APPENDIX C - BANK EROSION ASSESSMENT, MADISON TMDL PLANNING AREA

TABLE OF CONTENTS

C1.0 Introduction	
C2.0 Data Collection	
C2.1 Aerial Assessment Reach Stratification	
C2.2 Field Surveys	C-4
C3.0 Sampled Reaches-Sediment Load Calculations	
C4.0 Sediment Load Extrapolation	
C4.1 Reach Type Sediment Loads	
C4.2 Segment Sediment Loads	
C4.2.1 Antelope Creek Sediment Loads	
C4.2.2 Bear Creek Sediment Loads	
C4.2.3 Buford Creek Sediment Loads	
C4.2.4 Blaine Creek Sediment Loads	
C4.2.5 Cherry Creek Sediment Loads	
C4.2.6 Elk Creek Sediment Loads	
C4.2.7 Elk River Sediment Loads	
C4.2.8 Gazelle Creek Sediment Loads	
C4.2.9 Hot Springs Creek Sediment Loads	
C4.2.10 Indian Creek Sediment Loads	
C4.2.11 Jack Creek Sediment Loads	
C4.2.12 Moore Creek Sediment Loads	
C4.2.13 North Meadow Creek Sediment Loads	
C4.2.14 No Man Creek Sediment Loads	
C4.2.15 O'Dell Spring Creek Sediment Loads	
C4.2.16 Red Canyon Sediment Loads	
C4.2.17 Ruby Creek Sediment Loads	
C4.2.18 South Meadow Creek Sediment Loads	
C4.2.19 Watkins Creek Sediment Loads	
C4.2.20 West Fork Madison River Sediment Loads	
C4.2.21 Wigwam Creek Sediment Loads	
C4.3 BMP Sediment Loads	
C5 O References	C-35

C1.0 Introduction

This appendix presents an assessment of sediment loading due to streambank erosion in the Madison TMDL Planning Area (TPA) located in Madison and Gallatin counties. Sediment loads due to streambank erosion were estimated based on field data collected at 42 monitoring sites in summer 2014.

The streambank erosion assessment involved several procedures. First, streams were stratified into similar reaches using an aerial assessment performed in GIS. Streambank erosion data was then collected in the field at selected monitoring sites, and sediment loads were estimated based on field surveys of streambanks. Sediment loads from field assessed monitoring sites were then extrapolated to the unassessed stream reaches and segments in each impaired watershed to estimate a loading for the watershed. Finally, the potential for reducing human influenced streambank erosion was evaluated by decreasing the level of loading to be similar to that at unimpaired reaches, or by estimating the load if erosion at high-eroding banks was reduced. Detailed methods describing each procedure, as well as results, are provided in the following sections.

C2.0 DATA COLLECTION

C2.1 AERIAL ASSESSMENT REACH STRATIFICATION

Prior to field data collection, an aerial assessment of streams in the Madison River TPA was conducted using GIS. Data layers were used to stratify streams into distinct reaches based on landscape and landuse factors following techniques described in *Watershed Stratification Methodology for TMDL Sediment and Habitat Investigations* (Montana Department of Environmental Quality, 2008).

The reach stratification process was completed for the mainstem segments of the following sediment-listed streams in the Madison TPA: Antelope Creek, Bear Creek, Blaine Spring Creek, Cherry Creek, Elk Creek, Hot Springs Creek, Moore Creek, North Meadow Creek, Red Canyon Creek, Ruby Creek, South Meadow Creek, Watkins Creek, and Wigwam Creek. It was also completed for stream segments in the following non-listed streams: Elk River, Gazelle Creek, Hot Springs Creek, Indian Creek, Jack Creek, No Man Creek, O'Dell Spring Creek, West Fork Madison River.

The aerial assessment reach stratification process involved dividing each stream into distinct reaches based on four watershed characteristics. A reach type is defined as a unique combination of EPA Ecoregion, valley gradient, Strahler stream order, and valley confinement, and is designated using the following naming convention based on the reach type identifiers provided in **Table C-1**:

Level III Ecoregion - Valley Gradient - Strahler Stream Order - Confinement

Table C-1. Reach Type Identifiers

Watershed Characteristic	Stratification Category	Reach Type Identifier
Loyal III Feeragion	Northern Rockies	NR
Level III Ecoregion	Canadian Rockies	CR
	0-2%	0
Vallay Cradicat	2-4%	2
Valley Gradient	4-10%	4
	> 10%	10

Table C-1. Reach Type Identifiers

Watershed Characteristic	Stratification Category	Reach Type Identifier
	first order	1
	second order	2
Strahler Stream Order	third order	3
	fourth order	4
	fifth order	5
Confinence	confined	С
Confinement	unconfined	U

For example, a reach identified as NR-0-3-U is in the Northern Rockies Level III Ecoregion, has a valley gradient of 0-2%, is a 3rd order stream, and is within an unconfined valley.

Streambank erosion data was collected at 42 example monitoring sites at which reach surveys were conducted which were 500, 1000, or 2000 feet long based on bankfull width of the stream: the larger the bankfull width, the longer the monitored reach. In this assessment, a sampled reach was referred to as a "site". These monitoring sites included the 28 sites located within impaired watersheds, as well as 14 located in unimpaired watersheds. **Table C-2** describes the distribution of sampled sites across different reach types. The sites sampled for the bank erosion assessment (**Table C-3**) were the same sites sampled to determine if stream segments were meeting sediment targets, as described in **Appendix B**.

Table C-2. Stratified reach types within the Madison TPA, and the number of monitoring sites within each

type

Level III Ecoregion	Valley Gradient	Strahler Stream Order	Confine- ment	Reach Type	Total Number of Reaches	Number of Monitoring Sites/Reaches
		1	U	MR-0-1-U	1	-
		2	С	MR-0-2-C	7	1
		2	U	MR-0-2-U	13	1
		3	С	MR-0-3-C	3	1
	<2%	3	U	MR-0-3-U	68	10
	<2%	4	С	MR-0-4-C	2	1
		4	U	MR-0-4-U	25	5
		5	U	MR-0-5-U	1	-
		6	С	MR-0-6-C	5	-
		O	U	MR-0-6-U	17	-
Middle		1	U	MR-2-1-U	11	1
Rockies		2	С	MR-2-2-C	17	-
NOCKICS		2	U	MR-2-2-U	32	4
		3	С	MR-2-3-C	21	1
	2-4%	3	U	MR-2-3-U	47	10
		4	С	MR-2-4-C	1	-
		4	U	MR-2-4-U	8	1
		6	С	MR-2-6-C	1	-
		0	U	MR-2-6-U	2	-
		1	С	MR-4-1-C	21	-
	4-10%	1	U	MR-4-1-U	49	2
	4-10/0	2	С	MR-4-2-C	16	-
			U	MR-4-2-U	45	3

Table C-2. Stratified reach types within the Madison TPA, and the number of monitoring sites within each type

Level III Ecoregion	Valley Gradient	Strahler Stream Order	Stream Confine-		Total Number of Reaches	Number of Monitoring Sites/Reaches
		2	С	MR-4-3-C	18	-
		3	U	MR-4-3-U	14	-
		4	С	MR-4-4-C	5	-
			U	MR-4-4-U	2	-
		1	С	MR-10-1-C	16	-
		1	U	MR-10-1-U	34	-
	> 100/	2	С	MR-10-2-C	11	1
	>10%	2	U	MR-10-2-U	7	-
		2	С	MR-10-3-C	4	-
	3	U	MR-10-3-U	2	-	
otals:	•	•	•	•	526	42

C2.2 FIELD SURVEYS

Field data collection utilized the approach described the in *Longitudinal Field Methods for the Assessment of TMDL Sediment and Habitat Impairments* (Montana Department of Environmental Quality, 2007).

At each eroding bank, Bank Erosion Hazard Index (BEHI) measurements were performed and the Near Bank Stress (NBS) was estimated or determined based on field measurements (Rosgen,2001). Bank erosion severity was rated from "very low" to "extreme" based on the BEHI score, which was determined by the following six parameters: bank height, bankfull height, root depth, root density, bank angle, and surface protection. Near Bank Stress was rated from "very low" to "extreme" depending on the shape of the channel at the toe of the bank and the force of the water (i.e. "stream power") along the bank.

In addition, the source or underlying cause of streambank erosion was evaluated based on current or observed human disturbances within the riparian corridor adjacent to each bank, as well as historical land-use practices in the surrounding landscape. The following near-stream source categories were used: transportation (roads), grazing, cropland, mining, logging, irrigation, natural, and "other". Naturally eroding streambanks were considered those with no observed or known historic human impacts in the riparian zone, while the "other" category was chosen when streambank erosion resulted from a source not specifically identified in the list. If multiple sources were observed, then a percent of the total was estimated for each source at each bank.

Table C-3. Monitoring sites assessed in each watershed by reach type

Reach Type	waterbody	Monitoring Sites
MR-0-2-C	West Fork Madison River	WFMA 14-02
MR-0-2-U	O'Dell Spring Creek	ODEL 02-01
MR-0-3-C	Indian Creek	INDN 25-01
	Cherry Creek, Elk Creek, Hot Springs	CHRR 18-02, CHRR 20-01, ELKC 05-01, ELKC 11-01,
MR-0-3-U	Creek, Jack Creek, Moore Creek, South	HOTS 10-01, JACK 14-03, JACK 14-06, MOOR 09-
	Meadow Creek	01, MOOR 09-04, SMDW 19-01
MR-0-4-C	West Fork Madison River	WFMA 25-01

Table C-3. Monitoring sites assessed in each watershed by reach type

Reach Type	waterbody	Monitoring Sites
MR-0-4-U	Bear Creek, Blaine Spring Creek, North	BEAR 09-03, BEAR 10-01, BLNS 06-01, NMDW 17-
	Meadow Creek, West Fork Madison River	01, WFMA 26-01
MR-2-1-U	Buford Creek	BFRD 07-01
MR-2-2-U	Antelope Creek, Elk River, Red Canyon	ALTP 04-02, ELKR 04-01, RCYN 08-01, RCYN 09-02
	Creek	
MR-2-3-C	Ruby Creek	RUBY 17-01
MR-2-3-U	Blaine Spring Creek, Elk Creek, Elk River,	BLNS 04-01, ELKC 06-02, ELKR 18-01, INDN 23-01
	Indian Creek, North Meadow Creek, Ruby	NMDW 14-02, RUBY 18-02, SMDW 18-01, WATK
	Creek, South Meadow Creek, Watkins	12-01, WATK 14-01, WGWM 18-01
	Creek, Wigwam Creek	
MR-2-4-U	Hot Springs Creek	HOTS 16-01
MR-4-1-U	Buford Creek, Hot Springs Creek	BFRD 06-01, HOTS 05-01
MR-4-2-U	Gazelle Creek, Red Canyon Creek,	GAZL 16-01, RCYN 07-01, WGWM 08-01
	Wigwam Creek	
MR-10-2-C	Gazelle Creek	GAZL 09-01

C3.0 SAMPLED REACHES-SEDIMENT LOAD CALCULATIONS

For each eroding streambank, the average annual sediment load was estimated based on the BANCS model, which incorporates the BEHI score and near bank stress (Rosgen, 2001; Rosgen, 2006). Annual retreat rates were estimated based on those measured from the Lamar River in Yellowstone National Park (Rosgen, 2001) (Table C-4).

Table C-4. Streambank erosion retreat rates (ft/year) from Lamar River, YNP were applied

BEHI		Near Bank Stress										
	very low	very low low moderate high very high extre										
very Low	Low 0.002 0.004		0.009	0.021	0.050	0.12						
low	0.02	0.04	0.10	0.24	0.57	1.37						
moderate	0.10	0.17	0.28	0.47	0.79	1.33						
high - very high	0.37	0.53	0.76	1.09	1.57	2.26						
extreme	0.98	1.21	1.49	1.83	2.25	2.76						

The annual sediment load in cubic feet was then calculated from the field data (annual retreat rate x mean bank height x bank length), converted into cubic yards, and finally converted into tons per year based on the bulk density of streambank material. The bulk density of streambank material was assumed to average 1.3 tons/cubic yard (USDI 1998). This process resulted in a sediment load from each eroding bank expressed in tons/year. The sum of loading across all banks gave a loading estimate for the site/reach. To standardize across the reaches, the sum of all loading at the site was multiplied by the necessary value to obtain the amount of sediment loading in a 1,000-foot reach. For instance, if only 500 feet were sampled, the value was multiplied by two.

To obtain an estimate of amount of natural bank erosion, at a bank, the total bank erosion was multiplied by the proportion of the surrounding riparian zone without obvious current or historical human impacts. This was summed across the reach to obtain an estimate of natural bank erosion for the reach.

Below are equations used to estimate total bank erosion and natural bank erosion rates:

$$Total\ Bank\ Erosion - Bank\ \left(\frac{Tons}{Yr}\right) = \frac{Length\ Eroding\ Bank\ (ft)*Retreat\left(\frac{ft}{yr}\right)*Bank\ Height\ (ft)}{27\ \frac{cubic\ yards}{cubic\ feet}}*1.3\frac{Tons}{Cubic\ Yard}$$

$$Natural\ Bank\ Erosion\ \left(\frac{Tons}{Yr}\right) = Total\ Bank\ Erosion\ \left(\frac{Tons}{Yr}\right) * Proportion\ in\ Natural\ Conditions$$

Estimated bank erosion loading rates varied widely from two tons/year/1000 feet to 143 tons/year/1000 feet (**Table C-5**).

Table C-5. Estimated bank erosion loading rates by monitoring site

	limated bank c		Length of Eroding	Monitoring	Eroding Bank (%	%	Sediment	Load per
	Site/Reach	Reach	Banks	Site Length	of	Natural	Load	1000 feet
Stream	ID	Туре	(Feet)	(Feet)	Reach)	Erosion	(Tons/Year)	(Tons/Year)
Antelope		MR-2-2-						
Creek	ATLP04-02a	U	883	500	88%	33	26	52
		MR-4-3-						
	ATLP10-10a	С	229	1000	11%	95	17	17
Bear Creek		MR-0-4-				_	_	
	BEAR09-03a	U	151	500	15%	8	6	12
		MR-0-4-					_	
	BEAR10-01a	U	176	500	18%	55	7	14
Buford		MR-4-1-						
Creek	BFRD06-01a	U	64	110	29%	100	3	27
	555557.04	MR-2-1-	400	500	400/			
	BFRD07-01a	U	420	500	42%	88	14	28
Blaine	DI NICOA OA	MR-2-3-	250	500	250/	62	40	26
Spring	BLNS04-01a	U	350	500	35%	62	18	36
Creek	DI NICOC 04-	MR-0-4-	4267	1000	630/	75	60	60
Ch a mm .	BLNS06-01a	U	1267	1000	63%	75	68	68
Cherry	CHRR18-	MR-0-3-	11.07	1000	F00/	40	1.42	142
Creek	02a	U	1167	1000	58%	48	143	143
	CHRR20- 01a	MR-0-3- U	1245	1000	62%	80	56	56
Elk Creek	Ola	MR-0-3-	1243	1000	02/0	80	30	30
LIK CIEEK	ELKC 05-01a	U U	742	500	74%	91	32	64
	LLKC 05-01a	MR-0-3-	742	300	74/0	91	32	04
	ELKC 11-01a	U	481	500	48%	50	36	72
Elk River	LLKC II OIG	MR-2-2-	701	300	40/0	30	30	72
LIK KIVEI	ELKR04-01a	U	251	500	25%	100	20	40
	EERRO TOTA	MR-2-3-	231	300	2370	100	20	40
	ELKR18-01a	U	503	1000	25%	30	17	17
Gazelle		MR-10-						
Creek	GAZL09-01a	2-C	322	400	40%	90	5	13
		MR-4-2-				-		
	GAZL16-01a	U	267	500	27%	100	3	6

Table C-5. Estimated bank erosion loading rates by monitoring site

			Length of		Eroding	•		
	Cita /Danah	Danah	Eroding	Monitoring	Bank (%	% Natural	Sediment	Load per
Stream	Site/Reach ID	Reach Type	Banks (Feet)	Site Length (Feet)	of Reach)	Natural Erosion	Load (Tons/Year)	1000 feet (Tons/Year)
Hot Springs		MR-4-1-	(1000)	(1000)	Reacity	LIOSION	(Tons) Teary	(Tonsy Teary
Creek	HOTS05-01a	U	238	500	24%	7	3	6
0.00.	1101000 020	MR-0-3-		333	2.75			
	HOTS10-01a	U	212	500	21%	52	20	40
		MR-2-4-						
	HOTS16-01a	U	561	1000	28%	43	40	40
Indian		MR-2-3-						
Creek	INDN23-01a	U	233	700	17%	100	9	13
		MR-0-3-						
	INDN25-01a	С	136	1000	7%	37	2	2
Jack Creek		MR-0-3-						
	JACK14-03a	U	1016	1000	51%	14	95	95
		MR-0-3-						
	JACK14-06a	U	935	1000	47%	40	51	51
Moore	MOOR09-	MR-0-3-						
Creek	01a	U	531	500	53%	47	21	42
	MOOR09-	MR-0-3-						
	04a	U	618	500	62%	60	30	60
North	NMDW14-	MR-2-3-						
Meadow	02a	U	1108	800	69%	20	23	29
Creek	NMDW17-	MR-0-4-						
	01a	U	480	500	48%	65	21	42
O'Dell								
Spring		MR-0-2-						
Creek	ODEL02-01a	U	1178	1000	59%	80	24	24
Red Canyon		MR-4-2-						
Creek	RCYN07-01a	U	419	1000	21%	90	23	23
		MR-2-2-						
	RCYN08-01a	U	1097	1000	55%	71	70	70
		MR-2-2-						
	RCYN09-02a	U	599	500	60%	42	39	78
Ruby Creek		MR-2-3-						
	RUBY17-01a	С	869	1000	43%	22	57	57
		MR-2-3-						
	RUBY18-02a	U	613	1000	31%	77	16	16
South	SMDW18-	MR-2-3-	240	1000	4.50/	2.5	4.0	4.0
Meadow	01a	U	318	1000	16%	25	18	18
Creek	SMDW19-	MR-0-3-	003	500	000/	20	2.4	60
14/	01a	U	982	500	98%	20	34	68
Watkins	WATK12-	MR-2-3-	702	1000	400/	20	20	20
Creek	01a	U	792	1000	40%	30	28	28
	WATK14-	MR-2-3-	204	F00	200/	100		10
Most Faul	01a	U	304	500	30%	100	9	18
West Fork	WFMA14-	MR-0-2-	105	E00	200/	E2	22	66
Madison	02a	C NAP O 4	195	500	20%	53	33	66
	WFMA25-	MR-0-4-	242	1000	130/	20	2.4	24
	01a	С	242	1000	12%	30	34	34

Table C-5. Estimated bank erosion loading rates by monitoring site

Stream	Site/Reach ID			Monitoring Site Length (Feet)	Eroding Bank (% of Reach)	% Natural Erosion	Sediment Load (Tons/Year)	Load per 1000 feet (Tons/Year)
	WFMA26-	MR-0-4-						
	01a	U	805	1000	40%	58	91	91
Wigwam	WGWM08-	MR-4-2-						
Creek	01a	С	130	500	13%	10	6	12
	WGWM18-	MR-2-3-						
	01a	U	403	1000	20%	54	14	14

Based on the riparian assessment, the biggest cause of bank erosion was natural sources, followed by grazing-related activities, and historic sources (**Table C-6** and **C-7**). Historic sources refer to grazing or other activities that occurred in the past, but the banks are still recovering. At most reaches, road impacts and residential activities were estimated to contribute low amounts of bank erosion (**Table C-7**).

Table C-6. Estimated sediment load from banks by source at sampled reaches

Stream	Reach ID Reach		Reach	Ro	ad Load	Gra	zing Load	Nati	ural Load	Residential %		Other %		Historic %	
		Туре	Sediment Load (Tons/Yr)	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr
Antelope Creek	ATLP04- 02a	MR-2- 2-U	25.7	0%	0.0	67%	17.2	33%	8.5	0%	0.0	0%	0.0	0%	0.0
	ATLP10- 01a	MR-4- 3-C	16.8	0%	0.0	5%	0.9	95%	15.9	0%	0.0	0%	0.0	0%	0.0
Bear Creek	BEAR09- 03a	MR-0- 4-U	6.1	0%	0.0	92%	5.6	8%	0.5	0%	0.0	0%	0.0	0%	0.0
	BEAR10- 01a	MR-0- 4-U	7.2	0%	0.0	45%	3.3	55%	4.0	0%	0.0	0%	0.0	0%	0.0
Buford Creek	BFRD06- 01a	MR-4- 1-U	3.1	0%	0.0	0%	0.0	100 %	3.1	0%	0.0	0%	0.0	0%	0.0
	BFRD07- 01a	MR-2- 1-U	13.9	0%	0.0	12%	1.7	88%	12.2	0%	0.0	0%	0.0	0%	0.0
Blaine Spring Creek	BLNS04- 01a	MR-2- 3-U	18.4	0%	0.0	0%	0.0	62%	11.5	0%	0.0	17%	3.1	21%	3.8
	BLNS06- 01a	MR-0- 4-U	68.0	0%	0.0	25%	17.1	75%	50.9	0%	0.0	0%	0.0	0%	0.0
Cherry Creek	CHRR18- 02a	MR-0- 3-U	142.5	0%	0.0	0%	0.0	48%	68.7	0%	0.0	0%	0.0	52%	73.8
Cherry Creek	CHRR20- 01a	MR-0- 3-U	56.0	0%	0.0	0%	0.0	80%	44.8	0%	0.0	0%	0.0	20%	11.2
Elk Creek	ELKC 05- 01a	MR-0- 3-U	31.5	0%	0.0	9%	2.9	91%	28.6	0%	0.0	0%	0.0	0%	0.0
Elk Creek	ELKC 11- 01a	MR-0- 3-U	36.4	0%	0.0	0%	0.0	50%	18.2	0%	0.0	0%	0.0	50%	18.2
Elk River	ELKRO4- 01a	MR-2- 2-U	20.2	0%	0.0	0%	0.0	100 %	20.2	0%	0.0	0%	0.0	0%	0.0
Elk River	ELKR18- 01a	MR-2- 3-U	17.1	0%	0.0	70%	11.9	30%	5.2	0%	0.0	0%	0.0	0%	0.0
Gazelle Creek	GAZL09- 01a	MR- 10-2-C	5.0	0%	0.0	10%	0.5	90%	4.5	0%	0.0	0%	0.0	0%	0.0
Gazelle Creek	GAZL16- 01a	MR-4- 2-U	3.4	0%	0.0	0%	0.0	100 %	3.4	0%	0.0	0%	0.0	0%	0.0
Hot Springs Creek	HOTS05- 01a	MR-4- 1-U	3.2	0%	0.0	93%	3.0	7%	0.2	0%	0.0	0%	0.0	0%	0.0

Table C-6. Estimated sediment load from banks by source at sampled reaches

Stream	Reach ID	Reach	Reach	Ro	ad Load	Gra	zing Load	Nati	ural Load	Resi	dential %	0	ther %	His	storic %
		Туре	Sediment Load (Tons/Yr)	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr
Hot Springs Creek	HOTS10- 01a	MR-0- 3-U	20.3	0%	0.0	6%	1.3	52%	10.7	0%	0.0	0%	0.0	41%	8.4
Hot Springs Creek	HOTS16- 01a	MR-2- 4-U	40.2	48 %	19.3	0%	0.0	43%	17.4	0%	0.0	0%	0.0	9%	3.5
Indian Creek	INDN23- 01a	MR-2- 3-U	8.6	0%	0.0	0%	0.0	100 %	8.6	0%	0.0	0%	0.0	0%	0.0
Indian Creek	INDN25- 01a	MR-0- 4-C	2.2	0%	0.0	0%	0.0	37%	0.8	0%	0.0	54%	1.2	9%	0.2
Jack Creek	JACK14- 03a	MR-0- 3-U	94.6	0%	0.0	0%	0.0	14%	12.8	0%	0.0	35%	33.3	51%	48.5
Jack Creek	JACK14- 06a	MR-0- 3-U	50.5	19 %	9.5	0%	0.0	40%	20.3	0%	0.0	32%	16.0	0%	0.0
Moore Creek	MOOR09- 01a	MR-0- 3-U	20.9	0%	0.0	0%	0.0	47%	9.8	0%	0.0	0%	0.0	53%	11.0
Moore Creek	MOOR09- 04a	MR-0- 3-U	29.7	0%	0.0	40%	11.9	60%	17.8	0%	0.0	0%	0.0	0%	0.0
North Meadow Creek	NMDW14 -02a	MR-2- 3-U	23.0	0%	0.0	80%	18.4	20%	4.6	0%	0.0	0%	0.0	0%	0.0
North Meadow Creek	NMDW17 -01a	MR-0- 4-U	21.1	0%	0.0	0%	0.0	65%	13.6	11%	2.3	5%	1.2	19%	4.0
O'Dell Creek	ODELO2- 01a	MR-0- 2-U	43.8	0%	0.0	0%	0.0	80%	35.1	0%	0.0	20%	8.8	0%	0.0
Red Canyon Creek	RCYN07- 01a	MR-4- 2-U	22.9	7%	1.6	3%	0.7	90%	20.5	0%	0.0	0%	0.0	0%	0.0
Red Canyon Creek	RCYN08- 01a	MR-2- 2-U	70.4	22 %	15.4	0%	0.0	71%	50.0	0%	0.0	7%	5.0	0%	0.0
Red Canyon Creek	RCYN09- 02a	MR-2- 2-U	39.4	0%	0.0	8%	3.0	42%	16.7	0%	0.0	0%	0.0	50%	19.7
Ruby Creek	RUBY17- 01a	MR-2- 3-C	57.2	0%	0.0	76%	43.5	22%	12.4	0%	0.0	2%	1.2	0%	0.0
Ruby Creek	RUBY18- 02a	MR-2- 3-U	15.8	0%	0.0	0%	0.0	77%	12.2	0%	0.0	0%	0.0	23%	3.6
South Meadow Creek	SMDW18- 01a	MR-2- 3-U	17.9	0%	0.0	75%	13.4	25%	4.5	0%	0.0	0%	0.0	0%	0.0

Table C-6. Estimated sediment load from banks by source at sampled reaches

Stream	Reach ID	Reach	Reach	Ro	ad Load	Gra	zing Load	Nati	ural Load	Resi	dential %	0	ther %	His	storic %
		Туре	Sediment Load (Tons/Yr)	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr	%	Tons/Yr
South Meadow Creek	SMDW19- 01a	MR-0- 3-U	34.0	0%	0.0	80%	27.2	20%	6.8	0%	0.0	0%	0.0	0%	0.0
Watkins Creek	WATK12- 01a	MR-2- 3-U	28.2	0%	0.0	53%	14.8	30%	8.4	0%	0.0	18%	5.0	0%	0.0
Watkins Creek	WATK14- 01a	MR-2- 3-U	8.8	0%	0.0	0%	0.0	100 %	8.8	0%	0.0	0%	0.0	0%	0.0
West Fork Madison River	WFMA14- 02a	MR-0- 2-C	33.4	0%	0.0	47%	15.5	53%	17.9	0%	0.0	0%	0.0	0%	0.0
West Fork Madison River	WFMA25- 01a	MR-0- 4-C	33.7	21 %	7.0	78%	26.3	1%	0.4	0%	0.0	0%	0.0	0%	0.0
West Fork Madison River	WFMA26- 01a	MR-0- 4-U	90.5	0%	0.0	0%	0.0	58%	52.8	0%	0.0	0%	0.0	42%	37.7
Wigwam Creek	WGWM0 8-01a	MR-4- 2-C	6.1	0%	0.0	0%	0.0	54%	3.3	0%	0.0	0%	0.0	46%	2.8
Wigwam Creek	WGWM1 8-01a	MR-2- 3-U	14.0	0%	0.0	90%	12.6	10%	1.4	0%	0.0	0%	0.0	0%	0.0

Table C-7. Summary of erosion sources at sampled reaches

- sampica reacties		
Source	Sediment Load (Tons/Year)	Sediment Load (Percent)
Natural	655.1	51.1
Roads	52.9	4.1
Riparian Grazing	252.7	19.7
Other	72.5	5.7
Residential/Urban	2.3	0.2
Historic	246.5	19.2
Total	1282.1	100

C4.0 SEDIMENT LOAD EXTRAPOLATION

Sediment load extrapolations were performed for monitoring sites, stream reaches, and stream segments, which are defined as follows:

Monitoring Site/Reach - A 500, 1,000, or 2,000 foot section of a stream reach where field

monitoring was conducted (as in Table C-3)

Stream Reach -Subdivision of the stream segment based on Ecoregion, stream order,

gradient and confinement as evaluated in GIS

Stream Segment -A group of stream reaches within the same sub drainage (e.g.,

"Antelope Creek"). The total loading from each impaired segment was determined by summing the loading for all reaches in the segment.

Several non-impaired segments were also evaluated.

Average annual sediment loads from monitoring reaches were extrapolated to the unsampled stream reaches based on similar reach type characteristics and land use (**Table C-8**). Although a large number of reach types were estimated to be present in the Madison TPA, for extrapolation these were grouped together into broad types that were expected to have similar loading. Gradient, order, and land use characteristics were estimated for field reaches using field surveys, and for unsampled reaches based on aerial photography and Digital Elevation Models according to the aerial assessment procedure.

C4.1 REACH TYPE SEDIMENT LOADS

Based on an exploratory analysis, sampled sites found to have >70% of the riparian zone in natural vegetation based on aerial surveys also had lower loading rates This information was used to estimate average loading in unsampled reaches based on land use information from aerial surveys (**Table C-8**). First order and high gradient streams had the lowest loading estimates. However, fewer sampled reaches were found in these categories and they represented a lower proportion of the total reaches present. Therefore, for these reaches, the average across all sites was used.

Table C-8. Average reach loading rates assigned to unsampled reaches

Table C-8. Average reach lo	l lates as	oigned to unsump	leareaches		Average
	% of			Average	Reach Type
	Riparian			Average Reach Type	Sediment
	Zone in			Load Per	Load per
	Natural			1000 Feet	1000 Feet
Description	Vegetation	Reach ID	Reach Type	(Tons/Year)	(Tons/Year)
Description	vegetation	JACK14-03a	MR-0-3-U	94.6	(Tolls/Teal)
		SMDW19-01a	MR-0-3-U	68.0	
		JACK14-06a	MR-0-3-U	50.5	
		MOOR09-01a	MR-0-3-U	41.7	
		CHRR18-02a	MR-0-3-U	142.5	
Low gradient streams (0-		ELKC 11-01a	MR-0-3-U	72.8	
2% gradient), non first-	<u><</u> 70%	HOTS10-01a	MR-0-3-U	40.7	59.8
order	<u> </u>	MOOR09-04a	MR-0-3-U	59.3	33.0
0.00.		WFMA25-01a	MR-0-4-C	33.7	
		BEAR09-03a	MR-0-4-U	12.3	
		NMDW17-01a	MR-0-4-U	42.3	
		CHRR20-01a	MR-0-3-U	55.9	
		ELKC 05-01a	MR-0-3-U	63.1	
		WFMA14-02a	MR-0-2-C	66.8	
		INDN25-01a	MR-0-4-C	2.2	ļ
Low gradient streams (0-		BEAR10-01a	MR-0-4-U	14.4	
2% gradient), non first-	>70%	WFMA26-01a	MR-0-4-U	90.5	43.5
order		ODEL02-01a	MR-0-2-U	43.8	
		BLNS06-01a	MR-0-4-U	67.9	
		ODEL02-01a	MR-0-2-U	24.3	
		RCYN09-02a	MR-2-2-U	78.8	
		RCYN08-01a	MR-2-2-U	70.4	
		RUBY17-01a	MR-2-3-C	57.2	
		WGWM18-01a	MR-2-3-U	14.0	
Mid gradient streams (2-		NMDW14-02a	MR-2-3-U	28.8	
4% gradient), non first-	<u><</u> 70%	SMDW18-01a	MR-2-3-U	17.9	38.1
order		ELKR18-01a	MR-2-3-U	17.1	
		BLNS04-01a	MR-2-3-U	36.9	
		HOTS16-01a	MR-2-4-U	40.2	
		ELKR04-01a	MR-2-2-U	40.3	
		WATK14-01a	MR-2-3-U	17.6	
Mid gradient streams (2-		ATLP04-02a	MR-2-2-U	51.4	
4% gradient), non first-	>70%	WATK12-01a	MR-2-3-U	28.2	27.0
order	//0/0	INDN23-01a	MR-2-3-U	12.4	27.0
OI UEI		RUBY18-02a	MR-2-3-U	15.9	
High gradient streams (4-		GAZL16-01a	MR-4-2-U	6.9	
10%), non first-order		RCYN07-01a	MR-4-2-U	22.9	14.0
10/0j, 11011 1113t-01 del	0-100%	WGWM08-01a	MR-4-2-C	12.3	

Table C-8. Average reach loading rates assigned to unsampled reaches

Description	% of Riparian Zone in Natural Vegetation	Reach ID	Reach Type	Average Reach Type Load Per 1000 Feet (Tons/Year)	Average Reach Type Sediment Load per 1000 Feet (Tons/Year)
very high gradient streams (>10%)	0-100%	GAZL09-01a	MR-10-2-C	12.4	12.4
		BFRD07-01a	MR-2-1-U	27.8	
first Order Streams		HOTS05-01a	MR-4-1-U	6.4	20.7
	0-100%	BFRD06-01a	MR-4-1-U	27.8	

C4.2 SEGMENT SEDIMENT LOADS

Stream segment sediment loads were estimated for all Madison River TPA stream segments impaired for sediment per Montana's 2020 Integrated Report, including Antelope Creek, Bear Creek, Blaine Spring Creek, Cherry Creek, Elk Creek, Hot Springs Creek, Moore Creek, North Meadow Creek, Red Canyon Creek, Ruby Creek, South Meadow Creek, Watkins Creek, and Wigwam Creek. It was also completed for stream segments in the following non-listed streams: Elk River, Gazelle Creek, Hot Springs Creek, Indian Creek, Jack Creek, No Man Creek, O'Dell Spring Creek, West Fork Madison River.

Total stream segment loads calculated by summing the cumulative sediment load of all reaches within each segment as illustrated in the following tables.

C4.2.1 Antelope Creek Sediment Loads

A total of 14 reaches were delineated for the Antelope Creek drainage (**Table C-9**). A large number of these were low gradient reaches with a riparian zone with \leq 70% in natural vegetation, which were assigned a higher loading rate than streams in > 70% natural vegetation. First order streams also comprised a large number of the stream reaches and were assigned a loading rate of 20.7 tons/yr/1000 ft.

Table C-9. Estimated annual sediment loads for Antelope Creek

							Load Per 1000 Feet (Tons/Yr/1000 Feet)			
					Grad-	%				
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Antelope		MR-0-2-								
Creek	ATLP 05-01	U	860	2	0	50	59.8	NA	59.8	51.4
Antelope		MR-0-2-								
Creek	ATLP 05-02	U	1005	2	0	50	59.8	NA	59.8	60.1
Antelope		MR-0-3-								
Creek	ATLP 09-01	С	1588	3	0	80	43.5	NA	43.5	69.1
Antelope		MR-0-3-								
Creek	ATLP 06-01	U	11874	3	0	45	59.8	NA	59.8	710.1
Antelope		MR-0-3-								
Creek	ATLP 07-01	U	3862	3	0	30	59.8	NA	59.8	230.9

Table C-9. Estimated annual sediment loads for Antelope Creek

							Load Per 10			
					Grad-	%				
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Antelope		MR-0-3-								
Creek	ATLP 08-01	U	5451	3	0	30	59.8	NA	59.8	325.9
Antelope		MR-10-1-								
Creek	ATLP 02-01	С	650	1	10	90	20.7	NA	20.7	13.5
Antelope		MR-10-1-								
Creek	ATLP 01-01	U	1837	1	10	90	20.7	NA	20.7	38.0
Antelope		MR-10-1-								
Creek	ATLP 01-02	U	2137	1	10	90	20.7	NA	20.7	44.2
Antelope		MR-2-2-								
Creek	ATLP 04-01	U	2445	2	2	90	27	NA	27.0	66.0
Antelope		MR-2-2-								
Creek	ATLP 04-02	U	3039	2	2	75	27	51.37	51.4	156.1
Antelope		MR-2-2-								
Creek	ATLP 04-03	U	4316	2	2	40	38.1	NA	38.1	164.4
Antelope		MR-4-1-								
Creek	ATLP 03-01	С	4526	1	4	90	20.7	NA	20.7	93.7
Antelope		MR-4-3-		_						
Creek	ATLP 10-01	С	5467	3	4	90	14	16.81	16.8	91.9
* If reach w	as sampled, actu	ıal field loadiı	ng value wa	s used;						Total: 2115.4

^{*} If reach was sampled, actual field loading value was used otherwise extrapolated value was used

Total: 2115.4 Tons/Yr

C4.2.2 Bear Creek Sediment Loads

A total of 18 reaches were delineated for the Bear Creek drainage (**Table C-10**). While several of these were high gradient or first order streams, most were low gradient, higher orders streams with low percentage of the riparian zone in natural vegetation. Thus, they had a high extrapolated sediment loading rate of 59.8 tons/yr/1,000 ft.

Table C-10. Estimated annual sediment loads for Bear Creek

							Load Per 1000 Feet (Tons/Yr/1000 Feet)			
Stream	Reach ID	Reach Type	Length (feet)	Strahler Order	Grad -ient Class	% Natural Veg	Extrapol- ated	Field Assessed	Estimated *	Total Load (Tons/Year)
Bear Creek	BEAR 03-01	MR-4-1-U	747	1	4	80	20.7	NA	20.7	15.5
Bear Creek	BEAR 04-01	MR-4-2-U	964	2	4	70	14	NA	14.0	13.5
Bear Creek	BEAR 05-01	MR-4-3-U	1877	3	4	80	14	NA	14.0	26.3
Bear Creek	BEAR 06-01	MR-2-3-U	1684	3	2	50	38.1	NA	38.1	64.2
Bear Creek	BEAR 07-01	MR-2-3-U	19297	3	2	10	38.1	NA	38.1	735.2
Bear Creek	BEAR 08-01	MR-0-3-U	7990	3	0	30	59.8	NA	59.8	477.8
Bear Creek	BEAR 08-02	MR-0-3-U	3409	3	0	30	59.8	NA	59.8	203.9
Bear Creek	BEAR 08-03	MR-0-3-U	7940	3	0	20	59.8	NA	59.8	474.8
Bear Creek	BEAR 08-04	MR-0-3-U	19877	3	0	20	59.8	NA	59.8	1188.7
Bear Creek	BEAR 08-05	MR-0-3-U	16750	3	0	10	59.8	NA	59.8	1001.6
Bear Creek	BEAR 09-01	MR-0-4-U	5395	4	0	10	59.8	NA	59.8	322.6

Table C-10. Estimated annual sediment loads for Bear Creek

							Load Per 1000 Feet (Tons/Yr/1000 Feet)			
								i eetj	1	
					Grad	%				
		Reach	Length	Strahler	-ient	Natural	Extrapol-	Field	Estimated	Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	ated	Assessed	*	(Tons/Year)
Bear Creek	BEAR 09-02	MR-0-4-U	12901	4	0	10	59.8	NA	59.8	771.5
Bear Creek	BEAR 09-03	MR-0-4-U	5751	4	0	10	59.8	12.26	12.3	70.5
Bear Creek	BEAR 09-04	MR-0-4-U	9297	4	0	20	59.8	NA	59.8	555.9
Bear Creek	BEAR 10-01	MR-0-4-U	4867	4	0	80	43.5	14.40	14.4	70.1
Bear Creek	BEAR 11-01	MR-0-4-U	5577	4	0	30	59.8	NA	59.8	333.5
Bear Creek	BEAR 11-02	MR-0-4-U	4619	4	0	30	59.8	NA	59.8	276.2
Bear Creek	BEAR 11-03	MR-0-4-U	6497	4	0	70	59.8	NA	59.8	388.5

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 6990.27 Tons/Yr

C4.2.3 Buford Creek Sediment Loads

A total of seven reaches were delineated in the Buford Creek drainage (**Table C-11**). Most of these were first order unsampled reaches with an estimated loading rate of 20.7 tons/year/1000 feet.

Table C-11. Estimated sediment loads for Buford Creek

					Grad-	%	Load Per 1000 Feet (Tons/Yr/1000 Feet)			
		Reach	Length	Strahler	ient	Natural		Field	Estimated	Total Load
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	*	(Tons/Year)
Buford	BFRD 02-	MR-4-1-								
Creek	01	U	1307	1	4	80	20.7	NA	20.7	27.1
Buford	BFRD 03-	MR-10-								
Creek	01	1-U	2974	1	10	80	20.7	NA	20.7	61.6
Buford	BFRD 04-	MR-4-1-								
Creek	01	С	1751	1	4	80	20.7	NA	20.7	36.3
Buford	BFRD 05-	MR-4-1-								
Creek	01	U	1017	1	4	80	20.7	NA	20.7	21.0
Buford	BFRD 05-	MR-4-1-								
Creek	02	U	3214	1	4	80	20.7	NA	20.7	66.5
Buford	BFRD 06-	MR-4-1-								
Creek	01	U	7490	1	4	80	20.7	27.82	27.8	208.4
Buford	BFRD 06-	MR-2-1-								
Creek	02	U	4327	1	2	50	20.7	6.40	6.4	27.7

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 448.5 Tons/Yr

C4.2.4 Blaine Creek Sediment Loads

A total of seven reaches were delineated for Blaine Spring Creek drainage (**Table C-12**). These were primarily low and mid gradient reaches with \leq 70% natural vegetation and relatively high estimated loading rates.

Table C-12. Estimated sediment loads for Blaine Spring Creek

					Grad-	%	Load Per 1000 Feet (Tons/Yr/1000 Feet)		r/1000 Feet)	
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Blaine Spring	BLNS	MR-4-1-								
Creek	02-01	U	5160	1	4	30	20.7	NA	20.7	106.8
Blaine Spring	BLNS	MR-2-2-								
Creek	03-01	U	1266	2	2	40	38.1	NA	38.1	48.2
Blaine Spring	BLNS	MR-2-2-								
Creek	03-02	U	3110	2	2	30	38.1	NA	38.1	118.5
Blaine Spring	BLNS	MR-2-3-								
Creek	04-01	U	7589	3	2	40	38.1	36.87	36.9	279.8
Blaine Spring	BLNS	MR-2-4-								
Creek	05-01	U	1774	4	2	40	38.1	NA	38.1	67.6
Blaine Spring	BLNS	MR-0-4-								
Creek	06-01	U	20829	4	0	70	59.8	67.95	68.0	1415.3
Blaine Spring	BLNS	MR-0-4-								
Creek	07-01	U	7883	4	0	70	59.8	NA	59.8	471.4
				•		•		•	•	Total:

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 2507.6 Tons/Yr

C4.2.5 Cherry Creek Sediment Loads

A total of 28 reaches were delineated for the Cherry Creek drainage (**Table C-13**). These spanned many reach types and land uses, with many of the first order and high-gradient reaches having a high percentage of the riparian zone in natural vegetation. However, the lower gradient reaches tended to have a low percentage of the riparian zone in natural vegetation and therefore a higher estimated loading rate.

Table C-13. Estimated sediment loads for Cherry Creek

						%	Load Per 1000	Feet (Tons/Y	r/1000 Feet)	
	Reach	Reach	Length	Strahler	Gradient	Natural		Field		Total Load
Stream	ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Cherry	CHRR	1.	, ,				·			
Creek	02-01	MR-4-1-U	2138	1	4	100	20.7	NA	20.7	44.3
Cherry	CHRR									
Creek	03-01	MR-2-1-U	7611	1	2	100	20.7	NA	20.7	157.6
Cherry	CHRR									
Creek	04-01	MR-4-1-C	2240	1	4	100	20.7	NA	20.7	46.4
Cherry	CHRR									
Creek	05-01	MR-10-2-C	2292	2	10	100	12.5	NA	12.5	28.6
Cherry	CHRR									
Creek	06-01	MR-4-3-U	1372	3	4	75	14	NA	14.0	19.2
Cherry	CHRR									
Creek	06-02	MR-4-3-U	2223	3	4	30	14	NA	14.0	31.1
Cherry	CHRR									
Creek	07-01	MR-4-3-C	2803	3	4	30	14	NA	14.0	39.2
Cherry	CHRR									
Creek	07-02	MR-4-3-C	2388	3	4	100	14	NA	14.0	33.4
Cherry	CHRR									
Creek	08-01	MR-2-3-C	9295	3	2	100	27	NA	27.0	251.0
Cherry	CHRR									
Creek	09-01	MR-2-3-U	2265	3	2	80	27	NA	27.0	61.2
Cherry	CHRR									
Creek	10-01	MR-2-3-U	1975	3	2	70	38.1	NA	38.1	75.3
Cherry	CHRR									
Creek	10-02	MR-2-3-U	3583	3	2	50	38.1	NA	38.1	136.5
Cherry	CHRR									
Creek	10-03	MR-2-3-U	1422	3	2	60	38.1	NA	38.1	54.2

Table C-13. Estimated sediment loads for Cherry Creek

					•	%	Load Per 1000	Feet (Tons/Y	r/1000 Feet)	
	Reach	Reach	Length	Strahler	Gradient	Natural		Field		Total Load
Stream	ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Cherry	CHRR	7.	,			J				, ,
Creek	11-01	MR-0-3-U	7748	3	0	50	59.8	NA	59.8	463.3
Cherry	CHRR									
Creek	11-02	MR-0-3-U	2988	3	0	60	59.8	NA	59.8	178.7
Cherry	CHRR									
Creek	12-01	MR-0-3-U	694	3	0	50	59.8	NA	59.8	41.5
Cherry	CHRR									
Creek	13-01	MR-0-3-U	5644	3	0	40	59.8	NA	59.8	337.5
Cherry	CHRR									
Creek	13-02	MR-0-3-U	2819	3	0	30	59.8	NA	59.8	168.6
Cherry	CHRR									
Creek	13-03	MR-0-3-U	1441	3	0	40	59.8	NA	59.8	86.2
Cherry	CHRR									
Creek	14-01	MR-0-3-U	5099	3	0	60	59.8	NA	59.8	304.9
Cherry	CHRR									
Creek	15-01	MR-4-3-C	1986	3	4	60	14	NA	14.0	27.8
Cherry	CHRR									
Creek	15-02	MR-4-3-C	9395	3	4	80	14	NA	14.0	131.5
Cherry	CHRR									
Creek	16-01	MR-10-3-C	2118	3	10	80	12.5	NA	12.5	26.5
Cherry	CHRR									
Creek	17-01	MR-4-3-U	2330	3	4	60	14	NA	14.0	32.6
Cherry	CHRR			_	_					
Creek	17-02	MR-4-3-U	1663	3	4	80	14	NA	14.0	23.3
Cherry	CHRR									
Creek	18-01	MR-0-3-U	29334	3	0	60	59.8	142.54	142.5	4181.4
Cherry	CHRR		4647	_		70	50.0		50.0	067
Creek	19-01	MR-0-3-U	1617	3	0	70	59.8	NA	59.8	96.7
Cherry	CHRR	***	7206	_		40	50.0	FF 03	55.0	402.0
Creek	20-01	MR-0-3-U	7206	3	0	40	59.8	55.92	55.9	403.0

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 7481.4 Tons/Year

C4.2.6 Elk Creek Sediment Loads

A total of 14 reaches were delineated for the Elk Creek drainage (**Table C-14**). These consisted of a variety or reach types, most with a relatively low percentage (<70%) of the riparian zone in natural vegetation and a high estimated loading rate from bank erosion.

Table C-14. Estimated sediment loads for Elk Creek

					Grad-	%	Load Per 1000	Feet (Tons/Yr	/1000 Feet)	
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed*	Estimated	(Tons/Year)
	ELKC 02-									
Elk Creek	01	MR-4-2-C	2975	2	4	60	14	NA	14.0	41.6
	ELKC 03-									
Elk Creek	01	MR-4-2-U	6411	2	4	50	14	NA	14.0	89.8
	ELKC 04-									
Elk Creek	01	MR-2-3-U	2589	3	2	55	38.1	NA	38.1	98.7
	ELKC 04-									
Elk Creek	02	MR-2-3-U	2329	3	2	70	38.1	NA	38.1	88.7
	ELKC 05-									
Elk Creek	01	MR-0-3-U	11967	3	0	50	59.8	63.09	63.1	755.1
	ELKC 06-									
Elk Creek	01	MR-2-3-U	4398	3	2	60	38.1	NA	38.1	167.6

Table C-14. Estimated sediment loads for Elk Creek

					Grad-	%	Load Per 1000	Feet (Tons/Yr	/1000 Feet)	
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed*	Estimated	(Tons/Year)
	ELKC 06-									
Elk Creek	02	MR-2-3-U	10198	3	2	70	38.1	NA	38.1	388.6
	ELKC 06-									
Elk Creek	03	MR-2-3-U	2546	3	2	50	38.1	NA	38.1	97.0
	ELKC 07-									
Elk Creek	01	MR-0-3-U	17603	3	0	20	59.8	NA	59.8	1052.7
	ELKC 08-									
Elk Creek	01	MR-0-3-U	1535	3	0	30	59.8	NA	59.8	91.8
	ELKC 09-									
Elk Creek	01	MR-0-3-U	6360	3	0	15	59.8	NA	59.8	380.3
	ELKC 10-									
Elk Creek	01	MR-0-3-U	2167	3	0	40	59.8	NA	59.8	129.6
	ELKC 11-									
Elk Creek	01	MR-0-3-U	14851	3	0	30	59.8	72.75	72.8	1080.4
	ELKC 11-									
Elk Creek	02	MR-0-3-U	6319	3	0	0	59.8	NA	59.8	377.9
* 16		tual field loadi			•	•			•	Total: 4839.5

otherwise extrapolated value was used.

Tons/Yr

C4.2.7 Elk River Sediment Loads

A total of three 23 reaches were delineated along the Elk River mainstem (Table C-15). Many of these reaches had > 70% of vegetation in natural condition and a low estimated bank erosion loading rate.

Table C-15. Estimated sediment loads for Elk River

					Grad-	%	Load Per 1000	Feet (Tons/\	/r/1000 Feet)	
	Reach	Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
	ELKR	MR-4-1-	, ,							
Elk River	02-01	U	1155	1	4	80	20.7	NA	20.7	23.9
	ELKR	MR-4-1-								
Elk River	02-02	U	1898	1	4	60	20.7	NA	20.7	39.3
	ELKR	MR-2-1-								
Elk River	03-01	U	3664	1	2	70	20.7	NA	20.7	75.9
	ELKR	MR-2-2-								
Elk River	04-01	U	5292	2	2	60	38.1	40.30	40.3	213.3
	ELKR	MR-4-2-								
Elk River	05-01	U	1043	2	4	70	14	NA	14.0	14.6
	ELKR	MR-4-2-								
Elk River	05-02	U	1579	2	4	70	14	NA	14.0	22.1
	ELKR	MR-10-2-								
Elk River	06-01	С	731	2	10	70	12.5	NA	12.5	9.1
	ELKR	MR-10-2-								
Elk River	07-01	С	1136	2	10	70	12.5	NA	12.5	14.2
	ELKR	MR-4-2-								
Elk River	08-01	U	1226	2	4	70	14	NA	14.0	17.2
	ELKR			_						
Elk River	09-01	MR-4-2-C	4627	2	4	80	14	NA	14.0	64.8
	ELKR									
Elk River	10-01	MR-2-2-C	2306	2	2	80	27	NA	27.0	62.3
Ell Division	ELKR	NAD 2 2 2	4502	_	2	00	27		27.0	40.6
Elk River	10-02	MR-2-2-C	1503	2	2	80	27	NA	27.0	40.6
Ell Division	ELKR	MR-0-2-	4400	_		00	42.5		42.5	402.6
Elk River	11-01	U	4198	2	0	80	43.5	NA	43.5	182.6

Table C-15. Estimated sediment loads for Elk River

					Grad-	%	Load Per 1000	Feet (Tons/\	/r/1000 Feet)	
	Reach	Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
	ELKR	MR-0-2-								
Elk River	11-02	U	3778	2	0	90	43.5	NA	43.5	164.3
	ELKR									
Elk River	12-01	MR-2-2-C	3406	2	2	90	27	NA	27.0	92.0
	ELKR									
Elk River	13-01	MR-4-2-C	4139	2	4	90	14	NA	14.0	57.9
	ELKR	MR-2-2-								
Elk River	14-01	U	4079	2	2	90	27	NA	27.0	110.1
	ELKR	MR-2-3-								
Elk River	15-01	U	3143	3	2	90	27	NA	27.0	84.9
	ELKR	MR-2-3-								
Elk River	16-01	U	9612	3	2	90	27	NA	27.0	259.5
	ELKR	MR-2-3-								
Elk River	16-02	U	8354	3	2	80	27	NA	27.0	225.6
	ELKR	MR-2-3-								
Elk River	17-01	U	6291	3	2	80	27	NA	27.0	169.8
	ELKR	MR-2-3-								
Elk River	17-02	U	4423	3	2	60	38.1	NA	38.1	168.5
	ELKR	MR-2-3-								
Elk River	18-01	U	2706	3	2	40	38.1	17.10	17.1	46.3
* If reach was	s sampled.	actual field lo	ading value	was used:						Total:

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 2158.8 Tons/Yr

C4.2.8 Gazelle Creek Sediment Loads

A total of 15 reaches were sampled in the Gazelle Creek drainage (**Table C-16**). These were comprised primarily of higher gradient and first order streams with > 70% of the riparian zone in natural condition. The mid-gradient streams present in the drainage had low estimated loading from bank erosion, also due to the riparian zone being in > 70% natural vegetation.

Table C-16. Estimated sediment loads for Gazelle Creek

					Grad-	%	Load Per 10	00 Feet (Ton: Feet)	s/Yr/1000	
		Reach	Length	Strahler	ient	Natural		Field	Estimated	Total Load
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	*	(Tons/Year)
Gazelle	GAZL 02-									
Creek	01	MR-4-1-C	2568	1	4	90	20.7	NA	20.7	53.2
Gazelle	GAZL 03-									
Creek	01	MR-4-2-C	2154	2	4	90	14	NA	14.0	30.2
Gazelle	GAZL 04-									
Creek	01	MR-4-2-U	7008	2	4	90	14	NA	14.0	98.1
Gazelle	GAZL 05-	MR-10-2-								
Creek	01	С	841	2	10	90	12.5	NA	12.5	10.5
Gazelle	GAZL 06-									
Creek	01	MR-4-2-U	3362	2	4	90	14	NA	14.0	47.1
Gazelle	GAZL 07-									
Creek	01	MR-2-2-C	3002	2	2	90	21.6	NA	21.6	64.8
Gazelle	GAZL 08-									
Creek	01	MR-4-2-U	3540	2	4	90	14	NA	14.0	49.6
Gazelle	GAZL 09-	MR-10-2-								
Creek	01	С	1458	2	10	90	12.5	12.52	12.5	18.3
Gazelle	GAZL 10-									
Creek	01	MR-4-2-U	1636	2	4	90	14	NA	14.0	22.9

Table C-16. Estimated sediment loads for Gazelle Creek

					Grad-	%	Load Per 10	00 Feet (Ton Feet)	s/Yr/1000	
		Reach	Length	Strahler	ient	Natural		Field	Estimated	Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	*	(Tons/Year)
Gazelle	GAZL 11-									
Creek	01	MR-2-2-U	3450	2	2	90	21.6	NA	21.6	74.5
Gazelle	GAZL 12-	MR-10-2-								
Creek	01	U	1271	2	10	90	12.5	NA	12.5	15.9
Gazelle	GAZL 13-									
Creek	01	MR-4-2-U	1453	2	4	90	14	NA	14.0	20.3
Gazelle	GAZL 14-									
Creek	01	MR-2-2-C	2666	2	2	90	21.6	NA	21.6	57.6
Gazelle	GAZL 15-									
Creek	01	MR-4-2-C	3426	2	4	90	14	NA	14.0	48.0
Gazelle	GAZL 16-									
Creek	01	MR-4-2-U	2731	2	4	90	14	6.88	6.9	18.8
		•		•						Total:

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 678.9 tons/year

C4.2.9 Hot Springs Creek Sediment Loads

A total of 20 reaches were delineated in the Hot Spring Creek drainage (**Table C-17**). The first order streams had a high percentage of the riparian zone in natural conditions. However, the more prevalent low-gradient stream reaches typically had 0 percent of the riparian zone in natural conditions resulting in a high estimated amount of loading from bank erosion.

Table C-17. Estimated sediment loads for Hot Springs Creek

						٥,	Load Per 10	00 Feet (Tor Feet)	ns/Yr/1000	
Stream	Reach ID	Reach Type	Length (feet)	Strahler Order	Grad- ient Class	% Natural Veg	Extrapolated	Field Assessed	Estimated*	Total Load (Tons/Year)
Mid Frk Hot										
Springs Creek	HOTS 02-01	MR-10-1-C	4473	1	10	90	20.7	NA	20.7	92.6
Mid Frk Hot										
Springs	HOTS									
Creek	02-02	MR-10-1-C	1332	1	10	90	20.7	NA	20.7	27.6
Mid Frk Hot										
Springs	HOTS									
Creek	03-01	MR-4-1-C	6223	1	4	80	20.7	NA	20.7	128.8
Mid Frk Hot										
Springs	HOTS									
Creek	04-01	MR-4-1-U	1813	1	4	40	20.7	NA	20.7	37.5
Mid Frk Hot										
Springs	HOTS									
Creek	05-01	MR-4-1-U	2489	1	4	80	20.7	6.40	6.4	15.9
Hot Springs	HOTS		.=		_					
Creek	06-01	MR-4-2-C	1742	2	4	90	14	NA	14.0	24.4
Hot Springs	HOTS		2022			00	27		27.0	100 5
Creek	07-01	MR-2-2-C	3832	2	2	90	27	NA	27.0	103.5
Hot Springs	HOTS	NAD 2 2 6	4200	2	2	00	27		27.0	442.6
Creek	08-01	MR-2-3-C	4208	3	2	90	27	NA	27.0	113.6
Hot Springs Creek	HOTS 08-02	MR-2-3-C	4728	2	2	60	38.1	NIA	38.1	180.1
	HOTS	IVIK-2-3-C	4/28	3		00	38.1	NA	38.1	100.1
Hot Springs Creek	09-01	MR-0-3-U	4034	3	0	80	43.5	NA	43.5	175.5
Hot Springs	HOTS									
Creek	10-01	MR-0-3-U	11469	3	0	50	59.8	40.66	40.7	466.4

Table C-17. Estimated sediment loads for Hot Springs Creek

					Grad-	%	Load Per 10	00 Feet (Tor Feet)	ns/Yr/1000	
	Reach	Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Hot Springs	HOTS									
Creek	10-02	MR-0-3-U	1756	3	0	0	59.8	NA	59.8	105.0
Hot Springs	HOTS									
Creek	11-01	MR-0-3-U	2011	3	0	0	59.8	NA	59.8	120.2
Hot Springs	HOTS									
Creek	12-01	MR-0-3-U	2381	3	0	0	59.8	NA	59.8	142.4
Hot Springs	HOTS									
Creek	13-01	MR-0-4-U	4575	4	0	10	59.8	NA	59.8	273.6
Hot Springs	HOTS									
Creek	13-02	MR-0-4-U	3085	4	0	0	59.8	NA	59.8	184.5
Hot Springs	HOTS									
Creek	14-01	MR-0-4-U	5228	4	0	0	59.8	NA	59.8	312.6
Hot Springs	HOTS									
Creek	15-01	MR-0-4-U	6748	4	0	0	59.8	NA	59.8	403.5
Hot Springs	HOTS									
Creek	15-02	MR-0-4-U	13061	4	0	0	59.8	NA	59.8	781.1
Hot Springs	HOTS									
Creek	16-01	MR-2-4-U	4860	4	2	0	38.1	40.23	40.2	195.5
										Total:

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 3884.3 Tons/Yr

C4.2.10 Indian Creek Sediment Loads

A total of 29 reaches were delineated in the Indian Creek drainage (**Table C-18**), spanning a wide range of reach types and levels of riparian health. In general, estimated bank loading rates were relatively low due to the large percentage of reaches having riparian zone vegetation estimated to be in > 70% natural conditions.

Table C-18. Estimated sediment loads in Indian Creek

							Load Per 10	00 Feet (Tor Feet)	s/Yr/1000	
				6. 11	Grad-	%		,		
6.		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Indian	INDN 02-									
Creek	01	MR-4-1-U	1644	1	4	0	20.7	NA	20.7	34.0
Indian	INDN 03-									
Creek	01	MR-4-1-C	386	1	4	0	20.7	NA	20.7	8.0
Indian	INDN 04-									
Creek	01	MR-4-1-U	1068	1	4	60	20.7	NA	20.7	22.1
Indian	INDN 05-									
Creek	01	MR-4-1-C	1531	1	4	50	20.7	NA	20.7	31.7
Indian	INDN 06-									
Creek	01	MR-4-1-U	784	1	4	40	20.7	NA	20.7	16.2
Indian	INDN 07-									
Creek	01	MR-4-2-U	439	2	4	40	14	NA	14.0	6.1
Indian	INDN 08-									
Creek	01	MR-4-2-C	1300	2	4	100	14	NA	14.0	18.2
Indian	INDN 09-									
Creek	01	MR-2-2-C	1660	2	2	100	21.6	NA	21.6	35.8
Indian	INDN 10-									
Creek	01	MR-2-2-U	1556	2	2	100	21.6	NA	21.6	33.6
Indian	INDN 10-									
Creek	02	MR-2-2-U	3160	2	2	100	21.6	NA	21.6	68.3
Indian	INDN 10-									
Creek	03	MR-2-2-U	858	2	2	100	21.6	NA	21.6	18.5

Table C-18. Estimated sediment loads in Indian Creek

		_					Load Per 10	00 Feet (Tor	ns/Yr/1000	_
					Grad-	%		Feet)	1	
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Indian	INDN 11-									
Creek	01	MR-4-2-U	3279	2	4	100	14	NA	14.0	45.9
Indian	INDN 12-									
Creek	01	MR-2-2-U	3458	2	2	100	21.6	NA	21.6	74.7
Indian	INDN 13-									
Creek	01	MR-4-3-U	872	3	4	100	20.7	NA	20.7	34.0
Indian	INDN 14-									
Creek	01	MR-4-3-C	1678	3	4	100	20.7	NA	20.7	8.0
Indian	INDN 15-									
Creek	01	MR-2-3-C	9699	3	2	100	20.7	NA	20.7	22.1
Indian	INDN 16-									
Creek	01	MR-4-3-C	3417	3	4	100	20.7	NA	20.7	31.7
Indian	INDN 16-									
Creek	02	MR-4-3-C	1880	3	4	100	20.7	NA	20.7	16.2
Indian	INDN 17-									
Creek	01	MR-10-3-C	2548	3	10	100	14	NA	14.0	6.1
Indian	INDN 18-									
Creek	01	MR-2-3-U	8749	3	2	100	14	NA	14.0	18.2
Indian	INDN 19-									
Creek	01	MR-2-3-C	3646	3	2	100	27	NA	27.0	44.8
Indian	INDN 20-									
Creek	01	MR-4-3-C	2550	3	4	100	27	NA	27.0	42.0
Indian	INDN 21-									
Creek	01	MR-2-3-C	4532	3	2	100	27	NA	27.0	85.3
Indian	INDN 22-									
Creek	01	MR-2-3-C	1805	3	2	80	27	NA	27.0	23.2
Indian	INDN 23-									
Creek	01	MR-2-3-U	5822	3	2	80	14	NA	14.0	45.9
Indian	INDN 24-									
Creek	01	MR-2-3-C	17858	3	2	20	27	NA	27.0	93.4
Indian	INDN 25-									
Creek	01	MR-0-3-C	3010	3	0	20	14	NA	14.0	12.2
Indian	INDN 26-									
Creek	01	MR-0-3-U	1497	3	0	20	14	NA	14.0	23.5
Indian	INDN 26-									
Creek	02	MR-0-3-U	2451	3	0	20	27	NA	27.0	261.9
										Total:

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 2410.5 Tons/Yr

C4.2.11 Jack Creek Sediment Loads

A total of 24 reaches were delineated in Jack Creek drainage. These spanned the entire range of reach types and amount of natural vegetation. However, most reaches had \leq 70% of the riparian zone in natural vegetation and had high estimated loading from stream banks (**Table C-19**). Field surveys and aerial photography indicated a large amount of the bank erosion may be from historical sources, such as past grazing.

3474.5

Tons/Yr

Table C-19. Estimated sediment loads in Jack Creek

					Grad-	%	Load Per 10	00 Feet (Tor Feet)	ns/Yr/1000	
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
oti caiii	JACK 02-	. , , , ,	(1001)	0.46.	0.033	106	zxtraporated	7.0500504	25000000	(10115) 1 541)
Jack Creek	01	MR-2-3-C	3222	3	2	100	21.6	NA	21.6	69.6
	JACK 03-									
Jack Creek	01	MR-4-3-C	2554	3	4	100	14	NA	14.0	35.7
	JACK 04-									
Jack Creek	01	MR-2-3-C	1101	3	2	20	27	NA	27.0	87.0
	JACK 05-									
Jack Creek	01	MR-2-3-U	657	3	2	10	14	NA	14.0	35.7
	JACK 05-									
Jack Creek	02	MR-2-3-U	1784	3	2	0	38.1	NA	38.1	41.9
	JACK 06-		2700				20.4		20.4	25.0
Jack Creek	01	MR-0-3-U	3708	3	0	0	38.1	NA	38.1	25.0
lask Crask	JACK 06- 02	MDOSII	509	2	0	_	20.1	NI A	20.1	69.0
Jack Creek	JACK 07-	MR-0-3-U	509	3	U	0	38.1	NA	38.1	68.0
Jack Creek	01	MR-2-3-C	7596	3	2	100	59.8	NA	59.8	221.8
Jack Creek	JACK 08-	IVIN-2-3-C	7390	3		100	33.0	IVA	33.0	221.0
Jack Creek	01	MR-4-3-C	4657	3	4	100	59.8	NA	59.8	30.4
Jack Creek	JACK 09-	WIN-4-5-C	4037		7	100	33.8	IVA	33.8	30.4
Jack Creek	01	MR-2-3-U	1447	3	2	100	27	NA	27.0	205.1
Jack Creek	JACK 10-	WIIX 2 3 0	1447			100	2,	IVA	27.0	203.1
Jack Creek	01	MR-2-3-U	4734	3	2	30	14	NA	14.0	65.2
Judit Greek	JACK 11-	200	.,					.,,,	20	00.2
Jack Creek	01	MR-2-3-U	1098	3	2	20	27	NA	27.0	39.1
	JACK 11-									
Jack Creek	02	MR-2-3-U	1727	3	2	10	38.1	NA	38.1	180.4
	JACK 11-									
Jack Creek	03	MR-2-3-U	2022	3	2	10	38.1	NA	38.1	41.8
	JACK 12-									
Jack Creek	01	MR-2-3-C	7004	3	2	20	38.1	NA	38.1	65.8
	JACK 13-									
Jack Creek	01	MR-2-3-U	5576	3	2	40	38.1	NA	38.1	77.0
	JACK 13-									
Jack Creek	02	MR-2-3-U	6246	3	2	40	38.1	NA	38.1	266.9
	JACK 14-			_	_					
Jack Creek	01	MR-0-3-U	4477	3	0	30	38.1	NA	38.1	212.4
In al. Const.	JACK 14-	140 0 2 11	2052	_			20.4		20.4	220.0
Jack Creek	02	MR-0-3-U	2053	3	0	0	38.1	NA	38.1	238.0
In als Canada	JACK 14-	MD 0 2 11	2051	2	0	10	50.0	NI A	50.0	267.7
Jack Creek	03	MR-0-3-U	2651	3	0	10	59.8	NA	59.8	267.7
Jack Creek	JACK 14- 04	MR-0-3-U	2461	3	0	0	59.8	NA	59.8	122.8
Jack CIEEK	JACK 14-	14117-0-2-0	2401	3	U	0	33.0	IVA	33.0	122.0
Jack Creek	05	MR-0-3-U	3126	3	0	0	59.8	94.55	94.6	250.6
Juck CIEEK	JACK 14-	14111 0-3-0	3120	,			33.0	54.55	54.0	250.0
Jack Creek	06	MR-0-3-U	6809	3	0	40	59.8	NA	59.8	147.2
3.00	JACK 14-	3 3 3					23.0	,	23.0	
Jack Creek	07	MR-0-3-U	4243	3	0	0	59.8	NA	59.8	186.9
						•				Total:

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

C4.2.12 Moore Creek Sediment Loads

A total of 13 reaches were delineated in Moore Creek (Table C-20). These spanned a range of stream types but generally had high estimated loading from bank erosion due to a large amount of low and mid gradient reaches, and a low percentage of natural vegetation present in the riparian zone.

Table C-20. Estimated sediment loads in Moore Creek

					Grad-	%	Load Per 10	00 Feet (Tor Feet)	ns/Yr/1000	
Classes	D l. 10	Reach	Length	Strahler	ient	Natural	5 4 late d	Field	E.C	Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Moore	MOOR 01-	MR-10-								
Creek	02	1-U	1377	1	10	100	20.7	NA	20.7	28.5
Moore	MOOR 02-	MR-4-								
Creek	01	1-C	3496	1	4	20	20.7	NA	20.7	72.4
Moore	MOOR 03-	MR-4-								
Creek	01	1-C	13631	1	4	10	20.7	NA	20.7	282.2
Moore	MOOR 04-	MR-2-								
Creek	01	1-U	2602	1	2	80	20.7	NA	20.7	53.9
Moore	MOOR 05-	MR-2-								
Creek	01	2-C	4019	2	2	60	38.1	NA	38.1	153.1
Moore	MOOR 06-	MR-2-								
Creek	01	2-U	4734	2	2	30	38.1	NA	38.1	180.4
Moore	MOOR 07-	MR-2-								
Creek	01	3-U	4303	3	2	20	38.1	NA	38.1	163.9
Moore	MOOR 07-	MR-2-								
Creek	02	3-U	3032	3	2	20	38.1	NA	38.1	115.5
Moore	MOOR 08-	MR-2-								
Creek	01	3-C	2844	3	2	30	38.1	NA	38.1	108.3
Moore	MOOR 09-	MR-0-								
Creek	01	3-U	8420	3	0	10	59.8	41.71	41.7	351.2
Moore	MOOR 09-	MR-0-								
Creek	02	3-U	6884	3	0	10	59.8	NA	59.8	411.7
Moore	MOOR 09-	MR-0-								
Creek	03	3-U	7980	3	0	0	59.8	NA	59.8	477.2
Moore	MOOR 09-	MR-0-								
Creek	04	3-U	18947	3	0	0	59.8	59.34	59.3	1124.3
		•			•	•	l .			Total:

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 3522.5 Tons/Yr

C4.2.13 North Meadow Creek Sediment Loads

A total of 28 stream reaches were delineated in North Meadow Creek drainage (**Table C-21**). Whereas the first order streams had mostly natural vegetation in the riparian zone, the lower gradient reaches exhibited very little riparian vegetation in natural conditions, resulting in high estimated loading rates from bank erosion.

Table C-21. Estimated sediment loads in North Meadow Creek

					Grad-	%	Load Per 1000 Feet (Tons/Yr/1000 Feet)			
			Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Reach Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
N										
Meadow	NMDW									
Creek	01-02	MR-10-1-U	736	1	10	100	20.7	NA	20.7	15.2
N										
Meadow	NMDW									
Creek	02-01	MR-4-1-U	3061	1	4	100	20.7	NA	20.7	63.4
N										
Meadow	NMDW									
Creek	02-02	MR-4-1-U	3390	1	4	100	20.7	NA	20.7	70.2
N										
Meadow	NMDW									
Creek	03-01	MR-10-1-U	2179	1	10	80	20.7	NA	20.7	45.1

Table C-21. Estimated sediment loads in North Meadow Creek

						٥,	Load Per 10	000 Feet (Tor Feet)	ns/Yr/1000	
			Length	Strahler	Grad- ient	% Natural		Field		Total Load
Stream	Reach ID	Reach Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
N Meadow Creek	NMDW 04-01	MR-2-1-U	1701	1	2	90	20.7	NA	20.7	35.2
N Meadow Creek	NMDW 04-02	MR-2-1-U	272	1	2	100	20.7	NA	20.7	5.6
N Meadow Creek	NMDW 04-03	MR-2-1-U	673	1	2	50	20.7	NA	20.7	13.9
N Meadow Creek	NMDW 04-04	MR-2-1-U	742	1	2	60	20.7	NA	20.7	15.4
N Meadow Creek	NMDW 05-01	MR-4-1-U	2035	1	4	10	20.7	NA NA	20.7	42.1
N Meadow	NMDW		6097	2	4	10	14			85.4
N Meadow	06-01 NMDW	MR-4-2-U						NA NA	14.0	
N Meadow	06-02 NMDW 07-01	MR-4-2-U MR-2-2-U	2985 1100	2	2	20	38.1	NA NA	14.0 38.1	41.8
Creek N Meadow Creek	NMDW 07-02	MR-2-2-U	692	2	2	20	38.1	NA NA	38.1	26.3
N Meadow Creek	NMDW 07-03	MR-2-2-U	1440	2	2	20	38.1	NA NA	38.1	54.9
N Meadow Creek	NMDW 08-01	MR-4-3-U	1774	3	4	0	14	NA NA	14.0	24.8
N Meadow Creek	NMDW 08-02	MR-4-3-U	2104	3	4	0	14	NA	14.0	29.5
N Meadow Creek	NMDW 08-03	MR-4-3-U	1193	3	4	20	14	NA	14.0	16.7
N Meadow Creek	NMDW 09-01	MR-2-3-U	1030	3	2	20	38.1	NA	38.1	39.3
N Meadow Creek	NMDW 09-02	MR-2-3-U	1771	3	2	30	38.1	NA	38.1	67.5
N Meadow Creek	NMDW 10-01	MR-4-3-U	3203	3	4	20	14	NA	14.0	44.8
N Meadow Creek	NMDW 11-01	MR-10-3-U	1720	3	10	50	12.5	NA	12.5	21.5
N Meadow Creek	NMDW 12-01	MR-4-3-U	1372	3	4	50	14	NA	14.0	19.2
N Meadow Creek	NMDW 13-01	MR-2-3-U	4862	3	2	30	38.1	NA	38.1	185.3

Table C-21. Estimated sediment loads in North Meadow Creek

							Load Per 10	00 Feet (Tor	ns/Yr/1000	
					Grad-	%		Feet)	T	
			Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Reach Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
N										
Meadow	NMDW									
Creek	14-01	MR-2-3-U	11842	3	2	80	27	NA	27.0	319.7
N										
Meadow	NMDW									
Creek	14-02	MR-2-3-U	5572	3	2	20	38.1	28.79	28.8	160.4
N										
Meadow	NMDW									
Creek	15-01	MR-0-3-U	8100	3	0	30	59.8	NA	59.8	484.4
N										
Meadow	NMDW									
Creek	16-01	MR-0-3-U	14900	3	0	0	59.8	NA	59.8	891.0
N	·									
Meadow	NMDW									
Creek	17-01	MR-0-4-U	9861	4	0	0	59.8	42.28	42.3	416.9

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 3277.4 Tons/Yr

C4.2.14 No Man Creek Sediment Loads

A total of 15 stream reaches were delineated in No Man Creek drainage (**Table C-22**). This drainage was comprised largely of first order and high gradient stream reaches, which were estimated to have low estimated bank erosion.

Table C-22. Estimated sediment loads in No Man Creek

							Load Per 10	00 Feet (Tor	s/Yr/1000	
					Grad-	%		Feet)		
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
No Man	NOMN 02-	MR-10-1-	, ,				·			
Creek	01	С	2027	1	10	100	20.7	NA	20.7	42.0
No Man	NOMN 03-	MR-10-1-								
Creek	01	U	1719	1	10	100	20.7	NA	20.7	35.6
No Man	NOMN 04-									
Creek	01	MR-4-1-U	1229	1	4	100	20.7	NA	20.7	25.4
No Man	NOMN 05-									
Creek	01	MR-4-1-U	419	1	4	100	20.7	NA	20.7	8.7
No Man	NOMN 05-									
Creek	02	MR-4-1-U	617	1	4	100	20.7	NA	20.7	12.8
No Man	NOMN 06-	MR-10-1-								
Creek	01	С	2438	1	10	100	20.7	NA	20.7	50.5
No Man	NOMN 07-	MR-10-1-								
Creek	01	U	2815	1	10	100	20.7	NA	20.7	58.3
No Man	NOMN 08-	MR-10-2-								
Creek	01	U	1576	2	10	100	12.5	NA	12.5	19.7
No Man	NOMN 09-									
Creek	01	MR-4-2-C	3328	2	4	100	14	NA	14.0	46.6
No Man	NOMN 10-									
Creek	01	MR-4-2-U	4857	2	4	100	14	NA	14.0	68.0
No Man	NOMN 11-	MR-10-2-								
Creek	01	С	7599	2	10	100	12.5	NA	12.5	95.0
No Man	NOMN 12-									
Creek	01	MR-4-2-U	678	2	4	100	14	NA	14.0	9.5
No Man	NOMN 13-									
Creek	01	MR-4-2-U	1013	2	4	100	14	NA	14.0	14.2

Tons/Yr

Table C-22. Estimated sediment loads in No Man Creek

					Grad-	%	Load Per 10	s/Yr/1000		
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
No Man	NOMN 14-									
Creek	01	MR-4-2-C	872	2	4	100	14	NA	14.0	12.2
No Man	NOMN 15-									
Creek	01	MR-4-2-U	1077	2	4	90	14	NA	14.0	15.1
* If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.							513.4 Tons/Yr			

C4.2.15 O'Dell Spring Creek Sediment Loads

A total of 8 reaches were delineated in O'Dell Spring Creek drainage (**Table C-23**). The riparian zone in this drainage was generally > 70% in natural conditions, which resulted in low stream bank erosion estimates for the primarily low-gradient stream reaches present.

Table C-23. Estimated sediment loads in O'Dell Spring Creek

					-	0/	Load Per 10	000 Feet (Tor Feet)	ns/Yr/1000	
					Grad-	%		· ·		
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
O'Dell Spring	ODEL 02-	MR-0-2-								
Creek	01	U	5540	2	0	70	59.8	24.30	24.3	134.6
O'Dell Spring	ODEL 03-	MR-0-3-								
Creek	01	U	2459	3	0	80	43.5	NA	43.5	106.9
O'Dell Spring	ODEL 03-	MR-0-3-								
Creek	02	U	11235	3	0	80	43.5	NA	43.5	488.7
O'Dell Spring	ODEL 03-	MR-0-3-								
Creek	03	U	11238	3	0	80	43.5	NA	43.5	488.9
O'Dell Spring	ODEL 03-	MR-0-3-								
Creek	04	U	7742	3	0	60	59.8	NA	59.8	463.0
O'Dell Spring	ODEL 04-	MR-0-4-								
Creek	01	U	3219	4	0	70	59.8	NA	59.8	192.5
O'Dell Spring	ODEL 04-	MR-0-4-								
Creek	02	U	3769	4	0	40	59.8	NA	59.8	225.4
O'Dell Spring	ODEL 04-	MR-0-4-								
Creek	03	U	8865	4	0	40	59.8	NA	59.8	530.1
										Total:
* If reach was	sampled acti	ual field load	ing value w	as used:						2630.1

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

C4.2.16 Red Canyon Sediment Loads

A total of 10 reaches were delineated in Red Canyon Creek drainage which varied in riparian condition. The first order reaches had an estimate 100 percentage of the banks in natural vegetation, but the midgradient reaches had only 0-40% of the riparian zone in natural vegetation conditions. Bank loading estimates were high for these mid-gradient reaches (**Table C-24**).

Table C-24. Estimated sediment loads in Red Canyon Creek

					Grad-	%	Load Per 1000	Feet (Tons/Y	r/1000 Feet)	
		Reach	Length	Strahler	ient	Natural		Field	Estimated	Total Load
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	*	(Tons/Year)
Red Canyon	RCYN 02-	MR-10-								
Creek	01	1-U	3154	1	10	100	20.7	NA	20.7	65.3
Red Canyon	RCYN 03-	MR-4-								
Creek	01	1-U	2628	1	4	100	20.7	NA	20.7	54.4

Table C-24. Estimated sediment loads in Red Canyon Creek

					Grad-	%	Load Per 1000	Feet (Tons/Y	r/1000 Feet)	
Stream	Reach ID	Reach Type	Length (feet)	Strahler Order	ient Class	Natural Veg	Extrapolated	Field Assessed	Estimated *	Total Load (Tons/Year)
Red Canyon	RCYN 04-	MR-4-	(1000)	0.00		6				(**************************************
Creek	01	1-C	1962	1	4	100	20.7	NA	20.7	40.6
Red Canyon	RCYN 05-	MR-10-								
Creek	01	1-C	567	1	10	100	20.7	NA	20.7	11.7
Red Canyon	RCYN 06-	MR-10-								
Creek	01	2-C	883	2	10	100	12.5	NA	12.5	11.0
Red Canyon	RCYN 07-	MR-4-								
Creek	01	2-U	8281	2	4	40	14	22.87	22.9	189.4
Red Canyon	RCYN 08-	MR-2-								
Creek	01	2-U	1894	2	2	40	38.1	70.40	70.4	133.3
Red Canyon	RCYN 08-	MR-2-								
Creek	02	2-U	1868	2	2	40	38.1	NA	38.1	71.2
Red Canyon	RCYN 09-	MR-2-								
Creek	01	2-U	8475	2	2	0	38.1	NA	38.1	322.9
Red Canyon	RCYN 09-	MR-2-								
Creek	02	2-U	1799	2	2	0	38.1	78.81	78.8	141.8
* If reach was	sampled, act	ual field loa	ding value	was used;						1040.7

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

1040.7 Tons/Yr

C4.2.17 Ruby Creek Sediment Loads

A total of 19 reaches were delineated in Ruby Creek drainage (**Table C-25**). Many of these had a large percentage of the riparian zone in natural condition. The exception was some of the mid-gradient reaches near the mouth, which had a much poorer riparian condition and higher amounts of estimated loading from bank erosion.

Table C-25. Estimated sediment loads in Ruby Creek

					Grad-	%	Load Per 1000	Feet (Tons/Yr	/1000 Feet)	
		Reach	Length	Strahler	ient	∞ Natural		Field	Estimated	Total Load
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	*	(Tons/Year)
Ruby	RUBY 02-	MR-4-1-	(ieet)	Oruei	Class	Veg	Lxtrapolated	Assessed		(TOTIS/TEAT)
Creek	01	C C	4338	1	4	100	20.7	NA	20.7	89.8
Ruby	RUBY 03-	MR-4-1-	4330	1	4	100	20.7	IVA	20.7	89.8
Creek	01	C	815	1	4	80	20.7	NA	20.7	16.9
Ruby	RUBY 04-	MR-10-	013		7	- 00	20.7	IVA	20.7	10.5
Creek	01	1-C	2201	1	10	90	20.7	NA	20.7	45.6
Ruby	RUBY 05-	MR-4-1-	2201	_	10	30	20.7	IVA	20.7	45.0
Creek	01	C	1993	1	4	90	20.7	NA	20.7	41.3
Ruby	RUBY 06-	MR-10-								
Creek	01	1-C	4359	1	10	100	20.7	NA	20.7	90.2
Ruby	RUBY 07-	MR-4-1-					-			
Creek	01	С	1007	1	4	90	20.7	NA	20.7	20.8
Ruby	RUBY 07-	MR-4-1-								
Creek	02	С	706	1	4	90	20.7	NA	20.7	14.6
Ruby	RUBY 08-	MR-10-								
Creek	01	1-C	3398	1	10	100	20.7	NA	20.7	70.3
Ruby	RUBY 08-	MR-4-1-								
Creek	02	С	8734	1	4	100	20.7	NA	20.7	180.8
Ruby	RUBY 09-	MR-4-1-								
Creek	01	U	3160	1	4	100	20.7	NA	20.7	65.4
Ruby	RUBY 10-	MR-2-1-								
Creek	01	С	4108	1	2	100	20.7	NA	20.7	85.0
Ruby	RUBY 11-	MR-2-2-								
Creek	01	U	2801	2	2	100	27	NA	27.0	75.6
Ruby	RUBY 12-	MR-2-2-								
Creek	01	С	13789	2	2	100	27	NA	27.0	372.3

Table C-25. Estimated sediment loads in Ruby Creek

					Grad-	%	Load Per 1000	Feet (Tons/Yr	/1000 Feet)	
		Reach	Length	Strahler	ient	Natural		Field	Estimated	Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	*	(Tons/Year)
Ruby	RUBY 13-	MR-2-3-								
Creek	01	С	4568	3	2	100	27	NA	27.0	123.3
Ruby	RUBY 14-	MR-2-3-								
Creek	01	С	9585	3	2	90	27	NA	27.0	258.8
Ruby	RUBY 15-	MR-2-3-								
Creek	01	С	4591	3	2	80	27	NA	27.0	123.9
Ruby	RUBY 15-	MR-2-3-								
Creek	02	U	4180	3	2	20	38.1	NA	38.1	159.3
Ruby	RUBY 16-	MR-2-3-								
Creek	01	С	2425	3	2	30	38.1	NA	38.1	92.4
Ruby	RUBY 17-	MR-2-3-								
Creek	01	U	2552	3	2	40	38.1	57.32	57.3	146.3
										Total:

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 2072.7 Tons/Yr

C4.2.18 South Meadow Creek Sediment Loads

A total of 20 reaches were delineated in South Meadow Creek drainage (**Table C-26**). A considerable number of these reaches were in first order streams with low estimated amounts of loading from bank erosion. However, the lower gradient, larger streams near the mouth were estimated to contribute high sediment loads from banks due to the riparian zone having little natural vegetation.

Table C-26. Estimated sediment loads in South Meadow Creek

					Grad-	%	Load Per 10	00 Feet (Ton Feet)	ns/Yr/1000	
		Reach	Length	Strahler	ient	Natural		Field		Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
S Meadow	SMDW	MR-4-1-								
Creek	02-01	U	624	1	4	100	20.7	NA	20.7	12.9
S Meadow	SMDW	MR-10-								
Creek	03-01	1-U	1586	1	10	100	20.7	NA	20.7	32.8
S Meadow	SMDW	MR-10-								
Creek	04-01	1-U	814	1	10	100	20.7	NA	20.7	16.9
S Meadow	SMDW	MR-10-								
Creek	05-01	1-U	2777	1	10	90	20.7	NA	20.7	57.5
S Meadow	SMDW	MR-4-1-								
Creek	06-01	U	2866	1	4	95	20.7	NA	20.7	59.3
S Meadow	SMDW	MR-10-								
Creek	07-01	1-U	2252	1	10	95	20.7	NA	20.7	46.6
S Meadow	SMDW	MR-4-1-								
Creek	08-01	U	1445	1	4	90	20.7	NA	20.7	29.9
S Meadow	SMDW	MR-10-								
Creek	09-01	1-U	1430	1	10	80	20.7	NA	20.7	29.6
S Meadow	SMDW	MR-4-1-								
Creek	10-01	С	1115	1	4	80	20.7	NA	20.7	23.1
S Meadow	SMDW	MR-10-								
Creek	11-01	1-U	3651	1	10	80	20.7	NA	20.7	75.6
S Meadow	SMDW	MR-4-1-								
Creek	12-01	U	3689	1	4	65	20.7	NA	20.7	76.4
S Meadow	SMDW	MR-10-								
Creek	13-01	1-U	1556	1	10	80	20.7	NA	20.7	32.2
S Meadow	SMDW	MR-4-1-								
Creek	14-01	U	1149	1	4	80	20.7	NA	20.7	23.8
S Meadow	SMDW	MR-10-								
Creek	15-01	1-U	1360	1	10	70	20.7	NA	20.7	28.1

Table C-26. Estimated sediment loads in South Meadow Creek

					C d	%	Load Per 1000 Feet (Tons/Yr/1000 Feet)			
		Reach	Length	Strahler	Grad- ient	% Natural		Field		Total Load
			_							
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
S Meadow	SMDW	MR-4-1-								
Creek	16-01	U	1937	1	4	70	20.7	NA	20.7	40.1
S Meadow	SMDW	MR-4-2-								
Creek	17-01	U	6030	2	4	20	14	NA	14.0	84.4
S Meadow	SMDW	MR-4-2-								
Creek	17-02	U	5772	2	4	60	14	NA	14.0	80.8
S Meadow	SMDW	MR-2-3-								
Creek	18-01	U	4156	3	2	60	38.1	17.87	17.9	74.3
S Meadow	SMDW	MR-0-3-								
Creek	19-01	U	14059	3	0	20	59.8	68.02	68.0	956.3
S Meadow	SMDW	MR-0-3-								
Creek	19-02	U	4207	3	0	50	59.8	NA	59.8	251.6
								Total:		
* If reach was sampled, actual field loading value was used:								2032.2		

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 2032.2 Tons/Yr

C4.2.19 Watkins Creek Sediment Loads

A total of 13 reaches were delineated in the Watkins Creek drainage. These were estimated to have low loading from bank erosion due to higher gradients and > 70% natural vegetation in most reaches (Table C-27).

Table C-27. Estimated sediment loads in Watkins Creek

							Load Per 1000 Feet (Tons/Yr/1000 Feet)			
Stream	Reach ID	Reach Type	Length (feet)	Strahle r Order	Grad- ient Class	% Natural Veg	Extrapolated	Field Assessed	Estimated *	Total Load (Tons/Year)
Watkins	WATK 02-	MR-10-								
Creek	01	1-U	634	1	10	100	20.7	NA	20.7	13.1
Watkins	WATK 03-	MR-4-								
Creek	01	1-C	1141	1	4	100	20.7	NA	20.7	23.6
Watkins	WATK 04-	MR-10-								
Creek	01	1-C	1835	1	10	90	20.7	NA	20.7	38.0
Watkins	WATK 05-	MR-10-								
Creek	01	2-C	675	2	10	90	12.5	NA	12.5	8.4
Watkins	WATK 06-	MR-10-								
Creek	01	2-U	2207	2	10	100	12.5	NA	12.5	27.6
Watkins	WATK 07-	MR-4-								
Creek	01	2-U	4322	2	4	80	14	NA	14.0	60.5
Watkins	WATK 08-	MR-10-								
Creek	01	2-C	2280	2	10	100	12.5	NA	12.5	28.5
Watkins	WATK 09-	MR-4-								
Creek	01	2-U	2005	2	4	100	14	NA	14.0	28.1
Watkins	WATK 10-	MR-2-								
Creek	01	3-U	2274	3	2	80	27	NA	27.0	61.4
Watkins	WATK 11-	MR-4-								
Creek	01	3-U	2467	3	4	80	14	NA	14.0	34.5
Watkins	WATK 12-	MR-2-								
Creek	01	3-U	5867	3	2	80	27	28.20	28.2	165.5
Watkins	WATK 13-	MR-4-								
Creek	01	3-U	3336	3	4	80	14	NA	14.0	46.7
Watkins	WATK 14-	MR-2-								
Creek	01	3-U	6593	3	2	30	38.1	17.64	17.6	116.3
* 10		. 16: 111	adina valua w							Total, CE2.2

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 652.2 Tons/Yr

C4.2.20 West Fork Madison River Sediment Loads

A total of 30 reaches were delineated in the West Fork Madison River drainage. The loading estimate from bank erosion was low for most reaches, given that the riparian zone was generally >70% in natural vegetation (**Table C-28**).

Table C-28. Estimated sediment loads in West Fork Madison River

Table C-20.	Estimateus	Camillene	loads III	VVCSCIO	I K IVIA	uison iti		25 . /=	h. 14000	
							Load Per 1000	` '	Yr/1000	
					Grad	%		Feet)	l	
		Reach	Length	Strahler	-ient	Natural		Field	Estimat	Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	ed*	(Tons/Year)
WFk Madison		MR-4-1-								
River	WFMA 02-01	С	4578	1	4	90	20.7	NA	20.7	94.8
WFk Madison		MR-10-								
River	WFMA 03-01	1-C	881	1	10	90	20.7	NA	20.7	18.2
WFk Madison		MR-4-1-	4505				20.7		20.7	00.0
River	WFMA 04-01	U	4505	1	4	80	20.7	NA	20.7	93.3
WFk Madison	\A/EN4A OF 04	MR-10-	050	_	10	00	20.7	NIA	20.7	10.0
River	WFMA 05-01	1-C	959	1	10	90	20.7	NA	20.7	19.9
WFk Madison River	WFMA 05-02	MR-10- 1-C	529	1	10	90	20.7	NIA	20.7	11.0
WFk Madison	WFIVIA 03-02	MR-4-1-	329	1	10	90	20.7	NA	20.7	11.0
River	WFMA 06-01	U U	4350	1	4	90	20.7	NA	20.7	90.0
WFk Madison	WIIVIA 00-01	MR-2-1-	4330	1	-	30	20.7	IVA	20.7	30.0
River	WFMA 07-01	U	2359	1	2	90	20.7	NA	20.7	48.8
WFk Madison	WIIVIA 07-01	MR-2-2-	2333			30	20.7	INA	20.7	40.0
River	WFMA 08-01	C	1734	2	2	90	27	NA	27.0	46.8
WFk Madison	WINAGGGI	MR-2-2-	1734			30	27	14/3	27.0	40.0
River	WFMA 09-01	C	4875	2	2	80	27	NA	27.0	131.6
WFk Madison		MR-0-2-	1075	_					2710	101.0
River	WFMA 10-01	C	4732	2	0	85	43.5	NA	43.5	205.9
WFk Madison		MR-0-2-					1010			
River	WFMA 11-01	U	8697	2	0	80	43.5	NA	43.5	378.3
WFk Madison	_	MR-0-2-								
River	WFMA 12-01	С	6540	2	0	85	43.5	NA	43.5	284.5
WFk Madison		MR-0-2-								
River	WFMA 13-01	U	9241	2	0	80	43.5	NA	43.5	402.0
WFk Madison		MR-0-2-								
River	WFMA 14-01	С	1416	2	0	90	43.5	NA	43.5	61.6
WFk Madison		MR-0-2-								
River	WFMA 14-02	С	5964	2	0	90	43.5	66.79	66.8	398.3
WFk Madison		MR-2-2-								
River	WFMA 15-01	С	4965	2	2	90	27	NA	27.0	134.1
WFk Madison		MR-0-2-								
River	WFMA 16-01	С	8258	2	0	90	43.5	NA	43.5	359.2
WFk Madison		MR-0-2-								
River	WFMA 16-02	С	5996	2	0	90	43.5	NA	43.5	260.8
WFk Madison		MR-2-2-								
River	WFMA 17-01	С	1322	2	2	90	27	NA	27.0	35.7
WFk Madison		MR-2-2-								
River	WFMA 18-01	С	2610	2	2	90	27	NA	27.0	70.5
WFk Madison		MR-2-2-				_	_			_
River	WFMA 18-02	С	2027	2	2	90	27	NA	27.0	54.7
WFk Madison		MR-0-2-		_	_					
River	WFMA 19-01	С	28305	2	0	90	43.5	NA	43.5	1231.3
WFk Madison		MR-0-3-		_	_					
River	WFMA 20-01	U	21993	3	0	80	43.5	NA	43.5	956.7
WFk Madison		MR-0-3-	47.5				46.7		46 -	
River	WFMA 21-01	U	1716	3	0	80	43.5	NA	43.5	74.6
WFk Madison		MR-0-3-	44				46.7		46 -	
River	WFMA 22-01	U	11756	3	0	80	43.5	NA	43.5	511.4

Table C-28. Estimated sediment loads in West Fork Madison River

					Grad	%	Load Per 1000 Feet (Tons/Yr/1000 Feet)			
		Reach	Length	Strahler	-ient	Natural		Field	Estimat	Total Load
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	ed*	(Tons/Year)
WFk Madison		MR-0-3-								
River	WFMA 23-01	U	2827	3	0	80	43.5	NA	43.5	123.0
WFk Madison		MR-0-3-								
River	WFMA 24-01	С	3898	3	0	80	43.5	NA	43.5	169.6
WFk Madison		MR-0-4-								
River	WFMA 25-01	С	19803	4	0	70	59.8	NA	59.8	1184.2
WFk Madison		MR-0-4-								
River	WFMA 25-02	С	23371	4	0	60	59.8	33.66	33.7	786.6
WFk Madison		MR-0-4-								
River	WFMA 26-01	С	6470	4	0	80	43.5	90.53	90.5	585.7

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 8822.9 Tons/Yr

C4.2.21 Wigwam Creek Sediment Loads

A total of 19 reaches were delineated in the Wigwam Creek drainage. The majority of Wigwam Creek drainage was estimated to have low sediment loads from bank erosion, being comprised of small streams with relatively high gradients. In addition, the riparian zone along Wigwam Creek was primarily in > 70% natural vegetation. The exception was near the mouth of Wigwam Creek, which was estimated to have high loads from bank erosion due to low gradients and a lack of natural vegetation in the riparian zone (**Table C-29**).

Table C-29. Estimated sediment loads in Wigwam Creek

							Load Per 1000 Feet (Tons/Yr/1000			
				Strahl	Grad-	%		Feet)	ı	
		Reach	Length	er	ient	Natural		Field		Total Load
Stream	Reach ID	Туре	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Wigwam	WGWM	MR-4-1-								
Creek	02-01	С	2841	1	4	90	20.7	NA	20.7	58.8
Wigwam	WGWM	MR-10-								
Creek	03-01	1-U	998	1	10	90	20.7	NA	20.7	20.7
Wigwam	WGWM	MR-4-1-								
Creek	04-01	С	2454	1	4	80	20.7	NA	20.7	50.8
Wigwam	WGWM	MR-10-								
Creek	05-01	1-C	1128	1	10	80	20.7	NA	20.7	23.4
Wigwam	WGWM	MR-10-								
Creek	06-01	2-C	835	2	10	90	12.5	NA	12.5	10.4
Wigwam	WGWM	MR-10-								
Creek	07-01	2-C	915	2	10	90	12.5	NA	12.5	11.4
Wigwam	WGWM	MR-4-2-								
Creek	08-01	С	7135	2	4	70	14	12.28	12.3	87.6
Wigwam	WGWM	MR-2-3-								
Creek	09-01	С	3722	3	2	80	27	NA	27.0	100.5
Wigwam	WGWM	MR-4-3-								
Creek	10-01	С	7972	3	4	90	14	NA	14.0	111.6
Wigwam	WGWM	MR-2-3-								
Creek	11-01	С	4159	3	2	90	27	NA	27.0	112.3
Wigwam	WGWM	MR-4-3-								
Creek	12-01	С	2005	3	4	90	14	NA	14.0	28.1
Wigwam	WGWM	MR-10-								
Creek	13-01	3-C	837	3	10	90	12.5	NA	12.5	10.5
Wigwam	WGWM	MR-4-3-								
Creek	14-01	С	2256	3	4	90	14	NA	14.0	31.6
Wigwam	WGWM	MR-4-3-								
Creek	14-02	С	2197	3	4	80	14	NA	14.0	30.8

Table C-29. Estimated sediment loads in Wigwam Creek

				Strahl	Grad-	%	Load Per 10	00 Feet (Tor Feet)	ns/Yr/1000	
		Reach	Length	er	ient	Natural		Field		Total Load
Stream	Reach ID	Type	(feet)	Order	Class	Veg	Extrapolated	Assessed	Estimated*	(Tons/Year)
Wigwam	WGWM	MR-2-3-								
Creek	15-01	С	3542	3	2	40	38.1	NA	38.1	135.0
Wigwam	WGWM	MR-2-3-								
Creek	15-02	С	1005	3	2	0	38.1	NA	38.1	38.3
Wigwam	WGWM	MR-2-3-								
Creek	16-01	С	2466	3	2	10	38.1	NA	38.1	94.0
Wigwam	WGWM	MR-2-3-								
Creek	17-01	С	5188	3	2	70	38.1	NA	38.1	197.7
Wigwam	WGWM	MR-2-3-								
Creek	18-01	С	8290	3	2	10	38.1	13.99	14.0	116.0

^{*} If reach was sampled, actual field loading value was used; otherwise extrapolated value was used.

Total: 1269.3 Tons/Yr

C4.3 BMP SEDIMENT LOADS

For low and mid gradient streams (0-2% and >2%-4%) in low riparian condition (≤70% natural conditions), the sediment load if BMPs were implemented was estimated as the average of low and mid gradient streams with high riparian condition (Table C-30). For low and mid gradient reaches with already high riparian condition, no change was made in the estimated load. Because too few >4-10% gradient were sampled, a different method was used. To estimate BMP loads in these reaches, the BEHI score at individual banks within sampled reaches was changed from extreme to very high, very high to high, and high to moderate, and then the loading was estimated by taking the average of these reduced values. This new average was applied to estimate the BMP load at unsampled mid-gradient reaches. No different BMP load was estimated for very high (4-10%) gradient and first order unsampled reaches. These reaches tended to have riparian zones in high condition. Also, they comprised a low percentage of reaches in most watersheds.

The drainages with the highest estimated percent reduction in sediment load due to BMP's (>30%) include Blaine Spring Creek, Elk Creek, Moore Creek, Red Canyon Creek, and South Meadow Creek (**Tables C-30** and **C-31**). However, this is an estimate based on our aerial assessment of the riparian zone and may vary due to already-implemented BMPs are other local conditions.

Table C-30. Stream characteristics used to estimate BMP Loads at unsampled reaches

	Table 6 301 Stream characteristics asea to estimate birin Louds at ansamplea readiles									
					Post-BMP					
				Pre-BMP Load	Load					
		Riparian		(Tons/Yr/1000	(Tons/Yr/1000					
Gradient	Order	Condition	BMP Action	Ft)	Ft)					
		High, > 70%								
		Riparian Zone in								
0-2%	Non 1st	Natural Condition	NONE	43.5	43.5					
		Low, <u><</u> 70%	Change to average at							
		Riparian Zone in	reaches with riparian							
0-2%	Non 1st	Natural Condition	zone in high condition	59.8	43.5					
		High, > 70%								
		Riparian Zone in								
>2-4%	Non 1st	Natural Condition	NONE	27.0	27.0					
		Low, <u><</u> 70%	Change to average at							
		Riparian Zone in	reaches with riparian							
>2-4%	Non 1st	Natural Condition	zone in high condition	38.1	27.0					

Table C-30. Stream characteristics used to estimate BMP Loads at unsampled reaches

Cuadiant	Order	Riparian	DMD Asticas	Pre-BMP Load (Tons/Yr/1000	Post-BMP Load (Tons/Yr/1000
Gradient	Order	Condition	BMP Action	Ft)	Ft)
			Average at sampled		
			reaches after changing		
			bank erosion from		
			extreme to very high,		
			very high to high, and		
>4-10%	Non 1st	Any	from high to moderate	14.0	11.3
> 10%	Non 1st	Any	NONE	12.5	12.5
Any	1st	Any	NONE	20.7	20.7

Table C-31. Estimated reduction in sediment loads with BMP's

Watershed	Estimated Load (Tons/Yr)	BMP Load Estimated Load (Tons/Yr)	% Reduction
Antelope Creek*	2115.4	1612.9	23.8
Bear Creek*	6990.27	5059.4	27.6
Buford Creek	448.5	448.5	0.0
Blaine Spring Creek*	2507.6	1545.2	38.4
Cherry Creek*	7481.4	5835.0	22.0
Elk Creek*	4839.5	3346.0	30.9
Elk River	2158.8	2009.4	6.9
Gazelle Creek	678.9	617.9	9.0
Hot Springs Creek	3884.3	2801.1	27.9
Indian Creek	2410.5	2103.9	12.7
Jack Creek	3474.5	2499.9	28.1
Moore Creek*	3522.5	2199.4	37.6
North Meadow Creek*	3277.4	2508.3	23.5
No Man Creek	513.4	481.5	6.2
O'Dell Spring Creek	2630.1	2169.1	17.5
Red Canyon Creek*	1014.7	701.2	30.9
Ruby Creek*	2072.7	1914.2	7.6
South Meadow Creek*	2032.2	1378.1	32.2
Watkins Creek*	652.2	459.2	29.6
West Fork Madison River	8822.9	7516.7	14.8
Wigwam Creek*	1269.3	1044.2	17.7

^{*}considered impaired for sediment

C5.0 REFERENCES

Rosgen. D. L. 2001. A practical method of computing streambank erosion rate. Pages 9-16 in

- Proceedings of the 7th Federal Interagency Sedimentation Conference. Volume 2. March 25-29, 2001. U. S. Interagency Committee on Water Resources, Subcommittee on Sedimentation, Reno, Nevada.
- Rosgen, D. L. 2006. WARSSS-Watershed Assessment of River Stability and Sediment Supply-an Overview. Hydrological Science and Technology 23: 1-4.
- DEQ (Montana Department of Environmental Quality). 2007. Longitudinal Field Methods for Assessment of TMDL Sediment and Habitat Impairments. Montana Department of Environmental Quality.
- DEQ (Montana Department of Environmental Quality). 2008. Watershed Stratification Methodology for TMDL Sediment and Habitat Investigations. Montana Department of Environmental Quality.
- USDI. 1998. Earth Manual Part 1. Third Edition. U. S. Department of the Interior, Bureau of Reclamation, Earth Sciences, and Research Laboratory, Geotechnical Research, Technical Research Center. Denver, Colorado.