ND	ug/L	0.10						
Propachlo	or		ND	ug/L	0.10						
Simazine			ND	ug/L	0.10						
Toxaphen	ne		ND	ug/L	2.0						
Surr: 1	,3-Dimethyl-2-nitrober	nzene		-	0.10	99	70	130			
Surr: P	erylene-d12				0.10	94	70	130			
Surr: P	yrene-d10				0.10	91	70	130			
Surr: T	riphenylphosphate				0.10	108	70	130			
Lab ID:	LCS-99793	23 Lal	boratory Cor	ntrol Sample			Run: SUB-E	3262080		06/06	/16 19:51
Alachlor			1.95	ug/L	0.10	98	70	130			
Aldrin			1.83	ug/L	0.10	92	70	130			
Atrazine			2.22	ug/L	0.10	111	70	130			
Benzo(a)p	oyrene		1.92	ug/L	0.10	96	70	130			
Butachlor			1.94	ug/L	0.10	97	70	130			
di(2-ethyll	hexyl)Adipate		2.13	ug/L	0.50	106	70	130			
di(2-ethyll	hexyl)Phthalate		2.18	ug/L	0.60	109	70	130			
Dieldrin			2.05	ug/L	0.10	102	70	130			
Endrin			1.96	ug/L	0.10	98	70	130			
gamma-B	BHC (Lindane)		2.01	ug/L	0.10	100	70	130			
Heptachlo	or		1.98	ug/L	0.10	99	70	130			
Heptachlo	or epoxide		1.90	ug/L	0.10	95	70	130			
Hexachlo	robenzene		2.09	ug/L	0.10	104	70	130			
Hexachlo	rocyclopentadiene		1.93	ug/L	0.10	97	70	130			
Methoxyc	hlor		2.05	ug/L	0.10	102	70	130			
Metolachl	or		2.14	ug/L	0.10	107	70	130			
Metribuzir	n		1.74	ug/L	0.10	87	70	130			

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Page 31 of 44

Prepared by Helena, MT Branch

Client: MT DEQ-Abandone	d Mines						Repo	ort Date:	06/17/16	
Project: 10039 Sand Coulee							Wor	k Order:	H160505	48
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E525.2									Batch	: B_99793
Lab ID: LCS-99793	23 Lal	poratory Cor	ntrol Sample			Run: SUB-I	3262080		06/06	/16 19:51
Propachlor		2.40	ug/L	0.10	120	70	130			
Simazine		2.12	ug/L	0.10	106	70	130			
Surr: 1,3-Dimethyl-2-nitrobenz	ene			0.10	102	70	130			
Surr: Perylene-d12				0.10	98	70	130			
Surr: Pyrene-d10				0.10	93	70	130			
Surr: Triphenylphosphate				0.10	109	70	130			
Lab ID: CLD-99793	5 Lal	poratory Cor	ntrol Sample			Run: SUB-I	3262080		06/06	/16 21:47
Chlordane		20.7	ug/L	1.0	103	70	130			
Surr: 1,3-Dimethyl-2-nitrobenz	ene			0.10	100	70	130			
Surr: Perylene-d12				0.10	94	70	130			
Surr: Pyrene-d10				0.10	93	70	130			
Surr: Triphenylphosphate				0.10	116	70	130			
Lab ID: B16060259-001FMS	; 23 Sa	mple Matrix	Spike			Run: SUB-I	3262080		06/06	/16 20:29
Alachlor		3.90	ug/L	0.20	98	70	130			
Aldrin		3.54	ug/L	0.20	89	70	130			
Atrazine		4.56	ug/L	0.20	114	70	130			
Benzo(a)pyrene		3.76	ug/L	0.20	94	70	130			
Butachlor		3.86	ug/L	0.20	97	70	130			
di(2-ethylhexyl)Adipate		3.82	ug/L	1.0	96	70	130			
di(2-ethylhexyl)Phthalate		3.98	ug/L	1.2	100	70	130			
Dieldrin		3.78	ug/L	0.20	94	70	130			
Endrin		3.36	ug/L	0.20	84	70	130			
gamma-BHC (Lindane)		3.94	ug/L	0.20	99	70	130			
Heptachlor		3.60	ug/L	0.20	90	70	130			
Heptachlor epoxide		3.80	ug/L	0.20	95	70	130			
Hexachlorobenzene		3.96	ug/L	0.20	99	70	130			
Hexachlorocyclopentadiene		3.38	ug/L	0.20	84	70	130			
Methoxychlor		3.94	ug/L	0.20	99	70	130			
Metolachlor		4.38	ug/L	0.20	109	70	130			
Metribuzin		3.96	ug/L	0.20	99	70	130			
Propachlor		4.50	ug/L	0.20	113	70	130			
Simazine		4.34	ug/L	0.20	108	70	130			
Surr: 1,3-Dimethyl-2-nitrobenz	ene			0.20	101	70	130			
Surr: Perylene-d12				0.20	96	70	130			
Surr: Pyrene-d10				0.20	99	70	130			
Surr: Triphenylphosphate				0.20	113	70	130			
Lab ID: B16060259-001FMS	D 23 Sa	mple Matrix	Spike Duplicate			Run: SUB-I	3262080		06/06	/16 21:08
Alachlor		4.00	ug/L	0.20	100	70	130	2.5	40	
Aldrin		3.72	ug/L	0.20	93	70	130	5.0	40	
Atrazine		4.38	ug/L	0.20	109	70	130	4.0	40	
Benzo(a)pyrene		4.16	ug/L	0.20	104	70	130	10	40	
Butachlor		4.04	ug/L	0.20	101	70	130	4.6	40	

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date:	06/17/16
Work Order:	H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E525.2									Batch	: B_99793
Lab ID:	B16060259-001FMSI) 23 Sa	mple Matrix	Spike Duplicate			Run: SUB-I	3262080	06/06/16 21:08		
di(2-ethylł	nexyl)Adipate		4.26	ug/L	1.0	106	70	130	11	40	
di(2-ethylł	nexyl)Phthalate		4.48	ug/L	1.2	112	70	130	12	40	
Dieldrin			3.42	ug/L	0.20	86	70	130	10	40	
Endrin			3.56	ug/L	0.20	89	70	130	5.8	40	
gamma-B	HC (Lindane)		4.08	ug/L	0.20	102	70	130	3.5	40	
Heptachlo	or		4.04	ug/L	0.20	101	70	130	12	40	
Heptachlo	or epoxide		3.84	ug/L	0.20	96	70	130	1.0	40	
Hexachlo	robenzene		3.98	ug/L	0.20	100	70	130	0.5	40	
Hexachlor	rocyclopentadiene		3.62	ug/L	0.20	91	70	130	6.9	40	
Methoxyc	hlor		4.28	ug/L	0.20	107	70	130	8.3	40	
Metolachl	or		4.14	ug/L	0.20	103	70	130	5.6	40	
Metribuzir	า		3.90	ug/L	0.20	98	70	130	1.5	40	
Propachlo	or		4.70	ug/L	0.20	118	70	130	4.3	40	
Simazine			4.28	ug/L	0.20	107	70	130	1.4	40	
Surr: 1,	3-Dimethyl-2-nitrobenze	ene			0.20	102	70	130			
Surr: P	erylene-d12				0.20	100	70	130			
Surr: P	yrene-d10				0.20	95	70	130			
Surr: T	riphenylphosphate				0.20	113	70	130			

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date:	06/17/16
Work Order:	H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E525.2								Analy	tical Run: B	_R262080
Lab ID:	525_CCV_5	23 Co	ntinuing Cal	libration Verif	ication Standa	rd				06/06	/16 15:18
Alachlor			1.91	ug/L	0.10	96	70	130			
Aldrin			1.97	ug/L	0.10	99	70	130			
Atrazine			2.26	ug/L	0.10	113	70	130			
Benzo(a)	pyrene		2.08	ug/L	0.10	104	70	130			
Butachlo	r		1.89	ug/L	0.10	95	70	130			
di(2-ethy	lhexyl)Adipate		2.11	ug/L	0.50	105	70	130			
di(2-ethy	lhexyl)Phthalate		2.15	ug/L	0.60	107	70	130			
Dieldrin			1.94	ug/L	0.10	97	70	130			
Endrin			2.24	ug/L	0.10	112	70	130			
gamma-B	3HC (Lindane)		2.00	ug/L	0.10	100	70	130			
Heptachl	or		1.99	ug/L	0.10	100	70	130			
Heptachl	or epoxide		1.98	ug/L	0.10	99	70	130			
Hexachlo	probenzene		2.09	ug/L	0.10	104	70	130			
Hexachlo	procyclopentadiene		1.96	ug/L	0.10	98	70	130			
Methoxy	chlor		2.21	ug/L	0.10	110	70	130			
Metolach	llor		1.92	ug/L	0.10	96	70	130			
Metribuzi	in		2.01	ug/L	0.10	100	70	130			
Propachl	or		2.07	ug/L	0.10	103	70	130			
Simazine	9		2.26	ug/L	0.10	113	70	130			
Surr: 1	,3-Dimethyl-2-nitroben	zene			0.10	102	70	130			
Surr: F	Perylene-d12				0.10	85	70	130			
Surr: F	Pyrene-d10				0.10	90	70	130			
Surr: 1	Friphenylphosphate				0.10	108	70	130			
Lab ID:	CLD_CCV_5	5 Co	ntinuing Cal	libration Verif	ication Standa	rd				06/06	/16 16:36
Chlordan	e		19.6	ug/L	1.0	98	70	130			
Surr: 1	,3-Dimethyl-2-nitroben	zene		-	0.10	104	70	130			
Surr: F	Perylene-d12				0.10	89	70	130			
Surr: F	Pyrene-d10				0.10	87	70	130			
Surr: T	Friphenylphosphate				0.10	109	70	130			
Lab ID:	TOX CCV 5	5 Co	ntinuina Cal	libration Verif	ication Standa	rd				06/06	/16 17:15
Toxaphe	ne		41.6	ug/L	2.0	104	70	130			
Surr: 1	,3-Dimethyl-2-nitroben	zene	-	0	0.10	102	70	130			
Surr: F	Perylene-d12				0.10	87	70	130			
Surr: F	Pyrene-d10				0.10	94	70	130			
Surr: 1	Friphenylphosphate				0.10	110	70	130			

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date:	06/17/16
Work Order:	H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E531.1								Analy	tical Run: C	_R212499
Lab ID:	CCV	11 Co	ntinuing Ca	libration Verifi	ication Standa	rd				06/08	/16 03:28
Aldicarb			8.1	ug/L	0.40	101	80	120			
Aldicarb s	ulfone		8.2	ug/L	0.40	102	80	120			
Aldicarb s	ulfoxide		7.4	ug/L	0.40	93	80	120			
Carbaryl			8.3	ug/L	0.40	103	80	120			
Carbofura	in		8.2	ug/L	0.40	102	80	120			
3-Hydroxy	/carbofuran		8.0	ug/L	0.40	100	80	120			
Methiocar	.p		8.4	ug/L	0.40	104	80	120			
Methomyl			8.1	ug/L	0.40	101	80	120			
Oxamyl			8.0	ug/L	0.40	100	80	120			
Baygon			7.7	ug/L	0.40	97	80	120			
Surr: B	DMC				0.40	100	70	130			
Method:	E531.1									Batch: C	_R212499
Lab ID:	H16050548-001G	11 Sa	mple Matrix	Spike			Run: SUB-0	C212499		06/07	/16 21:28
Aldicarb			9.3	ug/L	0.40	116	65	135			
Aldicarb s	ulfone		9.0	ug/L	0.40	113	65	135			
Aldicarb s	ulfoxide		8.4	ug/L	0.40	105	65	135			
Carbaryl			9.2	ug/L	0.40	116	65	135			
Carbofura	in		9.1	ug/L	0.40	114	65	135			
3-Hydroxy	/carbofuran		8.9	ug/L	0.40	112	65	135			
Methiocar	.p		9.2	ug/L	0.40	115	65	135			
Methomyl			9.0	ug/L	0.40	113	65	135			
Oxamyl			8.8	ug/L	0.40	110	65	135			
Baygon			8.8	ug/L	0.40	110	65	135			
Surr: B	DMC				0.40	110	70	130			
Lab ID:	H16050548-001G	11 Sa	mple Matrix	Spike Duplic	ate		Run: SUB-0	C212499		06/07	/16 22:20
Aldicarb			9.0	ug/L	0.40	112	65	135	3.2	20	
Aldicarb s	sulfone		9.2	ug/L	0.40	116	65	135	2.5	20	
Aldicarb s	sulfoxide		8.5	ug/L	0.40	107	65	135	1.7	20	
Carbaryl			8.9	ug/L	0.40	111	65	135	3.7	20	
Carbofura	in		8.8	ug/L	0.40	110	65	135	3.0	20	
3-Hydroxy	/carbofuran		9.0	ug/L	0.40	112	65	135	0.4	20	
Methiocar	.p		8.9	ug/L	0.40	111	65	135	3.4	20	
Methomyl			9.0	ug/L	0.40	113	65	135	0.2	20	
Oxamyl			9.0	ug/L	0.40	113	65	135	2.3	20	
Baygon			8.6	ug/L	0.40	107	65	135	2.1	20	
Surr: B	DMC				0.40	104	70	130	0.0	20	
Lab ID:	LCS	11 Lal	poratory Co	ntrol Sample			Run: SUB-0	C212499		06/07	/16 18:54
Aldicarb			8.6	ug/L	0.40	107	80	120			
Aldicarb s	ulfone		8.1	ug/L	0.40	101	80	120			
Aldicarb s	ulfoxide		7.3	ug/L	0.40	92	80	120			
Carbaryl			8.7	ug/L	0.40	108	80	120			
Carbofura	in		8.5	ug/L	0.40	106	80	120			

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: MT DEQ-Abandoned Mines

Project: 10039 Sand Coulee

Report Date:	06/17/16
Work Order:	H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E531.1									Batch: C	_R212499
Lab ID:	LCS	11 Lab	oratory Cor	ntrol Sample			Run: SUB-0	C212499		06/07/	/16 18:54
3-Hydroxyd	carbofuran		8.0	ug/L	0.40	100	80	120			
Methiocarb)		9.0	ug/L	0.40	112	80	120			
Methomyl			8.0	ug/L	0.40	100	80	120			
Oxamyl			7.8	ug/L	0.40	98	80	120			
Baygon			8.2	ug/L	0.40	102	80	120			
Surr: BD	MC				0.40	107	70	130			
Lab ID:	MBLK	11 Met	hod Blank				Run: SUB-0	C212499		06/07/	/16 19:45
Aldicarb			ND	ug/L	0.40						
Aldicarb su	Ilfone		ND	ug/L	0.40						
Aldicarb su	Ilfoxide		ND	ug/L	0.40						
Carbaryl			ND	ug/L	0.40						
Carbofurar	1		ND	ug/L	0.40						
3-Hydroxyo	carbofuran		ND	ug/L	0.40						
Methiocarb)		ND	ug/L	0.40						
Methomyl			ND	ug/L	0.40						
Oxamyl			ND	ug/L	0.40						
Baygon			ND	ug/L	0.40						
Surr: BD	MC				0.40	96	70	130			

Prepared by Helena, MT Branch

Client:	MT DEQ-Abandoned Mines	
---------	------------------------	--

Project: 10039 Sand Coulee

Report Date: 06/17/16 Work Order: H16050548

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E900.0									Batch: C_Gr	DW-0853
Lab ID:	Th230-GrDW-0853	Lat	ooratory Cor	ntrol Sample			Run: SUB-0		06/10/	/16 14:46	
Gross Alp	bha		95	pCi/L		95	80	120			
Lab ID:	MB-GrDW-0853	3 Me	thod Blank				Run: SUB-(C212517		06/10/	/16 14:46
Gross Alpha			0.3	pCi/L							U
Gross Alpha precision (±)			0.9	pCi/L							
Gross Alpha MDC			1.0	pCi/L							
Lab ID:	C16060041-001DMS	Sa	mple Matrix	Spike			Run: SUB-(C212517		06/10/	/16 14:46
Gross Alpha			130	pCi/L		105	70	130			
Lab ID:	C16060041-001DMSI	D Sa	Sample Matrix Spike Duplic			Run: SUB-C212517				06/10/	/16 14:46
Gross Alp	bha		110	pCi/L		90	70	130	13	20	

U - Not detected at minimum detectable concentration

Prepared by Helena, MT Branch

Client:	MT DEQ-Abandoned	l Mines			Report Date: 06/17/16									
Project:	10039 Sand Coulee							Work	Order:	H1605054	48			
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual			
Method:	E903.0								Bato	h: C_RA226	DW-0410			
Lab ID:	LCS-RA226DW-0410	La	boratory Co	ntrol Sample			Run: SUB-0	C212561	06/13/16 14:33					
Radium 2	226		10	pCi/L		99	90	110						
Lab ID:	MB-RA226DW-0410	3 Me	ethod Blank				Run: SUB-0	C212561		06/13/	/16 14:33			
Radium 2	226		0.1	pCi/L							U			
Radium 2	226 precision (±)		0.1	pCi/L										
Radium 2	226 MDC		0.1	pCi/L										
Lab ID:	H16050548-001I	Sa	mple Matrix	Spike			Run: SUB-0	06/13/16 14:33						
Radium 2	226		25	pCi/L		108	80	120						
Lab ID:	H16050548-001I	Sa	Sample Matrix Spike Duplicat				Run: SUB-0	06/13/16 14:33						
Radium 2	226		20	pCi/L		88	80	120	22	20	R			
- Duplicat	te RPD is outside of the acce	eptance ran	ge for this ana	lysis. However, the R	ER of 1.8 is	s less tha	an the limit of 2	2.0. This batch is a	pproved.					

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

ND - Not detected at the reporting limit.

R - RPD exceeds advisory limit.

Client:	MT DEQ-Abandoned	Report Date: 06/17/16									
Project:	10039 Sand Coulee							Wor	k Order:	: H160505	48
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	RA-05								Bate	ch: C_RA228	3DW-0407
Lab ID:	LCS-228-RA228DW-(-RA228DW-0 Laboratory Control Sam					Run: SUB-0	06/10/16 12:17			
Radium 2	228		7.3	pCi/L		86	80	120			
Lab ID:	MB-228-RA228DW-04	4 3 Me	thod Blank				Run: SUB-(C212516		06/10	/16 12:17
Radium 2	228		1	pCi/L							
Radium 2	228 precision (±)		0.6	pCi/L							
Radium 2	228 MDC		0.5	pCi/L							
Lab ID:	C16050822-001MMS	Sar	mple Matrix	Spike			Run: SUB-(C212516		06/10	/16 12:17
Radium 2	228		14	pCi/L		86	70	130			
Lab ID:	C16050822-001MMS	D Sai	Sample Matrix Spike Duplicate Run: SUB-C212516					C212516		06/10	/16 12:17
Radium 2	228		13	pCi/L		83	70	130	2.1	52	

QA/QC Summary Report

Client:	MT DEQ-Abandoned	d Mines			Report Date: 06/17/16						
Project:	10039 Sand Coulee							Wor	k Order:	H1605054	18
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020								Analytic	al Run: SUB	-C212460
Lab ID:	ICV	Initia	al Calibratio	n Verification	Standard	06/08/16					16 16:27
Uranium			0.0495	mg/L	0.00030	99	90	110			
Lab ID:	ICSA	Inte	rference Ch	eck Sample	A					06/08/	16 16:33
Uranium		C	0.000223	mg/L	0.00030						
Lab ID:	ICSAB	Inte	rference Ch	eck Sample	AB					06/08/	16 16:39
Uranium			1.29E-05	mg/L	0.00030						

Work Order Receipt Checklist

MT DEQ-Abandoned Mines

H16050548

Login completed by:	Tracy L. Lorash		Date	Received: 5/31/2016		
Reviewed by:	BL2000\rwilliams		Re	ceived by: TLL		
Reviewed Date:	6/2/2016	Carrier name: Hand Del				
Shipping container/cooler ir	n good condition?	Yes 🖌	No 🗌	Not Present		
Custody seals intact on all s	shipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗹		
Custody seals intact on all s	sample bottles?	Yes	No 🗌	Not Present 🗹		
Chain of custody present?		Yes 🗹	No 🗌			
Chain of custody signed wh	nen relinquished and received?	Yes 🗹	No 🗌			
Chain of custody agrees wit	th sample labels?	Yes	No 🗹			
Samples in proper containe	Yes 🗹	No 🗌				
Sample containers intact?		Yes 🗹	No 🗌			
Sufficient sample volume for	or indicated test?	Yes 🗹	No 🗌			
All samples received within (Exclude analyses that are of such as pH, DO, Res CI, S	holding time? considered field parameters ulfite, Ferrous Iron, etc.)	Yes 🗹	No 🗌			
Temp Blank received in all	shipping container(s)/cooler(s)?	Yes 🗹	No 🗌	Not Applicable		
Container/Temp Blank temp	perature:	3.4°C Blue Ice				
Water - VOA vials have zero	o headspace?	Yes	No 🗹	Not Applicable		
Water - pH acceptable upor	n receipt?	Yes 🗹	No 🗌	Not Applicable		

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

No sample ID or collection date and time on COC. Logged in with ID, date and time from bottles. One vial for Volatile Organics analysis contains headspace gas bubble(s) greater than 1/4 inch in diameter for sample 524. Headspace was 1 inch. tl 5/31/16 Per T. Henderson the results/invoice are to be sent to the DEQ. wj 6/6/16

etrics, Inc. Helena, MT 59601 • (406) 443-4150	H 100020 H 100020 H 1000 H	2 6 1 × 6 1 × 6 1 × 6 × 6 × 6 × 6 × 6 × 6	Ziedner (2000-1) Complete, Nac -1)W Des allachment		Lab P.O. # Shipped via: Bus FedEx UPS Other	Bemarks Bit 9 - TB Blue ice hand de P.	Date / Time Enclosed: Derameter sheet w/detection limits Date / AC standard mixing instructions D Cover letter	Sinnature Sinnature
CORD AVE. 3020 BOZEMAN AVE.	ME Coulere No.	SAMPLE NUMBER CON-			Date / Times / Received by (Signature)	Date / Tin	Lates / Intre Recorded for Laboratory of	Return results & electronic copy to: QA / QC Dept. at address at top of page
CHAIN OF CUSTODY RE	PROJ. NO. PROJECT NA 10039 Samb SAMPLERS: (Signature)				Relinguined (Stynature)	Relinquished (Signature)	vemiquisied (<i>orginature</i>)	HFORM-1 07/11 Action Print 406-442-7595

ENERGY (3)	Frust our Peop erww.energylab	le. Trust our Data. .com	Bitlings, MT 800.7 College Station, TX 838.690.2218 • Gillette, WY 866.6	735.4489 • Ca 686.7175 • Hi	isper, WY 888 .235.051 Mena, MT 877.472.071		
			BOTTLE ORD	ER 20	873		
SHIPPED TO: Hydi	ometric	s Inc	den vid straen ne ve de insere additiveden fran el angelen de e de inseres de la der de vers en angelen de inser		na bar karana ina an a	والمحافظة	
Contact: Ashton	· of the second s	and the second		and and the magnetic first on the state of t	a na shan anga anga anga anga anga anga anga a	Order Created by: Wanda Johnson	THE CONTRACTOR AND A
3020 Bozeman /	Ave					Shinned From: Helena, MT	
Helena MT 596	01					Shin Date: 5/25/2016	
Phone:						VIA: Hand Del	
Project: Sand Coulee 100	39						
1	Bottles Per			Critical Hold			of Num
Bottle Size/Type	Samp	Method	Tests	Time	Preservative	Notes	Samp
Domestic Suite-(Compa	nies					Γ
500 mL Plastic	*	A2510 B	Conductivity			Alkalinity: Bicarbonate, Carbonate.	-
		A2320 B	Alkalinity			Anions by Ion Chromatography: Chloride, Sulfate	
		A4500-H B	Hd	0.24 hrs			
		A2540 C	Solids, Total Dissolved				
		E300.0	Anions by Ion Chromatography				
250 mL Plastic	-	E353.2	Nitrogen, Nitrate + Nitrite		H2SO4		-
250 mL Plastic		E200.7_8	Metals by ICP/ICPMS, Drinking Water		HNO3	Hardness-Calcium, Magnesium, Sodium & Potassium	-
Dhace 2/E Comul				Ē] [
LIIDO CAS AND							
250 mL Plastic	₩	E200.7_8	Metals by ICP/ICPMS, Drinking Water		HNO3	Phase II: Barium, Cadmium, Chromium, Mercury, Selenium. Phase V: Antimony, Beryllium, Nickel, Thallium. Other: Arsenic	-
250 mL Plastic	1	E353.2	Nitrogen, Nitrate + Nitrite]H2SO4		-
250 mL Plastic	-	A4500-F C	Fluoride				-
40 mL Clear Glass VOA	Ϋ́	E524.2	524-Purgeable Organics, SDWA		HCL	Do Not Rinse, Contains Additive Zero headspace	-
1 Liter Amber Glass Narrow Mouth	2	E525.2	525-Semi-Volatile Organic Compounds, MT List		HCL	Do Not Rinse - Contains Additive	-

Trust our People. Trust our Data. www.energylab.com

ENERGY (3)

۲

じょくち

40 mL Clear Glass VOA	2 E531.1	Pesticides, Carbamates SDWA		Do Not Rinse - Contains Additive	-
250 mL Amber Glass	1 E515.4	515.4-Herbicides, Chlorinated SDWA		Do Not Rinse - Contains Additive	-
RAD-DW					
1 Gallon Plastic	1 E200.8	Total Uranium	EONH		
	E900.0	Gross Alpha, Gross Beta			
	E903.0	Radium 226, Total			
	RA-05	Radium 228, Total			
	E900.0	Gross Alpha Calculated			
	A7500-RA	Radium 226 + Radium 228			
					ſ
Trip Blank 524 DW					
40 mL Clear Glass VOA	1 E524.2	524-Purgeable Organics, SDWA	HCL	Trip Blank. Do not open, return with cooler. Zero headspace	-
HNO3 - Nitric Acid	H2SO4 - Sulfu	uric Acid 🗾 NaOH - Sodium Hydroxide	We strongly	y suggest that the samples are	
ZnAc - Zinc Acetate	HCI - Hydroch Acid	loric H3PO4 - Phosphoric Acid	shipped the	s same day as they are collected.	
Material Safety Data Sheets	(MSDS) Availat	ble @ EnergyLab.com ->Services -> MSDS Sh	eets		
Corrosive Chemicals: Nitric, Sulfurk	c, Phosphoric, Hydr	ochloric Acids and Sodium Hydroxide. Zinc Acetate is a sl	din irritænt.		
Subcontracting of sample analyses to laboratories will be indicated within the	an outside laborator) s Laboratory Analytic	y may be required. If so, Energy Laboratories will utilize its brai al Report.	nch laboratories or qu	alified contract laboratories for this service. Any such	

١

APPENDIX D

PRELIMINARY ASSESSMENT FORM FOR GROUNDWATER UNDER THE DIRECT INFLUENCE OF SURFACE WATER

MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY

Metcalf Building 1520 East Sixth Avenue P.O. Box 200901 Helena, MT 59620-0901

PRELIMINARY ASSESSMENT WORKSHEET

Preliminary Assessment of Ground Water Sources that may be Under the Direct Influence of Surface Water

		PWS	S System a	nd Sour	ce Facility Info	ormation		
PWS Name:	SAND	COULEE	WATER DIST	RICT			PWS ID#: (MT000nnnn)	MT000325
Type (C, NTNC,	NC):	С	County:	CASCAE	DE		Population Served:	160
Source Facility Name:	WEL	L 6 - MADI	SON AQUIFE	ĒR	SDWIS Facility ID: (WL00n,SP00n,IG00n)		Date: (m/d/yy)	7/22/16

COMPUTE PA SO	CORE Mark	(X) ONE o	ption that ap	oplies and	d enter	COMPUTE PA SCORE Mark (X) ONE option that applies and enter option index pts at right Po							
A. TYPE OF STRUC	TURE												
Spring (40)	Horizon	tal Well	(40)	V	Well	(0) <u>X</u>		<u>0</u>					
B. HISTORICAL PA suspected outbreak o water, with current s	THOGENIC of Giardia, or o system configur	ORGANI ther pathor ration.	SM CON' ogenic orga	TAMI anisms	NATI assoc	ON: H iated w	listory or vith surface						
Yes (40)			No (0)	<u>x</u>				<u>0</u>					
C. HISTORICAL MI	CROBIOLOG	GICAL C	ONTAMI	NATIO	ON:								
I) Record of acute (boi Rule during the last	l order or fecal 3 years. Numb	positive s er of viol	ample) Mo ations:	CL viol	lations	s of the	Total Coliform						
None (0) X	One (5)		Γwo (10) Three (15)				<u>0</u>						
II) Record of non-acut Total Coliform Rule	e (two coliform e during the last	positive s 3 years. l	samples in Number o	one m f violat	ionth) tions:	MCL	violations of the						
None or One (0) X	Two (5)	Three	(10) Turbidity Complaints (DEQ verified) (5)				<u>0</u>						
D. HYDROLOGICAL FEATURES: Horizontal distance between surface water & source.													
$ > 250 \text{ ft } (0) \mathbf{X} $ 175 - 250 ft (10) 100 - 174 ft (20) < 100 ft (40)							<u>0</u>						
E. WELL SEAL: Poorly constructed well (uncased, or annular space not sealed to depth of at least 18 feet below land surface), or casing construction is unknown.													
Yes (15) No (0) X						<u>0</u>							
F. WELL INTAKE CONSTRUCTION: In wells tapping unconfined or semi-confined aquifers, the depth below land surface to top of perforated interval or screen is:													
>100 ft (0) X 50-100 ft (5) 25-49 ft (10) 0-24 ft (15) Unkn (15)							<u>0</u>						
G. STATIC WATER LEVEL: In wells tapping unconfined or semi-confined aquifers, the depth to static water level below land surface is:													
>100 ft (0) X 50-1	00 ft (5)	25-49 ft	(10)	0-24 1	ft (15))	Unkn (15)	<u>0</u>					
H. WELL CAP CON	STRUCTION	Poor san	itary seal,	or seal	with	out acc	eptable material.						
Yes (15)		No ((0) <u>X</u>					<u>0</u>					
TOTAL	PA SCORE (Right click	in cell to righ	nt and sel	lect Up	date Fie	ld.)	<u>0</u>					

Continued other side ...

PRELIMINARY ASSESSMENT WORKSHEET (continued)

I. PRELIMINARY ASSESSMENT DETERMINATION	Mark (X) ONE
1. PASS: Source is not under the direct influence of surface water.	<u>×</u>
2. FAIL: Well must undergo further GWUDISW analysis.	
3. FAIL: Spring, must undergo further GWUDISW analysis.	
4. FAIL: Well or horizontal well less than 100 feet from surface water, must undergo further GWUDISW analysis.	
5. FAIL: Well will PASS if well construction deficiencies (section E or F) are repaired.	
6. FAIL: Well may PASS if well construction details (section E, F, or G) become available.	

ANALYST INFORMATION AND COMMENTS

NAME: GREG BRYCE

AFFILIATION: Hydrometrics, Inc.

COMMENTS

Electronic Entry Instructions: Open the WORD document template (DOT) as a WORD document (DOC) with an appropriate name and location. The document is protected from all edits other than form entry. Enter the requested information in the form fields and tab forward between fields. All character entries will be converted to upper case. In the Compute PA Score table for questions A through H, mark with an X the one option which applies to each, then enter the score corresponding to that option in the field to the right under the Points column. When scores A-H have been entered right click on the Total PA Score field and select Update Field. The total score will be computed. Select the PA Determination option by marking with an X. Fill out the Analyst Information and Comments table. Save the document with your entries.

APPENDIX E

REDUNDANT WELL CONSTRUCTION NOTICE

	1						
Form 635 R10/2009 (Pursuant to 85-2-402(16))							
REDUNDANT WELL CONSTRUCTION							
NOTICE							
FOR REDUNDANT WELLS IN A PUBLIC WATER SUPPLY SYSTEM AS							
DEFINED IN 73-0-102.							
WATER RIGHTS: Attach copies of the existing water rights for the public water supply system.	FOR DEPARTMENT USE ONLY						
WELL LOG: Attach copies of the existing well log(s)and	Naman Na						
the well log for the redundant well.	DATE RECEIVED TIME AM / PM						
location.	Rec'd By						
	FEE REC'D \$						
FILING FEE: \$50.00	CHECK NO.						
	Refund \$ Date						
IMPORTANT	NOTICE						
The flow rate and volume of all we	ells, including redundant wells						
cannot exceed the flow rate or volume authorized by the v	water rights for the public water supply system.						
1. PUBLIC WATER SUPPLY SYSTEM NAME Sand Coulee W	/ater District						
Mailing Address P.O. Box 97							
City Sand Coulee State Mont	tana Zip <u>59472</u>						
Home Bhone (406)-736-5103	- Phone (406)-590-5183						
2. REDUNDANT WELL LOCATION <u>NE 1/4 NE 1/4 SE 1/4 Section 14</u> Twp <u>19N N / S Re</u> Lot <u>NA</u> Block <u>NA</u> Tract No. <u>NA</u> Subdivision I Government Lot No. <u>NA</u>	ge <u>04E_</u> E /W County <u>Cascade</u> Name <u>NA</u>						
Street or Road Address, including City, State & Zip Code of							
3. CHECK THE BOX THAT CORRECTLY ANSWERS EACH	QUESTION:						
Yes No Is the redundant well withdrawing water Yes No Is the redundant well required by a state	from the same ground water source as the original well(s)? or federal agency?						
4. AFFIDAVIT							
I affirm that statements appearing here are to the best of m	ny knowledge true and correct.						
Authorized Signature Sent Suma Date 9-27-16							
Authonized orginature							
	Date						
State of Montana County of CASCHOE	Date						
State of Montana County of CASCHOE Signed or channel before Micron Hubblers Pupt 2016	by KENT E. LUOMA						
State of Montana County of CASCHOE Signed or Shawy need being mean and shawy need being mean and shawy need being mean and shawy need to be the state of the stat	by KENT E. Luoma Signature Shonda M. Unplus						
State of Montana County of CASCHOE Signed or Shaw and before NOAM UMPHRES NOTARIA: NOTARIA: State of Montana State of Montana Notary's State of Montana	by KENT E. Luoma Signature Bhonda M. Unphres Name (Printed) Rhonda M. Umphres						
State of Montana County of CASCHOE Signed or Charter State of Montana *: SEAL :* State of Montana My Commission Expires Notary's Notary p	by KENT E. LUOMA Signature Shonda M. Umphres Name (Printed) Rhonda M. Umphres ublic for the State of MONTANA						
State of Montana County of CARCHOE Signed or REAL :: State of Montana * SEAL :: Motary's My Commission Expires May 29, 2018	by KENT E. Luoma Signature Shonda M. Umphres Name (Printed) Rhonda M. Umphres ublic for the State of MONTANA Jat Strockett						

MONTANA DEPARTMENT OF NATURAL RESOURCES & CONSERVATION 1424 9th AVE PO BOX 201601 HELENA MT 59620-1601 Phone: 406-444-6610 WEBSITE: http://www.dnrc.mt.gov/wrd

