Laser-Induced Fluorescence
Theory and Data Interpretation

Randy St. Germain, President
Dakota Technologies, Inc.

Montana DEQ Group
March 2014
laser-induced fluorescence (LIF)

the people at Dakota Technologies have been making LIF measurements of PAHs for over 25 years and doing direct push LIF for fuels/oils for over 20 years

ROST Prototype circa 1991

UVOST 2007
LIF Method

Real-Time In-Situ Characterization

Desired Result

Detailed Characterization

Basic Site Screening Concept

LIF Method

1-2' data spacing maps every detail

Works in vadose and saturated zones

Product signature at every data point

Intuitive color coding for quick plume ID
fortunately all non-aqueous phase liquids (NAPLs) that contain polycyclic aromatic hydrocarbons (PAHs), even small amounts (<1%), will fluoresce in this way we can usually detect them by their fluorescent “glow”
fluorescence

crude oil diesel

what UVOST “sees”
basics of Optical Screening Tools...

• spectroscopic (light-based)
• sapphire-windowed probe head requires “direct push” delivery
 – dynamic (Geoprobe®/AMS)
 – static (CPT)
• log fluorescence of a fuel’s/oil’s PAHs vs. depth during penetration
• measurement penetrates into the formation only as deep as light can (not very deep!)

windowed probe - percussion

windowed probe – submerged derrick

windowed CPT “sub” above CPT
LIF Optical Screening Tools combined with direct push

1. Laser travels down fiber and exits sapphire window striking soil and/or NAPL
2. Fluorescence is spectrally separated (white-to-rainbow), converted to voltage displayed, stored vs depth
3. Fluorescence travels back up second fiber to be analyzed
4. Fluorescence arrives back uphole

If fuel/oil in pore spaces their PAHs are excited by laser and they emit broad colors of fluorescence or "white light" much less intense than laser

Light Intensity

Time (nanoseconds)

LIF Training Course – June 2014
LIF Optical Screening Tools and direct push
OSTs are deployable under wide variety of platforms and conditions

- Geoprobe®, PowerProbe, CPT, even drill rigs (in soft materials)
- on-shore, off-shore, ice, bogs, sediments, tar pits, settling ponds
- rain, snow, sleet, sun, wind, hot, cold… with “100 % recovery”
UV LIF (this training’s focus) detects…

almost any other PAH-containing NAPL like:

Reliably
- Gasoline (highly weathered and aviation yield is very low)
- Diesel
- Jet (Kerosene)
- Motor Oil
- Cutting Fluids
- Hydraulic Fluid
- Crude oil
- Fuel oils

Occasionally (but NOT predictable enough to employ UVOST with any confidence!)
- Coal Tar (MGP waste) – often poor due to self-quenching/energy transfer
- Creosote/Pentachlorophenol (wood treating) – often poor due to self-quenching/energy transfer
- Bunker – often poor due to self-quenching/energy transfer

Never/Rarely
- Polychlorinated bi-phenyls (PCB)s – due to internal heavy atom effect
- Chlorinated solvent DNAPL – aliphatics lack aromaticity (no ring-shapes) - but co-solvated PAHS can/do respond
- Dissolved phase PAHs
The Spectroscopy Behind LIF

the nature of the molecules that fluoresce and non-aqueous phase liquids (NAPL) in which they dwell
structure of aromatics allows fluorescence
one or more “benzene” rings - planar sets of six carbon atoms that are connected by delocalized electrons
fluorescence spectroscopy
spectroscopy – study the interaction of light with matter

fancy quantum mechanics “stuff” determines behavior
molecules absorb light and excites an electron
later the molecule might “shed” that energy by emitting light

aromatic (ring-shaped) molecules excel at this

energy (wavelength/frequency/wavenumber) of each photon emitted depends on which
energy level it was at prior to “launch” of a photon

This temporal LIF stuff is FAST!

<table>
<thead>
<tr>
<th>Transition</th>
<th>Time Scale</th>
<th>Radiative Process?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td>10^{-15} s</td>
<td>yes</td>
</tr>
<tr>
<td>Internal Conversion</td>
<td>10^{-14} - 10^{-11} s</td>
<td>no</td>
</tr>
<tr>
<td>Vibrational Relaxation</td>
<td>10^{-14} - 10^{-11} s</td>
<td>no</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>10^{-9} - 10^{-7} s</td>
<td>yes</td>
</tr>
<tr>
<td>Intersystem Crossing</td>
<td>10^{-8} - 10^{-3} s</td>
<td>no</td>
</tr>
<tr>
<td>Phosphorescence</td>
<td>10^{-4} - 10^{-1} s</td>
<td>yes</td>
</tr>
</tbody>
</table>
fuels/oils are complex mixtures containing dozens or hundreds of various PAHs dissolved in many non-fluorescent solvent molecules.
PAHs want to be in organic solvent much more so than groundwater size and degree of substitution determine preferential solubility behavior this is why NAPL is the “source term” of dissolved phase (and a dermal hazard)

<table>
<thead>
<tr>
<th>Compound (C.A.S.N°)</th>
<th>Molecular weight</th>
<th>Kow 125 to 1250</th>
<th>log Kow</th>
<th>Water solubility at 25°C (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphthalene (91-20-3)</td>
<td>1</td>
<td>128.16</td>
<td>3,162</td>
<td>3.5</td>
</tr>
<tr>
<td>acenaphthene (83-32-9)</td>
<td>1</td>
<td>154.21</td>
<td>19,952</td>
<td>4.33</td>
</tr>
<tr>
<td>fluorene (86-73-7)</td>
<td>1</td>
<td>166</td>
<td>15,136</td>
<td>4.18</td>
</tr>
<tr>
<td>phenanthrene (85-01-8)</td>
<td>1</td>
<td>178.24</td>
<td>31,623</td>
<td>4.5</td>
</tr>
<tr>
<td>anthracene (120-12-7)</td>
<td>1</td>
<td>178.24</td>
<td>31,623</td>
<td>4.5</td>
</tr>
<tr>
<td>pyrene (129-00-0)</td>
<td>1</td>
<td>202.26</td>
<td>79,433</td>
<td>4.9</td>
</tr>
<tr>
<td>fluoranthene (206-44-0)</td>
<td>1</td>
<td>202.26</td>
<td>125,893</td>
<td>5.1</td>
</tr>
<tr>
<td>benz[a]anthracene (56-66-3)</td>
<td>1</td>
<td>228</td>
<td>398,107</td>
<td>5.6</td>
</tr>
<tr>
<td>benz[a]pyrene (50-32-8)</td>
<td>1, 2</td>
<td>252.32</td>
<td>1,000,000</td>
<td>6.0</td>
</tr>
<tr>
<td>benzo[b]fluoranthene (205-99-2)</td>
<td>2</td>
<td>252.32</td>
<td>1,148,154</td>
<td>6.06</td>
</tr>
<tr>
<td>benzo[j]fluoranthene (205-82-3)</td>
<td>2</td>
<td>252.32</td>
<td>1,148,154</td>
<td>6.06</td>
</tr>
<tr>
<td>benzo[k]fluoranthene (207-08-9)</td>
<td>2</td>
<td>252.32</td>
<td>1,148,154</td>
<td>6.06</td>
</tr>
<tr>
<td>indeno[1,2,3-cd]pyrene (193-39-5)</td>
<td>2</td>
<td>276</td>
<td>2,511,886</td>
<td>6.4</td>
</tr>
</tbody>
</table>

octanol – a straight chain fatty alcohol with eight carbon atoms
PAHs’ great preference to remain in an organic solvent (vs. water) affects its chemistry and environmental behavior

- weathering
- sourcing
- recalcitrance
- analytical results
- fluorescence (PAHs need a solvent to be efficient)
• emission spectrum is unique for each PAH
• fluorescence spectrum does not change with excitation wavelength
• the PAH has no ‘memory’ of how it got excited
a PAH’s size/structure influence the color of light it emits

generally larger (more rings) equates to longer wavelength (lower energy) light being emitted
MAH & PAH emission spectra

- Fluoranthene
- Chrysene
- Anthracene
- Naphthalene
- Ethylbenzene
- Benzene
- Pyrene
- Phenanthrene
- 2,3-Dimethylnaphthalene
- Flourene
- Toluene

Emission (normalized to 1)

Wavelength (nm)
careful…even the solvent used can shift the emission wavelengths as you can see there are lots of players and lots of complications in petro fluorescence fuels are a big mess of dozens or hundreds of these PAHs and solvent issues all mixed together
lifetime or fluorescence decay

fluorescence dies away with time after being pulsed

this is called the fluorescence lifetime (Greek symbol τ or “tau”)

it is the time it takes for 1/e of the population of excited PAH molecules to return to their electronic ground state by fluorescing or otherwise “shedding” the absorbed photon’s energy.
UVOST emission spectra for typical fuels
(note the spacing of your UVOST’s filters!)

308nm-excited fuel spectra

Intensity (normalized to max)

Wavelength (nm)

300 325 350 375 400 425 450 475 500 525

350± 20nm 400± 20nm 450± 20nm 500± 20nm

Creosote
Diesel
Jet
Gasoline

cutoff filter
wavelength-time matrices of fuels

each mix of PAHs (and their aliphatic solvent, oxygen concentration, matrix, etc.) yield a fairly unique wavelength/time matrix or WTM

- fuels/oils have a “characteristic” WTM
- most fuel types look similar to each other under “normal” conditions
- so identifying fuels/oils as this or that is usually straightforward
- kerosene (jet) looks like other kerosene, diesel like other diesel, etc.
multi-wavelength waveforms – how UVOST acquires WTMS really really really fast!
multi-wavelength waveforms

WTMs

Waveforms

Creosote

DieSEL

Gasoline

Jet
multi-wavelength waveforms
OSTs create “shorthand” version of WTM

3D illustration of diesel's fluorescence emission
diesel's multi-wavelength waveform

OST "black box"

Note: Diesel
Tau: 10.5 22.1 38.5 34.7
Range: 3.30 - 4.10 ft
Signal: 203.6 %RE (s 4.1)

320 nanoseconds
colorization of UVOST/ROST waveforms

Dakota's UVOST colorization scheme uses RGB calculations of the relative areas of the 350, 400, 450, and 500 nm channels to generate RGB fill color.

The RGB color model is an additive model in which red, green, and blue are combined in various ways to reproduce other colors.
Pure PAHs on UVOST
PAHs on UVOST

- Alkylbenzene
 - Range: 0.00 - 1.80 ft
 - Signal: 103.8 %RE (± 1.5)

- Phenanthrene
 - Range: 3.00 - 4.80 ft
 - Signal: 115.9 %RE (± 1.6)

- Fluorene
 - Range: 0.00 - 0.80 ft
 - Signal: 97.6 %RE (± 0.9)

- Anthracene
 - Range: 2.00 - 2.70 ft
 - Signal: 106.5 %RE (± 0.4)

- Dimethylnaphthalene
 - Range: 2.00 - 2.70 ft
 - Signal: 107.1 %RE (± 0.6)

- Chrysene
 - Range: 5.00 - 5.70 ft
 - Signal: 109.1 %RE (± 0.6)

- Fluoranthene
 - Range: 5.00 - 6.70 ft
 - Signal: 117.8 %RE (± 0.8)

- Benzo(a)pyrene
 - Range: 7.00 - 8.80 ft
 - Signal: 112.9 %RE (± 4.4)
so.... does this slide make sense now?

what LIF “sees”

what LIF “sees”
Qualitative nature of fuel and oil fluorescence (PAH mixtures)
general PAH fluorescence trends once again

PAH fluorescence emission generally trends with # rings and degree of substitution. The larger and more complex the PAH, the longer wavelength its absorbance and emission spectra.

- naphthalene
- phenanthrene
- pyrene
- benzo[e] pyrene

wavelength
UVOST waveforms of various NAPLs
wet Fisher sea sand saturated with various NAPLs
UVOST waveforms of various NAPLs

Various products on sand

<table>
<thead>
<tr>
<th>Site: Examples</th>
<th>Latitude / Datum</th>
<th>Final depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Rudolph/UVOST1002</td>
<td>47.10 ft</td>
<td>47.10 ft</td>
</tr>
</tbody>
</table>

UVOST By Dakota

Various products on sand

<table>
<thead>
<tr>
<th>Site: Examples</th>
<th>Latitude / Datum</th>
<th>Final depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Rudolph/UVOST1002</td>
<td>47.10 ft</td>
<td>47.10 ft</td>
</tr>
</tbody>
</table>
UVOST waveforms of various NAPLs
UVOST waveforms of various NAPLs

Jet/Kerosene

Gasoline

Diesels

Oils
“Semi-Quantitative” Nature of fuel and oil fluorescence
LIF calibration

Dakota’s systems calibrated with a known reference material
(single point calibration)
similar to calibrating a photo-ionization detector (PID) with 100ppm isobutylene

Dakota has used same “reference emitter” (RE) material since 1994

RE is placed on window just before each/every sounding
all subsequent readings are normalized by the reference emitter response
(data is ultimately displayed as %RE)

this corrects for change in optics, laser energy drift, window, mirror, etc.

RE approach is used by all ROST and UVOST providers globally

the correct shape of waveform also allows checking the qualitative aspect of the fluorescence
UVOST’s Reference Emitter or RE
(RE does NOT stand for REflectivity!)

- think of RE just as you would of the 100 ppm isobutylene used to calibrate a PID
- the RE normalizes the response for laser energy changes, fiber optic cable length, detector aging, etc.
- the same RE solution is used by all UVOST and ROST providers
- Dakota has a large stockpile of the material which was prepared from standard ingredients
- the relationship between RE and the concentration of NAPL
- it depends on the fuel/oil, some simply glow brighter than others
why RE?

<table>
<thead>
<tr>
<th>Concentration (ppm)</th>
<th>Fluorescence Boy (raw data)</th>
<th>Fluorescence Genius (raw data)</th>
<th>Fluorescence Boy (%RE)</th>
<th>Fluorescence Genius (%RE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>6</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>60</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>1000</td>
<td>300</td>
<td>600</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>10000</td>
<td>3000</td>
<td>6000</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>RE</td>
<td>6000</td>
<td>12000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
lab studies: mix fuels with soils to demonstrate how LIF yields ‘semi-quantitative’ data

how fluorescent ~= how much
LIF contains both quantitative (how much) and qualitative (what kind) of data.

Kerosene (Jet Fuel)

- **UVOST By Dakota**
 - **Site:** [URL]
 - **Latitude / Datum:** N/A
 - **Final depth:** 6.10 ft
- **Client:** [URL]
 - **Longitude / Fix:** N/A
 - **Max signal:** 144.4 % @ 5.70 ft
- **Operator/Unit:** [URL]
 - **Date & Time:** 2007-07-24 16:35

Gasoline

- **UVOST By Dakota**
 - **Site:** [URL]
 - **Latitude / Datum:** N/A
 - **Final depth:** 5.40 ft
- **Client:** [URL]
 - **Longitude / Fix:** N/A
 - **Max signal:** 53.9 % @ 5.40 ft
- **Operator/Unit:** [URL]
 - **Date & Time:** 2007-07-25 14:49 CDT
more lab studies
crude oil “rollover”
too much fluorescence (saturation)

Madson Crude Oil
UVOST By Dakota

Site: Latitude / Datum: Unavailable / NA
Client: Longitude / Fix: Unavailable / NA
Job: Operator/Unit: UVOST1002
Date & Time: 2007-07-25 14:57 CDT

Diesel 40000 pvs
UVOST By Dakota

Site: Latitude / Datum: Unavailable / NA
Client: Longitude / Fix: Unavailable / NA
Job: Operator/Unit: UVOST1002
Date & Time: 2007-07-24 15:12
UVOST’s “semi-quantitative” performance

- Typically 10-1,000 ppm (TRPH) limit of detection (LOD) on petroleum fuels/oils - statistically in a controlled experiment – up/down from there depending on heterogeneity
- Gasoline is difficult – it evaporates in jars and during pipetting, etc. and simply glows “weaker” than others
- Semi-linear response over several orders of magnitude on fuels/POLs (depends on soil/fuel/conditions)
- Note the non-monotonic response of crude – due to high PAH content and resulting signal “rollover”
- Variability has been seen across gasolines, kerosenes (jets), crudes, diesels (two fuels of same type)
- Generally speaking diesel is best behaved – gasoline and kerosene can be 10-fold lower
- These lab experiments “underestimate” practical field sensitivity because in downhole NAPL is mottled, these lab soils were mixed/equilibrated so NAPL coats ALL sand grains equally, this doesn’t often occur in nature as one will hit globules/seams/mottling, even on very small scales (marbling/blebs)
- Note that the LOD for PAHs themselves (mg/kg) is much lower than it seems at first glance – since we’re measuring total fuel mass here (mostly aliphatics) – not PAH mass
natural heterogeneity often allows “better” detection of NAPL vs. homogenized lab samples
lab-based LODs are typically conservative estimate of in-situ LOD
Organoleptic (smell/site) observations accepted without hesitation by many stakeholders
But has its flaws (really no great alternative though)

Matrix affects the organoleptic approach.
Dakota has mixed dozens and dozens of spiked sample sets for research and application to field studies in last 20 years.

Experiment to try:
hand an experienced geologist a 1,000 ppm NAPL-spiked clean sand and a 1,000 ppm NAPL-spiked dark fine clay and you will get 2 wildly different estimations of “NAPL impact” (think about floor dry or kitty litter)

Simple Fact: Fine soils hide NAPL while clean sands and gravels flaunt it
“sheens” are NAPLs that are observable at amazingly low conc’s!
LIF’s semi-quantitative performance

these are the result of **one series** of randomly acquired fuels and crude oil – product “brightness” can vary

- Gasoline is typically 32% aromatic – but mostly single ring aromatics (BTEX) that UVOST “can’t see”
- Diesel is typically 38% aromatics
- Kerosene or jet fuel is 23% aromatics (limited to prevent smoke) – nearly all naphthalenes
what does this quantitative variation mean for field logs?

LIF is fairly quantitative when it comes to one NAPL type at a simple site with simple geology, but multiple products under complex geology… there’s going to be differences in response

but same is true for geologist who can spot NAPL in sand much better than fines… test yourself

MN – Service Station - 2 NAPLS (oil or weathered gas on top.... intact gasoline bottom)
UVOST/ROST logs vs. NAPL and its location

- **1. Unsat'd Perched Diesel (LNAPL)**
 - Vadose Vapors (VOCs and SVOCs)

- **2. "Floating" Kerosene (LNAPL)**

- **3. Sat'd Trapped Diesel (LNAPL)**

- **4. Sat'd Bunker C (DNAPL)**

- **5. Shell Hash**

Fluorescence Intensity

Depth (ft)

Fluorescence Intensity [Signal (%RE)]

“Callouts” or waveforms

volts

time (ns)

semiquantitative

qualitative
field log example

variation top to bottom = heterogeneous product or strange weathering pattern

this type of “confetti” color pattern is very common in bulk handling facilities where many products spilled over long periods
field log example

consistent top to bottom = homogeneous product
is this a sandbox geology with floating pancake “shark’s fin”? not so for log at left… these two logs tell you a LOT about geology

cores showed tiny coarse white sand stringers interspersed in clayey till

just 44 minutes earlier and 20 feet away….
Limitations of UV LIF
soil type (pore spaces) affect the LIF response

UVOST’s response depends on “optically available” NAPL pressed against the sapphire window. Response decreases as particle size and soil color decreases. Tiny particles (high surface area) help “hide” the NAPL and dark soils help “sink” any resulting fluorescence.

There can easily be a 10-fold difference in response due solely to soil matrix!

• Enhanced responses in:
 – course “clean” sands with open pore spaces
 – light colored soils help reflect resulting emission back into window

• Degraded responses in:
 – fines/clays
 – dark colored soils absorb resulting emission

soils pore spaces saturated with diesel various soil types have various fluorescence intensity
can UVOST detect BTEX?
no… it can’t - due to fiber optic absorbance of BTEX excitation wavelengths
UVOST would use Nd:YAG 4th harmonic 266nm laser if fibers didn’t absorb that wavelength

fiber optics & LIF

fiber optic absorbance (a.u.)

UVOST's 308 nm laser
dissolved phase experiment

1. combine NAPLs and water in jars
2. let sit for 4 days
3. extract water that has “equilibrated” with NAPL
4. examine clean sand, contaminated water, cont’d water/sand mixture, and NAPL/sand mixture with UVOST
experiment cont’d
insert samples into sapphire window bottomed “cups” at exact same geometry as LIF probe window

2007 gasoline

- Air (empty cup)
- Fisher Scientific sea sand
- equilibrium water
- eq. water saturated Fisher sand
- NAPL saturated Fisher sand
experiment cont’d

2013 gasoline

Air (empty cup)

Fisher Scientific sea sand

equilibrium water

eq. water saturated Fisher sand

NAPL saturated Fisher sand

Gasoline '13

<table>
<thead>
<tr>
<th>Site:</th>
<th>Gasoline '13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client / Job:</td>
<td>J. Lutz / UVOST01</td>
</tr>
<tr>
<td>UVOST By Dakota:</td>
<td>www.dakotaTechnologies.com</td>
</tr>
<tr>
<td>X Coord (Lat-N) / System:</td>
<td>Unavailable / NA</td>
</tr>
<tr>
<td>Date & Time:</td>
<td>2013-06-20 11:21 CDT</td>
</tr>
<tr>
<td>X Coord (Long-E) / Fix:</td>
<td>Unavailable / NA</td>
</tr>
<tr>
<td>Final depth:</td>
<td>4.90 ft</td>
</tr>
<tr>
<td>Max signal:</td>
<td>79.5 %RE @ 4.70 ft</td>
</tr>
</tbody>
</table>
experiment cont’d

Kerosene

Air (empty cup)
Fisher Scientific sea sand
equilibrium water
eq. water saturated Fisher sand
NAPL saturated Fisher sand

Kerosene

Site: Kerosene
Client / Job:
Operator / Unit: J. Lutz / UVOST01

Depth (ft)
0.19 - 0.89 ft 0.2 %RE (± 0.0)
1.00 - 1.90 ft 0.6 %RE (± 0.0)
2.00 - 2.90 ft 1.9 %RE (± 0.1)
3.00 - 3.90 ft 0.6 %RE (± 0.4)
3.90 - 4.90 ft 83.1 %RE (± 28.1)

Signal (%RE)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
100

Kerosene

%RE
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
100

NAPL saturated Fisher sand
experiment cont’d

- Air (empty cup)
- Fisher Scientific sea sand
- equilibrium water
- eq. water saturated Fisher sand
- NAPL saturated Fisher sand

Diesel

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>UVOST01</td>
</tr>
<tr>
<td>Client / Job</td>
<td>UVOST By Dakota</td>
</tr>
<tr>
<td>Operator / Unit</td>
<td>J. Lutz / UVOST01</td>
</tr>
</tbody>
</table>

Final depth: 4.90 ft
Max signal: 359.9 %RE @ 4.00 ft
Date & Time: 2012-05-20 11:15 CDT
experiment cont’d

heavy crude (#5)

Air (empty cup)

Fisher Scientific sea sand

equilibrium water

eq. water saturated Fisher sand

NAPL saturated Fisher sand

??? dissolved looks like the “heavy”!
experiment cont’d

- Coal tar
- Air (empty cup)
- Fisher Scientific sea sand
- Equilibrium water
- Eq. water saturated Fisher sand
- NAPL saturated Fisher sand

Coal Tar
- Site: Coal Tar
- Client/Job: /
- Operator/Unit: J. Lutz / UVOST01
- Y Coord (Lat-N): Available / 42.012683
- X Coord (Long-E): Fix: Available / -90.02306
- Elevation: Available
- Final depth: 4.90 ft
- Max signal: 62.0 %RE @ 2.60 ft
- Date & Time: 2013-05-20 11:42 CDT

UVOST By Dakota
- www.DakotaTechnologies.com
false positives/negatives
most have short lifetimes and look “odd” vs. target fuel/oil

Previously observed positives [weak 1-3% RE, medium 3-10% RE, strong >10% RE]
sea shells (weak-strong)
paper (medium-strong)
peat/meadow mat (weak)
calcite/calcareous sands (weak-strong)
asphalt (very weak)
stiff/viscous tars (weak)
certain soils (weak)
tree roots (weak-medium)
sewer lines (medium-strong)
coal (very weak to none)
quicklime (weak)

Previously observed negatives
extremely weathered fuels (especially gasoline)
aviation gasoline (weak)
coal tars (most)
creosotes (most)
“dry” PAHs such as aqueous phase, lamp black, purifier chips, “black mayonnaise”
most chlorinated solvents
benzene, toluene, xylenes (relatively pure)
false positives/negatives
most have short lifetimes and look “odd” vs. target fuel/oil
false positive – calcareous sands

often context of the site or entire log helps “make the call”

fuel

clean
logs from previous slide (calcareous sands) help solve this “head scratcher”
MIP vs. LIF?
(truth is, they aren’t really competitors)

Membrane Interface Probe (MIP)
- designed for **VOCs** (which LIF can’t detect usefully)
- “sticky” semi-VOCs often cause transfer line/carryover issues
- difficult to find “bottom” of NAPL due to carryover and resulting lag time, especially if multiple layers
- chlorinated sites make up dominant portion of MIP market

LIF
- Designed specifically for **NAPL delineation and only NAPL**
- smooth/hard sapphire window is “slick” like Teflon – resists carryover
- nearly instantaneous rise/fall - and 100% reversible response
- LIF does NOT see any useful levels of response to dissolved phase
- LIF shows intimate (inch scale) detail of NAPL distribution (relative to MIP)
- LIF provides readily interpreted “spectral” information in real time
- LIF is blind to chlorinated DNAPL dissolved phase (but Dye-LIF will see DNAPL itself)
the “shark’s fin” in a “sand box”

recent LNAPL saturation/recovery theory reflects what LIF logs (in homogenous lithology) have shown for years

- http://www.clu-in.org/conf/itrc/LNAPLcr/

LNAPL Saturation / Transmissivity

- The zone of highest LNAPL saturation has the highest LNAPL conductivity
- Low LNAPL saturation results in low LNAPL conductivity

LNAPL Transmissivity = Sum

\[T = K_o \cdot b \]

- Hydraulic recovery rate is proportional to transmissivity for a given technology
- Well thickness does not dictate relative recoverability

Saturation shark fin

Coal Tar (LNAPL phase)

Diesel

Vertical equilibrium (VEQ) conditions in a sand tank
NNLS (non-negative least squares) fitting

- takes full advantage of waveforms/lifetimes
- does things that color-coding can’t
- numerical file output easily incorporated into CSM visualization
NNLS field example

poor harvest area...
no choice though
NNLS field example
NNLS field example
NNLS field example
“heavies”… where things start to fall apart for ultraviolet LIF’s semi-quantitative behavior
PAHs, Excitation Wavelength, and Energy Transfer

Dilute PAHs, High Concentration Straight chains etc. (fuels and light oils)
- strong absorbance by smaller PAHs
- low chance of energy transfer
- few neighboring large PAHs
- strong fluorescence

Heavier LNAPL exhibiting larger and higher concentration PAHs
- strong absorbance by smaller PAHs
- high chance of energy transfer
- many neighboring large PAHs
- weak, if any, fluorescence

conc’d “close packed” PAHs (tars, creosotes, heavy crude)
- no absorbance by smaller PAHs
- direct excitation of large PAHs
- low chance of energy transfer
- moderate fluorescence

308 – UV – high energy
- excited state energy “cloud”
typical MGP coal tar on UV LIF
typical MGP coal tar on TarGOST

Clean Sand

1,209 ppm NAPL

9,926 ppm NAPL

98,389 ppm NAPL

NAPL
typical MGP coal tar on UV LIF vs. TarGOST

UVOST

TarGOST
pitchy coal tar on UV LIF vs. TarGOST

UVOST

dissolved phase only!

TarGOST
coal tar – former MGP – duplicate logs

TarGOST

UVOST

Sample Data

Site: Fargo, ND
Client / Job: ABC Consulting
Operation / Unit: St. Germain/UVOST1000
Latitude / Datum: 46.54.430700 N / WGS-84
Longitude / Fix: 096.47.753700 W / 3D
Max Signal: 192.2 %RE @ 8.12 ft
Date & Time: 2008-10-14 07:18 CDT
Final Depth: 21.78 ft
Max Signal: 15.5 %RE @ 8.95 ft
Date & Time: 2008-10-22 08:58 EDT

TarGOST By Dakota

UVOST By Dakota
a “UV-friendly” creosote on UV LIF vs. TarGOST (many creosotes behave like coal tar)

UVOST TarGOST

energy transfer “eating away” at %RE lifetimes getting shorter!
“Heavies” are incompatible with UV LIF
Dakota has found the following materials ‘misbehave’ in the UV:

- Coal tar
- Coking tar/pitch
- Creosote
- bunker B-C or other “heavy fuel oils”

Notice that crude oil is not in the “heavies” list. The majority of crude oils that Dakota has examined were found to behave monotonically in the UV at low-to-mid concentrations, only “rolling over” at the very high to neat concentrations. This is acceptable behavior since “a lot of NAPL is a lot of NAPL”.

![Graph showing UV LIF analysis results.](image-url)
Dakota’s Stance on Screening for High-PAH Content NAPLs (aka “heavies”) with UVOST

Dakota desires to limit our potential legal exposure should litigation result from UVOST characterization of a coal tar or creosote site. Legal risk is your reason to take this matter seriously and avoid getting yourselves involved in a “heavy” NAPL site investigation with UVOST.

For this reason, DAKOTA HEREBY OFFICIALLY DIVORCES ITSELF OF ANY/ALL DATA RESULTING FROM PURPOSEFUL APPLICATION OF UVOST ON A COAL TAR, CREOSOTE, OR OTHER SITE KNOWN TO CONSIST OF THESE OR SIMILARLY BEHAVED HIGH PAH CONCENTRATION NAPLS (heavies). In order to maintain the UVOST product’s exceptional reputation for quality, Dakota insists that all UVOST service providers abstain from conducting UVOST investigations where “heavies” are the target NAPL.
Dakota’s TarGOST System History

TarGOST® services since 2004 (in the petroleum LNAPL logging business for 20 years)

tar/creosote logging to date: 259776 ft (49.2 miles)
Logs: 10,848
Investigations: 233 [some on sites visited more than once]
Properties of Coal Tars (and Creosotes)

• Density barely greater than water - so tar can fraction into LNAPL and (most often) a DNAPL (near “zero gravity”)
• Tars/creosotes can sink, float, or both (common)
• Tremendous “penetration” capabilities (think penetration oil’s ability to loosen bolts)
• Viscosity ranges from solids to runny oils
• Most near-surface and surface coal tars and creosotes are NOT representative of the sub-surface material (lost VOCs)
• Not at all fun to handle/decon!
• Will have you smelling like your grandma’s sweater drawer in no time
MGP Sites

Sooty Creek Gas Co., Former MGP, TypiVille, USA

- Release point: black, viscous, obvious
- NAPL in angular gravels, cobbles or running sands = difficult sampling
- Thin sheen at groundwater surface? Yes... sometimes
- Rare "unfilled" gravel lens
- Tar changing as it travels often "refined" to a runny oil perhaps due to chromatography
- Clay feature that is "preventing" DNAPL from getting deeper (not always... a fracture!)
- Peat or shell hash

LIF Training Course – June 2014
Traditional Sampling/Analysis obtaining soil samples

- back hoe
- hollow stem auger
- direct push (Geoprobe/AMS)
- sonic
- hand tools
TarGOST® (a specific form of laser-induced fluorescence or LIF)

real time logging of tar in-situ

higher density information for better engineering/decisions

Detailed Conceptual Model
so how does TarGOST “see” tar?....
here’s a conceptual view of what it would look like if we were inside probe – looking out sapphire TarGOST window

<table>
<thead>
<tr>
<th>CLEAN</th>
<th>TAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

laser fluorescence

laser fluorescence
so how does TarGOST “see” tar?....
waveforms vs. NAPL saturation
fluorescence grows and scatter shrinks with increasing NAPL saturations

fluorescence of NAPL at 3 wavelengths

laser scatter off soil surface

Log/C: Calibration /C1
Note: 0 ppm
Range: 44.90 - 47.60 ft
Signal: 3.9 %RE (s 0.3)
Semi-quantitative response to NAPL varies with “brightness” of fluorescence of NAPLs and soil matrix – fine being less responsive than coarse.
So… UV fluorescence struggles with heavies

how can Dakota prove the energy transfer is the key to the problem with UV fluorescence?

Well… what if we gave them more room?
(a bigger pool in which to act out their water ballet without crashing into each other)

we can do this by diluting with a non-fluorescent alkane
heavy crude diluted with hexane

Mandan Crude Hexane Dilution

UVOST By Dakota

Site: Y Coord.(Lat-N) / System: Final depth: 11.80 ft
Unavailable / NA

Client / Job: X Coord.(Log-E) / Fix: Max signal: 216.5 %RE @ 8.40 ft
/ Unavailable / NA

Operator / Unit: Elevation: Date & Time:
/ UVOST01 Unavailable 2012-01-20 09:21 CST
coal tar diluted with hexane

<table>
<thead>
<tr>
<th>Callouts</th>
<th>Depth (ft)</th>
<th>Signal (%RE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90 - 3.60 ft</td>
<td>2.7 %RE (s 0.3)</td>
<td>1/10000</td>
</tr>
<tr>
<td>3.90 - 5.60 ft</td>
<td>31.2 %RE (s 7.2)</td>
<td>1/10000</td>
</tr>
<tr>
<td>6.00 - 7.70 ft</td>
<td>141.4 %RE (s 1.9)</td>
<td>1/100</td>
</tr>
<tr>
<td>8.10 - 9.60 ft</td>
<td>84.7 %RE (s 1.5)</td>
<td>1/10</td>
</tr>
<tr>
<td>10.10 - 11.70 ft</td>
<td>1.4 %RE (s 0.1)</td>
<td>100% Tar</td>
</tr>
</tbody>
</table>

Norristown Coal Tar Hexane Dilution

UVOST By Dakota

- Site: Y Coord (Lat-N) / System: Unavailable / NA
- Final depth: 11.80 ft
- Client / Job: X Coord (Lat-E) / Fix: Unavailable / NA
- Max signal: 146.4 %RE @ 7.70 ft
- Operator / Unit: Elevation: Unavailable
- Date & Time: 2012-01-18 12:48 CST
diesel diluted with hexane

Callouts

2.10 - 3.90 ft
0.9 %RE (± 0.0)
1/10000

4.00 - 5.80 ft
1.7 %RE (± 0.1)
1/10000

6.00 - 7.70 ft
14.1 %RE (± 0.2)
1/100

6.00 - 7.70 ft
67.0 %RE (± 1.1)
1/10

10.00 - 11.80 ft
472.3 %RE (± 6.2)
100% Diesel

Diesel Hexane Dilution

UVOST By Dakota

Site: Y Coord (Lat-N) / System: Unavailable / NA

Final depth: 11.80 ft

Client / Job: X Coord (Long-E) / Fix: Unavailable / NA

Max signal: 484.3 %RE @ 11.50 ft

Operator / Unit: Elevation: Unavailable

Date & Time: 2012-01-20 09:39 CST

www.DakotaTechnologies.com

Fargo, ND
secondary lesson again

UV LIF: heavies dominate light fuels when they mix

coal tar diluted with gasoline

pure gasoline/sand

pure coal tar/sand

Norristown Coal Tar Gasoline Dilution

<table>
<thead>
<tr>
<th>Site:</th>
<th>Y Coord (Lat,Hi) / System:</th>
<th>Final depth:</th>
<th>UVOST By Dakota</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unavailable / NA</td>
<td>11.80 ft</td>
<td></td>
</tr>
<tr>
<td>Client / Job:</td>
<td>X Coord (Long,Et) / Fix:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unavailable / NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator / Unit</td>
<td>Elevation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unavailable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date & Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date & Time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2012-01-18 09:54 CST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Oxygen’s role in LIF waveform and response
examples of oxygen quenching for common fuels
technique: bubble N/O2 mix through neat fuel in cuvette
different product waveform? – no - O2 quenching

customer’s NAPL from a well - 2005

kerosene from pump
examples of oxygen quenching for common fuels
technique: bubble N/O2 mix through neat fuel in cuvette

diesel from pump

gasoline from pump
EXTREME examples of oxygen quenching for common fuels technique: bubble N/O2 mix through neat fuel in cuvette – adding extra O2!
textbook field data example

uphole “lab test” (can’t keep oxygen out!)

downhole test of same NAPL!
good time to look at long lifetime’s negative affect on colorization!

newest OST code can generate lifetimes for each and every channel and each and every depth!
good time to look at long lifetime’s negative affect on colorization!
newest OST code can generate lifetimes for each and every channel and each and every depth!
waveform lifetime fitting

- waveforms change with product chemistry
- chemistry differences are due to the NAPL source or weathering
 - pulsed laser excitation yields four pulses of fluorescence
 [350nm (blue), 400nm (green), 450nm (orange), and 500nm (red)]
 - these pulses “bleed” into each other affecting colorization and our ability to accurately determine each individual channel’s fluorescence contribution
- OST software module calculates exponential decays – breaking down the multi-wavelength waveforms into separate wavelength fluorescence decay pulses
fitting is done on all waveforms vs. depth creating four channel amplitudes (A) and four lifetimes (tau) for each depth (ca. every inch)

<table>
<thead>
<tr>
<th>Depth</th>
<th>RE_Norm</th>
<th>RE_Fit</th>
<th>CH1-A</th>
<th>CH1-Tau</th>
<th>CH2-A</th>
<th>CH2-Tau</th>
<th>CH3-A</th>
<th>CH3-Tau</th>
<th>CH4-A</th>
<th>CH4-Tau</th>
<th><Tau Avg></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.96E-04</td>
<td>5.32E-02</td>
<td>0.144993</td>
<td>2.209021</td>
<td>0.516585</td>
<td>1.92089</td>
<td>0.747119</td>
<td>0.364631</td>
<td>0.175115</td>
<td>1.730564</td>
<td>1.192102</td>
</tr>
<tr>
<td>0.002</td>
<td>0.121793</td>
<td>0.131715</td>
<td>0.370273</td>
<td>3.927942</td>
<td>0.339334</td>
<td>6.286537</td>
<td>0.408429</td>
<td>2.765036</td>
<td>0.332677</td>
<td>6.510731</td>
<td>4.74452</td>
</tr>
<tr>
<td>0.008</td>
<td>7.48E-02</td>
<td>0.11055</td>
<td>0.372983</td>
<td>3.900043</td>
<td>0.412072</td>
<td>5.131155</td>
<td>0.66537</td>
<td>1.893293</td>
<td>0.180275</td>
<td>2.56165</td>
<td>3.244371</td>
</tr>
<tr>
<td>0.01</td>
<td>0.183006</td>
<td>0.163036</td>
<td>0.384</td>
<td>5.539474</td>
<td>0.929661</td>
<td>4.619411</td>
<td>0.841712</td>
<td>4.44419</td>
<td>0.370378</td>
<td>4.970337</td>
<td>4.752359</td>
</tr>
<tr>
<td>0.099</td>
<td>6.31E-02</td>
<td>8.47E-02</td>
<td>0.350459</td>
<td>5.384068</td>
<td>0.392066</td>
<td>3.452472</td>
<td>0.376737</td>
<td>1.828101</td>
<td>0.178557</td>
<td>0.271204</td>
<td>3.06502</td>
</tr>
<tr>
<td>0.135</td>
<td>0.052401</td>
<td>6.59E-02</td>
<td>0.320573</td>
<td>7.189041</td>
<td>0.616781</td>
<td>1.63781</td>
<td>0.407034</td>
<td>2.372973</td>
<td>0.184439</td>
<td>2.18404</td>
<td>3.063451</td>
</tr>
<tr>
<td>0.527</td>
<td>0.131327</td>
<td>0.100379</td>
<td>0.127157</td>
<td>11.26302</td>
<td>0.469778</td>
<td>5.377861</td>
<td>0.42247</td>
<td>4.483602</td>
<td>6.20E-02</td>
<td>8.17012</td>
<td>5.880556</td>
</tr>
<tr>
<td>0.609</td>
<td>8.58E-02</td>
<td>0.103687</td>
<td>0.409208</td>
<td>7.298145</td>
<td>0.224081</td>
<td>7.386196</td>
<td>0.666631</td>
<td>2.720192</td>
<td>0.321246</td>
<td>1.010971</td>
<td>4.181978</td>
</tr>
<tr>
<td>0.693</td>
<td>4.07E-02</td>
<td>7.19E-02</td>
<td>0.154508</td>
<td>10.52414</td>
<td>0.401555</td>
<td>3.502514</td>
<td>0.668307</td>
<td>2.147111</td>
<td>4.65E-02</td>
<td>0.351963</td>
<td>3.528088</td>
</tr>
<tr>
<td>0.754</td>
<td>0.10817</td>
<td>0.119839</td>
<td>0.307301</td>
<td>6.277873</td>
<td>0.490208</td>
<td>2.825852</td>
<td>0.583898</td>
<td>3.276093</td>
<td>0.206438</td>
<td>1.031408</td>
<td>3.4262</td>
</tr>
<tr>
<td>0.819</td>
<td>5.52E-02</td>
<td>8.68E-02</td>
<td>0.206024</td>
<td>10.4313</td>
<td>0.206687</td>
<td>5.732303</td>
<td>0.679603</td>
<td>2.76388</td>
<td>0.221619</td>
<td>2.263245</td>
<td>4.34863</td>
</tr>
<tr>
<td>0.882</td>
<td>6.08E-02</td>
<td>0.074304</td>
<td>0.262538</td>
<td>6.294797</td>
<td>0.197394</td>
<td>7.341428</td>
<td>0.431102</td>
<td>4.142846</td>
<td>0.139575</td>
<td>1.189173</td>
<td>4.903648</td>
</tr>
<tr>
<td>0.941</td>
<td>7.93E-02</td>
<td>0.117918</td>
<td>0.189485</td>
<td>7.427971</td>
<td>0.461678</td>
<td>5.00646</td>
<td>0.693461</td>
<td>2.809827</td>
<td>0.272009</td>
<td>1.466933</td>
<td>3.752482</td>
</tr>
<tr>
<td>0.998</td>
<td>5.33E-02</td>
<td>8.77E-02</td>
<td>0.416452</td>
<td>3.73898</td>
<td>0.455151</td>
<td>3.571277</td>
<td>0.464001</td>
<td>1.925876</td>
<td>0.16889</td>
<td>3.387341</td>
<td>3.089592</td>
</tr>
<tr>
<td>1.054</td>
<td>8.45E-02</td>
<td>9.45E-02</td>
<td>0.325132</td>
<td>7.695514</td>
<td>0.246809</td>
<td>4.872951</td>
<td>0.654129</td>
<td>3.247154</td>
<td>0.262408</td>
<td>2.497813</td>
<td>4.356295</td>
</tr>
<tr>
<td>1.112</td>
<td>7.55E-02</td>
<td>9.99E-02</td>
<td>0.183161</td>
<td>4.557147</td>
<td>0.461284</td>
<td>5.052697</td>
<td>0.634335</td>
<td>3.250693</td>
<td>0.432473</td>
<td>3.149602</td>
<td>3.850726</td>
</tr>
<tr>
<td>1.171</td>
<td>5.58E-02</td>
<td>9.19E-02</td>
<td>0.246414</td>
<td>5.885895</td>
<td>0.394366</td>
<td>3.980593</td>
<td>0.514486</td>
<td>5.073301</td>
<td>0.203368</td>
<td>3.729728</td>
<td>4.480363</td>
</tr>
</tbody>
</table>
LIF Training Course – June 2014

<table>
<thead>
<tr>
<th>CH1-A x CH1-Tau</th>
<th>CH2-A x CH2-Tau</th>
<th>CH3-A x CH3-Tau</th>
<th>CH4-A x CH4-Tau</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.2</td>
<td>13.3</td>
<td>68.9</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.3</td>
<td>28.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.8 40.0</td>
</tr>
</tbody>
</table>
weathering (NAPL’s nemesis)

starring “The Chameleon” of LIF… gasoline

why is gasoline the chameleon?

• starting out low on PAHs
• very volatile and ‘solvent’ easily lost
fresh fuels in wet sandy soil in jars
3 weeks of open jars
(gasoline jar went dry and had to be rewetted)

extreme conditions!!
4 weeks of open jars

15-5-5 SAND-WATER-FUEL 4 WKS

<table>
<thead>
<tr>
<th>Site</th>
<th>Y Coord (Lat-N) / System:</th>
<th>Final depth:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unavailable / NA</td>
<td>7.90 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Client / Job</th>
<th>X Coord (Log-E) / Fix:</th>
<th>Max signal:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unavailable / NA</td>
<td>395.6 %RE @ 5.90 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operator / Unit</th>
<th>Elevation</th>
<th>Date & Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVOST01</td>
<td>Unavailable</td>
<td>2011-12-05 16:08 CST</td>
</tr>
</tbody>
</table>
6 weeks of open jars
8 weeks of open jars

15-5-5 Sand-Water-Fuel 8 wks

UVOST By Dakota
www.DakotaTechnologies.com

Site: Y Coord / Lat-N / System: Final depth:
Unavailable / NA 7.80 ft
Client / Job: X Coord / Log-E / Fix: Max signal:
Unavailable / NA 467.6 %RE @ 4.50 ft
Operator / Unit: Elevation: Date & Time:
/ UVOST01 Unavailable 2012-01-05 10:38 CST
former gasoline station in MN in 2010

can you find me in the log at right?
Data QA/QC

Check list of key items that lead to quality UVOST data:

- Proper RE intensity – RE waveform same size and shape as the factory (+- 10%)
- Low Background levels – Background waveform does not exceed 5mV ands is correct shape
- Consistent triggering – software helps – but low laser level or damaged fiber/cable are possible
- Proper penetration speed – going too fast can blur/skip significant response – best to error slow
- Rational and consistent callouts – random or obscure callouts confuse client and clutters plot
- Elimination/control of fogging – fogging will absolutely corrupt a log which corrupts client’s project
- Proper depth encoding – a dirty/bad pot or bad wiring can cause misleading depths
- Review logs generated by “rookies” – OST software allows review of RE, background, etc.
- Let the LIF speak for itself – never oversell or over promise results – set expectations and relax
- DON’T let confirmation sampling (the “gold standard”) create doubt – if operated properly and there is/was fluorescent NAPL in front of the window, UVOST will see it – heterogeneity simply happens – A LOT
- Always insist on examining non-typical NAPLs prior to offering to log it for your client
- Back up the UVOST data ASAP
- Transfer data to client ONLY if you’re confident in the data quality – when in doubt redo that location
NAPL heterogeneity and its affect on site investigations
site heterogeneity affects…

- LIF log-to-log repeatability
- validation sampling and correlation
- remediation design
- conceptual site models
- attitudes/confidence toward remediation
- i.e. darn near everything on NAPL sites

Some example “sister logs” follow…
NAPL nature/extent

They are simply choices we have to make and financial realities investigators need to face.

Data density is key to understanding what the object of our curiosity looks like!

Sampling density will determine greatly what your objects looks like (and your site’s CSM)

Maybe you just want to know if there is anything white in the photo?

goal achieved

spent way too much $$!
How far you need to take sample density depends greatly on the end-game.

If simply removing the panda-like object then we are done.

If deciding real or fake panda, we were not done!
MGP and Wood Treater Sites

tar/creosote is easy to see but we still suffer from poor NAPL CSMs! WHY?

- MGP NAPL can exit as **EITHER** LNAPL and DNAPL (nature can’t use density to “herd cats”)
- **time** – tar has had **decades** to get where it’s at
- some fraction stays behind (sorbed) while a sub-fraction of the body moves
- geologic features – **any** available crack, fracture, or seam, even small ones, are potential conduit for large volumes given the amount of time available for travel
- complex geological settings (glacial till for example) where “nothing makes sense”, every mobilization results in new theory, need for more samples
- what lab tests are useful?.. can we even rely on lab chemistry to tell us how much NAPL? Do you care if 48.7 ppm naphthalene, 12.4 ppm fluorene, etc.?
- usually it falls back to the organoleptic approach (look at and even smell soil samples) and recorded observations
- intimate/detailed/expensive “brainiac” chemistry simply not very practical for a comprehensive site-wide NAPL survey
Sampling for coal tar can run the extremes

from “as little as my client has to spend according to the regulator”

to “let’s figure this out because we’re about to spend big $20,000,000 on a fix and we want it to be successful!”

Sampling density cross sections

On sparse centers and far apart

even if highest quality analytical is used
the engineer is doomed to a poor CSM

Continuous and close

even if modest quality analytical
the engineer will have decent CSM
heterogeneity

versus...
UVOST (good)

versus...
UVOST

versus...

Sample Data

Site: Fargo, ND
Latitude / Datum: 46 54.430709 N / WGS-84
Final depth: 15.04 ft

Client / Job: ABC Consulting
Longitude / Fix: 098 47.733700 W / DG-3D
Max signal: 30.3 %RE @ 6.24 ft

Operator / Unit: St. Germain / UVOST1000
Elevation: Unavailable
Date & Time: 2009-03-31 14:08 CDT

UVOST By Dakota
www.Dakota Technologies.com
This also happens all the time with sampling/coring but nobody recognizes/realizes it due to expense/time of doing twins.

reaction of young consultant who was "hornswoggled" into using new-fangled UVOST – which “can’t perform consistently”
three butterflies from a gasoline spill
trapped gasoline (above and below water table)
butterfly plots of UVOST logs

What if this was the “confirmation” sampling borehole? Which boring was “right”?
duplicate butterflies
(various sites)

what if the second LIF log was a sampling event, not a second LIF log?

how often do you duplicate sample to see if your samples are consistent?

duplicate LIF only takes 20-40 minutes, but yields tremendous insight!
site-wide NAPL heterogeneity
when are duplicates useful?

When every log seems different than the last and “validation” is planned (where will we gather “representative” samples at this site???)

small gasoline service station in glacial till
site-wide NAPL heterogeneity
when are duplicates useful?

NOT SO MUCH when every log is similar to the last – no real driver exists since heterogeneity appears limited and behavior seems ideal
The pregnant pancake
it’s an overly simplistic model (by necessity)

- Zombie-like adherence to the “LNAPL floats on the groundwater’s surface” or “pancake” model has cost the industry HUGE sums of money, time, and discouragement over the decades.

- We know why these diagrams are used – to convey simple concepts like “LNAPL is lighter than water” so it floats

- But unfortunately they stick in people’s minds as illustrating where LNAPL ends up at all LNAPL sites

- When it isn’t where they think it should be they stop looking or are frustrated by how “it changes every sampling event”

- It certainly can/does exist “in the broad picture” but ANY geology complication = NAPL distribution complication.
• LNAPL can suspend, perch, dive, or float (or all three)
• LNAPL is often found trapped below groundwater surface (sometimes WAY below) - if vertical features (lenses, seams, fractures) dominate then LNAPL can be pushed down – or water table fluctuation and clay
• LNAPL often relies more on geology than the density difference between it and water to distribute
• conventional wisdom has us looking in wrong places
• the subsurface is often a very complex place – not the fairly homogeneous matrix most guidance documents are “forced” to portray
• we sample a tiny fraction of the site (what is the mass sampled vs. site mass?)
• monitoring wells are designed to monitor water, not LNAPL – they simply can’t be trusted for LNAPL
LNAPL far below the groundwater **potentiometric** surface?

sandbox
(vertical perm = horizontal perm)

fuel free to flow laterally....

fractured clay
(vertical perm >> horizontal perm)

fuel can’t flow laterally...
like an iceberg it’s driven down vertically
where it often finds lateral freedom (wells too)
example LNAPL misbehavior case #1

“comeback” site in Minnesota

- above ground tank found with leak in 1995
- tank was replaced – no significant fuel observed in soil
- monitoring wells installed west, east, south - no CoCs in wells

- site was closed 1997 – monitoring wells were pulled
- in 2000 - new high-capacity city supply well installed 300-500 ft away

- 2003 - benzene found in new well - knocking well out of service so the site “comes back” onto the books

- new monitoring wells installed… still confusing, no NAPL in them!
 so what’s going on?!....
example LNAPL misbehavior #1

initial monitoring wells

leaked 800 gal unleaded

old city wells

new city well
50 LIF (UVOST) borings ~ 4 days work
the ‘autopsy’ results via LIF

- LNAPL headed north – **opposite of groundwater gradient** and under a building - rolling down a sloped clay formation
- gasoline then found pathway down past the clay and cascaded to groundwater and moved SW to create highest concentration in a SE “arm”
 - one of the first set of 3 wells would likely have detected dissolved BTEX in time
 - to date – **no well has measurable LNAPL**! Just a ‘sheen’ in the well in heart of the “arm”!
- all nearby city wells sealed off – replaced city wells with deep well 1 mile away
 - dissolved phase is now stable – currently monitored natural attenuation
example LNAPL misbehavior #2

“lucky well” site in Minnesota

- fuel release site
- tanks were removed – no sign of significant release
- one mandatory well was inadvertently screened 18-28 feet which is 5-6 feet below groundwater surface
- only this “wrongly constructed” well detected LNAPL!
- consultant was dead sure someone spiked the well couldn’t explain lack of fuel in any other wells or tank hole

if fuel was released, it’s got to float and show up… right?
so what’s going on?....
example LNAPL misbehavior #2

“lucky well”
“lucky” well

0 - 22 feet
Silt with clay and rocks (till)

22 – 40 feet
Fine - medium grained sand

Depth in feet

Fluorescence (%RE)

Well MW1

Well screen

MW1 Groundwater level

NAPL
so LIF was brought in to “settle the matter”
30 UVOST locations ~ 3.5 days
a very large “sunken” gasoline body was located with LIF somehow the gasoline (via pressure/head) had filled the porous sand unit under the clay/silt
Limitations of Laser Induced Fluorescence Technology

Andrew J. Kirkman, P.E.
AECOM
St. Paul, MN

June 29, 2011
LNAPL in wells had **very poor** correlation with LNAPL in adjacent formation.
LIF provides the foundation for LNAPL Site Conceptual Model (LSCM) and basis for refuting gauged LNAPL thickness as a metric for impact magnitude.
Dye-LIF Probe in Action

dye indicator solution

dissolved into DNAPL

“snail’s trail” of dye solution
Thank you!

Randy St. Germain, President
Dakota Technologies, Inc.
2201-A 12th St. North
Fargo, ND 58102
Office: 701-237-4908
Mobile: 701-793-9708
stgermain@dakotatechnologies.com