FINAL

PFOA AND PFOS GROUNDWATER SAMPLING REPORT

FORT WILLIAM HENRY HARRISON HELENA MONTANA

Prepared for:

MONTANA ARMY NATIONAL GUARD 1956 MT. MAJO ST., P.O. BOX 4789 FORT HARRISON, MT 59636

CONTRACT DMA # ENV 10-17

Prepared by:

TETRA TECH, INC. (EMI UNIT) 825 WEST CUSTER AVENUE HELENA, MONTANA 59602 (406) 442-5588

March 2018

1.0 INTRODUCTION

<u>Purpose</u>

This report presents the results of groundwater sampling and groundwater static water level measurement at Fort William Henry Harrison (FWHH) on October 25, 2017 and December 12, 2017. Tetra Tech, Inc. (EMI Unit) (Tetra Tech) was tasked to collect specific groundwater samples by the Montana Army National Guard (MTARNG) under contract DMA # ENV 10 -17. The purpose of this work was to sample for poly- and perfluoralkyl substances (PFAS) in groundwater at FWHH.

Background

PFAS (perfluoroalkyl and polyfluoroalkyl substances) are a suite of emerging contaminants of concern with potential human health risks. Aqueous Film Forming Foam (AFFF), used from the 1970's to the present, commonly contains PFAS; AFFF was used by the Department of Defense (DoD) to extinguish petroleum fires during response actions and to train firefighters. Both DoD, other federal agencies and commercial entities used AFFF as a firefighting agent. PFAS also were used industrially (e.g., in metal plating shops, water resistance for fabrics and carpets) and in common consumer products (e.g. Teflon in pans, inside popcorn bags); therefore, these chemicals may enter the environment through landfills and wastewater, or may do so as surface runoff from fire training areas or AFFF release sites.

Project Planning

Before field work, a project work plan (Tetra Tech 2017) was prepared and approved by MTARNG. The work plan is included in **Appendix A**.

This report contains three tables, three figures, and four appendices, including:

TABLE 1: STATIC WATER LEVELS AND WELL LOCATIONSTABLE 2: FIELD PARAMETERS DURING GROUNDWATER SAMPLING AND PURGINGTABLE 3: ANALYTICAL DATA RESULTSFIGURE 1: DATA/SAMPLE COLLECTION LOCATIONSFIGURE 2: GROUNDWATER SURFACEFIGURE 3: ANALYTICAL DATAAPPENDIX A: WORK PLANAPPENDIX B: FIELD FORMSAPPENDIX C: ANALYTICAL DATA PACKAGESAPPENDIX D: PHOTOGRAPHIC LOG

2.0 METHODS AND DEVIATIONS

Sample collection, handling, and methods were detailed in the Tetra Tech work plan (**Appendix A**). The work plan was provided to, and approved by, MTARNG before field work began. This section presents an overview of methods and describes any deviations from the work plan. A photographic log showing each of the sampled groundwater wells is included in **Appendix D**.

Static Water Level, Groundwater Flow and Purging

On October 25, 2017 static water levels (SWL) were recorded relative to the top of the well casing (TOC) prior to purging and sampling. A minimum of three well volumes were purged prior to sampling using a flow rate that did not exceed 0.5 liter per minute (0.26 gallon per minute). Groundwater parameters were monitored during purging using a YSI DSSPro meter. None of the wells were purged dry. The final parameters collected before samples were collected are shown in **Table 2**, and full parameter records are presented in **Appendix B**.

MTARNG requested that water-levels be re-measured following presentation of the draft groundwater surface. Additionally, MTARNG provided a real-time kinematic global positioning system (RTK GPS) to measure well locations and elevations to improve projections for groundwater flow direction. SWL and well GPS surveying was performed on December 12, 2017 at the 9 wells originally measured on October 25, 2017.A Trimble R8 RTK was setup on Control Point 1 using WGS 84 coordinates (N46°37'43.18988", W112°05'57.74749") using the WGS 84 Ellipsoid height as the elevation (1208.69964 m). Tetra Tech could not locate sufficient additional control points to check survey network; the elevations provided in the survey should be considered relative and not contrasted to elevations in other datums.

Groundwater flow direction was estimated using SWL measurements from nine wells at FWHH. The groundwater surface was interpolated using a spline algorithm in ArcGIS 10.3 (**Figure 2**). Well BH-01 was dry and was not included in the interpolation. MTARNG and Tetra Tech staff surveyed or resurveyed well TOC elevations. Based on the RTK survey method used by MTARNG, the relative accuracy (root mean square) of the groundwater elevations is 21 millimeters.

PFAS Sampling in Groundwater

Groundwater was collected from three wells selected by MTARNG (FH-02, MW-06, and MW-08) at FWHH (shown on **Figure 1**) on October 25, 2017, using low-flow methodology. A high-density polyethylene (HDPE) bladder pump (manufactured by Geotech, Inc.) and HDPE tubing were used to collect groundwater samples. A duplicate sample (FWHH_DUPE_20171025) was also collected at well FH-02. Note that the time of sampling for FH-02 provided in the chain-of-custody document is incorrect; the actual sample collection time was 12:20 p.m. The time was intentionally entered incorrectly to ensure that the sample was submitted blind to the analytical laboratory.

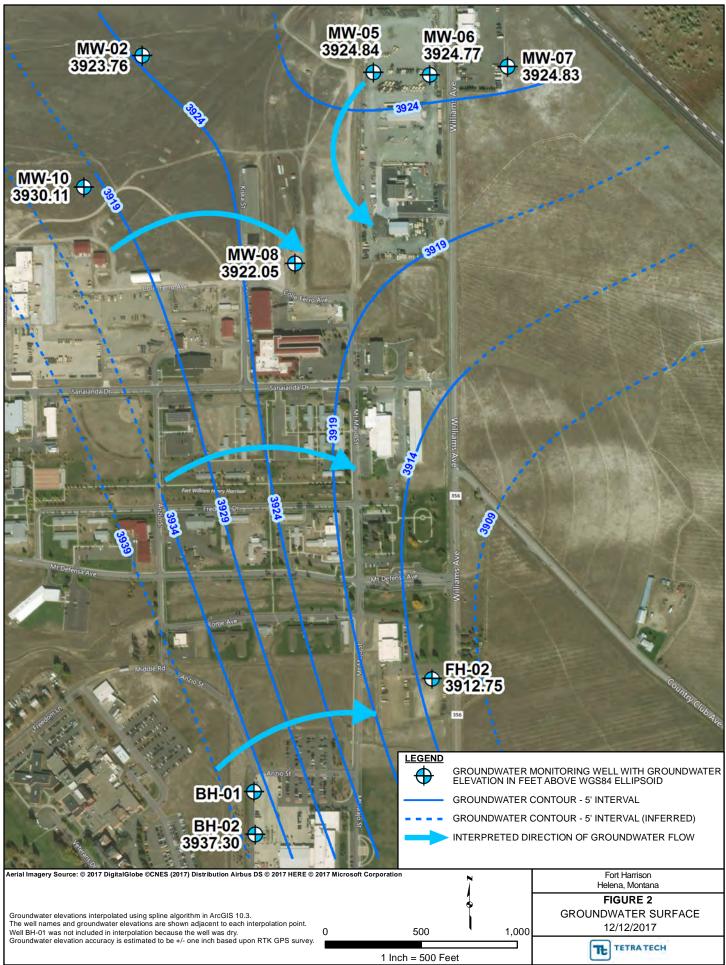
Two additional quality assurance/quality control samples were collected. First, a field reagent blank (FRB) was poured at well site MW-06, using PFAS-free water provided by Test America. Wind at the time was 5 miles per hour (mph) from the northwest, gusting to 15 mph. Second, a rinsate blank was collected by passing PFAS-free water over the reusable sampling equipment

(bladder pump) after it had been decontaminated. This sample was also collected at location MW-06 following groundwater sampling and decontamination procedures.

Groundwater samples were collected in two 250-milliliter (mL) bottles (500 mL per sample) provided by Test America and immediately placed on ice. After completion of field activities, the sample bottles were packed in Ziploc bags, covered with ice, and shipped overnight priority to the Test America PFAS laboratory in Sacramento, California. Samples were processed and analyzed under DoD Quality Systems Manual (QSM) 5.0 protocols, analytical Method 537 Modified.

Level IV data packages were received from Test America and validated to Stage IV by Tetra Tech chemists. Validation was performed in accordance with the EPA Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (EPA 2009). Analytical data were evaluated in general accordance with the EPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (EPA 2017).

The results presented in this document, and associated data qualifiers, reflect the Tetra Tech validated data. The validation report, and all analytical materials and reports for this sampling effort, are presented in **Appendix C**.


Deviations from Work Plan: The work plan reported that samples would be submitted to ALS laboratories (Kelso, Washington). However, the laboratory was unable to receive the samples as a result of recent DoD decertification. Test America laboratories was instead selected as an alternate after consultation and approval by MTARNG. Also in the work plan, sample collection was specified using two 60 mL HDPE containers. Instead, Test America provided two 250 mL containers for sample collection. No other modifications of field activities were necessary to accommodate the changed analytical laboratory protocol.

As stated previously, water level measurements were taken again in December 2017, which represents a deviation from the original work plan.

3.0 RESULTS

Figure 1 shows both the location map with wells used for either static water levels and/or sampling. **Figure 2** shows the resulting groundwater flow from the modeled results from only those 9 wells. **Figure 3** shows the validated analytical results at each well sampled. The groundwater elevation model presented in **Figure 2** should not be viewed as definitive due to the sparsity of the monitoring well network.

		MW	/-06	Williams Ave			
	-08 🕂	13 de	10 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	Colle Ferr	o Ave					
			57.5				
ianda Dr.	Sanaianda Dr-			The			
		MIMA		Wi			
				Williams Ave			
Fort William Henry Harrison	111 1 11 . LL		E.	356			
Frederick Dr			7-19				
				Ave			
Mt Defense Ave	The state	MED	efensa Ave	Williams Ave			
Rome Ave		=hr		1.02			
Middle Rd		t Majo St	E A A				
Anzio St.		FH	-02 🕂				
Detected Analytes	FH-02	FH-02 (DUPE)	MW-06	MW-08			
Perfluorobutanesulfonic acid (PFBS) Perfluorobutanoic acid (PFBA)	2.7 7.4	2.7 7.3	0.74 J 6.8	29 46			
Perfluoroheptanoic acid (PFHpA)	4.5	4.2	0.8 1.4 J	22			
Perfluorohexanesulfonic acid (PFHxS)	16	17	2.4 J+	57			
Perfluorohexanoic acid (PFHxA)	13	13	2.2 J	120			
Perfluorononanoic acid (PFNA)	0.58 J	0.58 J	<1.5 U	0.22 J			
Perfluorooctanesulfonic acid (PFOS)	9.4	10	<3.1 U	5.8			
Perfluorooctanoic acid (PFOA)	7.2	7.3	1.6 J	11			
Perfluoropentanoic acid (PFPeA)	18	17	2.4	180			
Perfluorotetradecanoic acid (PFTeA)	<1.5 U	0.23 J	<1.5 U	<1.5 U			
ial Imagery Source: © 2017 Digital Globe ©CNES (2017) Distribution Airbus DS © 2017 HERE © 2017 Microsoft Corporation Fort Harrison							
Aerial Imagery Source: © 2017 DigitalGlobe ©CNES (2017) Distribution Airbus DS © 2017 HERE © 2017 Mi	icrosoft Corporatio Full analytical re	n esults presented in Table 3	3.		Fort Harrison Helena, Montana		
Aerial Imagery Source: © 2017 DigitalGlobe ©CNES (2017) Distribution Airbus DS © 2017 HERE © 2017 Mi LEGEND SAMPLED WELL J The app	icrosoft Corporatio Full analytical re Analyte concent analyte was analyze sociated value (repor analyte was positive roximate concentrati	n ssults presented in Table 3 trations in nanograms per ed for, but was not detectr	3. liter (ng/L). ed at or above the ted value is the ample				

Figure-3_Analytical.mxd - DWH - 11/13/2017

Analytical results are presented in **Table 3** and shown on **Figure 3**. No data were disqualified or rejected during validation. The data presented in **Table 3** and **Figure 3** represent the Tetra Tech validated data; laboratory data, reports, and validation data are found in **Appendix C**.

No analytes were detected in the field reagent blank. Trace concentrations of perfluorobutanoic acid, perfluorohexanesulfonic acid, and perfluorooctanesulfonic acid were found in the rinsate blank. The occurrence of these analytes in the rinsate blank did not have an appreciable impact on the data quality, with the exception of perfluorohexanesulfonic acid in the sample from MW-06, which was qualified as biased high (J+). Analyte concentrations in the sample duplicate varied by less than 10 percent relative to the primary sample.

4.0 REFERENCES

- Tetra Tech, Inc. 2017. Groundwater Sampling Work Plan. Fort William Henry Harrison, Helena, MT. October.
- U.S. Army Corps of Engineers (USACE). 2016. Chemistry Requirements PFAS. Omaha, NE. August.
- USACE. 2017. Uniform federal policy quality assurance project plan. Sampling and analysis for perfluorooctane sulfonate (PFOS) and perfluoroctanoic acid (PFOA) for Army National Guard owned/operated drinking water systems nationwide. Volume I. Revision 0. Baltimore, MD. February.
- U.S. Environmental Protection Agency (EPA). 2009. *Guidance for Labeling Externally Validated* Laboratory Analytical Data for Superfund Use. EPA 540-R-08-005. January.
- EPA. 2016. Fact sheet: PFOA and PFOS Drinking Water Health Advisories. EPA 800-F-16-003. November.
- EPA. 2017. National Functional Guidelines (NFG) for Organic Superfund Methods Data Review. EPA-540-R-2017-002. January

TABLES

TABLE 1: STATIC WATER LEVELS AND WELL LOCATIONSTABLE 2: FIELD PARAMATERS DURING GROUNDWATER SAMPLING AND PURGINGTABLE 3: ANALYTICAL RESULTS

TABLE 1 STATIC WATER LEVELS AND WELL LOCATIONS

Well ID	Commis ID	Static Water Le	evel [feet btoc]	Easting	Northing	TOC Elevation	Latitude (WGS 84)	Longitude (WGS 84)
weilid	Sample ID	10/25/2017	10/12/2017	[m UTM Zone 12]	[m UTM Zone 12]	[feet]	[dd]	[dd]
BH-01	N/A	DRY	DRY	415878.414	5163395.036	3967.74	46.61885	-112.09872
BH-02	N/A	30.88	30.81	415878.783	5163328.128	3968.11	46.61825	-112.09870
FH-02	FHWW_FH-02_20171025	42.02	42.28	416159.225	5163575.064	3955.03	46.62050	-112.09508
	FHWW_DUPE_20171025							
MW-02	N/A	58.09	51.71	415699.578	5164564.436	3975.47	46.62935	-112.10127
MW-05	N/A	31.29	30.1	416066.328	5164538.169	3954.94	46.62916	-112.09647
MW-06	FHWW_MW-06_20171025	28.88	27.74	416155.703	5164533.929	3952.51	46.62913	-112.09530
MW-07	N/A	24.67	23.54	416279.287	5164547.283	3948.37	46.62927	-112.09369
MW-08	FHWW_MW-08_20171025	38.21	37.11	415941.963	5164234.652	3959.16	46.62641	-112.09804
MW-10	N/A	48.51	46.96	415607.290	5164355.525	3977.07	46.62746	-112.10243

<u>Notes</u>

Coordinates based upon relative RTK GPS survey using a Trimble R8 based at control point 1 (N46°37'43.18988", W112°05'57.74749") with an ellipsoid height of 1208.6996 meters. Horizontal coordinates converted to UTM using ArcGIS 10.3 and a NAD 83 datum.

- No data
- dd Decimal degree
- DRY No water was observed in the well
- feet btoc Feet below top of column
- m meter
- N/A Not applicable / no sample collected
- NAD 83 North American Datum of 1983
- RTK GPS Real Time Kinematic Global Positioning System
- UTM Universal Transverse Mercator coordinate system
- WGS84 World Geodetic System 1984

TABLE 2
FIELD PARAMATERS DURING GROUNDWATER SAMPLING AND PURGING

	Sample Collection					Reading at End of Purging ^(a)					
Sample	Location	Date	Time	Purge Volume [gal]	Depth to Water [ft btoc]	рН	Sp. Cond. [µS/cm]	ORP [mV]	DO [mg/L]	Turbidity [NTU]	Temp [°C]
FHWW_FH-02_20171025	FH-02	10/25/2017	12:20	10.4	42.02	7.52	1289	21.80	7.99	-0.7	12.0
FHWW_MW-06_20171025	MW-06	10/25/2017	14:40	6.6	28.88	7.45	1025	13.90	6.28	5.5	11.8
FHWW_MW-08_20171025	MW-08	10/25/2017	17:30	13.1	38.21	7.66	1342	23.80	8.76	5.4	11.1

Notes: Analytical Sample FWHH_DUPE_20171025 was a duplicate of FWHH_FH-02_20171025.

°C	Degrees centigrade
(a)	Field measurements were collected during well purging, prior to sample collection.
btoc	Below top of casing
DO	Dissolved oxygen
gal	Gallons
mg/L	Milligrams per liter
μS/cm	Microsiemens per centimeter
mV	Millivolt
ORP	Oxidation reduction potential
Sp. Cond.	Specific conductance
Temp	Temperature

Page 1 of 1

TABLE 3 ANALYTICAL DATA

	Sample	Location/Type:	FH-02	FH-02 (DUPLICATE)	MW-06	MW-08	Rinsate	Field Reagent Blank
		Sample ID:	FWHH_FH-02_20171025	FWHH_DUPE_20171025	FWHH_MW-06_20171025	FWHH_MW-08_20171025	FWHH_RINSATE_20171025	FWHH_FRB_20171025
Analyte	Units	Date						
N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ng/L	10/25/2017	<15 U	<15 U	<15 U	<15 U	<15 U	<18 U
N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ng/L	10/25/2017	<15 U	<15 U	<15 U	<15 U	<15 U	<18 U
Perfluorobutanesulfonic acid (PFBS)	ng/L	10/25/2017	2.7	2.7	0.74 J	29	<1.5 U	<1.8 U
Perfluorobutanoic acid (PFBA)	ng/L	10/25/2017	7.4	7.3	6.8	46	0.34 J	<1.8 U
Perfluorodecanoic acid (PFDA)	ng/L	10/25/2017	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.8 U
Perfluorododecanoic acid (PFDoA)	ng/L	10/25/2017	<3.1 U	<3.1 U	<3.1 U	<3.1 U	<3.1 U	<3.5 U
Perfluoroheptanoic acid (PFHpA)	ng/L	10/25/2017	4.5	4.2	1.4 J	22	<1.5 U	<1.8 U
Perfluorohexanesulfonic acid (PFHxS)	ng/L	10/25/2017	16	17	2.4 J+	57	0.26 J	<1.8 U
Perfluorohexanoic acid (PFHxA)	ng/L	10/25/2017	13	13	2.2 J	120	<3.1 U	<3.5 U
Perfluorononanoic acid (PFNA)	ng/L	10/25/2017	0.58 J	0.58 J	<1.5 U	0.22 J	<1.5 U	<1.8 U
Perfluorooctanesulfonic acid (PFOS)	ng/L	10/25/2017	9.4	10	<3.1 U	5.8	0.42 J	<3.5 U
Perfluorooctanoic acid (PFOA)	ng/L	10/25/2017	7.2	7.3	1.6 J	11	<3.1 U	<3.5 U
Perfluoropentanoic acid (PFPeA)	ng/L	10/25/2017	18	17	2.4	180	<1.5 U	<1.8 U
Perfluorotetradecanoic acid (PFTeA)	ng/L	10/25/2017	<1.5 U	0.23 J	<1.5 U	<1.5 U	<1.5 U	<1.8 U
Perfluorotridecanoic Acid (PFTriA)	ng/L	10/25/2017	<3.1 U	<3.1 U	<3.1 U	<3.1 U	<3.1 U	<3.5 U
Perfluoroundecanoic acid (PFUnA)	ng/L	10/25/2017	<3.1 U	<3.1 U	<3.1 U	<3.1 U	<3.1 U	<3.5 U
6:2FTS	ng/L	10/25/2017	3.2 J	<15 U	<15 U	<15 U	<15 U	<18 U
8:2FTS	ng/L	10/25/2017	<15 U	<15 U	<15 U	<15 U	<15 U	<18 U

Notes:

Analytes in bold were detected in one or more groundwater sample(s)

Duplicate sample was collected from well FH-02; Rinsate and Field Regent Blank samples collected at MW-06 The values presented were validated by Tetra Tech chemists using EPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (EPA 2017) Validation report, Laboratory reports, and electronic data are included in Appendix C ng/L

- Nanogram per liter
- The analyte was analyzed for, but was not detected at or above the associated value (reporting limit) <
- J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample
- The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high J+
- U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit)

APPENDIX A

WORK PLAN

SAMPLING AND ANALYSIS PLAN

GROUNDWATER SAMPLING MONTANA ARMY NATIONAL GUARD FORT WILLIAM HENRY HARRISON

Helena, Montana

Prepared for:

STATE OF MONTANA, DEPARTMENT OF MILITARY AFFAIRS

P.O. Box 8749, 1956 Mt. Majo St. Fort Harrison, MT 59636-4790

Contract No. DMA # ENV 10 -17

Prepared by:

TETRA TECH, INC. (EMI UNIT) 825 WEST CUSTER AVENUE Helena, Montana 59601 (406) 442-5588

October 2017

CONTENTS

Section	<u>n</u> <u>P</u> :	<u>age</u>
ACRC	ONYMS AND ABBREVIATIONS	ii
1.0	INTRODUCTION	1
2.0	PRELIMINARY TASKS	2
3.0	SAMPLING PLAN	3
4.0	SAMPLE ANALYSIS	5
5.0	DATA VALIDATION AND REDUCTION	6
6.0	REPORTING	7
7.0	REFERENCES	8

<u>Figure</u>

1 SAMPLE LOCATION MAP

Appendices

- A HEALTH AND SAFETY PLAN
- B STANDARD OPERATING PROCEDURES
- C CHAIN-OF-CUSTODY DOCUMENTATION
- D LABORATORY CREDENTIALS AND REPORTING LIMITS

ACRONYMS AND ABBREVIATIONS

μg/L	Micrograms per liter
AFFF	Aqueous film forming foam
CoC	Chain of custody
DEQ	Department of Environmental Quality
DO	Dissolved oxygen
DoD	Department of Defense
EDD	Electronic data deliverable
EPA	United States Environmental Protection Agency
FRB	Field reagent blank
FWWH	Fort William Henry Harrison
HA	Health Advisory
HASP	Health and Safety Plan
HDPE	High-density polyethylene
LDPE	Low-density polyethylene
mL	Milliliter
MTARNG	Montana Army National Guard
	Nanograms per liter
ng/L	
ng/L ORP	Oxidation-reduction potential
-	
ORP	Oxidation-reduction potential
PFBA	Perfluorobutanoic acid
PFAS	Polyfluoroalkyl substance
PFC	Perfluorinated compound
PFOA	Perfluorooctanoic acid
ORP	Oxidation-reduction potential
PFBA	Perfluorobutanoic acid
PFAS	Polyfluoroalkyl substance
PFC	Perfluorinated compound
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctane sulfonic acid
ORP	Oxidation-reduction potential
PFBA	Perfluorobutanoic acid
PFAS	Polyfluoroalkyl substance
PFC	Perfluorinated compound
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctane sulfonic acid
QSM	Quality Systems Manual
ORP	Oxidation-reduction potential
PFBA	Perfluorobutanoic acid
PFAS	Polyfluoroalkyl substance
PFC	Perfluorinated compound
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctane sulfonic acid
QSM	Quality Systems Manual
SOP	Standard operating procedure

1.0 INTRODUCTION

Tetra Tech, Inc. (EMI Unit) (Tetra Tech) was tasked to conduct groundwater sampling for the Montana Army National Guard (MTARNG) at Fort William Henry Harrison (FWHH) under contract DMA # ENV 10 -17. The purpose of this work was to assess presence of perfluorinated compounds (PFC) in groundwater resulting from previous releases of aqueous film forming foams (AFFF).

PFCs represent a family of manmade fluorinated chemicals. The term "PFCs" in this report refers to perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and similar, related perfluoroalkyl and polyfluoroalkyl substances (PFAS). PFCs are a suite of emerging contaminants of concern that may pose potential human health risks to sensitive populations. The U.S. Environmental Protection Agency (EPA) has determined that exposure to PFCs at concentrations above certain levels may result in adverse health effects. In May 2016, EPA issued Drinking Water Health Advisories (HA) specifying 70 nanograms per liter (ng/L) as the health benchmark for PFOA and PFOS (individual and combined concentrations) in drinking water (EPA 2016).

A common military source of PFCs was use of PFOS-containing AFFF to extinguish petroleum fires during response actions, and to train firefighters to respond to petroleum fires or suppression of fires in uncontained areas. AFFF is a firefighting agent used both commercially and by the Department of Defense (DoD). Military use of AFFF began in the 1970s, significantly at DoD installations with airfields. PFCs also were utilized industrially (for example, in metal plating shops). Because of their presence in many consumer products, these chemicals may enter the environment through landfills and wastewater, or may do so as surface runoff from fire training areas or release sites.

In addition to this introduction, this abbreviated work plan includes the following sections:

- Section 2: Preliminary Tasks
- Section 3: Field Sampling Plan
- Section 4: Laboratory Analysis
- Section 5: Data Validation and Reduction Methods
- Section 6: Reporting

Four appendices after the text of this report are as follows:

- A Health and Safety Plan (HASP)
- B. Standard Operating Procedures (SOP)
- C. Chain-of-Custody (COC) Documentation
- D. Laboratory Credentials and Reporting Limits

2.0 PRELIMINARY TASKS

Prior to initiation of field work, and based on written authorization from MTARNG, Tetra Tech will:

- 1. Coordinate with the MTARNG point of contact (LTC Adel Johnson, PE) and MTARNG staff to schedule field work. Groundwater sampling is expected to take 1 day, and will occur on or prior to October 27, 2017. MTARNG will help Tetra Tech identify any applicable personnel or entities affected by the field work, and ensure that they receive notice prior to field operations. (Note: The strict sampling protocol for PFCs could require rescheduling of sampling in the event of rain, snow, or high winds.)
- 2. Submit a draft and final work plan to MTARNG for the proposed work, and receive written authorization and concurrence for the work to proceed.
- 3. Develop a HASP complying with all applicable safety laws and standards. MTARNG will review the HASP to ensure compliance with FWHH safety protocols.

3.0 SAMPLING PLAN

Tetra Tech will perform groundwater level monitoring and groundwater sampling at three wells (MW-06, MW-08, and FH-02) at FWHH. Locations of these wells are shown on Figure 1. Groundwater levels also will be measured at additional wells specified by MTARNG if access is granted. Groundwater samples will be collected and analyzed for PFCs via EPA Method 537 Modified; a discussion of the analysis and analytes is in Section 4.0.

Groundwater sampling will proceed by application of low-flow methodologies (PFC-free portable bladder pump), as specified in Tetra Tech SOP 15-2 (Tetra Tech 2014, see Appendix B). Consistent with uniform federal policy for PFC sampling (USACE 2016, 2017), groundwater sampling procedures will include the following modifications to minimize the potential for samples for PFCs to be contaminated by common personal and professional items:

- 1. <u>None</u> of the following items will be allowed on field personnel, and will not be used or present during sampling: any Teflon or low-density polyethylene (LDPE) item, aluminum foil, waterproof field books, plastic clipboards, binders, spiral hardcover notebooks, Post-It Notes, re-usable chemical (blue) ice packs, new cotton clothing, synthetic water-resistant clothing, waterproof clothing, stain-treated clothing, clothing containing Gore-Tex, clothing laundered in fabric softener, Tyvek, cosmetics, moisturizers, Decon 90, and shampoo/conditioner.
- 2. Food and drink will not be present or consumed during sampling. Bottled water and hydration drinks will be left in the staging area.
- 3. Sample exposure to light will be minimized by use of amber collection vessels and opaque sampling tubing, if available.

Groundwater level monitoring will be completed prior to sampling by application of standard methods (Tetra Tech SOP 014, see Appendix B) (Tetra Tech 2009).

A minimum of three borehole volumes of groundwater will be removed from each well prior to sampling at a maximum purge rate of 1 liter per minute. Field parameters to be monitored and recorded during purging include temperature, pH, oxidation-reduction potential (ORP), dissolved oxygen (DO), and specific conductance. Sampling will begin when field parameters have stabilized and the minimum volume has been purged. Purge data will be recorded on standard forms provided in Appendix B.

Purge water will be released to the soil surface to infiltrate the soil, consistent with USACE (2016) protocols and at the direction of MTARNG.

For each sample, 120 milliliters (mL) of water will be collected in two 60-mL high-density polyethylene (HDPE) bottles with unlined polypropylene caps. Samples then will be cooled to 4 degrees Celsius (plus or minus 2 degrees). Following completion of all sampling, groundwater vials will be shipped overnight to the analytical laboratory. Holding times for PFCs are 14 days from sampling to extraction, and 28 days from extraction to analysis.

Groundwater samples will be analyzed via EPA Method 537 Modified. Quality assurance and quality control samples will consist of one field reagent blank (FRB), one duplicate sample, one matrix spike/matrix spike duplicate sample, and one equipment rinsate sample of water run through the low-flow purge pump following decontamination of that pump.

Note: The only analytes previously identified in FWWH groundwater at concentrations

exceeding screening levels were arsenic (maximum concentration 17 micrograms per liter $[\mu g/L]$) and trichloroethene (maximum concentration 6.2 $\mu g/L$) (Morrison-Maierle 2013). However, trichloroethene was not detected in the three sampling wells to be sampled for PFCs. The maximum arsenic concentration from the 2013 sampling in the wells to be sampled was at MW-08 (7 $\mu g/L$).

The FRB sample will be identified with its source location, and will be collected before collection of the corresponding field sample. Field samplers will change gloves following FRB sample collection, prior to the corresponding field sample collection. For collection of an FRB sample, the analytical laboratory will send a container of PFC-free water and an empty bottle. To collect the FRB, the field crew will open the PFC-free water bottle and carefully pour the PFC-free water into the empty, laboratory-supplied bottle. This sample container will be sent back to the analytical laboratory for PFC analysis.

If one or more analyte concentrations in a FRB are detected at greater than 7 nanograms per liter, the corresponding field sample(s) will be considered for re-collection on a case-by-case basis, in consultation with MTARNG. The rationale for this criterion is that it corresponds to DoD Quality Systems Manual (QSM) guidance for method blank acceptance criterion. The EPA HA level for PFOA, PFOS, and PFOA+PFOS is 70 ng/L.

Four groundwater samples will be collected, including one sample from each well and one duplicate (sent blind to the laboratory). Additionally, an equipment rinsate and a trip blank will be included. Thus, a total of six samples will be submitted to the analytical laboratory for analysis. Standard COC procedures will be followed, and full documentation will be provided in the final report. If COC documents are not provided by the laboratory, Tetra Tech will use the standard COC form included in Appendix C.

The naming convention for samples will be as follows:

FWWH_ID_YYYYMMDD

Where ID is the name of the well (MW-06, MW-08, and FH-02), dupe (for blind duplicate), rinsate, or travel. YYYY refers to the year, MM the month, and DD the day. For example, if well MW-06 was sampled on October 20, 2017, the sample ID would be FWWH_MW-06_20171020.

Following sampling, waste (personal and sampling equipment) will be doubled bagged and disposed of as solid waste at the local landfill.

Standard field notebooks and permanent pens (such as Sharpies) cannot be used during sampling because of the potential for sample contamination. All data and observations will be recorded on standard field sheets using ball-point pens. Field sheets will be scanned following field operations. Photographs will not be taken on FWHH property unless MTARNG grants explicit permission in writing.

4.0 SAMPLE ANALYSIS

Groundwater samples will be submitted to ALS Global (Kelso, WA) for analysis via EPA Method 537 Modified. Analytes will be as follows:

Perfluorobutanoic acid (PFBA)	Perfluoroheptane sulfonic acid (PFHpS)
Perfluoropentanoic acid (PFPeA)	Perfluorooctanesulfonamide (FOSA)
Perfluorobutane sulfonic acid (PFBS)	N-Methyl perfluorooctane sulfonamide (MeFOSA)
Perfluorohexanoic acid (PFHxA)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)
Perfluoroheptanoic acid (PFHpA)	Perfluorotridecanoic acid (PFTrDA)
Perfluorohexane sulfonic acid (PFHxS)	Perfluorotetradecanoic acid (PFTeDA)
Perfluorooctanoic acid (PFOA)	N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)
Perfluorononanoic acid (PFNA)	N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)
Perfluorooctane sulfonic acid (PFOS)	N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)
Perfluorodecanoic acid (PFDA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)
Perfluoroundecanoic acid (PFUnDA)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)
Perfluorodecane sulfonic acid (PFDS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)
Perfluorododecanoic acid (PFDoDA)	

The standard reporting limit for all analytes will be 5 ng/L except for perfluorobutanoic acid (PFBA) (10 ng/L). Method detection limits and reporting limits are presented in Appendix D. EPA HA levels for PFOA and PFOS are set at 70 ng/L, well above the reporting limits for Method 537 Modified. None of the analytes listed above is included in Montana numerical water quality standards (Montana Department of Environmental Quality [DEQ]-7) (DEQ 2017).

ALS Global is accredited by the United States DoD Environmental Laboratory Accreditation Program for Method 537 Modified. Prior to submitting samples, Tetra Tech will confirm with the laboratory that analysis for PFCs will conform to analytical requirements specified in USACE SOPs (USACE 2016, 2017).

Sample analysis and delivery of analytical results will be expedited. Tetra Tech will contact MTARNG when the samples are submitted, and convey an estimated delivery date from the contracted laboratory. The laboratory will submit analytical data to Tetra Tech as a Level IV electronic data deliverable (EDD) package, and those data will be included in an appendix to the final investigation report. Notably, received data must be validated by Tetra Tech chemists.

5.0 DATA VALIDATION AND REDUCTION

Tetra Tech will manage analytical laboratory data packages and EDDs to ensure that data received from the analytical laboratory will meet specifications for laboratory data deliverables. Upon receipt, analytical data packages and EDDs will be reviewed for compliance with the data deliverable requirements to ensure provision of all analytical method quality control summary data and raw instrument data. Laboratory EDDs will be checked for completeness by project scientists and Tetra Tech chemists performing data validation.

Laboratory data packages will undergo validation in accordance with EPA and DoD QSM validation requirements as outlined in USACE (2017). Data validation findings will be documented in a data usability summary report that includes:

- Qualified analytical data
- Results reported by the laboratory
- Evidence that supports qualifications.

Any detected data anomalies will be discussed in the final report, and the data usability summary will be included as an appendix to the final investigation report.

6.0 **REPORTING**

Following data validation and analysis, Tetra Tech will submit to the Department of Military Affairs a summary report detailing investigation findings. The final report will include:

- A summary of all analytical and groundwater level monitoring data
- A map showing sampling locations
- A groundwater potentiometric surface map (assuming well elevations are known)
- A comparison of data to EPA HA levels
- An interpretation of data and recommendations.

Field notes, field sheets, and laboratory EDDs will be provided in appendices.

7.0 **REFERENCES**

- Montana Department of Environmental Quality (DEQ). 2017. Circular DEQ-7. Montana Numerical Water Quality Standards. Helena, MT. April.
- Morrison-Maierle. 2013. Fort Harrison Ground Water Sampling Summary Memorandum. Helena, MT. August.
- Tetra Tech, Inc. (EMI Unit) (Tetra Tech). 2009. Environmental standard operating procedure. Static water level, total well depth, and immiscible layer measurement. SOP No. 014, revision 1. July.
- Tetra Tech. 2014. Environmental standard operating procedure. Groundwater sample collection using low-flow sampling methodology. SOP No. 015, revision 2. November.
- United States Army Corps of Engineers (USACE). 2016. Chemistry Requirements PFAS. Omaha, NE. August.
- USACE. 2017. Uniform federal policy quality assurance project plan. Sampling and analysis for perfluorooctane sulfonate (PFOS) and perfluoroctonoic acid (PFOA) for Army National Guard – owned/operated drinking water systems nationwide. Volume I. Revision 0. Baltimore, MD. February.
- United States Environmental Protection Agency (EPA). 2016. Fact sheet: PFOA & PFOS Drinking Water Health Advisories. EPA 800-F-16-003. November.

FIGURE

1. SAMPLE LOCATION MAP

APPENDIX A

HEALTH AND SAFETY PLAN

TETRA TECH

LEVEL 2 HEALTH AND SAFETY PLAN

Site Name: MTARNG – Fort William Henry Harrison	Site C	Contact: LTC Adel Johnson, PE	Telephone: 406-324-3089			
Location: Fort William Henry Harrison, Helena MT	Clien	t Contact:Wade Juntunen	Telephone: 406-324-3088			
EPA ID No.	Prepa	ared By: Scott Morford	Date Prepared:10/11/2017			
Project No.		s of Activities: P is not valid for periods longer than 12 months)	Emergency Response 🗌 Yes 🔀 No			
Objectives:		Site Type: Check as many as applicable.				
Perform static water level measurement on between 3 and 10 groundwater monitoring wells.		Active Landfill	Inner-City			
		Inactive Railroad	Rural			
Sample three wells that may be contamined with PFCs.		Secured Residential	Remote			
		Unsecured Industrial	Other (<i>specify</i>)			
			Military Base			
Project Scope of Work and Site Background Tetra Tech, Inc. (EMI Unit) (Tetra Tech) is tasked to conduct groundwater sampling for the Montana Army National Guard (MTARNG) at Fort William Henry Harrison (FWHH) under contract DMA # ENV 10 -17. The purpose of this work is to determine the presence of perfluorinated compounds (PFCs) in groundwater resulting from previous releases of aqueous film forming foams (AFFF). PFCs are classified as an emerging class of environmental contaminants and a pose a potential risk to human health and the environment. No additional potential contamination of soils and groundwater is known at the site. Groundwater monitoring wells are already established and located within paved areas of parking lots. Primary hazards are large machinery equipment moving around the base. Second consideration is that sampling requires cotton clothing to prevent cross-contamination. No Tyvek, waterproof, or other synthetic barriers are acceptable.						
Health and Safety Approver Comments or Additional Instructions especially on hands. PPE must also include steel-toed boots. safe sampling.						
Health and Safety Plan Approver Signature:			Date: APPROVED By Chris Draper at 1:26 pm, Oct 13, 2017 to Level 2 HASP requirements.			

Establishment of Work Zones; including exclusion, contamination reduction, and support zones; is required for ALL HAZWOPER projects. For heavy equipment (i.e. drilling operations), exclusions zone will established around each equipment or sampling location based on site conditions and or noise levels (DCN 2-04, Hearing Conservation Program) at drilling operations (i.e. a circular exclusion zone based on noise levels >85 dbA from the drill rig or a minimum of 20 feet around the rig, whichever is greater). Work zones will be delineated using cones, barrier tape or similar visual indicators.								
ALL investigation-derived waste shall be drummed and remain onsite pending characterization for subsequent disposal.								
Spill control shall be conducted in accordance with the requirements of SWP 5-14, Spill and Discharge Control Practices.								
Spin control shan be co		e requirements of 54	VP 5-14, Spill and Discharg	ge com	lioi Flactices.			
	ion (approach from upwind) or <u>www.wunderground.com</u>	Temperature (°F)	Relative Humidity (%)		bability of ipitation (%)	Weather Forecast (such as partly cloudy, snow, etc.)		
Speed (mph):	From Direction:							
	Capture weather	information daily on	Tailgate Safety Briefing for	orm or i	in site logbool	K		
On-Site Supplies:	First Aid Kit	Fire Extinguishe	er 🗌 Air Horn		Oral Ther	mometer Noise Dosimeter		
Known or Anticipated	Site Hazards or Concerns:							
Work on active road	lway	Overhead utili	ties	Energized electrical systems				
Work over or near w	vater	Buried Utilities			Portable hand tool use			
Explosion or fire haz	zard	Surface or underground storage tanks			Portable electrical tool use			
Oxygen deficiency		General slips, trips, falls			Machine guarding			
Unknown or poorly o	characterized chemical hazards	Uneven, muddy, rugged terrain			Portable fire extinguisher use			
Inorganic chemicals		Lift (man lift, cherry picker) use			Driving personal vehicles			
Organic chemicals		Industrial truck (forklift) use			All-terrain vehicle use			
Asbestos		Wood or metal ladder use			Injury and Illness Prevention Program (California only)			
Respirable particula	tes	Dangerous goods shipped by air			Ergonomics (California only)			
Respirable silica		Elevated work (over 6' high)			Work in strip or shaft mines			
Blasting and explosit	ives	Heavy equipm	ent use or operation		Client-specific safety requirements (attach to HASP)			
Non-ionizing radiation	on (lasers, UV)	Construction w	vork		Confined space entry and/or rescue			
lonizing radiation (al	lpha, beta, gamma, etc.)	Excavation or trenching			Methamphetamine lab			
Heat stress		Benching, shoring, bracing			Biological hazards (i.e. ticks, snakes, poisouos plants)			
Cold stress		Scaffold use			Mold			
Sun Exposure		High noise			Other (insert)			
Explosion or Fire Pote	ntial: 🗌 High	Medium		Low		Unknown		

TETRA TECH

Initial Isolation and Protective Action Distances (for emergency response operations only): NA

TŁ

LEVEL 2 HEALTH AND SAFETY PLAN

Che	Chemical Products Tetra Tech EM Inc. Will Use or Store On Site: (Attach a Material Safety Data Sheet [MSDS] for each item.)										
\boxtimes	Alconox or Liquinox Calibration gas (Methane)	Hydrogen gas Isopropyl alcohol									
	Hydrochloric acid (HCl) Calibration gas (Isobutylene)	Household bleach (NaOCI) HazCat Kit									
	Nitric acid (HNO ₃) Calibration gas (4-gas mixture)	Sulfuric acid (H ₂ SO ₄) Mark I Kits (<i>number?</i>)									
\square	Sodium hydroxide (NaOH) Eyewash solution (potable water)	Hexane Other (<i>specify</i>) Strong Acids									
WAF	RNING: Eyewash solution shall be readily available on ALL projects where corre										
App	licable Safety Programs and Safe Work Practices (SWP). Attach to HASP:	Tasks Performed At Job Site that are <u>NOT</u> Covered by SWPs									
	DCN 2-04 Hearing Conservation Program (always checked)	NOTE: Many AHA's can be found on the Health & Safety intranet site at:									
	DCN 4-05 Trenching and Excavation Safety	https://int.tetratech.com/sites/EMI/hs/Activity%20Hazard%20Analysis %20Documents/Forms/AllItems.aspx									
	DCN 4-08 Asbestos Protection Program	Attach Activity Hazard Analysis (AHA) for each non-covered task									
	DCN 4-09 Haulage and Earth Moving	Groundwater Sampling									
	DCN 4-10 Lead Protection Program	(non-covered task)									
	SWP DCN 5-01 General Safe Work Practices	(non-covered task)									
\square	SWP DCN 5-02 General Safe Work Practices HAZWOPER	(non-covered task)									
Ц	SWP DCN 5-03 Safe Work Practices for Office Employees	(non-covered task)									
Ц	SWP DCN 5-04 Safe Drilling Practices										
Ц	SWP DCN 5-05 Safe Direct Push (GeoProbe) Practices	Tetra Tech Employee Training and Medical Requirements:									
Ц	SWP DCN 5-06 Working Over or Near Water	Basic Training and Medical									
Ц	SWP DCN 5-07 Use of Heavy Equipment	Initial 40 Hour Training									
	SWP DCN 5-08 Special Site Hazards (Firearms, Remote Sites, Mines, aircraft, etc.)	8-Hour Supervisor Training (one-time)									
	SWP DCN 5-09 Safe Electrical Work Practices	Current 8-Hour Refresher Training									
	SWP DCN 5-10 Fall Protection Practices	Current Medical Clearance (including respirator use)									
H	SWP DCN 5-11 Portable Ladder Safety	Current First Aid Training and CPR Training									
H	SWP DCN 5-12 Drum and Container Handling Practices	Current Respirator Fit-Test									
	SWP DCN 5-13 Flammable Hazards and Ignition Sources										
	SWP DCN 5-14 Spill and Discharge Control Practices (always checked)	Other Specific Training and Medical Surveillance Requirements									
\square	SWP DCN 5-15 Heat Stress SWP DCN 5-16 Cold Stress	Confined Space Training									
\boxtimes	SWP DCN 5-16 Cold Siless SWP DCN 5-17 Biohazards	Level A Training									
H	SWP DCN 5-17 Dionazards SWP DCN 5-18 Underground Storage Tank Removal Practices	Radiation Training									
H	SWP DCN 5-19 Safe Lifting Procedures	OSHA 10-hour Construction Safety Training									
H	SWP DCN 5-22 Hydrographic Data Collection	OSHA 30-hour Construction Safety Training									
H	SWP DCN 5-23 Permit-Required Confined Space Entry Practices	Asbestos Awareness Training									
Н	SWP DCN 5-24 Non-Permit-Required Confined Space Entry Practices	Asbestos B-Reader X-Ray									
Ы	SWP DCN 5-26 Prevention of Sun Exposure	Blood Lead Level and ZPP Pre, during and Post-Project									
П	SWP DCN 5-27 Respirator Cleaning Practices	Urinary Arsenic Level Pre and Post-Project									
П	SWP DCN 5-28 Safe Use Practices for Use of Respirators	Other									
Ы	SWP DCN 5-35 Underground Utilities, including 5-35F, Ground Disturbance Permit	Other									
Ħ	SWP DCN 5-36 Drill Rigs										

Materials Present or Suspected at Site	Highest Observed Concentration (specify units and sample medium)	Exposure Limit (specify ppm or mg/m³)	IDLH Level (specify ppm or mg/m³)	Primary Hazards of the Material (explosive, flammable, corrosive, toxic, volatile, radioactive, biohazard, oxidizer, or other)	Symptoms and Effects of Acute Exposure	Photoionization Potential (eV)
Perfluorinated compounds including: Perfluorooctanoic acid Perfluorooctane sulfonic acid	Unknown	PEL = NA REL = NA TLV =NA [Skin] Hazard 🔀	NA	Toxic: strong acid, cause burns	Harmful is swallowed, Causes serious eye damage.	NA
		PEL = REL = TLV = [Skin] Hazard				
		PEL = REL = TLV = [Skin] Hazard				
		PEL = REL = TLV = [Skin] Hazard				
		PEL = REL = TLV = [Skin] Hazard				
		PEL = REL = TLV = [Skin] Hazard				
		PEL = REL = TLV = [Skin] Hazard				
		PEL = REL = TLV = [Skin] Hazard				

Specify Information Sources:

Note: In the Exposure Limit column, include Ceiling (C) and Short-Term Exposure Limits (STEL) if they are available. Also, use the following short forms and abbreviations to complete the table above.

 $\begin{array}{l} \mathsf{A} = \mathsf{Air} \\ \mathsf{Ca} = \mathsf{Carcinogenic} \\ \mathsf{eV} = \mathsf{Electron \ volt} \\ \mathsf{U} = \mathsf{Unknown} \end{array}$

IDLH = Immediately dangerous to life or health mg/m³ = Milligram per cubic meter NA = Not available NE = None established PEL = Permissible exposure limit ppm = Part per million REL = Recommended exposure limit S = Soil TLV = Threshold limit value GW = Groundwater SW = Surface water Sed = Sediment

Note: If no contingency level of protection is selected, all employ upgrading PPE. Level A field work typically requires a Level 3 HAS		n must evacuate the immediate site area if air contaminant levels require ilable on the chemical hazards page of this HASP.
Field Activities Covered Under this HASP:		
		Level of Protection ¹ Date of
Task Description		Primary Contingency Activities
1 Groundwater Level Monitoring		A B C D Level C is not authorized October 2017
2 Groundwater Sampling		A B C D A B C D October 2017
3		
4		
5		
Site Personne	el and Responsibilities (inclu	ude subcontractors):
Employee Name and Office Code / Location	Task(s)	Responsibilities
Scott Morford, Helena MT. 406-437.9834. 406-461-4910.	Project Manager/Field Team Leader/Site Safety Coordinator/Field Personell	 Project Manager: Manages the overall project, makes site safety coordinator (SSC) aware of pertinent project developments and plans, and maintains communications with client as necessary. Additionally, For projects lasting longer than one consecutive week on-site, the PM is responsible for
		conducting one field audit using Form AF-1.
Dustin Gardner, Helena MT, 406-443-521-	Field Personell	

Note:

1. See next page for details on levels of protection

Tas k	Primary Level of Protection (A,B,C,D)	ent: (Indicate type or material as necessary for each task.) PPE Component Description (Primary)	Contingency Level of Protection (A, B, C, D)	PPE Component Description (Contingency)
1	D	Respirator type: NA Cartridge type (if applicable): NA CPC material: Cotton only (due to sampling protocol) Glove material(s): Nitrile Boot material: Leather/Canvas. No waterproof materials. Other: safety glasses, hardhats, and class 2 or better high-visiblity vest		Level C is not authorized
2		Respirator type: Cartridge type (if applicable): CPC material: Glove material(s): Boot material: Other:		Respirator type: Cartridge type (if applicable): CPC material: Glove material(s): Boot material: Other:
3		Respirator type: Cartridge type (if applicable): CPC material: Glove material(s): Boot material: Other:		Respirator type: Cartridge type (if applicable): CPC material: Glove material(s): Boot material: Other:
4		Respirator type: Cartridge type (if applicable): CPC material: Glove material(s): Boot material: Other:		Respirator type: Cartridge type (if applicable): CPC material: Glove material(s): Boot material: Other:
5		Respirator type: Cartridge type (if applicable): CPC material: Glove material(s): Boot material: Other:		Respirator type: Cartridge type (if applicable): CPC material: Glove material(s): Boot material: Other:

Respirator Notes:

Respirator cartridges may only be used for a maximum time of 8 hours or one work shift, whichever is less, and must be discarded at that time. For job sites with organic vapors, respirator cartridges may be used as described in this note as long as the concentration is less than 200 parts per million (ppm), the boiling point is greater than 70 °Celsius, and the relative humidity is less than 85 percent. If any of these levels are exceeded, a site-specific respirator cartridge change-out schedule must be developed and included in the HASP using Tetra Tech Form RP-2 (Respiratory Hazard Assessment Form)

Notes:

All levels of protection must include eye, head, and foot protection.

CPC = Chemical protective clothing

Thermoluminescent Dosimeter (TLD) Badges must be worn during all field activities on sites with radiation hazards. TLDs must be worn under CPC.

Monitoring Equipment: All monitoring e	quipment	on site must be calibrated before and	after each use and results recorded in	the site logbook
Instrument (Check all required)	Task	Instrument Reading	Action Guideline	Comments
Combustible gas indicator model:	1	0 to 10% LEL	Monitor; evacuate if confined space	
	3	10 to 25% LEL	Potential explosion hazard; notify SSC	
	4	>25% LEL	Explosion hazard; interrupt task; evacuate site; notify SSC	
Oxygen meter model:	1	>23.5% Oxygen	Potential fire hazard; evacuate site	
	3	23.5 to 19.5% Oxygen	Oxygen level normal	
	4	<19.5% Oxygen	Oxygen deficiency; interrupt task; evacuate site; notify SSC	
Radiation survey meter model:	1	Normal background	Proceed	Annual exposure not to exceed 1,250 mrem per quarter
	3	Two to three times background	Notify SSC	Background reading must be taken in an area known to be free of radiation sources.
	4	>Three times background	Radiological hazard; interrupt task; evacuate site; notify RSO	
Photoionization detector model:		Any response above background to 5 ppm above background	Level B is recommended Level C ^a may be acceptable	These action levels are for unknown gases or vapors. After the contaminants are identified, action levels should be based on the specific contaminants involved.
☐ 11.7 eV ☐ 10.6 eV ☐ 10.2 eV	2	> 5 to 500 ppm above background	Level B	
Other (specify):	4	> 500 ppm above background	Level A	
Flame ionization detector model:	1	Any response above background to 5 ppm above background	Level B is recommended Level C ^a may be acceptable	These action levels are for unknown gases or vapors. After the contaminants are identified, action levels should be based on the
	3	>5 to 500 ppm above background	Level B	specific contaminants involved.
	4	>500 above background	Level A	
Detector tube models:	1 2 3 4 5	Specify: < 1/2 the PEL > 1/2 the PEL	Specify:	The action level for upgrading the level of protection is one-half of the contaminant's PEL. If the PEL is reached, evacuate the site and notify a safety specialist
Other (specify):	1 2 3 4 5	Specify:	Specify:	

Notes:

eV= electron volt LEL=Lower explosive limit mrem=Millirem PEL=Permissible exposure limit ppm=Part per million a. Level B is required when chemical hazards are present, but are uncharacterized. Level C may be acceptable for certain tasks in some situations. If you are uncertain, consult your Safety Manager. mrem=Millirem

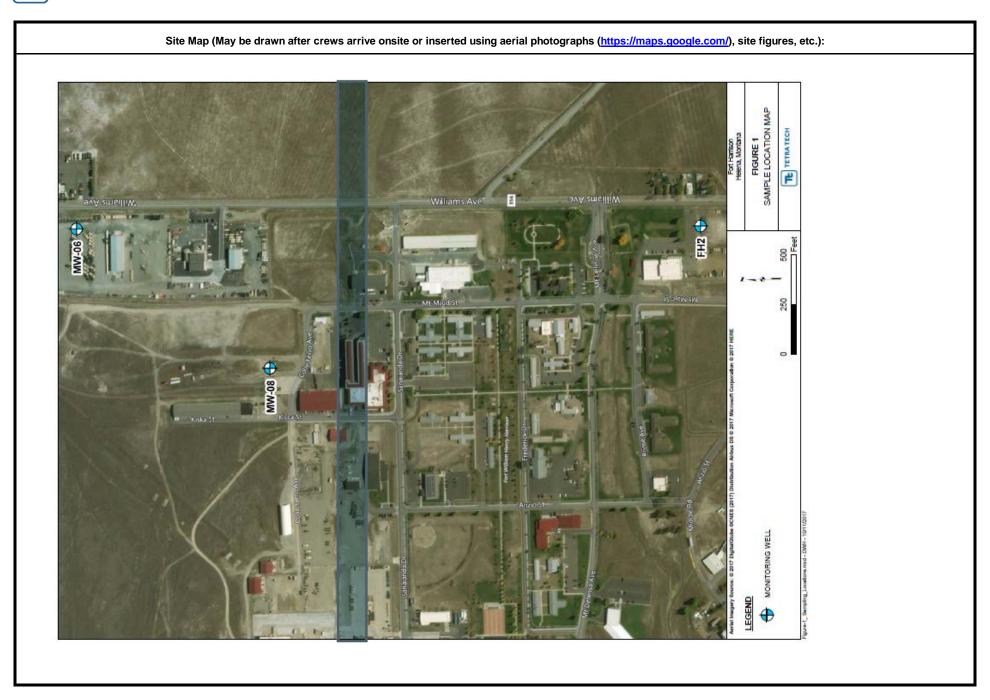
LEVEL 2 HEALTH AND SAFETY PLAN

Project-Specific Industrial Hygiene Requirements	Emergency Contacts:		Telephone No.
OSHA-Regulated Chemicals*:	WorkCare and Incident Intervention	888.44	9.7787, or 800.455.6155
Check any present on the job site in any medium (air, water, soil)	Tetra Tech EMI 24-hour Anonymous I	Hazard Reporting Line	866.383.8070
No chemicals below are located on the job site	U.S. Coast Guard National Response	Center	800.424.8802
Friable Asbestos	InfoTrac		800.535.5053
Silica, crystalline	Poison Control		800.222.1222
alpha-Napthylamine	Fire department		911
Methyl chloromethyl ether	Police department		911
3,3'-Dichlorobenzidine (and its salts)	Personnel Call-Down List:		011
bis-Chloromethyl ether		News	O all Dhama
beta-Napthylamine	Job Title or Position: Safety Manager	Name Denny COX	Cell Phone: (816) 412-1747
Benzidine	Project Manager:	Scott Morford	(406) 461-4910
4-Aminodiphenyl	Field Team Leader:	Scott Morford	(406) 461-4910
Ethyleneimine	Site Safety Coordinator (SSC):	Scott Morford	(406) 461-4910
beta-Propiolactone	Subcontractor SSC:		
2-Acetylaminoflourene			
4-Dimethylaminoazobenzene	Medical and Site Emergencies:		
N-nitrosomethylamine	Signal a site or medical emergency w	ith three blasts of a loud horn	(car horn, fog horn, or
Vinyl chloride	similar device). Site personnel should site map.	evacuate to the area of safe	refuge designated on the
Inorganic arsenic			
Lead	Hospital Name: St. Peters	durau Ct	
Chromium (VI)	Address: 2475 E Broad Helena MT	Jway St	
Cadmium			
Benzene	General Phone: Emergency Phone:		406) 442-2480 911
Coke oven emissions	Ambulance Phone:		911
1,2-Dibromo-3-chloropropane			
Acrylonitrile	Hospital called to verify emergency se	ervices are offered? YES	NO
Ethylene oxide	Step-by-step Route to Hospital: (see I	Page 11 of 12 for route map)	
Formaldehyde			
Methylenedianiline	See next page		
1,3-Butadiene			
Methylene chloride			
* NOTE: Many states, including California and New Jersey, have chemical-specific worker protection requirements and standards for many chemicals and known or suspected carcinogens.			

Note: This page must be posted on site.

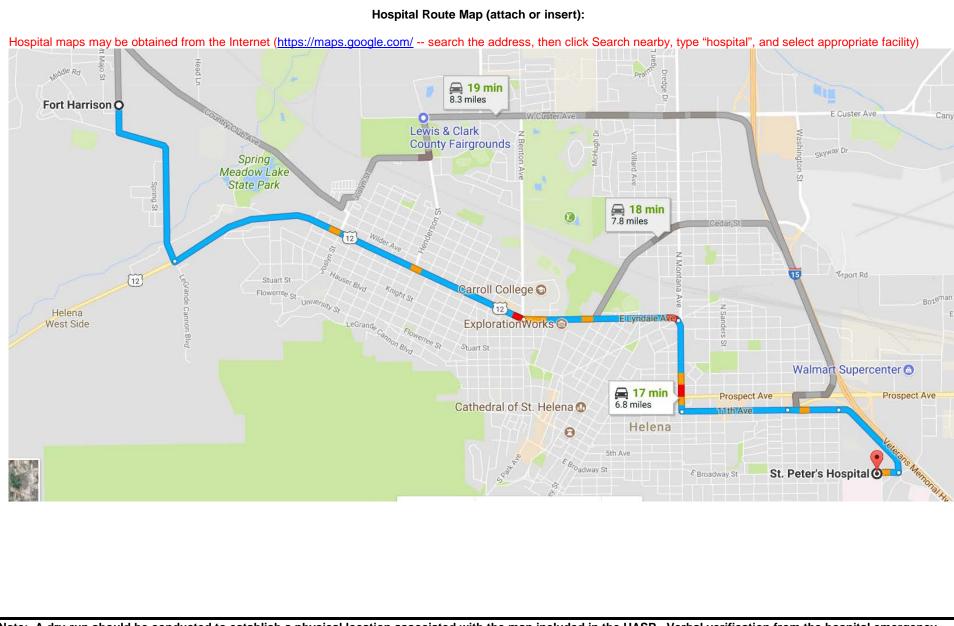
3 min (1.2 mi)

Directions to hospital


1. Head south on Williams St toward Honors Dr

			- 11 min (4.6
4	2.	Turn left onto Euclid Ave	
t	3.	Continue onto W Lyndale Ave	2.4
t	4.	Continue onto N Montana Ave	1.0
	ч.		0.6
			0.0
٦	5.	Use the left 2 lanes to turn left onto US-12 E/11th Ave (signs for I-15 E/US-287 E)	
h	5.	Use the left 2 lanes to turn left onto US-12 E/11th Ave (signs for I-15 E/US-287 E)	
ר ake		Use the left 2 lanes to turn left onto US-12 E/11th Ave (signs for I-15 E/US-287 E)	0.1
h ake	Col	onial Dr to E Broadway St	0.
ר ake	Col		0. 2 min (1.0
ר ake יי	Col	onial Dr to E Broadway St Slight right onto 11th Ave	0.
ר אke ר	Col 6.	onial Dr to E Broadway St Slight right onto 11th Ave	— 0. — 2 min (1.0

Decontaminati	on Procedures	Emergency Response Planning				
The site safety coordinator overseas implem procedures and is responsible for ensuring t		During the pre-work briefing and daily tailgate safety meetings, all on-site employees will be trained in the provisions of emergency response planning, site communication systems, and site evacuation routes.				
Personnel Decontamination	Decontamination Equipment	In the event of an emergency that necessitates evacuation of a work task				
Level D Decon - 🔀 Wet 🗌 Dry	Washtubs	area or the site, the following procedures will take place.The Tetra Tech SSC will contact all nearby personnel using the on-site				
Level C Decon - 🗌 Wet 🗌 Dry	Buckets	communications to advise the personnel of the emergency.The personnel will proceed along site roads to a safe distance upwind from				
Level B Decon – Briefly outline the level B decontamination methods to be used on	Scrub brushes	the hazard source.The personnel will remain in that area until the SSC or an authorized				
a separate page attached to this HASP.	Pressurized sprayer	individual provides further instructions.				
Level A Decon – A Level 3 HASP is required. Notify your Safety Manager.	Detergent [Liquinox	In the event of a severe spill or a leak, site personnel will follow the				
Equipment Decontamination	Solvent [Type]	 procedures listed below. Evacuate the affected area and relocate personnel to an upwind location. 				
All tools, equipment, and machinery from	Household bleach solution	Inform the Tetra Tech SSC, a Tetra Tech office, and a site representative				
the Exclusion Zone (hot) or Contamination Reduction Zone (warm)	Concentration/Dilution:	immediately.Locate the source of the spill or leak, and stop the flow if it is safe to do so.				
are decontaminated in the CRZ before they are removed to the Support Zone	Deionized water	 Begin containment and recovery of spilled or leaked materials. Notify appropriate local, state, and federal agencies. 				
(cold). Equipment decontamination	Disposable sanitizer wipes	In the event of severe weather, site personnel will follow the procedures				
procedures are designed to minimize the potential for hazardous skin or inhalation	Potable eyewash/drench/wash water	listed below.				
exposure, cross-contamination, and chemical incompatibilities.	Wire brush	 Site work shall not be conducted during severe weather, including high winds and lightning. 				
Respirator Decontamination	Spray bottle	 In the event of severe weather, stop work, lower any equipment (drill rigs) and evacuate the affected area. 				
Respirators are decontaminated in compliance with SWP 5-27 and should be	Tubs / pools	 Severe weather may cause heat or cold stress. Refer to SWPs 5-15 and 5- 16 for additional information. 				
included with this HASP.	Banner/barrier tape					
Waste Handling for Decontamination	Plastic sheeting	All personnel working on Tetra Tech projects are expected to and responsible for reporting ANY unsafe conditions, behaviors or incidents				
Procedures for decontamination waste disposal meet all applicable local, state,	Tarps and poles	including injuries, illnesses, fires, spills/releases, property damages and near-misses they face or encounter while performing their work.				
and federal regulations.	🔀 Trash bags	According to TtEMI's reporting procedures, for non-emergency incidents you should:				
	Trash cans	Notify WorkCare and Incident Intervention at 888.449.7787, or				
	Duct tape	800.455.6155Notify your Office, Project or Safety Manager via phone immediately.				
	Paper towels	Complete a "Tetra Tech Incident Report" (Form IR) within 24 hours and send it to your Safety Manager. If an injury or illness has occurred, the Form IR-A				
	Folding chairs	must also be completed.				
	Other	Additional reports may be necessary				



TETRA TECH

TŁ

Note: A dry-run should be conducted to establish a physical location associated with the map included in the HASP. Verbal verification from the hospital emergency room should also be obtained to ensure that the hospital will accept chemically-contaminated patients.

TETRA TECH

Tt

Emergency Contacts

- WorkCare For issues requiring an Occupational Health Physician; assistance is available 24 hours per day, 7 days per week.
- **InfoTrac** For issues related to incidents involving the transportation of hazardous chemicals; this hotline provides accident assistance 24 hours per day, 7 days per week
- U.S. Coast Guard National Response Center For issues related to spill containment, cleanup, and damage assessment; this hotline will direct spill information to the appropriate state or region

Poison Control Center - For known or suspected poisoning.

Limitations:

The Level-Two HASP is not appropriate in some cases:

- Projects involving unexploded ordnance (UXO), radiation sources as the primary hazard, or known chemical/biological weapons site must employ the Level 3 HASP
- Projects of duration longer than 90 days may need a Level 3 HASP (consult your RSO)

Decontamination:

- **Decontamination Solutions for Chemical and Biological Warfare Agents**^a: PPE and equipment can be decontaminated using 0.5 percent bleach (1 gallon laundry bleach to 9 gallons water) for biological agents (15 minutes of contact time for anthrax spores; 3 minutes for others) followed by water rinse for chemical and biological agents. In the absence of bleach, dry powders such as soap detergents, earth, and flour can be used. The powders should be applied and then wiped off using wet tissue paper. Finally, water and water/soap solutions can be used to physically remove or dilute chemical and biological agents. Do not use bleach solution on bare skin; use soap and water instead. Protect decontamination workers from exposure to bleach.
- **Decontamination for Radiological and Other Chemicals:** Primary decontamination should use Alconox and water unless otherwise specified in chemical specific information resources. The effectiveness of radiation decontamination should be checked using a radiation survey instrument. Decontamination procedures should be repeated until the radiation meter reads less than 100 counts per minute over a 100-square-centimeter area when the probe is held 1 centimeter from the surface and moving slower than 2.5 centimeters per second.
- **Decontamination Corridor:** The decontamination setup can be adjusted to meet the needs of the situation. The decontamination procedures can be altered to meet the needs of the specific situation when compound- and site-specific information is available.
- **Decontamination Waste:** All disposable equipment, clothing, and decontamination solutions will be doublebagged or containerized in an acceptable manner and disposed of with investigation-derived waste.
- **Decontamination Personnel:** Decontamination personnel should dress in the same level of PPE or one level below the entry team PPE level.
- All investigation-derived waste should be left on site with the permission of the property owner and the EPA on-scene coordinator. In some instances, another contractor will dispose of decontamination waste and investigation-derived waste. DO NOT place waste in regular trash. DO NOT dispose of waste until proper procedures are established.

Notes:

^a Source: Jane's Information Group. 2002. Jane's Chem-Bio Handbook. Page 39.

APPENDIX B

STANDARD OPERATING PROCEDURES (SOP)

SOP APPROVAL FORM

TETRA TECH EM INC.

ENVIRONMENTAL STANDARD OPERATING PROCEDURE

STATIC WATER LEVEL, TOTAL WELL DEPTH, AND IMMISCIBLE LAYER MEASUREMENT

SOP NO. 014

REVISION NO. 1

Last Reviewed: July 2009

Kniesing

Quality Assurance Approved

July 2009

Date

Revision No. 1, July 2009 Last Reviewed: July 2009

1.0 BACKGROUND

Measurement of static water level, total well depth, and any immiscible layers is necessary before a well can be sampled and groundwater flow direction can be determined. If an immiscible layer is present, its depth and thickness must be determined. In addition, the static water level and total depth of a monitoring well are often needed to determine a purging volume prior to sampling.

1.1 PURPOSE

This standard operating procedure (SOP) provides guidelines for field personnel measuring: (a) static water levels, (b) total water depths, and (c) immiscible layers in monitoring wells or piezometers.

1.2 SCOPE

This SOP describes the methodologies for measuring static water level, total well depth, and immiscible layer depth and thickness.

1.3 DEFINITIONS

Electrical Water Level Meter: An electrical probe used to determine the depth to fluid. The probe has a light or sound alarm connected to an open circuit. The circuit is closed and the alarm is activated when the probe contacts a conducting fluid such as water.

Immiscible Layer: A liquid phase that cannot be uniformly mixed or blended with water. Heavy immiscible phases or dense nonaqueous-phase liquids (DNAPL) sink in water; light immiscible phases or light nonaqueous-phase liquids (LNAPL) float on water.

Interface Probe: An electrical probe used to determine the presence and thicknesses of LNAPL or DNAPL in the water column of a monitoring well.

Ionization Detector: A photoionization detector (PID) or a flame ionization detector (FID) is used to measure the level of volatile organic compounds (VOC) in the gaseous phase. Ionization detectors are generally not compound-specific and thus measure only total volatile organic compounds. A PID generally cannot detect as complete a range of compounds as the FID. This difference is the result of the relative ionization energies of the two detectors. Most PIDs cannot detect methane, but FIDs can. The

Title: Static Water Level, Total Well Depth, and Immiscible Layer Measurement

Revision No. 1, July 2009 Last Reviewed: July 2009

Photovac and Minirae are examples of PIDs; the Foxboro organic vapor analyzer (OVA) is an example of an FID.

Static Water Level: The level of water in a monitoring well or piezometer left open and allowed to stabilize by equilibrating to existing atmospheric pressure prior to measuring. The static water level can be measured as the depth to water or as the elevation of water relative to a reference mark or datum.

Total Well Depth: The distance from the ground surface to the bottom of a monitoring well or piezometer

1.4 REFERENCES

Tetra Tech EM Inc. 2009. SOP No. 002, General Equipment Decontamination

- U.S. Environmental Protection Agency (USEPA). 2007. "Groundwater Level and Well Depth Measurement." Region 4, Field Branches Quality System and Technical Procedures. November 1. <u>http://www.epa.gov/region4/sesd/fbqstp/Groundwater-Level-Measurement.pdf</u>
- U.S. EPA. 2000. "Manual Water Level Measurement." Environmental Response Team. SOP #2043 (Rev. #0.0, 02/11/00). <u>http://www.dem.ri.gov/pubs/sops/wmsr2043.pdf</u>

1.5 **REQUIREMENTS AND RESOURCES**

The equipment required for measuring static water levels, total well depths, and immiscible layers is as follows:

- Electrical water level meter
- Interface probe
- PID or FID
- Decontamination supplies (wash and rinse solutions, buckets, paper towels, etc.)
- Keys or wrenches for well locks and well caps
- Light source such as a flashlight or mirror to inspect inside well vaults

Page 3 of 5

Title:Static Water Level, Total Well Depth, andReImmiscible Layer MeasurementLa

- Appropriate level of personal protective equipment (PPE) as specified in the sitespecific health and safety plan
- Appropriate signage and traffic control to protect personnel during monitoring activities

2.0 PROCEDURES

This section provides general guidance followed by specific procedures for measurement of static water level, total well depth, and immiscible layer.

Procedures for measuring the depth to water and the depth to the bottom of a monitoring well should be identified in the planning stage of field work. Also at this stage, measuring devices should be chosen, and an individual should be assigned to take and record measurements.

All measurement instruments should be decontaminated before and after use and between measurement locations. Refer to SOP No. 002, General Equipment Decontamination. In addition, as a general rule wells with the lowest known contaminant concentrations should be measured first followed by progressively more contaminated wells. This technique helps avoid cross-contamination from a more contaminated water source to a less contaminated water source resulting in inaccurate or false sample analytic results.

Before initiating any measuring activities, the ambient air at a monitoring well head should be monitored for possible emissions of VOCs using a PID or an FID. The site-specific health and safety plan for onsite activities should provide action levels and the rationale for selection of the appropriate ionization detector.

The sampling team should wear appropriate respiratory protection equipment when necessary. The sampling team should approach wells from the upwind side and systematically survey the inside of the well casing, the area from the casing to the ground, the area from above the well casing to the breathing zone, and the area around the well for VOCs. VOC monitoring for comparison to action levels should occur in the breathing zone(s) rather than from within the well casing. If PID or FID readings of VOCs are above action levels, the sampling team should retreat to a safe area and determine if engineering controls, increased PPE, or both are necessary to reduce exposure to VOCs above action levels listed in the site-specific health and safety plan.

Sampling team should be careful when opening a well to check for insects or reptiles within the protective casing and use appropriate work gloves when reaching inside. The site-specific health and safety plan should be consulted for information on insects or reptiles that may be present in the project area.

2.1 STATIC WATER LEVEL MEASUREMENT

An electric water level meter is typically used to measure static water levels. The electrical probe of the meter is lowered into the monitoring well until the light or sound alarm is activated indicating the probe has touched the water surface. To ensure accuracy, the well or piezometer should be opened to allow groundwater in the well to equilibrate with atmospheric pressures before measuring depth to water. Ideally, static groundwater measurements will be collected prior to purging or sampling activities. The static water level is read directly from the graduated tape on the meter to the nearest 0.01-foot. Two to three measurements should be taken over several minutes to ensure water levels are not fluctuating. If water levels continue to fluctuate, the groundwater has not equilibrated or become static. Measurements should continue until static water levels readings are obtained before recording a final measurement. If the monitoring well top is not flush with the ground surface, the distance between the static water level and the top of the riser pipe should be measured; the height of the riser pipe above ground surface should then be subtracted from the first measurement to determine the depth to static water level elevation. The well number, measurement date and time, and individual readings should be recorded in a field logbook.

2.2 TOTAL WELL DEPTH MEASUREMENT

Total well depth can also be measured using an electric water level meter. The electrical probe of the indicator is lowered into the monitoring well until resistance is met, indicating that the probe has reached the bottom of the well. During measurement, the probe should be positioned in the well so that resistance is met, but there is no slack in the measuring tape. The total well depth is read directly from the graduated tape on the indicator to the nearest 0.01-foot. Measurements become less accurate with increased depth as the length of measuring tape deployed increases and the distance under the water column increases making it more difficult to determine if the bottom of the well has reached. In this circumstance, a weighted water level meter or measuring tape may be necessary to allow the user to "feel" the bottom of the well. Care should be taken to ensure the use of only inert and chemical-free weighted devices such as stainless steel are used. If the monitoring well top is not flush with the ground surface,

Title:Static Water Level, Total Well Depth, and
Immiscible Layer Measurement

Last Reviewed: July 2009

Page 5 of 5

the distance between the bottom of the well and the top of the riser pipe should be measured; the height of the riser pipe above ground surface should then be subtracted from the first measurement to determine the depth from ground surface to the bottom of the well. The well number, measurement date and time, and individual readings should be recorded in a field logbook.

2.3 IMMISCIBLE LAYER DETECTION AND MEASUREMENT

A LNAPL immiscible layer in a monitoring well can be detected by slowly lowering an interface probe to the surface of the water in the well. When the audible alarm sounds, the depth of the probe should be recorded. If the alarm is continuous, a light immiscible layer has been detected. To measure the thickness of this layer, the probe should then be slowly lowered until the alarm changes to an oscillating signal. The oscillating alarm indicates that the probe has reached a water layer. The probe depth at the time the alarm begins oscillating should be recorded as the depth to water. The thickness of the light immiscible layer should then be determined by subtracting the depth at which a continuous alarm occurred from the depth at which the alarm began to oscillate. The well number, measurement date and time, individual readings for depth and thickness, and average values for depth and thickness should be recorded in a field logbook.

To determine whether a DNAPL immiscible layer is present, the interface probe is lowered into the monitoring well and allowed to slowly drop below the water causing an oscillating alarm. If the alarm changes from an oscillating to a continuous signal, a heavier immiscible layer has been detected, and the probe depth should be recorded at that point. Total well depth obtained in Section 2.2 should be used for calculating the thickness of the DNAPL layer within the well casing. The DNAPL layer is then calculated by subtracting the depth at which the alarm became continuous from the total well depth. This procedure provides an estimate of the thickness of the DNAPL layer in the monitoring well. The well number, measurement date and time, and individual readings for depth and thickness should be recorded in a field logbook.

SOP APPROVAL FORM

TETRA TECH, INC.

ENVIRONMENTAL STANDARD OPERATING PROCEDURE

GROUNDWATER SAMPLE COLLECTION USING LOW-FLOW SAMPLING METHODOLOGY

SOP NO. 015

REVISION NO. 2

Last Reviewed: November 2014

Carla J Bunks

Quality Assurance Approved

November 24, 2014

Date

1.0 BACKGROUND

Groundwater sample collection is an integral part of environmental site characterization. Groundwater samples must be collected from the aquifer and submitted to a laboratory for analysis. Therefore, samples must be collected and handled in a manner that minimizes alteration of the chemical characteristics of the groundwater.

In the past, most sample collection techniques followed federal and state guidance that included removing water in the casing of a monitoring well (purging), followed by sample collection. The water in the casing was removed so that groundwater from the formation could flow into the casing and be available for sample collection. Samples were commonly collected with a bailer, bladder pump, controlled flow impeller pump, or peristaltic pump. Depending on the analysis, samples were often preserved during collection. Often, samples to be analyzed for metals were filtered through a 0.45-micron filter before they were preserved and placed into the sample container.

Research conducted by several investigators has demonstrated that movement of contaminants while sorbed onto colloid particles constitutes a significant component of contaminant transport. Colloid mobility in an aquifer is a complex, aquifer-specific transport issue, and its description is beyond the scope of this standard operating procedure (SOP). However, concentrations of suspended colloids have been measured during steady-state conditions and during purging. Investigation results indicate that standard purging procedures may cause a significant increase in suspended colloids, which in turn may bias analytical results.

Low-flow sample collection (also known as micropurge, low-stress, or minimal drawdown) is a groundwater sampling method that minimizes increased colloid mobilization by removing water from a well at the screened interval at a rate that preserves or minimally disrupts steady-state flow conditions in the aquifer. During low-flow sampling, groundwater is discharged from the aquifer at a rate that minimizes the cone of depression around the sampled well (a rate of discharge less than or equal to the rate of recharge). Research indicates that colloid mobilization will not increase above steady-state conditions during low-flow discharge. Therefore, a groundwater sample collected using this method is more likely to represent steady-state groundwater chemistry.

1.1 PURPOSE

The purpose of this SOP is to describe the procedures to be used to collect a groundwater sample from a well using low-flow sampling methodology. The following sections describe the equipment to be used and the methods to be followed to promote uniform sample collection techniques. Sampling is to be conducted by field personnel who are experienced in sample collection and handling for environmental investigations.

1.2 SCOPE

This SOP applies to groundwater sampling using low-flow sampling methodology. It is intended to be used as an alternate SOP to SOP No. 010 (Groundwater Sampling). This SOP provides procedures for various methods of low-flow sample collection. The type of sampling pump to be used should be specified in the project-specific work plan or field sampling plan (FSP).

1.3 DEFINITIONS

Colloid: Suspended particles that range in diameter from 5 nanometers to 0.2 micrometers.

Dissolved oxygen: The ratio of the concentration or mass of oxygen in water relative to the partial pressure of gaseous oxygen above the liquid, which is a function of temperature, pressure, and the concentration of other solutes.

Flow-through cell: A device connected to the discharge line of a groundwater purge pump that allows regular or continuous measurement of selected parameters of the water and minimizes contact between the water and air.

pH: A measure of the acidity or basicity of an aqueous solution. Solutions with a pH less than 7 are said to be acidic and solutions with a pH greater than 7 are basic or alkaline. Pure water has a pH very close to 7. The pH is equal to $-\log_{10} c$, where *c* is the hydrogen ion concentration in moles per litre.

Oxidation-reduction potential: A numerical index of the intensity of oxidizing/reducing conditions within a system, with the hydrogen-electrode potential serving as a reference point of zero volts.

Specific conductance: The reciprocal of the resistance in ohms measured between opposite faces of a centimeter cube of aqueous solution at a specified temperature.

Turbidity: A measurement of the suspended particles in a liquid that have the ability to reflect or refract part of the visible portion of the light spectrum.

1.4 **REFERENCES**

- U.S. Environmental Protection Agency (EPA), Office of Research and Development. April 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. Publication: EPA/540/S-95/504. Accessed at: http://www.agsolve.com.br/pdf/artigos/407EPA.pdf
- EPA, Office of Solid Waste and Emergency Response. May 2002. *Ground-Water Sampling Guidelines* for Superfund and RCRA Project Managers. Publication: EPA542-S-02-001. Accessed at: <u>http://www.epa.gov/superfund/remedytech/tsp/download/gw_sampling_guide.pdf</u>
- EPA, Science and Ecosystem Support Division. March 2013. *Operating Procedure Groundwater Sampling*. Publication SESDPROC-301-R3. Accessed at: http://www.epa.gov/region4/sesd/fbgstp/Groundwater-Sampling.pdf

1.5 REQUIREMENTS AND RESOURCES

The following equipment is required to complete low-flow groundwater sample collection:

- Water level indicator
- Adjustable flow rate pump (bladder, piston, peristaltic, or impeller)
- Power source for the pump (such as a battery or generator, or compressed air source)
- Discharge flow controller
- Flow-through cell
- pH probe
- Dissolved oxygen (DO) probe
- Turbidity meter
- Oxidation-reduction potential (ORP) probe (if required see Section 2.1)
- Specific conductance (SC) probe
- Temperature probe
- Meter to display data for the probes

- Calibration solutions for pH, SC, turbidity, ORP, and DO probes, as necessary
- Container of known volume for flow measurement or calibrated flow meter
- Data recording and management system

2.0 **PROCEDURE**

The following procedures and criteria are based on EPA guidance titled Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (1996) and Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers (2002). These references may be consulted for a more detailed description of low-flow sampling theory.

Low-flow groundwater sampling is most commonly accomplished with low discharge-rate pumps, such as bladder pumps, piston pumps, controlled velocity impeller pumps, or peristaltic pumps. Bailers and high-capacity submersible pumps are not considered acceptable low-flow sample collection devices. The purged water is monitored (in a flow-through cell or other constituent monitoring device) for chemical and optical parameters that indicate steady-state flow conditions between the sample extraction point and the aquifer. Samples are collected when steady-state conditions are indicated.

Groundwater extraction equipment may be permanently installed in the monitoring well as a dedicated system, or it may be brought on site by the sampling team for temporary groundwater sampling. Most investigators agree that dedicated systems will provide the best opportunity for collecting samples most representative of steady-state aquifer conditions, but the scope and budget of a particular investigation will dictate equipment selection.

2.1 EQUIPMENT CALIBRATION

Before samples are collected, the monitoring meters used to measure pH, ORP (if required), DO, turbidity, and SC should be calibrated according to manufacturers' directions. (See SOP No. 061 for procedures regarding the measurement of groundwater indicator parameters.) All meters should be calibrated each day before sampling occurs. Before the meters are calibrated, be sure to record the expiration date of the calibration solutions and their identifying lot numbers. The pH meter calibration should bracket the pH range of the wells to be sampled (acidic to neutral pH range [4.00 to 7.00] or neutral to basic pH range [7.00 to 10.00]). It is common to use either a 2-point or a 3-point calibration for

pH. The DO meter should be calibrated to one point (air-saturated water) or two points (air-saturated water and water devoid of all oxygen).

The SC meter and turbidity meter cannot be calibrated in the field; instead, they are checked against a known standard. The offset of the measured value of the calibration standard can be used as a correction value. Samplers should refer to project- or region-specific guidance regarding the use of ORP as a stabilization parameter. The ORP probe, if used, cannot be calibrated in the field, but is checked against a known standard (such as Zobell solution). The instrument should display a millivolt (mV) value that falls within the range set by the manufacturer. The measured value should be corrected for site-specific variance from standard temperature (25 °C) because ORP is temperature dependent. The ORP probe should be replaced if the reading is not within the manufacturer's specified range. All calibration data should be recorded on the Low-Flow Groundwater Sampling Data Sheet (example included as Figure 1), in a digital format, or in a field logbook.

2.2 WELL PURGING

The well to be sampled should be opened, and groundwater in the well allowed to equilibrate to atmospheric pressure. Equilibration should be determined by measuring the depth to water below the marked reference at the well. This reference point (which is typically the top of the well casing, but can be also be referenced to ground surface) is generally specified in the sampling protocol for the particular job, event, or client. Ground water level readings are taken over two or more 5-minute intervals. Equilibrium conditions exist when the measured depth to water varies by less than 0.01 foot over two consecutive readings. The measurement of the total depth of the well should be made after samples have been collected, unless the datum is required to place non-dedicated sample collection equipment. Depth to water and total well depth measurements should be made in accordance with procedures outlined in SOP No. 014 (Static Water Level, Total Well Depth, and Immiscible Layer Measurement).

If the well does not have a dedicated sample collection device, a new or previously decontaminated portable sample collection device should be inserted in the well. If non-dedicated sampling equipment is used, the least contaminated wells should be purged and sampled first and the most contaminated wells should be purged and sampled last (if past sampling data are available to make this determination). The intake of the device should be positioned at the midpoint of the well screen interval or the midpoint of the water column if the level is below the top of the well screen. The device should be installed slowly to minimize turbulence within the water within the casing and to minimize mixing of stagnant water above

the screened interval with water in the screened interval. After it has been installed, the flow controller should be connected to the sample pump, and the flow-through cell connected to the outlet of the sample collection device. The calibrated groundwater chemistry monitoring probes should be installed in the flow-through cell. If a flow meter is used, it should be installed ahead of the flow-through cell.

If the well has a dedicated sample collection device, the controller for the device should be connected to the sample pump. The flow meter and flow-through cell should be connected in line to the discharge tube and the probes installed in the flow-through cell.

The controller should be activated and groundwater extracted (purged) from the well. The purge rate should be monitored and should not exceed the recharge capacity of the well. The well recharge capacity is defined as the maximum discharge rate that can be obtained with less than 0.1 meter (0.33 foot) drawdown. The maximum purge rate should not exceed 1 liter per minute (L/min) (0.25 gallon per minute) and should be adjusted to achieve minimal drawdown.

Water levels, effluent parameters, and flow rate should be continuously monitored while the well is purged. Purging should continue until the measured chemical and optical parameters are stable. Stable parameters are defined as monitored chemistry values that do not fluctuate by more than the following ranges over three successive readings at 3- to 5-minute intervals:

- pH ±0.1 unit
- SC ± 3 percent
- Turbidity ± 10 percent, when greater than 10 nephelometric turbidity units (NTUs)
- DO ± 10 percent or 0.3 milligrams per liter (mg/L)
- ORP $\pm 10 \text{ mV}$ (if required)
- Temperature (while listed in EPA guidance, this parameter is described as the least important and is not required to be stable if all other parameters have been met)

Purging will continue until these stabilization criteria have been met, excluding temperature, or three well casing volumes have been purged. If three casing volumes of water have been purged and the stabilization criteria have not been met, a comment should be made on the data sheet that sample collection began after three well casing volumes were purged.

The volume of water in the well is based on the following formula:

$$V = \pi r^2 h \ge 7.48$$

where

V	=	static volume of water in the well (gallons)
r	=	inside radius of the well (feet)
h	=	length of water in the well (total well depth minus depth to water) (feet)
7.48	=	conversion factor (cubic feet to gallons)

Common well diameter sizes and corresponding volumes are listed below.

- 1-inch well = h x 0.041 gallons per foot (gal/ft)
- 2-inch well = $h \ge 0.163$ gal/ft
- $3-inch well = h \ge 0.367 \text{ gal/ft}$
- 4-inch well = $h \ge 0.652$ gal/ft

For wells with water table screen intervals: If a stabilized drawdown in the well cannot be maintained within 0.33 foot or the water level is approaching the bottom of the screened interval, reduce the flow rate or turn the pump off for 15 minutes and allow for recharge. The well should not be pumped dry. Resume pumping at a lower flow rate; if the water draws down to the bottom of the screened interval again, turn the pump off and allow for recovery. If sufficient yield cannot be obtained, consider an alternative sampling method.

For wells with submerged or targeted screen intervals: If a stabilized drawdown in the well cannot be maintained within 0.33 foot or the water level is approaching the top of the screened interval, reduce the flow rate, or turn the pump off for 15 minutes, and allow for recovery. The well should not be pumped dry. Resume pumping at a lower flow rate; if the water draws down to the top of the screened interval again, turn pump off and allow for recovery. If sufficient yield cannot be obtained, consider either further drawdown or an alternative sampling method.

Wells that are slow to recharge should be identified and purged at the beginning of the workday to maximize the efficiency of field work. Samples should be collected from these wells within the same workday. Professional judgment should be exercised regarding representative groundwater sample collection from wells that recharge slowly.

The final pH, SC, ORP (if required), turbidity, and DO values should be recorded. All data should be recorded using the Low-Flow Groundwater Sampling Data Sheet (Figure 1), a data entry form on a personal digital assistant (PDA), or in a field logbook.

2.3 SAMPLE COLLECTION

After the well has been purged, the flow-through cell (and any flow meter) will be disconnected, and groundwater samples should be collected directly from the discharge line. Discharge rates should be adjusted so that groundwater is dispensed into the sample container with minimal aeration of the sample. Samples collected for analysis of volatile organic compounds (VOCs) should be dispensed into the sample container at a flow rate equal to or less than 100 milliliters per minute. Samples collected with the use of a peristaltic pump for VOC analysis may require collection by the "soda straw" method or other approved means that prevent the sample from being drawn through the latex portion of the hose.

The "soda straw" method involves allowing the tubing to fill, by either lowering it into the water column (method A) or by filling it via suction applied by the pump head (method B). If method A is used, the tubing is removed from the well after filling and the captured sample is allowed to drain into the sample vial. If method B is used, after running the pump and filling the tubing with sample, the pump speed is reduced and the direction reversed to push the sample out of the tubing into the vials. Samplers should avoid completely emptying the tubing when filling the sample vials when using method B to prevent introducing water that was in contact with the flexible pump head tubing.

Samplers should also refer to project- or region-specific guidance when collecting VOC samples. Samples should be preserved and handled as described in the investigation field sampling plan or quality assurance project plan. Depending on the project-specific types of analyses required, the preferred order of sample collection is as follows:

- 1. Volatile organic compounds (VOCs)
- 2. Purgeable organic halogens (POXs)
- 3. Total organic halogens (TOXs)
- 4. Cyanide
- 5. Extractable organics
- 6. Purgeable organic carbon (POC)
- 7. Total metals

- 8. Dissolved metals
- 9. Total organic carbon (TOC)
- 10. Phenols
- 11. Sulfate and chloride
- 12. Nitrate and ammonia
- 13. Radionuclides

See SOP No. 010 (Groundwater Sampling) for more information on groundwater sample collection.

2.3 HEALTH AND SAFETY CONSIDERATIONS

In addition to the procedures outlined in this SOP, all field staff must be aware of and follow the health and safety practices that result from the Activity Hazard Analyses (AHA) for the project. The AHAs include critical safety procedures, required controls, and minimum personal protective equipment (PPE) necessary to address potential hazards. The hazards specific to project tasks must be identified and controlled to the extent practicable and communicated to all project personnel via the approved, projectspecific Health and Safety Plan (HASP).

FIGURE 1

LOW-FLOW GROUNDWATER SAMPLING DATA SHEET

Date/Time of Sample Collection:	/ Project	
Site/Subsite:		Purge Calculations
Sample ID:		
Field ID:	Point Name:	
Depth to Well Bottom:	ft. below top of casing (PVC cap)	
Depth to Water Level:	ft. below PVC cap	
Depth to Water Level:	ft. below PVC cap prior to sampling	
Method of Purging: Bladder Pump	Submersible Pump	
Peristaltic Pum	p	
Static Well Volume: 1-inch well	Gallons /2-inch wellGallons	
Control Box Settings: Box #	Refill Discharge	
Throttle	psi	
Total Purged: Gallons		
Actual Purge Rate: C	Gallons/Min.	

PHYSIO-CHEMICAL PARAMETERS DURING PURGING										
Measure in order listed**	Initial Reading							Stabiliz- ation Criteria	Final	
Time										
рН									+/-0.1	
Temperature (°C)									NC*	
Specific Conductance (µmhos/cm)									+/-3%	
Turbidity (NTU)									+/-10%	
Dissolved Oxygen (mg/L)									+/-10% or +/-0.3	
ORP (mV)									+/-10	
Volume Purged (Gal)										

*NC = No Criteria. **Stabilization criteria listed should be used unless project-specific plans specify alternate stabilization criteria.

Duplicate Sample Collected?	No	Yes	(Sample ID of Duplicate)
MS/MSD Sample Collected?	No	Yes	
Sample Remarks (odors, colors,	sedir		
Comments:			
Sample(s) Collected By:			

APPENDIX C

CHAIN-OF-CUSTODY (COC) DOCUMENTATION

Name:

Address:

									of <u>1</u>										
Project Account Code						Lab M	latrix								Survey	/ Locati	ion		
Contact Person					Sampler(s) Signature	Surve	у Туре								Survey	y Initiati	ion Dat	e	Sample Matrix
								1	-		4	Analysis	Require	d		-	1	1	ļ
Sample ID	Date	Time	Composite / Grab	Equipment Used	Sample Location	No. of Containers	Fecal Coliform	E. coli	TSS	CBOD5	TP, N-N, TKN, NH3	Orthophosphate	Metals (Cd, Cu, Pb, Ni, Zn)	Hexavalent Chromium	Hardness				Remarks

Relinquished By: Sampler	Date	Time	Accepted By: Field Runner	Date	Time	Remarks
Relinquished By: Field Runner	Date	Time	Received By: Laboratory	Date	Time	Remarks

APPENDIX D

LABORATORY CREDENTIALS AND REPORTING LIMITS

PERRY JOHNSON LABORATORY ACCREDITATION, INC.

Certificate of Accreditation

Perry Johnson Laboratory Accreditation, Inc. has assessed the Laboratory of:

ALS Environmental-Kelso

1317 South 13th Avenue, Kelso, WA 98626

(Hereinafter called the Organization) and hereby declares that Organization has met the requirements of ISO/IEC 17025:2005 "General Requirements for the competence of Testing and Calibration Laboratories" and the DoD Quality Systems Manual for Environmental Laboratories Version 5.0 July 2013 and is accredited is accordance with the:

United States Department of Defense Environmental Laboratory Accreditation Program (DoD-ELAP)

This accreditation demonstrates technical competence for the defined scope: Chemical and Environmental Testing (As detailed in the supplement)

Accreditation claims for such testing and/or calibration services shall only be made from addresses referenced within this certificate. This Accreditation is granted subject to the system rules governing the Accreditation referred to above, and the Organization hereby covenants with the Accreditation body's duty to observe and comply with the said rules.

For PJLA:

Tracy Szerszen President/Operations Manager

Perry Johnson Laboratory Accreditation, Inc. (PJLA) 755 W. Big Beaver, Suite 1325 Troy, Michigan 48084

Initial Accreditation Date:	Issue Date:	Expiration Date:
July 19, 2011	February 13, 2016	February 28, 2018
Revision Date:	Accreditation No.:	Certificate No.:
March 7, 2017	65188	L16-58-R3

The validity of this certificate is maintained through ongoing assessments based on a continuous accreditation cycle. The validity of this certificate should be confirmed through the PJLA website: <u>www.pjlabs.com</u>

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Aqueous	EPA 1631E	CVAFS	Mercury (Low level)
Aqueous	EPA 1664A	Gravimetry	Hexane Extractable Material (HEM)
Aqueous	EPA 1664A	Gravimetry	Total Petroleum Hydrocarbons (TPH)
Aqueous	EPA 180.1	Turbidimetry	Turbidity
Aqueous	EPA 2340B	Calculation by 6010	Hardness as CaCO ₃)
Aqueous	EPA 245.1	CVAA	Mercury
Aqueous	EPA 300.0	IC	Bromide
Aqueous	EPA 300.0	IC	Chloride
Aqueous	EPA 300.0	IC	Fluoride
Aqueous	EPA 300.0	IC	Nitrate + Nitrite as N
Aqueous	EPA 300.0	IC	Nitrate as N
Aqueous	EPA 300.0	IC	Nitrite as N
Aqueous	EPA 300.0	IC	Sulfate
Aqueous	EPA 353.2	Colorimetry	Nitrate + Nitrite as N
Aqueous	EPA 537 MOD	HPLC/MS/MS	6:2 Fluorotelomersulfonate
Aqueous	EPA 537 MOD	HPLC/MS/MS	8:2 Fluorotelomersulfonate
Aqueous	EPA 537 MOD	HPLC/MS/MS	N-Ethylperfluorooctanesulfonamide
Aqueous	EPA 537 MOD	HPLC/MS/MS	N-Ethylperfluorooctanesulfonamidoethanol
Aqueous	EPA 537 MOD	HPLC/MS/MS	N-Methylperfluorooctanesulfonamide
Aqueous	EPA 537 MOD	HPLC/MS/MS	N-Methylperfluorooctanesulfonamidoethand
Aqueous	EPA 537 MOD	HPLC/MS/MS	Perfluoroheptanesulfonate
Aqueous	EPA 537 MOD	HPLC/MS/MS	Perfluorooctane Sulfonamide
Aqueous	EPA 537 MOD	HPLC/MS/MS	Perfluorotetradecanoic acid
Aqueous	EPA 537 MOD	HPLC/MS/MS	Perfluorotridecanoic
Aqueous	EPA 1632	HG-CT-GC-AAS	Arsenic (III)
Aqueous	EPA 1632	HG-CT-GC-AAS	Arsenic (V)
Aqueous	EPA 1632	HG-CT-GC-AAS	Total Inorganic Arsenic
Aqueous	EPA 7196A	Colorimetry	Chromium VI
Aqueous	EPA 7470A	CVAA	Mercury
Aqueous	EPA 8260C SIM	GC-MS	1,1,2,2-Tetrachloroethane
Aqueous	EPA 8260C SIM	GC-MS	1,1,2-Trichloroethane
Aqueous	EPA 8260C SIM	GC-MS	1,1-Dichloroethene
Aqueous	EPA 8260C SIM	GC-MS	1,2-Dibromoethane
Aqueous	EPA 8260C SIM	GC-MS	1,2-Dichloroethane
Aqueous	EPA 8260C SIM	GC-MS	1,3 Butadine
Aqueous	EPA 8260C SIM	GC-MS	1,4-Dichlorobenzene

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Aqueous	EPA 8260C SIM	GC-MS	Bromodichloromethane
Aqueous	EPA 8260C SIM	GC-MS	Carbon Tetrachloride
Aqueous	EPA 8260C SIM	GC-MS	Chlorodibromomethane
Aqueous	EPA 8260C SIM	GC-MS	Chloroform
Aqueous	EPA 8260C SIM	GC-MS	Chloromethane
Aqueous	EPA 8260C SIM	GC-MS	cis-1,2-Dichloroethene
Aqueous	EPA 8260C SIM	GC-MS	Dichloromethane (Methylene Chloride)
Aqueous	EPA 8260C SIM	GC-MS	Tetrachloroethene
Aqueous	EPA 8260C SIM	GC-MS	trans-1,2-Dichloroethene
Aqueous	EPA 8260C SIM	GC-MS	Trichloroethene
Aqueous	EPA 8260C SIM	GC-MS	Vinyl chloride
Aqueous	EPA 9020B	Titrimetry	Total Organic Halides (TOX)
Aqueous	EPA 9040C	Potentiometry	pH
Aqueous	EPA 9060A	UV-VIS	Total Organic Carbons (TOC)
		Spectrophotometry	
Aqueous	SM 10200 H	Colorimetry	Chlorophyll-A
Aqueous	SM 2130B	Turbidimetry	Turbidity
Aqueous	SM 2320B	Titrimetry	Total Alkalinity (as CaCO ₃)
Aqueous	SM 2510B	Potentiometry	Specific Conductance
Aqueous	SM 2540B	Gravimetry	Solids, Total
Aqueous	SM 2540C	Gravimetry	Solids, Total Dissolved
Aqueous	SM 2540D	Gravimetry	Solids, Total Suspended
Aqueous	SM 4500-CN- G	Colorimetry	Cyanide, Amenable
Aqueous	SM 4500-P-E	Colorimetry	ortho-phosphorous
Aqueous	SM 4500-S2 D	Titrimetry	Sulfide
Aqueous	SM 4500-CN E	Colorimetry	Total Cyanide
Aqueous	SM4500-NH3 G	Colorimetry	Ammonia
Aqueous	SM5220C	Titrimetry	Chemical Oxygen Demand (COD)
Aqueous	SM5310C	UV-VIS Spectrophotometry	Total Organic Carbons (TOC)
Aqueous	SOP-LCP-PFC	HPLC/MS/MS	6:2 Fluorotelomersulfonate
Aqueous	SOP-LCP-PFC	HPLC/MS/MS	8:2 Fluorotelomersulfonate
Aqueous	SOP-LCP-PFC	HPLC/MS/MS	N-Ethylperfluorooctanesulfonamide
Aqueous	SOP-LCP-PFC	HPLC/MS/MS	N-Ethylperfluorooctanesulfonamidoethanol
Aqueous	SOP-LCP-PFC	HPLC/MS/MS	N-Methylperfluorooctanesulfonamide
Aqueous	SOP-LCP-PFC	HPLC/MS/MS	N-Methylperfluorooctanesulfonamidoethanol

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Aqueous	SOP-LCP-PFC	HPLC/MS/MS	Perfluoroheptanesulfonate
Aqueous	SOP-LCP-PFC	HPLC/MS/MS	Perfluorooctane Sulfonamide
Aqueous	SOP-LCP-PFC	HPLC/MS/MS	Perfluorotetradecanoic acid
Aqueous	SOP-LCP-PFC	HPLC/MS/MS	Perfluorotridecanoic
Drinking Water	EPA 504.1	GC-ECD	1,2-Dibromo-3-chloropropane (DBCP)
Drinking Water	EPA 504.1	GC-ECD	1,2-Dibromoethane (EDB)
Drinking Water	EPA 524.2	GC-MS	1,1,1,2-Tetrachloroethane
Drinking Water	EPA 524.2	GC-MS	1,1,1-Trichloroethane
Drinking Water	EPA 524.2	GC-MS	1,1,2,2-Tetrachloroethane
Drinking Water	EPA 524.2	GC-MS	1,1-Dichloroethane
Drinking Water	EPA 524.2	GC-MS	1,1-Dichloroethene
Drinking Water	EPA 524.2	GC-MS	1,1-Dichloropropene
Drinking Water	EPA 524.2	GC-MS	1,2,3-Trichlorobenzene
Drinking Water	EPA 524.2	GC-MS	1,2,3-Trichloropropane
Drinking Water	EPA 524.2	GC-MS	1,2,4-Trichlorobenzene
Drinking Water	EPA 524.2	GC-MS	1,2,4-Trimethylbenzene
Drinking Water	EPA 524.2	GC-MS	1,2-Dibromoethane (EDB)
Drinking Water	EPA 524.2	GC-MS	1,2-Dichlorobenzene
Drinking Water	EPA 524.2	GC-MS	1,2-Dichloroethane
Drinking Water	EPA 524.2	GC-MS	1,2-Dichloropropane
Drinking Water	EPA 524.2	GC-MS	1,3,5-Trimethylbenzene
Drinking Water	EPA 524.2	GC-MS	1,3-Dichlorobenzene
Drinking Water	EPA 524.2	GC-MS	1,3-Dichloropropane
Drinking Water	EPA 524.2	GC-MS	1,4-Dichlorobenzene
Drinking Water	EPA 524.2	GC-MS	2,2-Dichloropropane
Drinking Water	EPA 524.2	GC-MS	2-Chlorotoluene
Drinking Water	EPA 524.2	GC-MS	4-Chlorotoluene
Drinking Water	EPA 524.2	GC-MS	4-Isopropyltoluene
Drinking Water	EPA 524.2	GC-MS	Benzene
Drinking Water	EPA 524.2	GC-MS	Bromobenzene
Drinking Water	EPA 524.2	GC-MS	Bromochloromethane
Drinking Water	EPA 524.2	GC-MS	Bromodichloromethane
Drinking Water	EPA 524.2	GC-MS	Bromoform
Drinking Water	EPA 524.2	GC-MS	Bromomethane
Drinking Water	EPA 524.2	GC-MS	Carbon Tetrachloride
Drinking Water	EPA 524.2	GC-MS	Chlorobenzene

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Drinking Water	EPA 524.2	GC-MS	Chlorodibromomethane
Drinking Water	EPA 524.2	GC-MS	Chloroethane
Drinking Water	EPA 524.2	GC-MS	Chloroform
Drinking Water	EPA 524.2	GC-MS	Chloromethane
Drinking Water	EPA 524.2	GC-MS	cis-1,2-Dichloroethene
Drinking Water	EPA 524.2	GC-MS	cis-1,3-Dichloropropene
Drinking Water	EPA 524.2	GC-MS	Dibromomethane
Drinking Water	EPA 524.2	GC-MS	Dichlorodifluoromethane
Drinking Water	EPA 524.2	GC-MS	Dichloromethane (Methylene Chloride)
Drinking Water	EPA 524.2	GC-MS	Ethylbenzene
Drinking Water	EPA 524.2	GC-MS	Hexachlorobutadiene
Drinking Water	EPA 524.2	GC-MS	Isopropylbenzene
Drinking Water	EPA 524.2	GC-MS	m+p-Xylene
Drinking Water	EPA 524.2	GC-MS	Naphthalene
Drinking Water	EPA 524.2	GC-MS	n-Butylbenzene
Drinking Water	EPA 524.2	GC-MS	n-Propylbenzene
Drinking Water	EPA 524.2	GC-MS	o-Xylene
Drinking Water	EPA 524.2	GC-MS	sec-Butylbenzene
Drinking Water	EPA 524.2	GC-MS	Styrene
Drinking Water	EPA 524.2	GC-MS	tert-butylbenzene
Drinking Water	EPA 524.2	GC-MS	Tetrachloroethene
Drinking Water	EPA 524.2	GC-MS	Toluene
Drinking Water	EPA 524.2	GC-MS	trans-1,2-Dichloroethene
Drinking Water	EPA 524.2	GC-MS	trans-1,3-Dichloropropene
Drinking Water	EPA 524.2	GC-MS	Trichloroethene
Drinking Water	EPA 524.2	GC-MS	Trichlorofluoromethane (Freon 11)
Drinking Water	EPA 524.2	GC-MS	Vinyl chloride
Drinking Water	EPA 524.2	GC-MS	Xylenes, total
Solid	ASTM D4129-92M, Lloyd Kahn	UV-VIS Spectrophotometry	Total Organic Carbons (TOC)
Solid	EPA 160.3M	Gravimetry	Solids, Total
Solid	EPA 1631E	CVFAS	Mercury (low level)
Solid	EPA 7471A, B	CVAA	Mercury
Solid	EPA 9045D	Potentiometry	рН
Solid	EPA 9056A	IC	Nitrate as N
Solid	EPA 9056A	IC	Nitrite as N

Issue 02/2016

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Solid	EPA 9071B	Gravimetry	Hexane Extractable Material (HEM)
Solid	GEN-AVS	Colorimetry	Acid Volatile Sulfides
Solid	GEN-NCEL	Colorimetry	Nitrocellulose
Solid	LCP-LCMS4	HPLC/MS/MS	1,3,5-Trinitrobenzene
Solid	LCP-LCMS4	HPLC/MS/MS	1,3-Dinitrobenzene
Solid	LCP-LCMS4	HPLC/MS/MS	2,4,6-Trinitrotoluene
Solid	LCP-LCMS4	HPLC/MS/MS	2,4-Dinitrotoluene
Solid	LCP-LCMS4	HPLC/MS/MS	2,6-Dinitrotoluene
Solid	LCP-LCMS4	HPLC/MS/MS	2-Amino-4,6-dinitrotoluene
Solid	LCP-LCMS4	HPLC/MS/MS	3,5-Dinitroaniline
Solid	LCP-LCMS4	HPLC/MS/MS	4-Amino-2,6-dinitrotoluene
Solid	LCP-LCMS4	HPLC/MS/MS	HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)
Solid	LCP-LCMS4	HPLC/MS/MS	Pentaerythritoltetranitrate
Solid	LCP-LCMS4	HPLC/MS/MS	RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)
Solid	LCP-LCMS4	HPLC/MS/MS	Tetryl (methyl-2,4,6-trinitrophenylnitramine)
Solid	LCP-Nitro	HPLC/MS/MS	2,4-Dinitrophenol
Solid	LCP-Nitro	HPLC/MS/MS	Picramic Acid
Solid	LCP-Nitro	HPLC/MS/MS	Picric Acid
Solid	PSEP	Gravimetry	Particle Size
Solid	SOP-GEN-AVS	Colorimetry	Acid Volatile Sulfides
Tissue	EPA 1630	CVAFS	Methyl Mercury
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluorobutane Sulfonate
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluorobutanoic Acid
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluorodecane Sulfonate
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluorodecanoic Acid
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluorododecanoic Acid
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluoroheptanoic Acid
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluorohexane Sulfonate
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluorohexanoic Acid
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluorononanoic Acid
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluorooctane Sulfonate
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluorooctanoic Acid
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluoropentanoic Acid
Tissue	EPA 537 MOD	HPLC/MS/MS	Perfluoroundecanoic Acid
Tissue	EPA 1631E	CVAFS	Mercury (low level)

Issue 02/2016

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Tissue	EPA 1632	HG-CT-GC-AAS	Arsenic (III)
Tissue	EPA 1632	HG-CT-GC-AAS	Arsenic (V)
Tissue	EPA 1632	HG-CT-GC-AAS	Total Inorganic Arsenic
Tissue	EPA 6010B, C/200.7	ICP	Aluminum
Tissue	EPA 6010B, C/200.7	ICP	Antimony
Tissue	EPA 6010B, C/200.7	ICP	Arsenic
Tissue	EPA 6010B, C/200.7	ICP	Barium
Tissue	EPA 6010B, C/200.7	ICP	Beryllium
Tissue	EPA 6010B, C/200.7	ICP	Boron
Tissue	EPA 6010B, C/200.7	ICP	Cadmium
Tissue	EPA 6010B, C/200.7	ICP	Calcium
Tissue	EPA 6010B, C/200.7	ICP	Chromium, total
Tissue	EPA 6010B, C/200.7	ICP	Cobalt
Tissue	EPA 6010B, C/200.7	ICP	Copper
Tissue	EPA 6010B, C/200.7	ICP	Iron
Tissue	EPA 6010B, C/200.7	ICP	Lead
Tissue	EPA 6010B, C/200.7	ICP	Magnesium
Tissue	EPA 6010B, C/200.7	ICP	Manganese
Tissue	EPA 6010B, C/200.7	ICP	Molybdenum
Tissue	EPA 6010B, C/200.7	ICP	Nickel
Tissue	EPA 6010B, C/200.7	ICP	Potassium
Tissue	EPA 6010B, C/200.7	ICP	Selenium
Tissue	EPA 6010B, C/200.7	ICP	Silver
Tissue	EPA 6010B, C/200.7	ICP	Sodium
Tissue	EPA 6010B, C/200.7	ICP	Strontium
Tissue	EPA 6010B, C/200.7	ICP	Thallium
Tissue	EPA 6010B, C/200.7	ICP	Tin
Tissue	EPA 6010B, C/200.7	ICP	Titanium
Tissue	EPA 6010B, C/200.7	ICP	Vanadium
Tissue	EPA 6010B, C/200.7	ICP	Zinc
Tissue	EPA 6020A/200.8	ICP-MS	Aluminum
Tissue	EPA 6020A/200.8	ICP-MS	Antimony
Tissue	EPA 6020A/200.8	ICP-MS	Arsenic
Tissue	EPA 6020A/200.8	ICP-MS	Barium
Tissue	EPA 6020A/200.8	ICP-MS	Beryllium
Tissue	EPA 6020A/200.8	ICP-MS	Boron
Issue 02/2016	This supplement	nt is in conjunction with c	ertificate #L16-58-R3 Page 7 of 29

ALS Environmental-Kelso

1317 South 13th Avenue, Kelso, WA 98626 Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Tissue	EPA 6020A/200.8	ICP-MS	Cadmium
Tissue	EPA 6020A/200.8	ICP-MS	Chromium, total
Tissue	EPA 6020A/200.8	ICP-MS	Cobalt
Tissue	EPA 6020A/200.8	ICP-MS	Copper
Tissue	EPA 6020A/200.8	ICP-MS	Iron
Tissue	EPA 6020A/200.8	ICP-MS	Lead
Tissue	EPA 6020A/200.8	ICP-MS	Manganese
Tissue	EPA 6020A/200.8	ICP-MS	Molybdenum
Tissue	EPA 6020A/200.8	ICP-MS	Nickel
Tissue	EPA 6020A/200.8	ICP-MS	Selenium
Tissue	EPA 6020A/200.8	ICP-MS	Silver
Tissue	EPA 6020A/200.8	ICP-MS	Strontium
Tissue	EPA 6020A/200.8	ICP-MS	Thallium
Tissue	EPA 6020A/200.8	ICP-MS	Tin
Tissue	EPA 6020A/200.8	ICP-MS	Titanium
Tissue	EPA 6020A/200.8	ICP-MS	Vanadium
Tissue	EPA 6020A/200.8	ICP-MS	Zinc
Tissue	EPA 7471A, B	CVAA	Mercury
Tissue	EPA 7742	AA, Borohydride Reduction; GFAA	Selenium
Tissue	EPA 8081A, B	GC-ECD	Aldrin
Tissue	EPA 8081A, B	GC-ECD	alpha-BHC
Tissue	EPA 8081A, B	GC-ECD	alpha-Chlordane
Tissue	EPA 8081A, B	GC-ECD	Chlordane (total)
Tissue	EPA 8081A, B	GC-ECD	DDD (4,4)
Tissue	EPA 8081A, B	GC-ECD	DDE (4,4)
Tissue	EPA 8081A, B	GC-ECD	DDT (4,4)
Tissue	EPA 8081A, B	GC-ECD	delta-BHC
Tissue	EPA 8081A, B	GC-ECD	Dieldrin
Tissue	EPA 8081A, B	GC-ECD	Endosulfan I
Tissue	EPA 8081A, B	GC-ECD	Endosulfan II
Tissue	EPA 8081A, B	GC-ECD	Endosulfan sulfate
Tissue	EPA 8081A, B	GC-ECD	Endrin
Tissue	EPA 8081A, B	GC-ECD	Endrin aldehyde
Tissue	EPA 8081A, B	GC-ECD	Endrin ketone
Tissue	EPA 8081A, B	GC-ECD	gamma-BHC

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Tissue	EPA 8081A, B	GC-ECD	gamma-Chlordane
Tissue	EPA 8081A, B	GC-ECD	Heptachlor
Tissue	EPA 8081A, B	GC-ECD	Heptachlor Epoxide (beta)
Tissue	EPA 8081A, B	GC-ECD	Methoxychlor
Tissue	EPA 8081A, B	GC-ECD	Toxaphene (total)
Tissue	EPA 8081B	GC-ECD	2,4-DDD
Tissue	EPA 8081B	GC-ECD	2,4-DDE
Tissue	EPA 8081B	GC-ECD	2,4-DDT
Tissue	EPA 8081B	GC-ECD	Chlorpyrifos
Tissue	EPA 8081B	GC-ECD	cis-Nonachlor
Tissue	EPA 8081B	GC-ECD	Hexachlorobenzene
Tissue	EPA 8081B	GC-ECD	Hexachloroethane
Tissue	EPA 8081B	GC-ECD	Hexchlorobutadiene
Tissue	EPA 8081B	GC-ECD	Isodrin
Tissue	EPA 8081B	GC-ECD	Mirex
Tissue	EPA 8081B	GC-ECD	Oxychlordane
Tissue	EPA 8081B	GC-ECD	trans-Nonachlor
Tissue	EPA 8082A	GC-ECD	2,2',3,3',4,4',5,5',6,6' Decachlorobiphenyl (PCB 209)
Tissue	EPA 8082A	GC-ECD	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl (PCB 206)
Tissue	EPA 8082A	GC-ECD	2,2',3,3',4,4',5,6-Octachlorobiphenyl (PCB 195)
Tissue	EPA 8082A	GC-ECD	2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB 170)
Tissue	EPA 8082A	GC-ECD	2,2',3,3',4,4'-Hexachlorobiphenyl (PCB 128)
Tissue	EPA 8082A	GC-ECD	2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB 180)
Tissue	EPA 8082A	GC-ECD	2,2',3,4,4',5',6-Heptachlorobiphenyl (PCB 183)
Tissue	EPA 8082A	GC-ECD	2,2',3,4,4',5'-Hexachlorobiphenyl (PCB 138)
Tissue	EPA 8082A	GC-ECD	2,2',3,4,4',6,6'-Heptachlorobiphenyl (PCB 184)
Tissue	EPA 8082A	GC-ECD	2,2',3,4,5'-Pentachlorobiphenyl (PCB 87)
Tissue	EPA 8082A	GC-ECD	2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB 187)
Tissue	EPA 8082A	GC-ECD	2,2',3,4',5-Pentachlorobiphenyl (PCB 90)
Tissue	EPA 8082A	GC-ECD	2,2',3,5'-Tetrachlorobiphenyl (PCB 44)
Tissue	EPA 8082A	GC-ECD	2,2',4,4',5,5'-Hexachlorobiphenyl (PCB 153)

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Tissue	EPA 8082A	GC-ECD	2,2',4,5,5'-Pentachlorobiphenyl (PCB 101)
Tissue	EPA 8082A	GC-ECD	2,2',5,6'-Tetrachlorbiphenyl (PCB 53)
Tissue	EPA 8082A	GC-ECD	2,2',5-Trichlorobiphenyl (PCB 18)
Tissue	EPA 8082A	GC-ECD	2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB 189)
Tissue	EPA 8082A	GC-ECD	2,3,3',4,4',5'-Hexachlorobiphenyl (PCB 157)
Tissue	EPA 8082A	GC-ECD	2,3,3',4,4',5-Hexachlorobiphenyl (PCB 156)
Tissue	EPA 8082A	GC-ECD	2,3,3',4,4',6-Hexachlorobiphenyl (PCB 158)
Tissue	EPA 8082A	GC-ECD	2,3,3',4,4'-Pentachlorobiphenyl (PCB 105)
Tissue	EPA 8082A	GC-ECD	2,3,4,4',5-Pentachlorobiphenyl (PCB 114)
Tissue	EPA 8082A	GC-ECD	2,3,4,4'-Tetrachlorobiphenyl (PCB 60)
Tissue	EPA 8082A	GC-ECD	2,3',4,4',5,5' Hexachlorobiphenyl (PCB 167)
Tissue	EPA 8082A	GC-ECD	2,3',4,4',5',6-Hexachlorobiphenyl (PCB 168)
Tissue	EPA 8082A	GC-ECD	2,3',4,4',5-Pentachlorobiphenyl (PCB 118)
Tissue	EPA 8082A	GC-ECD	2,3',4,4',5-Pentachlorobiphenyl (PCB 123)
Tissue	EPA 8082A	GC-ECD	2,3',4,4'-Tetrachlorobiphenyl (PCB 66)
Tissue	EPA 8082A	GC-ECD	2,4,4'-Trichlorobiphenyl (PCB 28)
Tissue	EPA 8082A	GC-ECD	2,4'-Dichlorobiphenyl (PCB 8)
Tissue	EPA 8082A	GC-ECD	3,3',4,4',5,5'-Hexachlorobiphenyl (PCB 169)
Tissue	EPA 8082A	GC-ECD	3,3',4,4',5-Pentachlorobiphenyl (PCB 126)
Tissue	EPA 8082A	GC-ECD	3,3',4,4'-Tetrachlorobiphenyl (PCB 77)
Tissue	EPA 8082A	GC-ECD	3,4,4',5-Tetrachlorobiphenyl (PCB 81)
Tissue	EPA 8082A	GC-ECD	Aroclor 1016
Tissue	EPA 8082A	GC-ECD	Aroclor 1221
Tissue	EPA 8082A	GC-ECD	Aroclor 1232
Tissue	EPA 8082A	GC-ECD	Aroclor 1242
Tissue	EPA 8082A	GC-ECD	Aroclor 1248
Tissue	EPA 8082A	GC-ECD	Aroclor 1254
Tissue	EPA 8082A	GC-ECD	Aroclor 1260
Tissue	EPA 8082A	GC-ECD	Aroclor 1262
Tissue	EPA 8082A	GC-ECD	Aroclor 1268
Tissue	EPA 8270 SIM	GC-MS	PBDE 100
Tissue	EPA 8270 SIM	GC-MS	PBDE 128
Tissue	EPA 8270 SIM	GC-MS	PBDE 138
Tissue	EPA 8270 SIM	GC-MS	PBDE 153
Tissue	EPA 8270 SIM	GC-MS	PBDE 154

ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Tissue	EPA 8270 SIM	GC-MS	PBDE 17
Tissue	EPA 8270 SIM	GC-MS	PBDE 183
Tissue	EPA 8270 SIM	GC-MS	PBDE 190
Tissue	EPA 8270 SIM	GC-MS	PBDE 203
Tissue	EPA 8270 SIM	GC-MS	PBDE 206
Tissue	EPA 8270 SIM	GC-MS	PBDE 209
Tissue	EPA 8270 SIM	GC-MS	PBDE 28
Tissue	EPA 8270 SIM	GC-MS	PBDE 47
Tissue	EPA 8270 SIM	GC-MS	PBDE 66
Tissue	EPA 8270 SIM	GC-MS	PBDE 71
Tissue	EPA 8270 SIM	GC-MS	PBDE 85
Tissue	EPA 8270 SIM	GC-MS	PBDE 99
Tissue	EPA 8270 SIM PAH	GC-MS	2-Methylnaphthalene
Tissue	EPA 8270 SIM PAH	GC-MS	Acenaphthene
Tissue	EPA 8270 SIM PAH	GC-MS	Acenaphthylene
Tissue	EPA 8270 SIM PAH	GC-MS	Anthracene
Tissue	EPA 8270 SIM PAH	GC-MS	Benzo(a)anthracene
Tissue	EPA 8270 SIM PAH	GC-MS	Benzo(a)pyrene
Tissue	EPA 8270 SIM PAH	GC-MS	Benzo(b)fluoranthene
Tissue	EPA 8270 SIM PAH	GC-MS	Benzo(g,h,i)perylene
Tissue	EPA 8270 SIM PAH	GC-MS	Benzo(k)fluoranthene
Tissue	EPA 8270 SIM PAH	GC-MS	Chrysene
Tissue	EPA 8270 SIM PAH	GC-MS	Dibenzo(a,h)anthracene
Tissue	EPA 8270 SIM PAH	GC-MS	Fluoranthene
Tissue	EPA 8270 SIM PAH	GC-MS	Fluorene
Tissue	EPA 8270 SIM PAH	GC-MS	Indeno(1,2,3, cd)pyrene
Tissue	EPA 8270 SIM PAH	GC-MS	Naphthalene
Tissue	EPA 8270 SIM PAH	GC-MS	Phenanthrene
Tissue	EPA 8270 SIM PAH	GC-MS	Pyrene
Tissue	EPA 8270D SIM	GC-MS	1,2,4,5-Tetrachlorobenzene
Tissue	EPA 8270D SIM	GC-MS	1,2,4-Trichlorobenzene
Tissue	EPA 8270D SIM	GC-MS	1,2-Dichlorobenzene
Tissue	EPA 8270D SIM	GC-MS	1,3-Dichlorobenzene
Tissue	EPA 8270D SIM	GC-MS	1,4-Dichlorobenzene
Tissue	EPA 8270D SIM	GC-MS	2,3,4,6-Tetrachlorophenol
Tissue	EPA 8270D SIM	GC-MS	2,4,5-Trichlorophenol

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte
Tissue	EPA 8270D SIM	GC-MS	2,4,6-Trichlorophenol
Tissue	EPA 8270D SIM	GC-MS	2,4-Dichlorophenol
Tissue	EPA 8270D SIM	GC-MS	2,4-Dimethylphenol
Tissue	EPA 8270D SIM	GC-MS	2,4-Dinitrophenol
Tissue	EPA 8270D SIM	GC-MS	2,4-Dinitrotoluene
Tissue	EPA 8270D SIM	GC-MS	2,6-Dinitrotoluene
Tissue	EPA 8270D SIM	GC-MS	2-Chloronaphthalene
Tissue	EPA 8270D SIM	GC-MS	2-Chlorophenol
Tissue	EPA 8270D SIM	GC-MS	2-Methyl-4,6-Dinitrophenol
Tissue	EPA 8270D SIM	GC-MS	2-Methylnaphthalene
Tissue	EPA 8270D SIM	GC-MS	2-Methylphenol
Tissue	EPA 8270D SIM	GC-MS	2-Nitroaniline
Tissue	EPA 8270D SIM	GC-MS	2-Nitrophenol
Tissue	EPA 8270D SIM	GC-MS	3,3-Dichlorobenzidine
Tissue	EPA 8270D SIM	GC-MS	3-Nitroaniline
Tissue	EPA 8270D SIM	GC-MS	4-Bromophenyl-phenylether
Tissue	EPA 8270D SIM	GC-MS	4-Chloro-3-methylphenol
Tissue	EPA 8270D SIM	GC-MS	4-Chloroaniline
Tissue	EPA 8270D SIM	GC-MS	4-Chlorophenyl-phenylether
Tissue	EPA 8270D SIM	GC-MS	4-Methylphenol (and/or 3-Methylphenol)
Tissue	EPA 8270D SIM	GC-MS	4-Nitroaniline
Tissue	EPA 8270D SIM	GC-MS	4-Nitrophenol
Tissue	EPA 8270D SIM	GC-MS	Acenaphthene
Tissue	EPA 8270D SIM	GC-MS	Acenaphthylene
Tissue	EPA 8270D SIM	GC-MS	Anthracene
Tissue	EPA 8270D SIM	GC-MS	Benzo(a)anthracene
Tissue	EPA 8270D SIM	GC-MS	Benzo(a)pyrene
Tissue	EPA 8270D SIM	GC-MS	Benzo(b)fluoranthene
Tissue	EPA 8270D SIM	GC-MS	Benzo(g,h,i)perylene
Tissue	EPA 8270D SIM	GC-MS	Benzo(k)fluoranthene
Tissue	EPA 8270D SIM	GC-MS	Benzoic acid
Tissue	EPA 8270D SIM	GC-MS	Benzyl alcohol
Tissue	EPA 8270D SIM	GC-MS	bis(2-Chloroethoxy)methane
Tissue	EPA 8270D SIM	GC-MS	bis(2-Chloroethyl)ether
Tissue	EPA 8270D SIM	GC-MS	bis(2-Chloroisopropyl)ether
Tissue	EPA 8270D SIM	GC-MS	bis(2-ethylhexy)phthalate
Issue 02/2016	This supplemen	t is in conjunction with c	certificate #L16-58-R3 Page 12 of 29

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte
Tissue	EPA 8270D SIM	GC-MS	Butyl benzyl phthalate
Tissue	EPA 8270D SIM	GC-MS	Carbazole
Tissue	EPA 8270D SIM	GC-MS	Chrysene
Tissue	EPA 8270D SIM	GC-MS	Dibenzo(a,h)anthracene
Tissue	EPA 8270D SIM	GC-MS	Dibenzofuran
Tissue	EPA 8270D SIM	GC-MS	Diethyl phthalate
Tissue	EPA 8270D SIM	GC-MS	Dimethylphthalate
Tissue	EPA 8270D SIM	GC-MS	di-n-butylphthalate
Tissue	EPA 8270D SIM	GC-MS	Di-n-octylphthalate
Tissue	EPA 8270D SIM	GC-MS	Fluoranthene
Tissue	EPA 8270D SIM	GC-MS	Fluorene
Tissue	EPA 8270D SIM	GC-MS	Hexachlorobenzene
Tissue	EPA 8270D SIM	GC-MS	Hexachlorobutadiene
Tissue	EPA 8270D SIM	GC-MS	Hexachlorocyclopentadiene
Tissue	EPA 8270D SIM	GC-MS	Hexachloroethane
Tissue	EPA 8270D SIM	GC-MS	Indeno(1,2,3, cd)pyrene
Tissue	EPA 8270D SIM	GC-MS	Isophorone
Tissue	EPA 8270D SIM	GC-MS	Naphthalene
Tissue	EPA 8270D SIM	GC-MS	Nitrobenzene
Tissue	EPA 8270D SIM	GC-MS	N-Nitrosodimethylamine
Tissue	EPA 8270D SIM	GC-MS	N-Nitroso-di-n-propylamine
Tissue	EPA 8270D SIM	GC-MS	N-Nitrosodiphenylamine
Tissue	EPA 8270D SIM	GC-MS	Pentachlorophenol
Tissue	EPA 8270D SIM	GC-MS	Phenanthrene
Tissue	EPA 8270D SIM	GC-MS	Phenol
Tissue	EPA 8270D SIM	GC-MS	Pyrene
Tissue	EPA 8330B	HPLC	1,3,5-Trinitrobenzene
Tissue	EPA 8330B	HPLC	1,3-Dinitrobenzene
Tissue	EPA 8330B	HPLC	2,4,6-Trinitrotoluene
Tissue	EPA 8330B	HPLC	2,4-Dinitrotoluene
Tissue	EPA 8330B	HPLC	2,6-Dinitrotoluene
Tissue	EPA 8330B	HPLC	2-Amino-4,6-dinitrotoluene
Tissue	EPA 8330B	HPLC	2-Nitrotoluene
Tissue	EPA 8330B	HPLC	3,5-Dinitroaniline
Tissue	EPA 8330B	HPLC	3-Nitrotoluene
Tissue	EPA 8330B	HPLC	4-Amino-2,6-dinitrotoluene

ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Tissue	EPA 8330B	HPLC	4-Nitrotoluene
Tissue	EPA 8330B	HPLC	HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)
Tissue	EPA 8330B	HPLC	Nitrobenzene
Tissue	EPA 8330B	HPLC	Nitroglycerin
Tissue	EPA 8330B	HPLC	Pentachloronitrobenzene
Tissue	EPA 8330B	HPLC	Pentaerythritoltetranitrate
Tissue	EPA 8330B	HPLC	RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)
Tissue	EPA 8330B	HPLC	Tetryl (methyl-2,4,6-trinitrophenylnitramine)
Tissue	OPPMS2	GC/MS/MS	Azinphos-methyl (Guthion)
Tissue	OPPMS2	GC/MS/MS	Chlorpyrifos
Tissue	OPPMS2	GC/MS/MS	Demeton O & S
Tissue	OPPMS2	GC/MS/MS	Diazinon
Tissue	OPPMS2	GC/MS/MS	Dichlorvos
Tissue	OPPMS2	GC/MS/MS	dimethoate
Tissue	OPPMS2	GC/MS/MS	Disulfoton
Tissue	OPPMS2	GC/MS/MS	Ethoprop
Tissue	OPPMS2	GC/MS/MS	Parathion, ethyl
Tissue	OPPMS2	GC/MS/MS	Parathion, methyl
Tissue	OPPMS2	GC/MS/MS	Phorate
Tissue	OPPMS2	GC/MS/MS	Ronnel
Tissue	OPPMS2	GC/MS/MS	Stirophos
Tissue	OPPMS2	GC/MS/MS	Sulfotepp
Tissue	SOC-Butyl	GC-FPD	Di-n-butyltin
Tissue	SOC-Butyl	GC-FPD	n-Butyltin
Tissue	SOC-Butyl	GC-FPD	Tetra-n-butyltin
Tissue	SOC-Butyl	GC-FPD	Tri-n-butyltin
Tissue	SOC-PESTMS2	GC/MS/MS	Aldrin
Tissue	SOC-PESTMS2	GC/MS/MS	Alpha-BHC
Tissue	SOC-PESTMS2	GC/MS/MS	beta-BHC
Tissue	SOC-PESTMS2	GC/MS/MS	DDD (4,4)
Tissue	SOC-PESTMS2	GC/MS/MS	DDE (4,4)
Tissue	SOC-PESTMS2	GC/MS/MS	DDT (4,4)
Tissue	SOC-PESTMS2	GC/MS/MS	delta-BHC
Tissue	SOC-PESTMS2	GC/MS/MS	Dieldrin
Tissue	SOC-PESTMS2	GC/MS/MS	Endosulfan I

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Tissue	SOC-PESTMS2	GC/MS/MS	Endosulfan II
Tissue	SOC-PESTMS2	GC/MS/MS	Endosulfan sulfate
Tissue	SOC-PESTMS2	GC/MS/MS	Endrin
Tissue	SOC-PESTMS2	GC/MS/MS	Endrin aldehyde
Tissue	SOC-PESTMS2	GC/MS/MS	Endrin ketone
Tissue	SOC-PESTMS2	GC/MS/MS	gamma-BHC
Tissue	SOC-PESTMS2	GC/MS/MS	Heptachlor
Tissue	SOC-PESTMS2	GC/MS/MS	Heptachlor Epoxide (beta)
Tissue	SOC-PESTMS2	GC/MS/MS	Methoxychlor
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	1,3,5-Trinitrobenzene
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	1,3-Dinitrobenzene
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	2,4,6-Trinitrotoluene
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	2,4-Dinitrotoluene
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	2,6-Dinitrotoluene
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	2-Amino-4,6-dinitrtoluene
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	3,5-Dinitroaniline
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	4-Amino-2,6-dinitrotoluene
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	Pentaerythritoltetranitrate
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)
Tissue	SOP LCP-LCMS4	HPLC/MS/MS	Tetryl (methyl-2,4,6-trinitrophenylnitramine)
Tissue	SOP LCP-Nitro	HPLC/MS/MS	2,4-Dinitrophenol
Tissue	SOP LCP-Nitro	HPLC/MS/MS	Picramic Acid
Tissue	SOP LCP-Nitro	HPLC/MS/MS	Picric Acid
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluorobutane Sulfonate
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluorobutanoic Acid
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluorodecane Sulfonate
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluorodecanoic Acid
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluorododecanoic Acid
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluoroheptanoic Acid
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluorohexane Sulfonate
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluorohexanoic Acid
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluorononanoic Acid
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluorooctane Sulfonate
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluorooctanoic Acid

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluoropentanoic Acid
Tissue	SOP-LCP-PFC	HPLC/MS/MS	Perfluoroundecanoic Acid
Aqueous/Drinking Water	EPA 537	HPLC/MS/MS	Perfluorobutanesulfonic Acid
Aqueous/Drinking Water	EPA 537	HPLC/MS/MS	Perfluoroheptanoic Acid
Aqueous/Drinking Water	EPA 537	HPLC/MS/MS	Perfluorohexanesulfonic Acid
Aqueous/Drinking Water	EPA 537	HPLC/MS/MS	Perfluorononanoic Acid
Aqueous/Drinking Water	EPA 537	HPLC/MS/MS	Perfluorooctanesulfonic Acid
Aqueous/Drinking Water	EPA 537	HPLC/MS/MS	Perfluorooctanoic Acid
Aqueous/Solid	ASTM D 1426-93B	Potentiometry	Nitrogen, Total Kjeldahl (TKN)
Aqueous/Solid	EPA 1020A	Physical Property	Ignitability
Aqueous/Solid	EPA 1630	CVAFS	Methyl Mercury
Aqueous/Solid	EPA 314.0	IC	Perchlorate
Aqueous/Solid	EPA 350.1	Colorimetry	Ammonia
Aqueous/Solid	EPA 365.3	Colorimetry	Total Phosphorus
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluorobutane sulfonate
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluorobutanoic acid
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluorodecane Sulfonate
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluorodecanoic acid
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluorododecanoic acid
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluoroheptanoic acid
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluorohexane sulfonate
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluorohexanoic acid
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluorononanoic acid
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluorooctane sulfonate
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluorooctanoic acid
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluoropentanoic acid
Aqueous/Solid	EPA 537 MOD	HPLC/MS/MS	Perfluoroundecanoic acid
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Aluminum
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Antimony
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Arsenic
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Barium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Beryllium

ALS Environmental-Kelso

1317 South 13th Avenue, Kelso, WA 98626 Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Boron
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Cadmium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Calcium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Chromium, total
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Cobalt
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Copper
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Iron
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Lead
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Magnesium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Manganese
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Molybdenum
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Nickel
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Potassium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Selenium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Silver
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Sodium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Strontium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Thallium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Tin
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Titanium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Vanadium
Aqueous/Solid	EPA 6010B, C/200.7	ICP	Zinc
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Aluminum
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Antimony
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Arsenic
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Barium
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Beryllium
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Boron
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Cadmium
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Chromium, total
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Cobalt
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Copper
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Iron
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Lead
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Manganese
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Molybdenum
Issue 02/2016	This supplement	nt is in conjunction with c	certificate #L16-58-R3 Page 17 of 29

> **ALS Environmental-Kelso** 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Nickel
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Selenium
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Silver
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Strontium
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Thallium
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Tin
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Titanium
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Vanadium
Aqueous/Solid	EPA 6020, A/200.8	ICP-MS	Zinc
Aqueous/Solid	EPA 6850	HPLC/MS/MS	Perchlorate
Aqueous/Solid	EPA 7742	AA, Borohydride Reduction; GFAA	Selenium
Aqueous/Solid	EPA 8011	GC-ECD	Ethylene Dibromide
Aqueous/Solid	EPA 8011	GC-ECD	1,2-Dibrom-3-chloropropane
Aqueous/Solid	EPA 8015C/AK103- RRO	GC-FID	Residual Range Organics (RRO)
Aqueous/Solid	EPA 8015C; AK101- GRO; NWTPH-Gx	GC-FID	Gasoline Range Organics (GRO)
Aqueous/Solid	EPA 8015C; AK102- DRO; NWTPH-Dx	GC-FID	Diesel Range Organics (DRO)
Aqueous/Solid	EPA 8081A, B	GC-ECD	Aldrin
Aqueous/Solid	EPA 8081A, B	GC-ECD	Alpha-BHC
Aqueous/Solid	EPA 8081A, B	GC-ECD	alpha-Chlordane
Aqueous/Solid	EPA 8081A, B	GC-ECD	Chlordane (total)
Aqueous/Solid	EPA 8081A, B	GC-ECD	DDD (4,4)
Aqueous/Solid	EPA 8081A, B	GC-ECD	DDE (4,4)
Aqueous/Solid	EPA 8081A, B	GC-ECD	DDT (4,4)
Aqueous/Solid	EPA 8081A, B	GC-ECD	delta-BHC
Aqueous/Solid	EPA 8081A, B	GC-ECD	Dieldrin
Aqueous/Solid	EPA 8081A, B	GC-ECD	Endosulfan I
Aqueous/Solid	EPA 8081A, B	GC-ECD	Endosulfan II
Aqueous/Solid	EPA 8081A, B	GC-ECD	Endosulfan sulfate
Aqueous/Solid	EPA 8081A, B	GC-ECD	Endrin
Aqueous/Solid	EPA 8081A, B	GC-ECD	Endrin aldehyde
Aqueous/Solid	EPA 8081A, B	GC-ECD	Endrin ketone
Aqueous/Solid	EPA 8081A, B	GC-ECD	gamma-BHC
Aqueous/Solid	EPA 8081A, B	GC-ECD	gamma-Chlordane

Issue 02/2016

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Aqueous/Solid	EPA 8081A, B	GC-ECD	Heptachlor
Aqueous/Solid	EPA 8081A, B	GC-ECD	Heptachlor Epoxide (beta)
Aqueous/Solid	EPA 8081A, B	GC-ECD	Methoxychlor
Aqueous/Solid	EPA 8081A, B	GC-ECD	Toxaphene (total)
Aqueous/Solid	EPA 8081B	GC-ECD	2,4-DDD
Aqueous/Solid	EPA 8081B	GC-ECD	2,4-DDE
Aqueous/Solid	EPA 8081B	GC-ECD	2,4-DDT
Aqueous/Solid	EPA 8081B	GC-ECD	Chlorpyrifos
Aqueous/Solid	EPA 8081B	GC-ECD	cis-Nonachlor
Aqueous/Solid	EPA 8081B	GC-ECD	Hexachlorobenzene
Aqueous/Solid	EPA 8081B	GC-ECD	Hexachlorobutadiene
Aqueous/Solid	EPA 8081B	GC-ECD	Hexachloroethane
Aqueous/Solid	EPA 8081B	GC-ECD	Isodrin
Aqueous/Solid	EPA 8081B	GC-ECD	Mirex
Aqueous/Solid	EPA 8081B	GC-ECD	Oxychlordane
Aqueous/Solid	EPA 8081B	GC-ECD	trans-Nonachlor
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl (PCB 206)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,3',4,4',5,6-Octachlorobiphenyl (PCB 195)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,3',4,4',5,5',6,6' Decachlorobiphenyl (PCB 209)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB 170)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,3',4,4'-Hexachlorobiphenyl (PCB 128)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB 180)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,4,4',5',6-Heptachlorobiphenyl (PCB 183)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,4,4',5'-Hexachlorobiphenyl (PCB 138)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,4,4',6,6'-Heptachlorobiphenyl (PCB 184)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB 187)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,4,5'-Pentachlorobiphenyl (PCB 87)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,4',5-Pentachlorobiphenyl (PCB 90)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',3,5'-Tetrachlorobiphenyl (PCB 44)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',4,4',5,5'-Hexachlorobiphenyl (PCB 153)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',4,5,5'-Pentachlorobiphenyl (PCB 101)

Issue 02/2016

This supplement is in conjunction with certificate #L16-58-R3

Page 19 of 29

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',5,6'-Tetrachlorbiphenyl (PCB 53)
Aqueous/Solid	EPA 8082A	GC-ECD	2,2',5-Trichlorobiphenyl (PCB 18)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB 189)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3,3',4,4',5-Hexachlorobiphenyl (PCB 156)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3,3',4,4',5'-Hexachlorobiphenyl (PCB 157)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3,3',4,4',6-Hexachlorobiphenyl (PCB 158)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3,3',4,4'-Pentachlorobiphenyl (PCB 105)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3',4,4',5,5' Hexachlorobiphenyl (PCB 167)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3',4,4',5',6-Hexachlorobiphenyl (PCB 168)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3,4,4',5-Pentachlorobiphenyl (PCB 114)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3',4,4',5-Pentachlorobiphenyl (PCB 118)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3',4,4',5-Pentachlorobiphenyl (PCB 123)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3,4,4'-Tetrachlorobiphenyl (PCB 60)
Aqueous/Solid	EPA 8082A	GC-ECD	2,3',4,4'-Tetrachlorobiphenyl (PCB 66)
Aqueous/Solid	EPA 8082A	GC-ECD	2,4,4'-Trichlorobiphenyl (PCB 28)
Aqueous/Solid	EPA 8082A	GC-ECD	2,4'-Dichlorobiphenyl (PCB 8)
Aqueous/Solid	EPA 8082A	GC-ECD	3,3',4,4',5,5'-Hexachlorobiphenyl (PCB 169)
Aqueous/Solid	EPA 8082A	GC-ECD	3,3',4,4',5-Pentachlorobiphenyl (PCB 126)
Aqueous/Solid	EPA 8082A	GC-ECD	3,3',4,4'-Tetrachlorobiphenyl (PCB 77)
Aqueous/Solid	EPA 8082A	GC-ECD	3,4,4',5-Tetrachlorobiphenyl (PCB 81)
Aqueous/Solid	EPA 8082A	GC-ECD	Aroclor 1016
Aqueous/Solid	EPA 8082A	GC-ECD	Aroclor 1221
Aqueous/Solid	EPA 8082A	GC-ECD	Aroclor 1232
Aqueous/Solid	EPA 8082A	GC-ECD	Aroclor 1242
Aqueous/Solid	EPA 8082A	GC-ECD	Aroclor 1248
Aqueous/Solid	EPA 8082A	GC-ECD	Aroclor 1254
Aqueous/Solid	EPA 8082A	GC-ECD	Aroclor 1260
Aqueous/Solid	EPA 8082A	GC-ECD	Aroclor 1262
Aqueous/Solid	EPA 8082A	GC-ECD	Aroclor 1268
Aqueous/Solid	EPA 8151A	GC-ECD	2,4,5-T
Aqueous/Solid	EPA 8151A	GC-ECD	2,4,5-TP (Silvex)
Aqueous/Solid	EPA 8151A	GC-ECD	2,4-D
Aqueous/Solid	EPA 8151A	GC-ECD	2,4-DB
Aqueous/Solid	EPA 8151A	GC-ECD	Dalapon
Aqueous/Solid	EPA 8151A	GC-ECD	Dicamba

Issue 02/2016

This supplement is in conjunction with certificate #L16-58-R3

Page 20 of 29

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte
Aqueous/Solid	EPA 8151A	GC-ECD	Dichloroprop
Aqueous/Solid	EPA 8151A	GC-ECD	Dinoseb
Aqueous/Solid	EPA 8151A	GC-ECD	МСРА
Aqueous/Solid	EPA 8151A	GC-ECD	МСРР
Aqueous/Solid	EPA 8260B, C	GC-MS	1,1,1,2-Tetrachloroethane
Aqueous/Solid	EPA 8260B, C	GC-MS	1,1,1-Trichloroethane
Aqueous/Solid	EPA 8260B, C	GC-MS	1,1,2,2-Tetrachloroethane
Aqueous/Solid	EPA 8260B, C	GC-MS	1,1,2-Trichloroethane
Aqueous/Solid	EPA 8260B, C	GC-MS	1,1-Dichloroethane
Aqueous/Solid	EPA 8260B, C	GC-MS	1,2-Dibromoethane
Aqueous/Solid	EPA 8260B, C	GC-MS	1,2-Dichlorobenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	1,2-Dichloroethane
Aqueous/Solid	EPA 8260B, C	GC-MS	1,2-Dichloropropane
Aqueous/Solid	EPA 8260B, C	GC-MS	1,3,5-Trimethylbenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	1,3-Dichlorobenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	1,3-Dichloropropane
Aqueous/Solid	EPA 8260B, C	GC-MS	1,4-Dichlorobenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	1-phenylpropane
Aqueous/Solid	EPA 8260B, C	GC-MS	2,2-Dichloropropane
Aqueous/Solid	EPA 8260B, C	GC-MS	2-Butanone (MEK)
Aqueous/Solid	EPA 8260B, C	GC-MS	2-Chloroethylvinylether
Aqueous/Solid	EPA 8260B, C	GC-MS	2-Chlorotoluene
Aqueous/Solid	EPA 8260B, C	GC-MS	2-Hexanone
Aqueous/Solid	EPA 8260B, C	GC-MS	4-Chlorotoluene
Aqueous/Solid	EPA 8260B, C	GC-MS	4-Isopropyltoluene
Aqueous/Solid	EPA 8260B, C	GC-MS	4-Methyl-2-pentanone (MIBK)
Aqueous/Solid	EPA 8260B, C	GC-MS	Acetone
Aqueous/Solid	EPA 8260B, C	GC-MS	Acetonitrile
Aqueous/Solid	EPA 8260B, C	GC-MS	Acrolein
Aqueous/Solid	EPA 8260B, C	GC-MS	Acrylonitrile
Aqueous/Solid	EPA 8260B, C	GC-MS	Benzene
Aqueous/Solid	EPA 8260B, C	GC-MS	Bromobenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	Bromochloromethane
Aqueous/Solid	EPA 8260B, C	GC-MS	Bromodichloromethane
Aqueous/Solid	EPA 8260B, C	GC-MS	Bromoform
Aqueous/Solid	EPA 8260B, C	GC-MS	Bromomethane

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte
Aqueous/Solid	EPA 8260B, C	GC-MS	Carbon disulfide
Aqueous/Solid	EPA 8260B, C	GC-MS	Carbon Tetrachloride
Aqueous/Solid	EPA 8260B, C	GC-MS	Chlorobenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	Chlorodibromomethane
Aqueous/Solid	EPA 8260B, C	GC-MS	Chloroethane
Aqueous/Solid	EPA 8260B, C	GC-MS	Chloroform
Aqueous/Solid	EPA 8260B, C	GC-MS	Chloromethane
Aqueous/Solid	EPA 8260B, C	GC-MS	cis-1,2-Dichloroethene
Aqueous/Solid	EPA 8260B, C	GC-MS	cis-1,3-Dichloropropene
Aqueous/Solid	EPA 8260B, C	GC-MS	Dibromomethane
Aqueous/Solid	EPA 8260B, C	GC-MS	Dichlorodifluoromethane
Aqueous/Solid	EPA 8260B, C	GC-MS	Dichloromethane (Methylene Chloride)
Aqueous/Solid	EPA 8260B, C	GC-MS	Di-isopropylether (DIPE)
Aqueous/Solid	EPA 8260B, C	GC-MS	DIPE
Aqueous/Solid	EPA 8260B, C	GC-MS	ETBE
Aqueous/Solid	EPA 8260B, C	GC-MS	Ethyl Benzene
Aqueous/Solid	EPA 8260B, C	GC-MS	Ethylbenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	Freon 11
Aqueous/Solid	EPA 8260B, C	GC-MS	Freon 113
Aqueous/Solid	EPA 8260B, C	GC-MS	Hexachlorobutadiene
Aqueous/Solid	EPA 8260B, C	GC-MS	Isopropylbenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	Methyl-tert-butylether (MTBE)
Aqueous/Solid	EPA 8260B, C	GC-MS	Naphthalene
Aqueous/Solid	EPA 8260B, C	GC-MS	n-Butylbenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	n-Propylbenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	sec-Butylbenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	Styrene
Aqueous/Solid	EPA 8260B, C	GC-MS	tert-amylmethylether (TAME)
Aqueous/Solid	EPA 8260B, C	GC-MS	tert-Butyl alcohol
Aqueous/Solid	EPA 8260B, C	GC-MS	tert-butylbenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	Tetrachloroethene
Aqueous/Solid	EPA 8260B, C	GC-MS	Toluene
Aqueous/Solid	EPA 8260B, C	GC-MS	trans-1,2-Dichloroethene
Aqueous/Solid	EPA 8260B, C	GC-MS	trans-1,3-Dichloropropene
Aqueous/Solid	EPA 8260B, C	GC-MS	Trichloroethene
Aqueous/Solid	EPA 8260B, C	GC-MS	Trichlorofluoromethane (Freon 11)

> **ALS Environmental-Kelso** 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte
Aqueous/Solid	EPA 8260B, C	GC-MS	Vinyl acetate
Aqueous/Solid	EPA 8260B, C	GC-MS	Vinyl chloride
Aqueous/Solid	EPA 8260B, C	GC-MS	Xylene, total
Aqueous/Solid	EPA 8260B, C	GC-MS	1,1-Dichloroethene
Aqueous/Solid	EPA 8260B, C	GC-MS	1,1-Dichloropropene
Aqueous/Solid	EPA 8260B, C	GC-MS	1,2,3-Trichlorobenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	1,2,3-Trichloropropane
Aqueous/Solid	EPA 8260B, C	GC-MS	1,2,4-Trichlorobenzene
Aqueous/Solid	EPA 8260B, C	GC-MS	1,2,4-Trimethylbenzene
Aqueous/Solid	EPA 8270C, D	GC-MS	1,2,4-Trichlorobenzene
Aqueous/Solid	EPA 8270C, D	GC-MS	1,2-Dichlorobenzene
Aqueous/Solid	EPA 8270C, D	GC-MS	1,3-Dichlorobenzene
Aqueous/Solid	EPA 8270C, D	GC-MS	1,4-Dichlorobenzene
Aqueous/Solid	EPA 8270C, D	GC-MS	2,4,5-Trichlorophenol
Aqueous/Solid	EPA 8270C, D	GC-MS	2,4,6-Trichlorophenol
Aqueous/Solid	EPA 8270C, D	GC-MS	2,4-Dichlorophenol
Aqueous/Solid	EPA 8270C, D	GC-MS	2,4-Dimethylphenol
Aqueous/Solid	EPA 8270C, D	GC-MS	2,4-Dinitrophenol
Aqueous/Solid	EPA 8270C, D	GC-MS	2,4-Dinitrotoluene
Aqueous/Solid	EPA 8270C, D	GC-MS	2,6-Dinitrotoluene
Aqueous/Solid	EPA 8270C, D	GC-MS	2-Chloronaphthalene
Aqueous/Solid	EPA 8270C, D	GC-MS	2-Chlorophenol
Aqueous/Solid	EPA 8270C, D	GC-MS	2-Methyl-4,6-Dinitrophenol
Aqueous/Solid	EPA 8270C, D	GC-MS	2-Methylnaphthalene
Aqueous/Solid	EPA 8270C, D	GC-MS	2-Methylphenol
Aqueous/Solid	EPA 8270C, D	GC-MS	2-Nitroaniline
Aqueous/Solid	EPA 8270C, D	GC-MS	2-Nitrophenol
Aqueous/Solid	EPA 8270C, D	GC-MS	3,3-Dichlorobenzidine
Aqueous/Solid	EPA 8270C, D	GC-MS	3-Nitroaniline
Aqueous/Solid	EPA 8270C, D	GC-MS	4-Bromophenyl-phenylether
Aqueous/Solid	EPA 8270C, D	GC-MS	4-Chloro-3-methylphenol
Aqueous/Solid	EPA 8270C, D	GC-MS	4-Chloroaniline
Aqueous/Solid	EPA 8270C, D	GC-MS	4-Chlorophenyl-phenylether
Aqueous/Solid	EPA 8270C, D	GC-MS	4-Methylphenol (and/or 3-Methylphenol)
Aqueous/Solid	EPA 8270C, D	GC-MS	4-Nitroaniline
Aqueous/Solid	EPA 8270C, D	GC-MS	4-Nitrophenol

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte		
Aqueous/Solid	EPA 8270C, D	GC-MS	Acenaphthene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Acenaphthylene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Aniline		
Aqueous/Solid	EPA 8270C, D	GC-MS	Anthracene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Benzidine		
Aqueous/Solid	EPA 8270C, D	GC-MS	Benzo(a)anthracene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Benzo(a)pyrene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Benzo(b)fluoranthene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Benzo(g,h,i)perylene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Benzo(k)fluoranthene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Benzoic acid		
Aqueous/Solid	EPA 8270C, D	GC-MS	Benzyl alcohol		
Aqueous/Solid	EPA 8270C, D	GC-MS	bis(2-Chloroethoxy)methane		
Aqueous/Solid	EPA 8270C, D	GC-MS	bis(2-Chloroethyl)ether		
Aqueous/Solid	EPA 8270C, D	GC-MS	bis(2-Chloroisopropyl)ether		
Aqueous/Solid	EPA 8270C, D	GC-MS	bis(2-ethylhexy)phthalate		
Aqueous/Solid	EPA 8270C, D	GC-MS	Butyl benzyl phthalate		
Aqueous/Solid	EPA 8270C, D	GC-MS	Carbazole		
Aqueous/Solid	EPA 8270C, D	GC-MS	Chrysene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Dibenzo(a,h)anthracene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Dibenzofuran		
Aqueous/Solid	EPA 8270C, D	GC-MS	Diethyl phthalate		
Aqueous/Solid	EPA 8270C, D	GC-MS	Dimethylphthalate		
Aqueous/Solid	EPA 8270C, D	GC-MS	di-n-butylphthalate		
Aqueous/Solid	EPA 8270C, D	GC-MS	Di-n-octylphthalate		
Aqueous/Solid	EPA 8270C, D	GC-MS	Fluoranthene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Fluorene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Hexachlorobenzene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Hexachlorobutadiene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Hexachlorocyclopentadiene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Hexachloroethane		
Aqueous/Solid	EPA 8270C, D	GC-MS	Indeno(1,2,3, cd)pyrene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Isophorone		
Aqueous/Solid	EPA 8270C, D	GC-MS	Naphthalene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Nitrobenzene		
Aqueous/Solid	EPA 8270C, D	GC-MS	N-Nitrosodimethylamine		

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte		
Aqueous/Solid	EPA 8270C, D	GC-MS	N-Nitroso-di-n-propylamine		
Aqueous/Solid	EPA 8270C, D	GC-MS	N-Nitrosodiphenylamine		
Aqueous/Solid	EPA 8270C, D	GC-MS	Pentachlorobenzene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Pentachlorophenol		
Aqueous/Solid	EPA 8270C, D	GC-MS	Phenanthrene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Phenol		
Aqueous/Solid	EPA 8270C, D	GC-MS	Pyrene		
Aqueous/Solid	EPA 8270C, D	GC-MS	Pyridine		
Aqueous/Solid	EPA 8270C, D	GC-MS	2,3,4,6-Tetrachlorophenol		
Aqueous/Solid	EPA 8270C,D	GC-MS	1,2,4,5-Tetrachlorobenzene		
Aqueous/Solid	EPA 8270D	GC-MS	1- Methylnaphthalene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	2-Methylnaphthalene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Acenaphthene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Acenaphthylene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Anthracene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Benzo(a)anthracene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Benzo(a)pyrene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Benzo(b)fluoranthene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Benzo(g,h,i)perylene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Benzo(k)fluoranthene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Chrysene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Dibenzo(a,h)anthracene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Fluoranthene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Fluorene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Indeno(1,2,3, cd)pyrene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Naphthalene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 100		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 128		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 138		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 153		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 154		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 17		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 183		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 190		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 203		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 206		

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 209		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 28		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 47		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 66		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 71		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 85		
Aqueous/Solid	EPA 8270 SIM	GC-MS	PBDE 99		
Aqueous/Solid	EPA 8270 SIM	GC-MS	p-Dioxane		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Phenanthrene		
Aqueous/Solid	EPA 8270 SIM	GC-MS	Pyrene		
Aqueous/Solid	EPA 8330B	HPLC	1,3,5-Trinitrobenzene		
Aqueous/Solid	EPA 8330B	HPLC	1,3-Dinitrobenzene		
Aqueous/Solid	EPA 8330B	HPLC	2,4,6-Trinitrotoluene		
Aqueous/Solid	EPA 8330B	HPLC	2,4-Dinitrotoluene		
Aqueous/Solid	EPA 8330B	HPLC	2,6-Dinitrotoluene		
Aqueous/Solid	EPA 8330B	HPLC	2-Amino-4,6-dinitrotoluene		
Aqueous/Solid	EPA 8330B	HPLC	2-Nitrotoluene		
Aqueous/Solid	EPA 8330B	HPLC	3,5-Dinitroaniline		
Aqueous/Solid	EPA 8330B	HPLC	3-Nitrotoluene		
Aqueous/Solid	EPA 8330B	HPLC	4-Amino-2,6-dinitrotoluene		
Aqueous/Solid	EPA 8330B	HPLC	4-Nitrotoluene		
Aqueous/Solid	EPA 8330B	HPLC	HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)		
Aqueous/Solid	EPA 8330B	HPLC	Nitrobenzene		
Aqueous/Solid	EPA 8330B	HPLC	Nitroglycerin		
Aqueous/Solid	EPA 8330B	HPLC	Pentachloronitrobenzene		
Aqueous/Solid	EPA 8330B	HPLC	Pentaerythritoltetranitrate		
Aqueous/Solid	EPA 8330B	HPLC	RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)		
Aqueous/Solid	EPA 8330B	HPLC	Tetryl (methyl-2,4,6-trinitrophenylnitramine)		
Aqueous/Solid	EPA 9012B	Colorimetry	Total Cyanide		
Aqueous/Solid	EPA 9030B	Distillation	Sulfide		
Aqueous/Solid	EPA 9056A	IC	Bromide		
Aqueous/Solid	EPA 9056A	IC	Chloride		
Aqueous/Solid	EPA 9056A	IC	Fluoride		
Aqueous/Solid	EPA 9056A	IC	Sulfate		
Aqueous/Solid	EPA 9065	Spectrophotometer	Total Phenolics		

Issue 02/2016

This supplement is in conjunction with certificate #L16-58-R3

Page 26 of 29

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte		
Aqueous/Solid	LCP-NITG	HPLC/UV	Nitroguanidine		
Aqueous/Solid	NWTPH-Dx	GC-FID	Residual Range Organics		
Aqueous/Solid	OPPMS2	GC/MS/MS	Azinphos-methyl (Guthion)		
Aqueous/Solid	OPPMS2	GC/MS/MS	Chlorpyrifos		
Aqueous/Solid	OPPMS2	GC/MS/MS	Demeton O & S		
Aqueous/Solid	OPPMS2	GC/MS/MS	Diazinon		
Aqueous/Solid	OPPMS2	GC/MS/MS	Dichlorvos		
Aqueous/Solid	OPPMS2	GC/MS/MS	dimethoate		
Aqueous/Solid	OPPMS2	GC/MS/MS	Disulfoton		
Aqueous/Solid	OPPMS2	GC/MS/MS	Ethoprop		
Aqueous/Solid	OPPMS2	GC/MS/MS	Parathion, ethyl		
Aqueous/Solid	OPPMS2	GC/MS/MS	Parathion, methyl		
Aqueous/Solid	OPPMS2	GC/MS/MS	Phorate		
Aqueous/Solid	OPPMS2	GC/MS/MS	Ronnel		
Aqueous/Solid	OPPMS2	GC/MS/MS	Stirophos		
Aqueous/Solid	OPPMS2	GC/MS/MS	Sulfotepp		
Aqueous/Solid	SM4500 NH3 G	Colorimetry	Ammonia		
Aqueous/Solid	SOC-Butyl	GC-FPD	Di-n-butyltin		
Aqueous/Solid	SOC-Butyl	GC-FPD	n-Butyltin		
Aqueous/Solid	SOC-Butyl	GC-FPD	Tetra-n-butyltin		
Aqueous/Solid	SOC-Butyl	GC-FPD	Tri-n-butyltin		
Aqueous/Solid	SOC-OTTO	GC-ECD	Otto Fuel		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Aldrin		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Alpha-BHC		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	beta-BHC		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	DDD (4,4)		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	DDE (4,4)		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	DDT (4,4)		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	delta-BHC		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Dieldrin		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Endosulfan I		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Endosulfan II		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Endosulfan sulfate		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Endrin		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Endrin aldehyde		
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Endrin ketone		
Issue 02/2016	This sunnlemen	t is in conjunction with o	certificate #L16-58-R3 Page 27 of 29		

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626 Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	gamma-BHC
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Heptachlor
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Heptachlor Epoxide (beta)
Aqueous/Solid	SOC-PESTMS2	GC/MS/MS/MS	Methoxychlor
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluorobutane sulfonate
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluorobutanoic acid
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluorodecane Sulfonate
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluorodecanoic acid
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluorododecanoic acid
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluoroheptanoic acid
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluorohexane sulfonate
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluorohexanoic acid
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluorononanoic acid
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluorooctane sulfonate
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluorooctanoic acid
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluoropentanoic acid
Aqueous/Solid	SOP-LCP-PFC	HPLC/MS/MS	Perfluoroundecanoic acid

> ALS Environmental-Kelso 1317 South 13th Avenue, Kelso, WA 98626

Contact Name: Carl Degner Phone: 360-577-7222

Matrix	Standard/Method	Technology	Analyte
Aqueous	EPA 1640	Reductive Metals Precipitation	Prep Method
Aqueous	EPA 3010A	Acid Digestion	Metals Digestion
Aqueous	EPA 3020A	Acid Digestion	Metals Digestion
Aqueous	EPA 3511	Microextraction	Extractable Prep
Aqueous	EPA 3520C	Continuous Liquid- Liquid Extraction	Extractable Prep
Aqueous	EPA 3535A	Solid Phase Extraction	Prep Method
Aqueous	EPA 5030B	Purge and Trap	Volatile Prep
Aqueous	SOP-MET-DIG	Acid Digestion	Metals Digestion
Solid	EPA 3050B	Acid Digestion	Metals Digestion
Solid	EPA 3060	Alkaline Digestion	Alkaline Digestion for Cr(VI) only
Solid	EPA 3541	Automated Soxhlet Extraction	Extractable Prep
Solid	EPA 3546	Microwave Extraction	Extractable Prep
Solid	EPA 3550B	Ultrasonic Extraction	Extractable Prep
Solid	EPA 5035A	Purge and Trap	Voc Organics
Solid	EPA 5050	Bomb Digestion	Prep Method
Solid	EPA 9013	Midi-Distillation	Cyanides
Solid	SOP-GEN-AVS	Acid Digestion	Simultaneously Extracted Metals
Aqueous/Solids	ASTM D3590-89	Digestion	TKN
Aqueous/Solids	EPA 1311	TCLP Extraction	Physical Extraction
Aqueous/Solids	EPA 3620C	Florisil Clean Up	Extractable Cleanup
Aqueous/Solids	EPA 3630C	Silica Gel Clean Up	Extractable Prep
Aqueous/Solids	EPA 3640A	Gel-Permeation Clean Up	Extractable Cleanup
Aqueous/Solids	EPA 3660	Sulfur Clean Up	Extractable Prep
Aqueous/Solids	EPA 3665A	Acid Clean Up	Extractable Cleanup

METHOD	ANALYTE	CAS No.	MATRIX	MDLa	LODb	LOQc	UNITS
537 Mod	Perfluorobutanoic acid (PFBA)	375-22-4	Water	0.57	2	10	ng/L
537 Mod	Perfluoropentanoic acid (PFPeA)	2706-90-3	Water	0.31	1.2	5.0	ng/L
537 Mod	Perfluorobutane sulfonic acid (PFBS)	375-73-5	Water	0.41	1.2	5.0	ng/L
537 Mod	Perfluorohexanoic acid (PFHxA)	307-24-4	Water	0.89	2.4	5.0	ng/L
537 Mod	Perfluoroheptanoic acid (PFHpA)	375-85-9	Water	0.31	1.2	5.0	ng/L
537 Mod	Perfluorohexane sulfonic acid (PFHxS)	355-46-4	Water	0.35	1.2	5.0	ng/L
537 Mod	Perfluorooctanoic acid (PFOA)	335-67-1	Water	0.27	0.8	5.0	ng/L
537 Mod	Perfluorononanoic acid (PFNA)	375-95-1	Water	0.51	1.2	5.0	ng/L
537 Mod	Perfluorooctane sulfonic acid (PFOS)	1763-23-1	Water	0.60	1.2	5.0	ng/L
537 Mod	Perfluorodecanoic acid (PFDA)	335-76-2	Water	0.46	1.2	5.0	ng/L
537 Mod	Perfluoroundecanoic acid (PFUnDA)	2058-94-8	Water	0.60	1.2	5.0	ng/L
537 Mod	Perfluorodecane sulfonic acid (PFDS)	335-77-3	Water	0.58	1.2	5.0	ng/L
537 Mod	Perfluorododecanoic acid (PFDoDA)	307-55-1	Water	0.53	1.2	5.0	ng/L
537 Mod	Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	Water	0.49	1.2	5.0	ng/L
537 Mod	Perfluorooctanesulfonamide (FOSA)	754-91-6	Water	0.70	2.4	5.0	ng/L
537 Mod	N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	Water	0.56	1.2	5.0	ng/L
537 Mod	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	Water	0.79	2.4	5.0	ng/L
537 Mod	Perfluorotridecanoic acid (PFTrDA)	72629-94-8	Water	0.24	0.8	5.0	ng/L
537 Mod	Perfluorotetradecanoic acid (PFTeDA)	376-06-7	Water	0.44	1.2	5.0	ng/L
537 Mod	N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	Water	0.86	2.4	5.0	ng/L
537 Mod	N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	Water	0.70	2.4	5.0	ng/L
537 Mod	N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	Water	TBD	TBD	5.0	ng/L
537 Mod	N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	Water	TBD	TBD	5.0	ng/L
537 Mod	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	Water	0.72	2.4	5.0	ng/L
537 Mod	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	Water	1.1	2.4	5.0	ng/L

APPENDIX D. ALS DETECTION AND QUANTITATION LIMITS

FIELD FORMS

APPENDIX B

Page <u>1</u> of <u>2</u>

FIELD ACTIVITY LOG

FWHH frondwater Site Name: Date: 25 1035:5414 Cleas winde -7 Site Project No .: Weather: Morford miles 18.4 Se Field Staff: POV Mileage: mMI lican Gadner e Blader Controller HDPE IF Pump Geotecil Equipment Usage: water to teet READER leve Dorameto Meter SI DSS water Pro PILKUD ICE 0830: office Feda 0900: Bottle lea Ore 09201 WADE rrive Me FWHH 0920 FH-02 rive a 1000 Work a 1220: 0 amD time 0 as Con 100 FH-02 Sandle Clean up> 1230: + Decon 1305! -H-02 Pave 1315! Winds pickup out of MW-06 rive Smpt -NW Smph Gu Purge 1350: Co MW-06 14:40 410: RR 0 pe-A 0 IN anti 515! -eave 47-OL 08 117 535 NUR Winds sust 16 W-0: on PAAND. Base eave 1805:

0945

Page 2 of 2

TETRA TECH EM INC.

FIELD ACTIVITY LOG (CONTINUED)

APDITIONAL WATER LEVEL DATA 1 mon 17. 25, 10 MW-05 31 79 MW-07 W-10 N MW-02 Ft -2

MONITORING WELL/GROUNDWATER SAMPLING SHEET

Monitoring Well No.: Project Name: Sampler: Depth to Well Bottom: Depth to Water: Water Column: Well Diameter: Immiscible Layers (Y/N):	$\frac{FH-02}{FWHH Ground water}$ $\frac{FWHH Ground water}{S. Morford}$ $\frac{FO-56.09}{FO} ft$ $\frac{12.02}{ft}$ $\frac{14.02}{It}$ in W Well Vol	2-inch well = wa 3-inch well = wa 4-inch well = wa	$\frac{10/25/17}{1035541}$ ther column (ft) x 0.0 ther column (ft) x 0.1 ther column (ft) x 0.3 ther column (ft) x 0.6 2.285	63 gal/ft 67 gal/ft 53 gal/ft	
Time Vol. Purged (U 1105 21 1120 9.5 1135 17.0 1145 220.0 1152 25.5 1155 27.0 1200 29.5 1200 29.5 1205 - 1215 - 1215 - 1220 39.5) Water Conductivity Level PH (prmhos/cm) 17,79 964 $HS/c7,61$ 955 * 150 948 * 150 948 * 150 948 * 151 12.89 $Hs/c151$ 12.89 $Hs/c151$ 12.88151 12.88151 12.88151 12.88151 12.89151 12.89151 12.89151 12.89151 12.89152 12.89152 $12.907,52$ 12.89	$\begin{array}{c} \text{Temperature} \\ \hline (C)F) \\ \hline \\ 11.6 \\ 11.3 \\ 11.2 \\ 11.2 \\ 11.3 \\ 11.4 \\ 11.4 \\ 11.6 \\ 11.8 \\ 11.9 \\ 11.9 \\ 11.9 \\ 12.0 \end{array}$	Turbidity NTU 40, 2 7, 3 2.1 -0, 7 -1.0 -1.1 -1.2 -0.3 -0, 3 -0, 7 -0, 7	DO mg/L 8,14 8,06 8,00 8,00 8,00 8,00 8,00 7,98 8,00 7,99	ORP mV
	220 Purged Dry (y/n)?	How Measured?	adder	Bailer (specify Cef t Tu	
Date and Time of Sample Collected <u>Comments:</u> 2, 285 <u>K</u> Conducts <u>Hiere of</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u>	26 gal = 10.389 L uny reported first offer duplicate. Fur collection time n fime 1220,	3 peac H-Rupi	$\frac{\text{Casings}}{\text{E}} = 2017 \text{K}$	31.22 Decific 025, COC.	Conduction Actual

MONITORING WELL/GROUNDWATER SAMPLING SHEET

Monitoring Well No.: Project Name: Sampler: Depth to Well Bottom: Depth to Water: Water Column: Well Diameter: Immiscible Layers (Y/N):	MW-06 FWHH Grow S. Molfor 38:17 28.88 9.29 2	ft ft ft ft well Volu	2-inch well = w 3-inch well = w 4-inch well = w	$\frac{10/25/17}{103554}$ ater column (ft) x 0.0 ater column (ft) x 0.1 ater column (ft) x 0.3 ater column (ft) x 0.6 51427	041 gal/ft 63 gal/ft 867 gal/ft	
Time Vol. Purged (V) 1400 51 1405 74.5 1417 15.0 L 1475 15.0 L 1475 20 L 1430 20 L 1430 251	Water Level pH 7.49 7.49 7.49 7.49 7.49 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45	Speerfu Conductivity (Mmhos/cm) HGC 1016 HS/cm 1013 1016 1016 1016 1017 1024 1023 1027 1025	Temperature (°C)°F) 12.0 °C 11.7 11.6 11.6 11.6 11.6 11.7 11.8 11.8	Turbidity NTU 154.0 98.4 27.0 17.0 10.2 13.8 5.9 5.8 5.5	DO mg/L 6.69 6.68 6.68 6.69 6.69 6.69 6.69 6.62 6.31 6.28	OzPmV Other 38.4 13.7 13.7 13.7 13.7 13.7 13.9 13.9 13.9 13.9 13.9 13.9
Purge start time 1 Purge end time 1 Total Volume Purged: 1	356 Method of <u>140</u> Purged Dr 251		Pump (specify <u>HDPE</u> B How Measured?	ladber	Bailer (specify	type below)
QA/QC Sample Collected Here?	2 Duplicate] Matrix Spike	Equip. Blank	No QA/QC Sample		
Date and Time of Sample Coll <u>comments:</u> <u>Purge</u> <u>Collected</u> <u>FR</u> <u>Collected</u> <u>FR</u> <u>Collected</u> <u>FR</u> <u>Collected</u> <u>Took</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Collected</u> <u>Coll</u>	7 Gal=, 6.	0/25/17 8837L Mute Q 1440 (W 1505 PS Pt	Sample Number(7 _? FWHH_ _? FWHH- 066	s): FWHH 3 Casin F1213 - 2017 Pinsale - 2	<u>95 = 2</u>	20171025 0,6511L

MONITORING WELL/GROUNDWATER SAMPLING SHEET

Monitoring Well No.: Project Name: Sampler: Depth to Well Bottom: Depth to Water: Water Column: Well Diameter: Immiscible Layers (Y/N):	MW-08 <u>FWHH</u> Groundwater <u>S. Morford</u> <u>60,02</u> ft <u>38,21</u> ft <u>21,81</u> ft <u>2</u> in <u>N</u> Well Vo	Date: $\frac{10/2.5/17}{10355414}$ Project No.: 10355414 Well Volume: 1-inch well = water column (ft) x 0.041 gal/ft 2-inch well = water column (ft) x 0.163 gal/ft 3-inch well = water column (ft) x 0.367 gal/ft 4-inch well = water column (ft) x 0.653 gal/ft ume: 3.555503 gal	
Time Vol. Purged (1 1610 1625 14.6L 1625 25,4 1705 36,20 1710 1715 41.58 1720 1725 49.68	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccc} Temperature & Turbidity & DO & ORP m \\ \hline (^{CC/^{P}}) & NTU & mg/L & -Other- \\ \hline 11.6 & 24.1 & 8.76 & 44.1 \\ \hline 11.6 & 17.1 & 8.74 & 16.0 \\ \hline 11.4 & 18.2 & 8.75 & -12.2 \\ \hline 11.3 & 11.7 & 8.75 & 18.7 \\ \hline 11.3 & 8.8 & 8.76 & 16.5 \\ \hline 11.2 & 7.3 & 8.75 & 16.6 \\ \hline 11.2 & 5.8 & 8.75 & 17.5 \\ \hline 11.1 & 5.5 & 8.75 & 18.1 \\ \hline 11.1 & 5.4 & 8.76 & 23.8 \\ \hline \end{array}$	V
Purge start time Purge end time Total Volume Purged: QA/QC Sample Collected Here? Date and Time of Sample Coll <u>Comments:</u> 3.555 gc <u>Purge</u> <u>Took</u>	ection: $\frac{10/25/17}{17.30}$ 1 = 16.1615L = 7 Tate $0.54L/Min = 2$	Pump (specify type below) HDPE Bladder How Measured? Breket + timer Equip. Blank No QA/QC Sample Sample Number(s): $FWHH_MW-08_2017102$ Casings = 48.48L 90 minute purge Sin GPS) H.	25

APPENDIX C

ANALYTICAL REPORTS

- 1. TETRA TECH DATA VALIDATION SUMMARY
- 2. LEVEL II ANALYTICAL REPORT FROM TEST AMERICA
- 3. EDD FROM TEST AMERICA (ELECTRONIC ONLY)
- 4. VALIDATED DATA FROM TETRA TECH (ELECTRONIC ONLY)
- 5. LEVEL IV ANALYTICAL REPORT FROM TEST AMERICA (ELECTRONIC ONLY)

Site Name	Fort William Henry Harrison	Project No.	103Z5414		
Data Reviewer (signature and date)	Shanna Dariis November 7, 2017	Technical Reviewer (signature and date)	Jesáca A. Vickers November 7, 2017		
Laboratory Report No.	320-32756-1	Laboratory	TestAmerica/West Sacramento, California		
Analyses	Perfluorinated hydrocarbons by EPA Method 537				
Samples and Matrix	Six water samples, including a field duplicate, rinsate blank, and field reagent blank				
Field Duplicate Pairs	FWHH_FH-02_20171025/FWHH_DUPE_20171025				
Field Blanks	FWHH_RINSATE_20171025 and FWHH_FRB_20171025				

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Organic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No rejection of results was required for this data package. The results may be used as qualified based on the findings of this validation effort.

Data completeness:

Within Criteria	Exceedance/Notes
Y	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Y	

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
Y	

Initial Calibration:

Within Criteria	Exceedance/Notes
Y	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Y	

Calibration Verification:

Within Criteria	Exceedance/Notes
Y	

Method blanks:

Within Criteria	Exceedance/Notes
Y	

Field blanks:

Within Criteria	Exceedance/Notes
N	FWHH_RINSATE_20171025 contained perfluorobutanoic acid (PFBA), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS). For sample FWHH_MW06_20171025, the PFHxS result was qualified as estimated with a possible high bias (J+), and the PFOS result was raised to the LOQ and qualified as non-detect (U). No other qualifications were applied (associated sample results greater than ten times the blank values).

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
NA	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
Y	

MS/MSD:

Within Criteria	Exceedance/Notes
NA	Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate.

Post digestion spikes:

Within Criteria	Exceedance/Notes
NA	

Serial dilutions:

Within Criteria	Exceedance/Notes
NA	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
NA	

Field duplicates:

Within Criteria	Exceedance/Notes
Y	

LCSs/LCSDs:

With Criter	Exceedance/Notes
Y	

Sample dilutions:

Within Criteria	Exceedance/Notes
NA	

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within Criteria	Exceedance/Notes
Y	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Y	Several analytes were detected at concentrations above detection limits but below the LOQ. The laboratory qualified these results as estimated (J).

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Y	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
IJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

TestAmerica Job ID: 320-32756-1

TestAmerica Sample Delivery Group: FWHH Client Project/Site: FWHH Groundwater

For:

Tetra Tech, Inc. 825 West Custer Ave Helena, Montana 59602

Attn: Scott Morford

Authorized for release by: 11/6/2017 11:29:53 AM David Alltucker, Project Manager I (916)374-4383 david.alltucker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Isotope Dilution Summary	13
QC Sample Results	15
QC Association Summary	18
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

3

~~~~

Qualifier	Qualifier Description	
J	Estimated: The analyte was positively identified; the quantitation is an estimation	
U	Undetected at the Limit of Detection.	
М	Manual integrated compound.	
Glossary	V V	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
<u>¤</u>	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	1
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	1
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 320-32756-1

Laboratory: TestAmerica Sacramento

Narrative

Job Narrative 320-32756-1

Case Narrative

Receipt

The samples were received on 10/27/2017 10:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.9° C.

LCMS

Method(s) 537 (modified): The first level standard from the initial calibration curve is used to evaluate the tune criteria. The instrument mass windows are set at +/- 0.5amu; therefore, detection of the analyte serves as verification that the assigned mass is within +/- 0.5amu of the true value, which meets the DoD/DOE QSM tune criterion.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-191929.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: FWHH_FH-02_20171025

Lab Sample ID: 320-32756-1

5

Analyte	Result	Qualifier	LOQ	DL	Unit	Dil Fac	Method	Prep Type
Perfluorobutanoic acid (PFBA)	7.4	·· ·	1.5	0.27	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	13		3.1	0.44	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	4.5		1.5	0.19	ng/L	1	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	18		1.5	0.38	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	7.2	Μ	3.1	0.65	ng/L	1	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.58	J	1.5	0.21	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.7		1.5	0.23	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	16		1.5	0.23	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	9.4		3.1	0.41	ng/L	1	537 (modified)	Total/NA
6:2FTS	3.2	J	15	2.3	ng/L	1	537 (modified)	Total/NA

Client Sample ID: FWHH_MW-06_20171025

Lab Sample ID: 320-32756-2

Analyte	Result	Qualifier	LOQ	DL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	6.8		1.5	0.27	ng/L	1	_	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	2.2	J	3.1	0.44	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.4	J	1.5	0.19	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	2.4		1.5	0.37	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.6	JM	3.1	0.65	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.74	J	1.5	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.4		1.5	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.1	JM	3.1	0.41	ng/L	1		537 (modified)	Total/NA

Client Sample ID: FWHH_MW-08_20171025

Analyte Result Qualifier LOQ DL Unit Dil Fac D Method Prep Type Perfluorobutanoic acid (PFBA) 46 M 1.5 0.27 ng/L 537 (modified) Total/NA 1 Perfluorohexanoic acid (PFHxA) 120 0.45 ng/L 537 (modified) Total/NA 3.1 1 Perfluoroheptanoic acid (PFHpA) 0.19 ng/L 537 (modified) Total/NA 22 1.5 1 Perfluoropentanoic acid (PFPeA) 180 1.5 0.38 ng/L 1 537 (modified) Total/NA Perfluorooctanoic acid (PFOA) 11 3.1 0.65 ng/L 1 537 (modified) Total/NA Perfluorononanoic acid (PFNA) 0.22 J 1.5 0.21 ng/L 1 537 (modified) Total/NA 537 (modified) Perfluorobutanesulfonic acid (PFBS) 29 1.5 0.23 ng/L 1 Total/NA Perfluorohexanesulfonic acid (PFHxS) 57 1.5 0.23 ng/L 1 537 (modified) Total/NA Perfluorooctanesulfonic acid (PFOS) 0.42 ng/L 537 (modified) Total/NA 5.8 3.1 1

Client Sample ID: FWHH_DUPE_20171025

Lab Sample ID: 320-32756-4

Lab Sample ID: 320-32756-3

Analyte	Result	Qualifier	LOQ	DL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	7.3		1.5	0.27	ng/L	1	_	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	13		3.1	0.45	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	4.2		1.5	0.19	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	17		1.5	0.38	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	7.3	Μ	3.1	0.66	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.58	JM	1.5	0.21	ng/L	1		537 (modified)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.23	J	1.5	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.7		1.5	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	17		1.5	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	10	Μ	3.1	0.42	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Tetra Tech, Inc. Project/Site: FWHH Groundwater TestAmerica Job ID: 320-32756-1 SDG: FWHH

Lab Sample ID: 320-32756-5

Lab Sample ID: 320-32756-6

5

Client Sample ID: FWHH_RINSATE_20171025

Analyte	Result	Qualifier	LOQ	DL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	0.34	J	1.5	0.27	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.26	J	1.5	0.23	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.42	JM	3.1	0.41	ng/L	1	537 (modified)	Total/NA

Client Sample ID: FWHH_FRB_20171025

No Detections.

Client: Tetra Tech, Inc. Project/Site: FWHH Groundwater

Client Sample ID: FWHH_FH-02_20171025 Date Collected: 10/25/17 12:20 Date Received: 10/27/17 10:10

Lab Sample ID: 320-32756-1 Matrix: Water

Analyte	Result	Qualifier	LOQ		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	7.4		1.5	0.27	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluorohexanoic acid (PFHxA)	13		3.1	0.44	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluoroheptanoic acid (PFHpA)	4.5		1.5	0.19	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluoropentanoic acid (PFPeA)	18		1.5	0.38	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluorooctanoic acid (PFOA)	7.2	М	3.1	0.65	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluorononanoic acid (PFNA)	0.58	J	1.5	0.21	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluorodecanoic acid (PFDA)	0.77	U	1.5	0.24	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluoroundecanoic acid (PFUnA)	2.3	U	3.1	0.84	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluorododecanoic acid (PFDoA)	1.5	U	3.1	0.42	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluorotridecanoic Acid (PFTriA)	2.3	U	3.1	1.0	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluorotetradecanoic acid (PFTeA)	0.77	U	1.5	0.22	-		10/30/17 14:57	11/03/17 11:51	1
Perfluorobutanesulfonic acid	2.7		1.5	0.23	ng/L		10/30/17 14:57	11/03/17 11:51	1
(PFBS) Perfluorohexanesulfonic acid (PFHxS)	16		1.5	0.23	ng/L		10/30/17 14:57	11/03/17 11:51	1
Perfluorooctanesulfonic acid (PFOS)	9.4		3.1	0.41	ng/L		10/30/17 14:57	11/03/17 11:51	1
N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	7.7	U	15	2.3	ng/L		10/30/17 14:57	11/03/17 11:51	1
N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	7.7	U	15	2.4	ng/L		10/30/17 14:57	11/03/17 11:51	1
6:2FTS	3.2	J	15	2.3	ng/L		10/30/17 14:57	11/03/17 11:51	1
3:2FTS	7.7	U	15	2.3	ng/L		10/30/17 14:57	11/03/17 11:51	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	107		25 - 150				10/30/17 14:57	11/03/17 11:51	1
13C4 PFOA	92		25 - 150				10/30/17 14:57	11/03/17 11:51	1
13C5 PFNA	107		25 - 150				10/30/17 14:57	11/03/17 11:51	1
13C2 PFDA	111		25 - 150				10/30/17 14:57	11/03/17 11:51	1
13C2 PFUnA	104		25 - 150				10/30/17 14:57	11/03/17 11:51	1
13C2 PFDoA	96		25 - 150					11/03/17 11:51	1
13C4 PFBA	91		25 - 150					11/03/17 11:51	
1802 PFHxS	106		25 - 150					11/03/17 11:51	1
13C4 PFOS	101		25 - 150					11/03/17 11:51	1
13C5-PFPeA	99		25 - 150					11/03/17 11:51	
13C4-PFHpA	103		25 - 150					11/03/17 11:51	1
M2-6:2FTS	70		25 - 150 25 - 150					11/03/17 11:51	1
M2-0.2FTS M2-8:2FTS	70 146		25 - 150 25 - 150					11/03/17 11:51	
									-
d3-NMeFOSAA	110		25 - 150					11/03/17 11:51	1
15-NEtFOSAA	109		25 - 150					11/03/17 11:51	1
13C3-PFBS	97		25 - 150					11/03/17 11:51	1
13C2-PFTeDA	94		25 - 150				10/20/17 11.57	11/03/17 11:51	1

Client Sample ID: FWHH_MW-06_20171025 Date Collected: 10/25/17 14:40 Date Received: 10/27/17 10:10

Method: 537 (modified) - Perfluorinated Hydrocarbons Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil Fac Perfluorobutanoic acid (PFBA) 6.8 1.5 0.27 ng/L 10/30/17 14:57 11/02/17 07:46 1 10/30/17 14:57 11/02/17 07:46 Perfluorohexanoic acid (PFHxA) 2.2 J 3.1 0.44 ng/L 1

TestAmerica Sacramento

Lab Sample ID: 320-32756-2

Matrix: Water

Lab Sample ID: 320-32756-2 Matrix: Water

5

6

13

Method: 537 (modified) - Perfl Analyte		Qualifier	LOQ		Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid (PFHpA)	1.4	J	1.5	0.19	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluoropentanoic acid (PFPeA)	2.4		1.5	0.37	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluorooctanoic acid (PFOA)	1.6	JM	3.1	0.65	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluorononanoic acid (PFNA)	0.76	U	1.5	0.21	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluorodecanoic acid (PFDA)	0.76	U	1.5	0.24	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluoroundecanoic acid (PFUnA)	2.3	U	3.1	0.84	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluorododecanoic acid (PFDoA)	1.5	U	3.1	0.42	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluorotridecanoic Acid (PFTriA)	2.3	U	3.1	0.99	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluorotetradecanoic acid (PFTeA)	0.76	U	1.5	0.22	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluorobutanesulfonic acid (PFBS)	0.74	J	1.5	0.23	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluorohexanesulfonic acid (PFHxS)	2.4		1.5	0.23	ng/L		10/30/17 14:57	11/02/17 07:46	1
Perfluorooctanesulfonic acid (PFOS)	2.1	JM	3.1	0.41	ng/L		10/30/17 14:57	11/02/17 07:46	1
N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	7.6	U	15		ng/L		10/30/17 14:57	11/02/17 07:46	1
N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	7.6	U	15	2.4	ng/L		10/30/17 14:57	11/02/17 07:46	1
6:2FTS	7.6	U	15		ng/L		10/30/17 14:57	11/02/17 07:46	1
8:2FTS	7.6	U	15	2.3	ng/L		10/30/17 14:57	11/02/17 07:46	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	93		25 - 150				10/30/17 14:57	11/02/17 07:46	1
13C4 PFOA	82		25 - 150				10/30/17 14:57	11/02/17 07:46	1
13C5 PFNA	96		25 - 150				10/30/17 14:57	11/02/17 07:46	1
13C2 PFDA	99		25 - 150				10/30/17 14:57	11/02/17 07:46	1
13C2 PFUnA	89		25 - 150				10/30/17 14:57	11/02/17 07:46	1
13C2 PFDoA	83		25 - 150				10/30/17 14:57	11/02/17 07:46	1
13C4 PFBA	91		25 - 150				10/30/17 14:57	11/02/17 07:46	1
18O2 PFHxS	91		25 - 150				10/30/17 14:57	11/02/17 07:46	1
13C4 PFOS	91		25 - 150				10/30/17 14:57	11/02/17 07:46	1
13C5-PFPeA	91		25 - 150				10/30/17 14:57	11/02/17 07:46	1
13C4-PFHpA	95		25 - 150				10/30/17 14:57	11/02/17 07:46	1
M2-6:2FTS	72		25 - 150				10/30/17 14:57	11/02/17 07:46	1
M2-8:2FTS	137		25 - 150				10/30/17 14:57	11/02/17 07:46	
d3-NMeFOSAA	98		25 - 150				10/30/17 14:57	11/02/17 07:46	1
d5-NEtFOSAA	96		25 - 150				10/30/17 14:57	11/02/17 07:46	1
13C3-PFBS	97		25 - 150				10/30/17 14:57	11/02/17 07:46	
13C2-PFTeDA	81		25 - 150				10/20/17 11.57	11/02/17 07:46	1

Client Sample ID: FWHH_MW-08_20171025 Date Collected: 10/25/17 17:30 Date Received: 10/27/17 10:10

Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	46	M	1.5	0.27	ng/L		10/30/17 14:57	11/02/17 07:54	1
Perfluorohexanoic acid (PFHxA)	120		3.1	0.45	ng/L		10/30/17 14:57	11/02/17 07:54	1
Perfluoroheptanoic acid (PFHpA)	22		1.5	0.19	ng/L		10/30/17 14:57	11/02/17 07:54	1
Perfluoropentanoic acid (PFPeA)	180		1.5	0.38	ng/L		10/30/17 14:57	11/02/17 07:54	1
Perfluorooctanoic acid (PFOA)	11		3.1	0.65	ng/L		10/30/17 14:57	11/02/17 07:54	1

TestAmerica Sacramento

Lab Sample ID: 320-32756-3

Matrix: Water

11/6/2017

Method: 527 (modified) Dorfluoringtod Hyd

Date Collected: 10/25/17 14:40

Date Received: 10/27/17 10:10

Client Sample ID: FWHH_MW-06_20171025

LOQ

1.5

1.5

3.1

3.1

3.1

1.5

1.5

1.5

3.1

15

15

15

15

Limits

25 - 150

25 - 150

25 - 150

25 - 150

DL Unit

0.21 ng/L

0.24 ng/L

0.85 ng/L

0.42 ng/L

1.0 ng/L

0.22 ng/L

0.23 ng/L

0.23 ng/L

0.42 ng/L

2.3 ng/L

2.4 ng/L

2.3 ng/L

2.3 ng/L

D

Prepared

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

10/30/17 14:57 11/02/17 07:54

Analyzed

Prepared

Client Sample ID: FWHH MW-08 20171025 Date Collected: 10/25/17 17:30

Method: 537 (modified) - Perfluorinated Hydrocarbons (Continued)

Result Qualifier

0.22 J

0.77 U

2.3 U

1.5 U

2.3 U

0.77 U

29

57

5.8

7.7 U

7.7 U

7.7 U

7.7 U

98

90

103

82

Qualifier

%Recovery

Date Received: 10/27/17 10:10

Perfluorononanoic acid (PFNA)

Perfluoroundecanoic acid (PFUnA)

Perfluorododecanoic acid (PFDoA)

Perfluorotridecanoic Acid (PFTriA)

Perfluorobutanesulfonic acid

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

sulfonamidoacetic acid (NEtFOSAA)

sulfonamidoacetic acid (NMeFOSAA)

N-ethyl perfluorooctane

N-methyl perfluorooctane

Perfluorotetradecanoic acid (PFTeA)

Perfluorodecanoic acid (PFDA)

Project/Site: FWHH Groundwater

Client: Tetra Tech, Inc.

Analyte

(PFBS)

(PFHxS)

(PFOS)

6:2FTS

8:2FTS

Isotope Dilution

13C2 PFHxA

13C4 PFOA

13C5 PFNA

13C2-PFTeDA

13C2 PFDA	102	25 - 150	10/30/17 14:57 11/02/17 07:54
13C2 PFUnA	95	25 - 150	10/30/17 14:57 11/02/17 07:54
13C2 PFDoA	81	25 - 150	10/30/17 14:57 11/02/17 07:54
13C4 PFBA	72	25 - 150	10/30/17 14:57 11/02/17 07:54
18O2 PFHxS	101	25 - 150	10/30/17 14:57 11/02/17 07:54
13C4 PFOS	98	25 - 150	10/30/17 14:57 11/02/17 07:54
13C5-PFPeA	90	25 - 150	10/30/17 14:57 11/02/17 07:54
13C4-PFHpA	105	25 - 150	10/30/17 14:57 11/02/17 07:54
M2-6:2FTS	78	25 - 150	10/30/17 14:57 11/02/17 07:54
M2-8:2FTS	123	25 - 150	10/30/17 14:57 11/02/17 07:54
d3-NMeFOSAA	105	25 - 150	10/30/17 14:57 11/02/17 07:54
d5-NEtFOSAA	100	25 - 150	10/30/17 14:57 11/02/17 07:54
13C3-PFBS	92	25 - 150	10/30/17 14:57 11/02/17 07:54

Client Sample ID: FWHH DUPE 20171025 Date Collected: 10/25/17 14:00

Date Received: 10/27/17 10:10

Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	7.3		1.5	0.27	ng/L		10/30/17 14:57	11/02/17 08:02	1
Perfluorohexanoic acid (PFHxA)	13		3.1	0.45	ng/L		10/30/17 14:57	11/02/17 08:02	1
Perfluoroheptanoic acid (PFHpA)	4.2		1.5	0.19	ng/L		10/30/17 14:57	11/02/17 08:02	1
Perfluoropentanoic acid (PFPeA)	17		1.5	0.38	ng/L		10/30/17 14:57	11/02/17 08:02	1
Perfluorooctanoic acid (PFOA)	7.3	Μ	3.1	0.66	ng/L		10/30/17 14:57	11/02/17 08:02	1
Perfluorononanoic acid (PFNA)	0.58	JM	1.5	0.21	ng/L		10/30/17 14:57	11/02/17 08:02	1
Perfluorodecanoic acid (PFDA)	0.77	U	1.5	0.24	ng/L		10/30/17 14:57	11/02/17 08:02	1
Perfluoroundecanoic acid (PFUnA)	2.3	U	3.1	0.85	ng/L		10/30/17 14:57	11/02/17 08:02	1

TestAmerica Sacramento

Lab Sample ID: 320-32756-3 Matrix: Water

Analyzed

6

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

/30/17 14:57 11/02/17 07:54 /30/17 14:57 11/02/17 07:54 1 /30/17 14:57 11/02/17 07:54 1 /30/17 14:57 11/02/17 07:54 1 /30/17 14:57 11/02/17 07:54 1 /30/17 14:57 11/02/17 07:54 1 /30/17 14:57 11/02/17 07:54 1 /30/17 14:57 11/02/17 07:54 1 /30/17 14:57 11/02/17 07:54 1 /30/17 14:57 11/02/17 07:54 1 /30/17 14:57 11/02/17 07:54 1 /30/17 14:57 11/02/17 07:54 1 10/30/17 14:57 11/02/17 07:54 1

Lab Sample ID: 320-32756-4 Matrix: Water

LOQ

3.1

3.1

DL Unit

1.0 ng/L

0.43 ng/L

D

Prepared

Perfluorododecanoic acid (PFDoA)

Perfluorotridecanoic Acid (PFTriA)

Perfluorotetradecanoic acid

Perfluorobutanesulfonic acid

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

sulfonamidoacetic acid (NEtFOSAA)

sulfonamidoacetic acid (NMeFOSAA)

N-ethyl perfluorooctane

N-methyl perfluorooctane

Analyte

(PFTeA)

(PFBS)

(PFHxS)

(PFOS)

6:2FTS

8:2FTS

Isotope Dilution

13C2 PFHxA

13C4 PFOA

13C5 PFNA

13C2 PFDA

13C2 PFUnA

13C2 PFDoA

13C4 PFBA

1802 PFHxS

13C4 PFOS

13C5-PFPeA

13C4-PFHpA

M2-6:2FTS

M2-8:2FTS

d3-NMeFOSAA

d5-NEtFOSAA

13C2-PFTeDA

13C3-PFBS

Client Sample ID: FWHH_DUPE_20171025 Date Collected: 10/25/17 14:00 Date Received: 10/27/17 10:10

Method: 537 (modified) - Perfluorinated Hydrocarbons (Continued)

Result Qualifier

1.5 U

2.3 U

0.23 J

2.7

17

10 M

7.7 U

7.7 U

7.7 U

7.7 U

%Recovery Qualifier

105

94

108

110

101

95

94

104

101

101

107

80

147

114

115

102

90

Lab Sample ID: 320-32756-4 Matrix: Water

10/30/17 14:57 11/02/17 08:02

10/30/17 14:57 11/02/17 08:02

10/30/17 14:57 11/02/17 08:02

10/30/17 14:57 11/02/17 08:02

10/30/17 14:57 11/02/17 08:02

10/30/17 14:57 11/02/17 08:02

Lab Sample ID: 320-32756-5

Analyzed

Dil Fac

1

1

1

1

1

Matrix: Water

1.5		ng/L	10/30/17 14:57	11/02/17 08:02	1	
1 5	0.00		10/20/17 14.57	11/02/17 00:02	1	
1.5	0.23	ng/L	10/30/17 14:57	11/02/17 08:02	1	
1.5	0.23	ng/L	10/30/17 14:57	11/02/17 08:02	1	8
3.1	0.42	ng/L	10/30/17 14:57	11/02/17 08:02	1	g
15	2.3	ng/L	10/30/17 14:57	11/02/17 08:02	1	1
15	2.4	ng/L	10/30/17 14:57	11/02/17 08:02	1	
15	2.3	ng/L	10/30/17 14:57	11/02/17 08:02	1	
15	2.3	ng/L	10/30/17 14:57	11/02/17 08:02	1	
Limits			Prepared	Analyzed	Dil Fac	_
25 - 150			•	Analyzed 11/02/17 08:02		1
			10/30/17 14:57	-	1	1
25 - 150			10/30/17 14:57 10/30/17 14:57	11/02/17 08:02	1 1	1
25 - 150 25 - 150			10/30/17 14:57 10/30/17 14:57 10/30/17 14:57	11/02/17 08:02 11/02/17 08:02	1 1	1 1
25 - 150 25 - 150 25 - 150			10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57	11/02/17 08:02 11/02/17 08:02 11/02/17 08:02	1 1 1 1	1
25 - 150 25 - 150 25 - 150 25 - 150			10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57	11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02	1 1 1 1 1 1	1 1 1
25 - 150 25 - 150 25 - 150 25 - 150 25 - 150			10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57	11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02	1 1 1 1 1 1 1	1 1 1
25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150			10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57	11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02	1 1 1 1 1 1 1 1	1 1 1
25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150			10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57	11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02	1 1 1 1 1 1 1 1 1	1 1
25 - 150 25 - 150			10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57	11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02	1 1 1 1 1 1 1 1 1 1	1 1
25 - 150 25 - 150			10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57 10/30/17 14:57	11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02	1 1 1 1 1 1 1 1 1 1 1 1	1
25 - 150 25 - 150			10/30/17 14:57 10/30/17 14:57	11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02	1 1 1 1 1 1 1 1 1 1 1 1 1	1
25 - 150 25 - 150			10/30/17 14:57 10/30/17 14:57	11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02 11/02/17 08:02	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1

Client Sample ID: FWHH_RINSATE_20171025 Date Collected: 10/25/17 15:05 Date Received: 10/27/17 10:10

Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	0.34	J	1.5	0.27	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluorohexanoic acid (PFHxA)	1.5	U	3.1	0.45	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluoroheptanoic acid (PFHpA)	0.77	U	1.5	0.19	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluoropentanoic acid (PFPeA)	0.77	U	1.5	0.38	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluorooctanoic acid (PFOA)	1.5	U	3.1	0.65	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluorononanoic acid (PFNA)	0.77	U	1.5	0.21	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluorodecanoic acid (PFDA)	0.77	U	1.5	0.24	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluoroundecanoic acid (PFUnA)	2.3	U	3.1	0.84	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluorododecanoic acid (PFDoA)	1.5	U	3.1	0.42	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluorotridecanoic Acid (PFTriA)	2.3	U	3.1	1.0	ng/L		10/30/17 14:57	11/02/17 08:10	1

25 - 150

25 - 150

25 - 150

25 - 150

Client Sample ID: FWHH RINSATE 20171025 Date Collected: 10/25/17 15:05 Date Received: 10/27/17 10:10

Lab Sample ID: 320-32756-5 Matrix: Water

5

6

Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorotetradecanoic acid (PFTeA)	0.77	U	1.5	0.22	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluorobutanesulfonic acid (PFBS)	0.77	U	1.5	0.23	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluorohexanesulfonic acid (PFHxS)	0.26	J	1.5	0.23	ng/L		10/30/17 14:57	11/02/17 08:10	1
Perfluorooctanesulfonic acid (PFOS)	0.42	JM	3.1	0.41	ng/L		10/30/17 14:57	11/02/17 08:10	1
N-ethyl perfluorooctane	7.7	U	15	2.3	ng/L		10/30/17 14:57	11/02/17 08:10	1
sulfonamidoacetic acid (NEtFOSAA)									
N-methyl perfluorooctane	7.7	U	15	2.4	ng/L		10/30/17 14:57	11/02/17 08:10	1
sulfonamidoacetic acid (NMeFOSAA) 6:2FTS	7.7	U	15	2.3	ng/L		10/30/17 14:57	11/02/17 08:10	1
8:2FTS	7.7	U	15	2.3	ng/L		10/30/17 14:57	11/02/17 08:10	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	104		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C4 PFOA	94		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C5 PFNA	109		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C2 PFDA	104		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C2 PFUnA	108		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C2 PFDoA	107		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C4 PFBA	106		25 - 150				10/30/17 14:57	11/02/17 08:10	1
18O2 PFHxS	105		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C4 PFOS	103		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C5-PFPeA	104		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C4-PFHpA	111		25 - 150				10/30/17 14:57	11/02/17 08:10	1
M2-6:2FTS	80		25 - 150				10/30/17 14:57	11/02/17 08:10	1
M2-8:2FTS	132		25 - 150				10/30/17 14:57	11/02/17 08:10	1
d3-NMeFOSAA	125		25 - 150				10/30/17 14:57	11/02/17 08:10	1
d5-NEtFOSAA	112		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C3-PFBS	100		25 - 150				10/30/17 14:57	11/02/17 08:10	1
13C2-PFTeDA	96		25 - 150				10/30/17 14.57	11/02/17 08:10	1

Client Sample ID: FWHH FRB 20171025 Date Collected: 10/25/17 14:10 Date Received: 10/27/17 10:10

Method: 537 (modified) - Perfluorinated Hydrocarbons Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil Fac Perfluorobutanoic acid (PFBA) 0.89 U 1.8 0.31 ng/L 10/30/17 14:57 11/02/17 08:18 Perfluorohexanoic acid (PFHxA) 1.8 U 3.5 0.51 ng/L 10/30/17 14:57 11/02/17 08:18 Perfluoroheptanoic acid (PFHpA) 0.89 U 0.22 ng/L 10/30/17 14:57 11/02/17 08:18 18 Perfluoropentanoic acid (PFPeA) 0.89 U 1.8 0.43 ng/L 10/30/17 14:57 11/02/17 08:18 Perfluorooctanoic acid (PFOA) 3.5 0.75 ng/L 10/30/17 14:57 11/02/17 08:18 1.8 U Perfluorononanoic acid (PFNA) 0.89 U 1.8 0.24 ng/L 10/30/17 14:57 11/02/17 08:18 Perfluorodecanoic acid (PFDA) 0.89 U 1.8 0.27 ng/L 10/30/17 14:57 11/02/17 08:18 Perfluoroundecanoic acid (PFUnA) 2.7 U 3.5 0.97 ng/L 10/30/17 14:57 11/02/17 08:18 Perfluorododecanoic acid (PFDoA) 10/30/17 14:57 11/02/17 08:18 1.8 U 3.5 0.49 ng/L Perfluorotridecanoic Acid (PFTriA) 2.7 U 3.5 1.2 ng/L 10/30/17 14:57 11/02/17 08:18 Perfluorotetradecanoic acid (PFTeA) 0.89 U 1.8 0.26 ng/L 10/30/17 14:57 11/02/17 08:18 Perfluorobutanesulfonic acid (PFBS) 0.89 U 1.8 0.27 ng/L 10/30/17 14:57 11/02/17 08:18 Perfluorohexanesulfonic acid (PFHxS) 0.89 U 1.8 0.27 ng/L 10/30/17 14:57 11/02/17 08:18

TestAmerica Sacramento

Lab Sample ID: 320-32756-6

Matrix: Water

1

1

1

1

1

1

1

1

1

1

1

1

Client Sample ID: FWHH_FRB_20171025 Date Collected: 10/25/17 14:10 Date Received: 10/27/17 10:10

Lab Sample ID: 320-32756-6 Matrix: Water

Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	1.8	U	3.5	0.48	ng/L		10/30/17 14:57	11/02/17 08:18	1
N-ethyl perfluorooctane	8.9	U	18	2.7	ng/L		10/30/17 14:57	11/02/17 08:18	1
sulfonamidoacetic acid (NEtFOSAA)									
N-methyl perfluorooctane	8.9	U	18	2.7	ng/L		10/30/17 14:57	11/02/17 08:18	1
sulfonamidoacetic acid (NMeFOSAA)			10						
6:2FTS	8.9		18		ng/L			11/02/17 08:18	1
8:2FTS	8.9	U	18	2.7	ng/L		10/30/17 14:57	11/02/17 08:18	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	103		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C4 PFOA	94		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C5 PFNA	108		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C2 PFDA	111		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C2 PFUnA	104		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C2 PFDoA	96		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C4 PFBA	103		25 - 150				10/30/17 14:57	11/02/17 08:18	1
18O2 PFHxS	103		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C4 PFOS	104		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C5-PFPeA	101		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C4-PFHpA	110		25 - 150				10/30/17 14:57	11/02/17 08:18	1
M2-6:2FTS	76		25 - 150				10/30/17 14:57	11/02/17 08:18	1
M2-8:2FTS	126		25 - 150				10/30/17 14:57	11/02/17 08:18	1
d3-NMeFOSAA	109		25 - 150				10/30/17 14:57	11/02/17 08:18	1
d5-NEtFOSAA	111		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C3-PFBS	100		25 - 150				10/30/17 14:57	11/02/17 08:18	1
13C2-PFTeDA	97		25 - 150					11/02/17 08:18	1

Method: 537 (modified) - Perfluorinated Hydrocarbons Matrix: Water

			Perce	ent Isotope	Dilution Re	coverv (Ac	ceptance L	imits)	
		3C2 PFHx	3C4 PFO/	•			•	,	BO2 PEH
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-32756-1	FWHH_FH-02_20171025	107	92	107	111	104	96	91	106
320-32756-2	FWHH_MW-06_20171025	93	82	96	99	89	83	91	91
320-32756-3	FWHH_MW-08_20171025	98	90	103	102	95	81	72	101
320-32756-4	FWHH_DUPE_20171025	105	94	108	110	101	95	94	104
320-32756-5	FWHH_RINSATE_20171025	103	94	100	104	108	107	106	105
320-32756-6	FWHH_FRB_20171025	104	94	103	104	100	96	103	103
LCS 320-191929/2-A	Lab Control Sample	103	92	100	106	104	93	103	105
LCSD 320-191929/3-A	Lab Control Sample Dup	102	93	101	110	100	102	99 M	103
MB 320-191929/1-A	Method Blank	100	93 91	103	101	104	96	87	104
IVID 320-191929/1-A		100							100
					Dilution Re				
		3C4 PFO	3C5-PFPe	3C4-PFHp			-NMeFOS		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150
320-32756-1	FWHH_FH-02_20171025	101	99	103	70	146	110	109	97
320-32756-2	FWHH_MW-06_20171025	91	91	95	72	137	98	96	97
320-32756-3	FWHH_MW-08_20171025	98	90	105	78	123	105	100	92
320-32756-4	FWHH_DUPE_20171025	101	101	107	80	147	114	115	102
320-32756-5	FWHH_RINSATE_20171025	103	104	111	80	132	125	112	100
320-32756-6	FWHH_FRB_20171025	104	101	110	76	126	109	111	100
LCS 320-191929/2-A	Lab Control Sample	101	99	107	73	123	111	107	103
LCSD 320-191929/3-A	Lab Control Sample Dup	104	102	109	75	124	111	107	97
MB 320-191929/1-A	Method Blank	99	94	100	70	122	110	105	95
Lab Sample ID 320-32756-1	Client Sample ID FWHH_FH-02_20171025	(25-150) 94							
320-32756-2	FWHH_MW-06_20171025	81							
320-32756-3	FWHH_MW-08_20171025	82							
320-32756-4	FWHH_DUPE_20171025	90							
320-32756-5	FWHH_RINSATE_20171025	96							
320-32756-6	FWHH_FRB_20171025	97							
I CS 320-191929/2-A	. .								
	Lab Control Sample	98							
LCSD 320-191929/3-A	Lab Control Sample Lab Control Sample Dup	98 94							
LCS 320-191929/2-A LCSD 320-191929/3-A MB 320-191929/1-A	Lab Control Sample	98							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend	Lab Control Sample Lab Control Sample Dup Method Blank	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 F	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 F 13C4 PFOA = 13C4 PF	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 F 13C4 PFOA = 13C4 PF 13C5 PFNA = 13C5 PF	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA =NA	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 F 13C4 PFOA = 13C4 PF	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA =NA =DA	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 F 13C4 PFOA = 13C4 PF 13C5 PFNA = 13C5 PF 13C2 PFDA = 13C2 PF	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA FNA FDA PFUnA	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 F 13C4 PFOA = 13C4 PF 13C5 PFNA = 13C5 PF 13C2 PFDA = 13C2 PF 13C2 PFUnA = 13C2 F	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA FNA FDA PFUnA PFDoA	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 F 13C4 PFOA = 13C4 PF 13C5 PFNA = 13C5 PF 13C2 PFDA = 13C2 PF 13C2 PFDA = 13C2 F 13C2 PFDA = 13C2 F 13C4 PFBA = 13C4 PF	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA FNA EDA PFUnA PFDoA EBA	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 P 13C4 PFOA = 13C4 PF 13C5 PFNA = 13C5 PF 13C2 PFDA = 13C2 PF 13C2 PFUA = 13C2 PF 13C2 PFDOA = 13C2 F 13C4 PFBA = 13C4 PF 18O2 PFHxS = 18O2 F	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA FNA EDA PFUnA PFDoA EBA PFHxS	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 F 13C4 PFOA = 13C4 PF 13C5 PFNA = 13C5 PF 13C2 PFDA = 13C2 PF 13C2 PFUA = 13C2 F 13C2 PFDoA = 13C2 F 13C4 PFBA = 13C4 PF 18O2 PFHxS = 18O2 F 13C4 PFOS = 13C4 PF	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA FNA FDA PFUnA PFDoA FBA PFHxS FOS	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 F 13C4 PFOA = 13C4 PF 13C5 PFNA = 13C5 PF 13C2 PFDA = 13C2 PF 13C2 PFDA = 13C2 F 13C2 PFDoA = 13C4 PF 13C4 PFBA = 13C4 PF 13C4 PFBA = 13C4 PF 13C4 PFOS = 13C4 PF 13C5-PFPeA = 13C5-F	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA FNA FDA PFUnA PFDoA FBA PFHxS FOS PFPeA	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 PF 13C4 PFOA = 13C4 PF 13C5 PFNA = 13C5 PF 13C2 PFDA = 13C2 PF 13C2 PFDA = 13C2 PF 13C2 PFDOA = 13C4 PF 13C4 PFBA = 13C4 PF 13C4 PFOS = 13C4 PF 13C5-PFPeA = 13C5-FF 13C4-PFHPA = 13C4-FF	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA =NA =DA PFUnA PFDoA =BA PFHxS FOS PFPeA PFHpA	98 94							
LCSD 320-191929/3-A MB 320-191929/1-A Surrogate Legend 13C2 PFHxA = 13C2 F 13C4 PFOA = 13C4 PF 13C5 PFNA = 13C5 PF 13C2 PFDA = 13C2 PF 13C2 PFDA = 13C2 F 13C2 PFDoA = 13C4 PF 13C4 PFBA = 13C4 PF 13C4 PFOS = 13C4 PF 13C5-PFPeA = 13C5-F	Lab Control Sample Lab Control Sample Dup Method Blank PFHxA FOA ENA EDA PFUnA PFDoA EBA PFHxS FOS PFPeA PFHpA TS	98 94							

Client: Tetra Tech, Inc. Project/Site: FWHH Groundwater

> d5-NEtFOSAA = d5-NEtFOSAA 13C3-PFBS = 13C3-PFBS 13C2-PFTeDA = 13C2-PFTeDA

TestAmerica Job ID: 320-32756-1 SDG: FWHH

Client Sample ID: Method Blank

Prep Type: Total/NA

8

Method: 537 (modified) - Perfluorinated Hydrocarbons

Lab Sample ID:	MB 320-191929/1-A
Matrix: Water	

Wallix. Waler								Fieh Type. It	
Analysis Batch: 192548								Prep Batch:	191929
		MB							
Analyte		Qualifier	LOQ		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	1.0	U	2.0		ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluorohexanoic acid (PFHxA)	2.0	U	4.0	0.58	ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluoroheptanoic acid (PFHpA)	1.0	U	2.0		ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluoropentanoic acid (PFPeA)	1.0	U	2.0	0.49	ng/L			11/02/17 07:07	1
Perfluorooctanoic acid (PFOA)	2.0	U	4.0	0.85	ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluorononanoic acid (PFNA)	1.0	U	2.0	0.27	ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluorodecanoic acid (PFDA)	1.0	U	2.0	0.31	ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluoroundecanoic acid (PFUnA)	3.0	U	4.0	1.1	ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluorododecanoic acid (PFDoA)	2.0	U	4.0	0.55	ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluorotridecanoic Acid (PFTriA)	3.0	U	4.0	1.3	ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluorotetradecanoic acid (PFTeA)	1.0	U	2.0	0.29	ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluorobutanesulfonic acid (PFBS)	1.0	U	2.0	0.30	ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluorohexanesulfonic acid (PFHxS)	1.0	U	2.0	0.30	ng/L		10/30/17 14:57	11/02/17 07:07	1
Perfluorooctanesulfonic acid (PFOS)	2.0	UM	4.0	0.54	ng/L		10/30/17 14:57	11/02/17 07:07	1
N-ethyl perfluorooctane	10	U	20	3.0	ng/L		10/30/17 14:57	11/02/17 07:07	1
sulfonamidoacetic acid (NEtFOSAA)									
N-methyl perfluorooctane	10	U	20	3.1	ng/L		10/30/17 14:57	11/02/17 07:07	1
sulfonamidoacetic acid (NMeFOSAA)	10								
6:2FTS	10		20		ng/L			11/02/17 07:07	1
8:2FTS	10		20	3.0	ng/L		10/30/17 14:57	11/02/17 07:07	1
		MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	100		25 - 150					11/02/17 07:07	1
13C4 PFOA	91		25 - 150				10/30/17 14:57	11/02/17 07:07	1
13C5 PFNA	103		25 - 150				10/30/17 14:57	11/02/17 07:07	1
13C2 PFDA	101		25 - 150				10/30/17 14:57	11/02/17 07:07	1
13C2 PFUnA	104		25 - 150				10/30/17 14:57	11/02/17 07:07	1
13C2 PFDoA	96		25 - 150				10/30/17 14:57	11/02/17 07:07	1
13C4 PFBA	87		25 - 150				10/30/17 14:57	11/02/17 07:07	1
18O2 PFHxS	100		25 - 150				10/30/17 14:57	11/02/17 07:07	1
13C4 PFOS	99		25 - 150				10/30/17 14:57	11/02/17 07:07	1
13C5-PFPeA	94		25 - 150				10/30/17 14:57	11/02/17 07:07	1
13C4-PFHpA	100		25 - 150				10/30/17 14:57	11/02/17 07:07	1
M2-6:2FTS	70		25 - 150				10/30/17 14:57	11/02/17 07:07	1
M2-8:2FTS	122		25 - 150				10/30/17 14:57	11/02/17 07:07	1
d3-NMeFOSAA	110		25 - 150				10/30/17 14:57	11/02/17 07:07	1
d5-NEtFOSAA	105		25 - 150				10/30/17 14:57	11/02/17 07:07	1
l									

Lab Sample ID: LCS 320-191929/2-A Matrix: Water Analysis Batch: 192548

13C3-PFBS

13C2-PFTeDA

Prep Batch: 191929 Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits Perfluorobutanoic acid (PFBA) 40.0 40.5 M 101 89 - 128 ng/L Perfluorohexanoic acid (PFHxA) 40.0 40.0 ng/L 100 86 - 126 Perfluoroheptanoic acid (PFHpA) 40.0 40.3 101 89 - 127 ng/L Perfluoropentanoic acid (PFPeA) 40.0 66 - 136 41.9 ng/L 105

25 - 150

25 - 150

95

92

TestAmerica Sacramento

Prep Type: Total/NA

10/30/17 14:57 11/02/17 07:07

10/30/17 14:57 11/02/17 07:07

Client Sample ID: Lab Control Sample

1

5

8

Method: 537 (modified) - Perfluorinated Hydrocarbons (Continued)

Lab Sample ID: LCS 320-1 Matrix: Water	91929/2-A					Clie	ent Sar	nple ID	: Lab Co Prep Ty	pe: Tot	al/NA
Analysis Batch: 192548									Prep B	atch: 1	91929
			Spike		LCS				%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Perfluorooctanoic acid (PFOA)			40.0	41.1		ng/L		103	80 - 120		
Perfluorononanoic acid (PFNA)			40.0	42.0		ng/L		105	77 - 137		
Perfluorodecanoic acid (PFDA)			40.0	41.4		ng/L		103	84 - 123		
Perfluoroundecanoic acid			40.0	38.0		ng/L		95	73 - 122		
PFUnA)											
Perfluorododecanoic acid			40.0	43.2		ng/L		108	82 - 122		
PFDoA)			40.0	44.4				102	EC 100		
Perfluorotridecanoic Acid			40.0	41.1		ng/L		103	56 - 163		
PFTriA) Perfluorotetradecanoic acid			40.0	39.3		ng/L		98	66 - 120		
PFTeA)			10.0	00.0		119/2		00	00-120		
Perfluorobutanesulfonic acid			35.4	36.2		ng/L		102	88 - 130		
PFBS)						U U					
Perfluorohexanesulfonic acid			36.4	34.6		ng/L		95	87 - 126		
PFHxS)											
Perfluorooctanesulfonic acid			37.1	37.6	М	ng/L		101	83 - 126		
PFOS)			10.0								
I-ethyl perfluorooctane			40.0	37.8		ng/L		95	86 - 132		
ulfonamidoacetic acid											
NEtFOSAA) I-methyl perfluorooctane			40.0	39.8		ng/L		99	87 - 128		
ulfonamidoacetic acid			40.0	55.0		ng/L		55	07 - 120		
NMeFOSAA)											
22FTS			37.9	38.3		ng/L		101	90 - 135		
2:2FTS			38.3	39.1		ng/L		102	88 - 132		
	LCS	LCS				•					
sotope Dilution	%Recovery	Qualifier	Limits								
3C2 PFHxA	102		25 - 150								
I3C4 PFOA	92		25 - 150								
ISC5 PFNA	101		25 - 150								
13C2 PFDA	106		25 - 150								
13C2 PFUnA	106		25 - 150								
13C2 PFDoA	93		25 - 150								
13C4 PFBA	104		25 - 150								
1802 PFHxS	104		25 - 150 25 - 150								
13C4 PFOS	103		25 - 150								
13C5-PFPeA	99		25 - 150								
13C4-PFHpA	107		25 - 150								
12-6:2FTS	73		25 - 150								
M2-8:2FTS	123		25 - 150								
13-NMeFOSAA	111		25 - 150								
15-NEtFOSAA	107		25 - 150								
I3C3-PFBS	103		25 - 150								
3C2-PFTeDA	98		25 - 150								
							_			_	_
ab Sample ID: LCSD 320	-191929/3-A	L			C	Client Sa	ample	ID: Lat	o Control		
Matrix: Water									Prep Ty		
									Prep B	atch: 10	91929
Analysis Batch: 192548			Spike Added		LCSD Qualifier			%Rec	%Rec. Limits	RPD	RPI Limi

Method: 537 (modified) - Perfluorinated Hydrocarbons (Continued)

Lab Sample ID: LCSD 3 Matrix: Water				(Client Sa	ample	ID: Lat	Control Prep Ty	pe: Tot	al/NA
Analysis Batch: 192548	8	Spike	LCSD	LCSD				Prep Ba %Rec.	atch: 19	91929 RPC
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Perfluorohexanoic acid (PFHxA	A)	40.0	41.1		ng/L		103	86 - 126	3	30
Perfluoroheptanoic acid (PFHp	A)	40.0	39.0		ng/L		97	89 - 127	3	30
Perfluoropentanoic acid (PFPe		40.0	40.8		ng/L		102	66 - 136	3	30
Perfluorooctanoic acid (PFOA)	,	40.0	41.1		ng/L		103	80 - 120	0	30
Perfluorononanoic acid (PFNA))	40.0	40.5		ng/L		101	77 - 137	3	3
Perfluorodecanoic acid (PFDA)		40.0	39.7		ng/L		99	84 - 123	4	3
Perfluoroundecanoic acid		40.0	39.1		ng/L		98	73 - 122	3	30
(PFUnA)										
Perfluorododecanoic acid (PFDoA)		40.0	40.5		ng/L		101	82 - 122	6	30
Perfluorotridecanoic Acid (PFTriA)		40.0	39.6		ng/L		99	56 - 163	4	30
Perfluorotetradecanoic acid (PFTeA)		40.0	39.6		ng/L		99	66 - 120	1	30
Perfluorobutanesulfonic acid (PFBS)		35.4	39.3		ng/L		111	88 - 130	8	30
Perfluorohexanesulfonic acid (PFHxS)		36.4	35.2		ng/L		97	87 - 126	2	30
Perfluorooctanesulfonic acid		37.1	37.4	М	ng/L		101	83 - 126	0	3
(PFOS) N-ethyl perfluorooctane		40.0	40.7		ng/L		102	86 - 132	7	3
sulfonamidoacetic acid		10.0	10.1		11 <u>9</u> / E		102	00-102		0
(NEtFOSAA)										
N-methyl perfluorooctane		40.0	40.3		ng/L		101	87 - 128	1	3
sulfonamidoacetic acid					Ū					
(NMeFOSAA)										
6:2FTS		37.9	37.8		ng/L		100	90 - 135	1	3
8:2FTS		38.3	39.1		ng/L		102	88 - 132	0	30
	LCSD LCSD)								
sotope Dilution	%Recovery Qual	ifier Limits								
13C2 PFHxA	105	25 - 150								
13C4 PFOA	93	25 - 150								
13C5 PFNA	109	25 - 150								
13C2 PFDA	110	25 - 150								
13C2 PFUnA	104	25 - 150								
13C2 PFDoA	102	25 - 150								
13C4 PFBA	99 M	25 - 150								
1802 PFHxS	99 M 104	25 - 150								
13C4 PFOS	104	25 - 150 25 - 150								
		25 - 150 25 - 150								
13C5-PFPeA	102									
13C4-PFHpA	109	25 - 150								
M2-6:2FTS	75	25 - 150								
M2-8:2FTS	124	25 - 150								
d3-NMeFOSAA	111	25 - 150								
d5-NEtFOSAA	107	25 - 150								
13C3-PFBS	97	25 - 150								
13C2-PFTeDA	94	25 - 150								

LCMS

Prep Batch: 191929

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-32756-1	FWHH_FH-02_20171025	Total/NA	Water	3535	
320-32756-2	FWHH_MW-06_20171025	Total/NA	Water	3535	
320-32756-3	FWHH_MW-08_20171025	Total/NA	Water	3535	
320-32756-4	FWHH_DUPE_20171025	Total/NA	Water	3535	
320-32756-5	FWHH_RINSATE_20171025	Total/NA	Water	3535	
320-32756-6	FWHH_FRB_20171025	Total/NA	Water	3535	
MB 320-191929/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-191929/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-191929/3-A	Lab Control Sample Dup	Total/NA	Water	3535	
	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Lab Sample ID				Method	<u> </u>
320-32756-2	FWHH_MW-06_20171025	Total/NA	Water	537 (modified)	191929
320-32756-3	FWHH_MW-08_20171025	Total/NA	Water	537 (modified)	191929
320-32756-4	FWHH_DUPE_20171025	Total/NA	Water	537 (modified)	191929
320-32756-5	FWHH_RINSATE_20171025	Total/NA	Water	537 (modified)	191929
320-32756-6	FWHH_FRB_20171025	Total/NA	Water	537 (modified)	191929
MB 320-191929/1-A	Method Blank	Total/NA	Water	537 (modified)	191929
LCS 320-191929/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	191929
LCSD 320-191929/3-A	Lab Control Sample Dup	Total/NA	Water	537 (modified)	191929
nalysis Batch: 1928	20				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-32756-1	FWHH FH-02 20171025	Total/NA	Water	537 (modified)	191929

Lab Sample ID: 320-32756-1

Lab Sample ID: 320-32756-2

Lab Sample ID: 320-32756-3

Matrix: Water

Matrix: Water

Matrix: Water

10

Client Sample ID: FWHH_FH-02_20171025

Date Collected: 10/25/17 12:20 Date Received: 10/27/17 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			326.3 mL	10.00 mL	191929	10/30/17 14:57	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1			192820	11/03/17 11:51	JRB	TAL SAC

Client Sample ID: FWHH_MW-06_20171025 Date Collected: 10/25/17 14:40 Date Received: 10/27/17 10:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			327.3 mL	10.00 mL	191929	10/30/17 14:57	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1			192548	11/02/17 07:46	JRB	TAL SAC

Client Sample ID: FWHH MW-08 20171025 Date Collected: 10/25/17 17:30 Date Received: 10/27/17 10:10

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			325 mL	10.00 mL	191929	10/30/17 14:57	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1			192548	11/02/17 07:54	JRB	TAL SAC

Client Sample ID: FWHH DUPE 20171025 Date Collected: 10/25/17 14:00 Date Received: 10/27/17 10:10

Pr	ер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
To	otal/NA	Prep	3535			322.9 mL	10.00 mL	191929	10/30/17 14:57	TWL	TAL SAC
Tc	otal/NA	Analysis	537 (modified)		1			192548	11/02/17 08:02	JRB	TAL SAC

Client Sample ID: FWHH RINSATE 20171025 Date Collected: 10/25/17 15:05 Date Received: 10/27/17 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			325.8 mL	10.00 mL	191929	10/30/17 14:57	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1			192548	11/02/17 08:10	JRB	TAL SAC

Client Sample ID: FWHH_FRB_20171025 Date Collected: 10/25/17 14:10 Date Received: 10/27/17 10:10

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 3535 282.1 mL 10.00 mL 191929 10/30/17 14:57 TWL TAL SAC Total/NA 537 (modified) 192548 11/02/17 08:18 JRB Analysis TAL SAC 1

Lab Sample ID: 320-32756-4 Matrix: Water

Lab Sample ID: 320-32756-5 Matrix: Water

Lab Sample ID: 320-32756-6 Matrix: Water

Client: Tetra Tech, Inc. Project/Site: FWHH Groundwater

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Tetra Tech, Inc. Project/Site: FWHH Groundwater TestAmerica Job ID: 320-32756-1 SDG: FWHH

Laboratory: TestAmerica Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	UST-055	12-18-17
Arizona	State Program	9	AZ0708	08-11-18
Arkansas DEQ	State Program	6	88-0691	06-17-18
California	State Program	9	2897	01-31-18
Colorado	State Program	8	CA00044	08-31-18
Connecticut	State Program	1	PH-0691	06-30-19
Iorida	NELAP	4	E87570	06-30-18
Georgia	State Program	4	N/A	01-29-18
lawaii	State Program	9	N/A	01-29-18
llinois	NELAP	5	200060	03-17-18
Kansas	NELAP	7	E-10375	10-31-17 *
A-B	DoD ELAP		L2468	01-20-18
ouisiana	NELAP	6	30612	06-30-18
laine	State Program	1	CA0004	04-18-18
<i>l</i> ichigan	State Program	5	9947	01-31-18
levada	State Program	9	CA00044	07-31-18
lew Hampshire	NELAP	1	2997	04-18-18
lew Jersey	NELAP	2	CA005	06-30-18
lew York	NELAP	2	11666	04-01-18
Dregon	NELAP	10	4040	01-28-18
Pennsylvania	NELAP	3	68-01272	03-31-18
exas	NELAP	6	T104704399	05-31-18
JS Fish & Wildlife	Federal		LE148388-0	07-31-18
JSDA	Federal		P330-11-00436	12-30-17
JSEPA UCMR	Federal	1	CA00044	11-06-18
Jtah	NELAP	8	CA00044	02-28-18
′irginia	NELAP	3	460278	03-14-18
Vashington	State Program	10	C581	05-05-18
Vest Virginia (DW)	State Program	3	9930C	12-31-17
Nyoming	State Program	8	8TMS-L	01-28-18 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Client: Tetra Tech, Inc. Project/Site: FWHH Groundwater

Method	Method Description	Protocol	Laboratory
537 (modified)	Perfluorinated Hydrocarbons	EPA	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Tetra Tech, Inc. Project/Site: FWHH Groundwater TestAmerica Job ID: 320-32756-1 SDG: FWHH

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-32756-1	FWHH_FH-02_20171025	Water	10/25/17 12:20	10/27/17 10:10
320-32756-2	FWHH_MW-06_20171025	Water	10/25/17 14:40	10/27/17 10:10
320-32756-3	FWHH_MW-08_20171025	Water	10/25/17 17:30	10/27/17 10:10
320-32756-4	FWHH_DUPE_20171025	Water	10/25/17 14:00	10/27/17 10:10
320-32756-5	FWHH_RINSATE_20171025	Water	10/25/17 15:05	10/27/17 10:10
320-32756-6	FWHH_FRB_20171025	Water	10/25/17 14:10	10/27/17 10:10

TestAmerica Sacramento 880 Riverside Parkuay	Ū	Chain of Custody Record	Record 242288	TestAmerica
West Sacramento, CA 95605 Phone: 916.373.5600 Fax:	Regulatory Program:	NPDES RCRA Other:	~	THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. TAL-8210 (0713)
Client Contact	17	Site Contact:	XcH Mrchord Date: 10/25/17	COC No:
y Name: Jetra Teerl	TellFax: 406-437-983		Carrier:	of L COCs
Address: 8 25 Cus Hic AVE	Analysis Turnaround Time	- N		Sampler: For Lab Hee Only:
CIPH-104 - ac	t from Be	T		Walk-in Client:
	2 weeks	(VI (YI FOA		Lab Sampling:
THOA	2 days			Job / SDG No.:
10# 102 MI	1 day			
Sample Identification	Sample Sample (c=comp. Date Time c=crab) Matrix	k C # Perform C # Perform		Sample Specific Notes:
FWHH-FHOR_ 20171025	10/25/17 1220 G W	2 1 ×		
25	10/12/12/1440 1	XIII		
S2	02.41 H30	X		
FWHH - DUPE - 20171025	10/25/171400	X		
FWHH- RINSME-20171825	1505	7		
FWHH FRS - ZOITIO25	19-25/14 14 V			
		_		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH; 6= Other /			
on: I EPA Ha	se List any EPA Waste Codes for the sample in the	1	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	re retained longer than 1 month)
Non-Hazard Frammable Skin Irritant	Doison B Unknown	Return to Client	Xoisposal by Lab	Archive for Months
Special Instructions/QC Requirements & Comments:				
Custody Seals Intact:	Custody Seal No.:	Cooler Temp.	emp. (°C): Obs'd: Corr'd:	Therm ID No.: A
I hull	Company: Date/Time	Time: Received by:	Company:	Cate/Time:
0			Company:	
Relinquished by:	Date/Time:	Time: Received in Laboratory by:	tory by: Company:	Date/Time:
22-32756 Chain of Custody				
		13 14 15	8 9 10 11	1 2 3 4 5 6 7

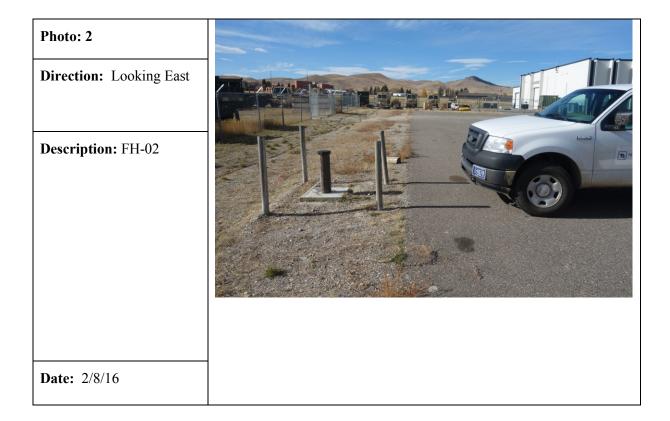
Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 32756 List Number: 1 Creator: Turpen, Troy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-32756-1 SDG Number: FWHH


List Source: TestAmerica Sacramento

APPENDIX D

PHOTOGRAPHIC LOG

APPENDIX D FORT WILLIAM HENRY HARRISON GROUNDWATER SAMPLING PHOTO LOG 10/25/2017

Photo: 1	
Direction: Looking West	
Description: FH-02	
Date: 10/25/2017	

APPENDIX D FORT WILLIAM HENRY HARRISON GROUNDWATER SAMPLING PHOTO LOG 10/25/2017

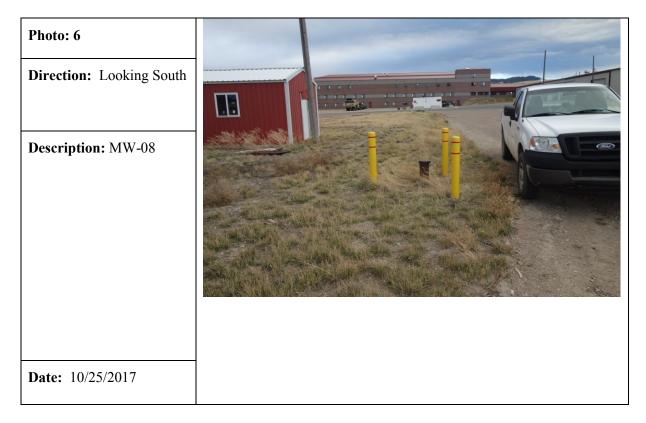

Photo: 3	
Direction: Northeast	
Description:MW-06.	
Date: 10/25/2017	

Photo: 4	T
Direction: Soutwest	
Description: MW-06	
Date: 10/25/2017	

APPENDIX D FORT WILLIAM HENRY HARRISON GROUNDWATER SAMPLING PHOTO LOG 10/25/2017

Photo: 5	
Direction: Looking North	
Description: MW-08	
Date: 10/25/2017	

