1st Triennial Review of Base Numeric Nutrient Standards and Nutrient Standards Variances

Presenter:

Tim Davis, Division Administrator
Water Quality Division
MT Dept. of Environmental Quality

May 25, 2017

DEQ-12A

Montana Base Numeric Nutrient Standards

DEPARTMENT CIRCULAR DEQ-12B

Nutrient Standards Variances

http://deq.mt.gov/Water/WQPB/Standards

Implementation of nutrient standards:

difference between standards and current LOT

1st Triennial Review of Nutrient Standards

Timeline

- 2014: DEQ and Board adopt nutrient standards and variances
- 2015: EPA updated its rules regarding variances

Federal updates affecting DEQ's triennial review

- Highest Attainable Condition (HAC)
- Time to achieve HAC
- Pollutant minimization program (PMP)

WQ standards changes must be approved by EPA

- Must conform with federal requirements
- Must conform with CWA

1st Triennial Review of Nutrient Standards

- DEQ engaged stakeholders since September 2016
 - Nutrient Work Group
 - Multiple meetings, regular and technical
- Current nutrient variance rules expire 7/1/2017
- IF DEQ did not update nutrient variance rules:
 - would result in
 - (a) no variances available; in turn
 - (b) numeric nutrient standards voided, and
 - (c) DEQ would implement narrative nutrient standard in permits
 - Given state of science, (c) equates to numeric standards without a variance process

What is the Highest Attainable Condition?

Where the nutrient standards can't be attained:

 The best level of wastewater treatment that can be achieved affordably

 It is not reverse osmosis: EPA, DEQ have stated that treatment to RO is not expected for the purpose of meeting nutrient standards or HAC

Updated Process Differs from 2014

Original (2014) rules

- 20 years to achieve numeric nutrient standards, which are the permitting endpoint
 - Nutrient standards to be achieved in 20 years
- Guidance on how wastewater upgrades occur over time
 - Best professional judgment at time standards were adopted

Updated (2017) rules

- Up to ~20 years to achieve highest attainable condition, which is the permitting endpoint
 - Where standards are unattainable, e.g., no dilution available
- Nine defined actions that establish process for attaining highest attainable condition
 - Less actions needed, less time needed

Illustration of variance process over 20 years, as currently adopted and as proposed. Example is for TN for the ≥1MGD group. Currently, the numeric nutrient standards are the highest attainable condition (HAC). Going forward, where the nutrient standards are unattainable, the HAC would be in Circular DEQ-12B. HAC may change in the future. The longest time to achieve HAC is illustrated; it may take less time.

And if Group HAC is too Expensive for a Community?

Individual variance are, will be available to all

 Based on specific economic characteristics of community, and cost of meeting nutrient standards, <u>not</u> the cost to meet group HAC

Communities/Companies Likely to Need a Variance (n≤24)

Other communities in the ≥, <1MGD groups don't need variance because they already meet the standards or discharge to waterbodies that don't have nutrient standards

Permit Name	Size	Facility Type (M- mechanical O-other)	Receiving Waterbody
MONTANA BEHAVIORAL HEALTH	< 1 MGD	M	Unnamed field irrigation ditch, tributary to the Clark
			Fork River
BONNER PROPERTY DEVELOPMENT	UNK	M	Blackfoot River
COUNTY SEWER AND WATER DIST OF ROCKER	< 1 MGD	M	Silver Bow Creek
APPLE REHAB WEST LLC	< 1 MGD	M	Prickly Pear Cr.
TOWN OF STEVENSVILLE	< 1 MGD	M	Side channel of Bitterroot River
STILLWATER MINING COMPANY	UNK	M	Stillwater River
CITY OF EAST HELENA	< 1 MGD	M	Prickly Pear Cr.
CITY OF MANHATTAN	< 1 MGD	M	Dita Ditch
CITY OF CONRAD	< 1 MGD	M	Unnamed tributary to Dry Fork of the Marias River
STILLWATER MINING CO. (E.B.P.)	UNK	M	East Boulder River
BARRETTS MINERALS INC	UNK	0	Left Fork Stone Creek
CITY OF CHINOOK	< 1 MGD	M	Milk River
DRUMLUMMON GOLD CORP	< 1 MGD	M	Silver Creek
REC ADVANCED SILICON MATERIALS LLC	UNK	M	Sheep Gulch and Silver Bow Creek
CITY OF WHITEFISH	> 1 MGD	M	Whitefish River
CITY OF BILLINGS	> 1 MGD	M	Yellowstone River
CITY OF KALISPELL	> 1 MGD	M	Ashley Creek
CITY OF HAVRE	> 1 MGD	M	Milk River
CITY OF HELENA	> 1 MGD	M	Prickley Pear Cr.
CITY OF BOZEMAN	> 1 MGD	M	East Gallatin River
CITY OF HAMILTON	> 1 MGD	M	Bitterroot River
BUTTE SILVER BOW CITY AND COUNTY	> 1 MGD	M	Silver Bow Creek
PHILLIPS 66 BILLINGS REFINERY	UNK	М	Yegan Drain and Yellowstone River (held permit; actual
			to Billings WWTP)
BUTTE HIGHLANDS JV LLC			Basin Cr., trib to Fish Cr., MF Moose Cr., and trib to MF
	UNK	M	Moose Cr.

Another way to Look at this....

Wastewater Treatment Cost as Basis for Identifying Highest Attainable Condition (HAC)

- Fall 2016: EPA consultant calculated costs for MT communities to meet 6 wastewater treatment levels
 - DEQ and Nutrient Work Group reviewed, identified issues
 - Accuracy of information used, spreadsheet errors
- Further Analyses Coordinated with Nutrient Work Group
 - 5 technical subcommittee mtngs Feb-March 2017
 - MT wastewater engineers provided community-specific cost analysis for nearly all ≥1MGD members, several <1MGD members

 DEQ applied its MT-specific economic affordability process to each community

Identifying HAC

Lagoons:

✓ Cost for a sample of communities with lagoons to meet different wastewater treatments

≥1MGD:

- ✓ Group cost to meet different treatment levels
- ✓ NWG input
- ✓ Draft HAC compared to facilities nationwide

<1MGD:

- ✓ Group cost to meet different treatment levels
- ✓ NWG input
- ✓ Engineers' judgements as to what advanced operational strategies can achieve

HAC Ranges, by Category, Based on Work Reviewed by the NWG Subcommittee

 <u>Lagoons</u>: No change to current method of implementing general variances for communities with wastewater lagoons

• ≥1MGD: 4 to 7 mg TN/L, and >0.1 to 0.4 mg TP/L

<1MGD: >>7 to 10 mg TN/L, and 1.0 mg TP/L

Lagoon Category

65 individual permits, ≤40 likely need variance (analysis below is only for POTWs)

≥1MGD, <1MGD Mechanical Categories

Percent of Members in a Discharger Group (≥ 1MGD, <1MGD) Who Can Affordably Meet (Per DEQ Methods) a Specified Wastewater Treatment Level. Only POTW group members are shown, and, among them, only those that will probably need a variance. Error bars are the % of members who can afford a treatment level, based on a range of cost estimates for the facility upgrades (per class 5 engineering planning estimates).

Future Collection System Costs

Significant future costs for most communities

- DEQ used 10% overage in all cost estimates to address collection system repairs etc.
 - Probably a low estimate
 - Further consideration for small towns (<1MGD)
 - Could be 0.2 -0.4% of median household income
 - Led DEQ to select HAC at higher end of range

Current and Proposed Treatment Requirements in DEQ-12B

Lagoons:

- No major changes
 - Department, permittees implementing Pollutant Minimization Program

≥1MGD Category:

- Current: 10 mg TN/L and 1.0 mg TP/L
- Proposed: 6 mg TN/L and 0.3 mg TP/L

<1MGD Category:

- Current: 15 mg TN/L and 2.0 mg TP/L
- Proposed: 10 mg TN/L and 1.0 mg TP/L

Time to Achieve HAC

Pollution Minimization Program (PMP)

- PMP: Required by those under a variance when they achieve treatment requirements Circular DEQ-12B
 - If one nutrient achieved first, PMP required for it
- PMP: a structured set of activities to improve processes and pollutant controls that will prevent & reduce pollutant loading
- PMP is not intended to be capital improvements

Flexibilities in Permit Implementation of Nutrient Variances

- Applied as a load only, based on design flow
 - Most facilities are well below design flow
- Modified permit calculation, accounting for tighter treatment and movement towards design flow
 - Coefficient of variation (CV) of 0.6
- Up to ~17 years to reach HAC, if needed

Nutrient Variances Compared

- Montana's Proposed Variance for Total Phosphorus
 - 0.3 mg/L (≥1MGD), 1.0 mg/L (<1MGD), maintain (lagoons)
 - To be achieved in up to 17 years
 - MT statute allows variance to be in place 20 yrs
- Wisconsin's Variance for Total Phosphorus (Section 283.16)
 - Same for ≥1MGD, <1MGD, and lagoons
 - Permit One: 0.8 mg TP/L
 - Permit Two: 0.6 mg TP/L
 - Permit Three: 0.5 mg TP/L
 - Permit Four: Meet numeric TP standards (2027)
 - Must implement watershed cleanup projects with county,
 DNR, or third party

2017 Nutrient Standards Variances Triennial Review

 May 31st: Public hearing. DEQ, Room 111, 9am-12, Helena

- June 23rd: MAR publication date for the adopted rules (June 2017 DEQ-12B)
 - New circular in effect June 24th
- July 1st, 2017: Current DEQ-12B (July 2014 version) expires

Where to Find Things

Thank You