Appendix A: Details on All Culverts Proposed as Part of the AM5 Haul Road.

Source is: updated Appendix K: Exhibit 1: Hydrologic Control Plan. 17.24.305(1), (o) and (t). 5/01/2018. Culvert ID numbers correspond to information on this figure and progress from north to south along the alignment.
Table A-1. Details on Each Culvert Proposed as Part of the AM5 Permit Amendment

Culvert ID	# of Culverts	Road Base Width (feet)	Height of Road Above Natural Ground Surface (feet)	Culvert Diameter (feet)	Slope (ft/ft)	Slope (%)	Predicted Q100 Depth (feet)	Estimated Water Depth Mean Annual Discharge (feet)	Estimated peak flow (cfs)	Maximum Pipe Flow (cfs)	Water Conveyed	Collection Pond?	% full at Q100		
111	2	5			0.020			288.00	412.00						
112	2	3			0.031			82.00	131.40						
113	2	3			0.026			68.00	120.30						
114	1	1			0.500			6.47	14.10						
115	1	1			0.500			7.75	14.10	Trib to Squirrel Creek					
								2.77	12.70	Pond #73					
116	1	2			0.010			2.77	12.70						
117	1	616 66	15 470		0.0318	3.180	12.23	1.55	3,750.00	3,767.00	Squirrel Creek	82%			
118	1	2			0.021			17.90	18.30						
119	1	2			0.064			32.34	32.01	Trib to Squirrel Creek	Pond #74				
120	1	2.5			0.046			39.41	49.21	Ephemeral Drainage	Pond #75				
121	1	668 92	10 608		0.0208	2.080	7.3	0.96	912.00	1,033.00	Dry Creek	73%			
122	1	2			0.022			54.28	53.33						
123	1	2			0.067			22.27	32.75						
Table A-1. Details on Each Culvert Proposed as Part of the AM5 Permit Amendment

<table>
<thead>
<tr>
<th>Culvert ID</th>
<th># of Culverts</th>
<th>Road Base Width (feet)</th>
<th>Height of Road Above Natural Ground Surface (feet)</th>
<th>Culvert Diameter (feet)</th>
<th>Slope (ft/ft)</th>
<th>Slope (%)</th>
<th>Predicted Q100 Depth (feet)</th>
<th>Mean Annual Discharge (cfs)</th>
<th>Est. Water Depth Trib to Youngs Creek (feet)</th>
<th>Maximum Pipe Flow (cfs)</th>
<th>Water Conveyed</th>
<th>Collection Pond?</th>
<th>% full at Q100</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>1</td>
<td>3</td>
<td>0.036</td>
<td></td>
<td></td>
<td></td>
<td>75.67</td>
<td>89.00</td>
<td>Trib to Youngs Creek</td>
<td></td>
<td></td>
<td>Pond #77</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>1</td>
<td>1.5</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td>72.80</td>
<td>24.30</td>
<td>Ephemeral Drainage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>2</td>
<td>0.078</td>
<td>193.33</td>
<td>224.40</td>
<td></td>
<td></td>
<td>Ephemeral Drainage</td>
<td></td>
<td>Ephemeral Drainage</td>
<td></td>
<td></td>
<td>Pond #78</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>1</td>
<td>2</td>
<td>0.096</td>
<td></td>
<td></td>
<td></td>
<td>22.00</td>
<td>39.21</td>
<td>Ephemeral Drainage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>1</td>
<td>2.5</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
<td>31.14</td>
<td>32.45</td>
<td>irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>2</td>
<td>451 30 21 345</td>
<td>0.0243 2.430 10.97 0.83</td>
<td>8,400.00 10,336.00</td>
<td>Youngs Creek</td>
<td>irrigation</td>
<td>52%</td>
<td></td>
<td>irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>1</td>
<td>1.5</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td>2.28</td>
<td>4.15</td>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>1</td>
<td>2.5</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td>22.92</td>
<td>22.94</td>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>1</td>
<td>2.075</td>
<td>32.00</td>
<td>34.65</td>
<td></td>
<td></td>
<td>11.00</td>
<td></td>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>1</td>
<td>1.5</td>
<td>0.035</td>
<td></td>
<td></td>
<td></td>
<td>2.17</td>
<td></td>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>1</td>
<td>0.006</td>
<td>4.35</td>
<td>4.55</td>
<td></td>
<td></td>
<td>Irrigation</td>
<td></td>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>1</td>
<td>1.5</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td>1.28</td>
<td>10.40</td>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>1</td>
<td>386 31 22 324.00</td>
<td>0.0259 2.590 9 0.46</td>
<td>3,870.00 4,547.00</td>
<td>Little Youngs Creek</td>
<td>irrigation</td>
<td>41%</td>
<td></td>
<td>irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A-1. Details on Each Culvert Proposed as Part of the AM5 Permit Amendment

<table>
<thead>
<tr>
<th>Culvert ID</th>
<th># of Culverts</th>
<th>Road Base Width (feet)</th>
<th>Height of Road Above Natural Ground Surface (feet)</th>
<th>Culvert Diameter (feet)</th>
<th>Culvert Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Slope (%)</th>
<th>Predicted Q100 Depth (feet)</th>
<th>Estimated Water Depth Mean Annual Discharge (feet)</th>
<th>Estimated peak flow (cfs)</th>
<th>Maximum Pipe Flow (cfs)</th>
<th>Water Conveyed</th>
<th>Collection Pond?</th>
<th>% full at Q100</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>1</td>
<td>1.5</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.28</td>
<td>10.40</td>
<td></td>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>1</td>
<td>1.5</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.28</td>
<td>10.40</td>
<td></td>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>1</td>
<td>1.5</td>
<td>0.061</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.06</td>
<td>14.51</td>
<td></td>
<td></td>
<td>Irrigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>1</td>
<td>1.5</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.28</td>
<td>10.40</td>
<td></td>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: Greater Sage-grouse Mitigation Plan for the Spring Creek Mine’s Proposed AM5 Haul Road Project

April, 2018
Project No. 1308
Governor’s Executive Orders 12-2015 and 21-2015
Spring Creek Coal LLC AM5 Haul Road Corridor Project

Laura Ackerman
Cloud Peak Energy/Spring Creek Mine LLC
505 Gillette Ave
Gillette, WY 82716

June 13, 2018

Dear Ms. Ackerman,

The Montana Sage Grouse Habitat Conservation Program received a request for consultation and review of your project or proposed activity on July 7, 2017. Additional information needed to complete the review for this complex project was received over the course of mitigation negotiations in 2017 and 2018. Based on the information provided, all or a portion of this project is located within a Core Area and General Habitat for sage grouse. The Bureau of Land Management (BLM) classifies the project area as General Habitat Management Area (GHMA) and Restoration Habitat Management Area (RHMA).

Executive Orders 12-2015 and 21-2015 set forth Montana's Sage Grouse Conservation Strategy. Montana’s goal is to maintain viable sage grouse populations and conserve habitat so that Montana maintains flexibility to manage our own lands, our wildlife, and our economy and a listing under the federal Endangered Species Act is not warranted in the future.

The Program has completed its review, including:

Project Description:

- **Project Type:** Mining
- **Project Disturbance:** 969.4 Acres/8.5 Miles
- **Construction Dates:** July 2018 to December 2019, Short Term (1-5 Years)
- **Disturbance Dates:** July 2018 (permanent), Permanent (> 25 Years)

Project Location:

- **Legal:** PRB1 Core Area: 270.4 Acres
 Township 9 South, Range 39 East, Sections 16, 21, 28
PRB2 Core Area: 177.6 Acres
Township 8 South, Range 39 East, Sections 27, 34
Township 9 South, Range 39 East, Section 3

General Habitat: 521.4 Acres
Township 9 South, Range 39 East, Sections 3, 4, 9, 10, 16, 28, 32, 33

County: Big Horn
Ownership: Private

Executive Orders 12-2015 and 21-2015 Consistency:

The project proposes to construct a major transportation corridor (haul road) between two existing Cloud Peak Energy (CPE) properties in a designated Core Area and General Habitat for sage grouse. Spring Creek Coal LLC (SCC) is the permitting entity for this project.

In December 2015, SCC applied to the Montana Department of Environmental Quality (DEQ) to add new lands to the current Surface Mining Permit under the Montana Strip and Underground Mine Reclamation Act (MSUMRA). This proposed permit amendment (AM5) is for a transportation corridor, or haul road, connecting the existing Spring Creek Mine in Montana with its Youngs Creek Mine in Wyoming. The existing Spring Creek Mine is located in southeastern Big Horn County, Montana, west of the Tongue River Reservoir and approximately 12 miles northwest of Decker, Montana. The proposed haul road would be approximately eight and a half miles long.

The majority of the project would occur on lands owned and managed by SCC. Approximately 1.2 miles of the disturbance corridor would pass through a Montana State-owned section. The State granted SCC a commercial lease for this purpose in September 2015.

The disturbance corridor is generally characterized by a wide diversity of habitat types and topographic gradients. It crosses four main drainages in order from north to south: Squirrel Creek, Dry Creek, Youngs Creek, and Little Youngs Creek. All four main channels flow into the Tongue River southeast of the project area. Elevations within the disturbance corridor range from approximately 3,680 to 4,220 feet above mean sea level.

Project components include the haul road, power line, fences, ponds, soil stockpiles, culverts, lighting poles, and a water supply line for dust control.

Coal would be transported from the Youngs Creek Mine in Wyoming to the SCC’s Spring Creek Mine facilities in Montana using trucks hauling approximately 280 tons. Other regular support traffic would consist of water trucks for dust suppression, motor graders for road maintenance, and various mid-weight (e.g., fuel trucks) and light-duty (e.g., pickup trucks, vans) vehicles needed for equipment maintenance and to transport personnel to and from work sites, respectively.
SCC estimates that average daily haul traffic would consist of four trucks per hour (two loaded, two empty) running at approximately 15-minute intervals, and an average of 1.4 support vehicles per hour, for a total average of approximately 130 vehicle trips per day. This level of traffic could occur up to 24 hours per day and 7 days per week, year-round. The average speed limit for all traffic would be 16 miles per hour (mph), with a maximum of 30 mph and a restricted limit of 10 mph for haul trucks traveling downhill in steeper terrain.

The haul road corridor will be 120 feet wide, with dirt safety berms on each side that are 12 feet high and 25 feet wide. The average road base width is 296 feet.

The 34.5 kV transmission line will be approximately 8.33 miles long, located along the eastern side of the road alignment. It will be single-pole construction and follow Avian Power Line Interaction Committee (APLIC 2015) recommendations for prevention of avian perching and electrocution. Poles will be 65 feet above ground level and spacing will be 300 to 350 feet apart. Portable or stationary safety lighting will be used. Fencing along the outer limit of the disturbance corridor will be built to Natural Resources Conservation Service (NRCS) recommendations.

Other features include soil stockpiles, sediment settling ponds, and erosion control devices.

After the construction phase and when the project is decommissioned and all infrastructure is removed from the landscape, SCC will recontour the landscape to fit post-reclamation land use. This action will follow the same MSUMRA reclamation regulations required for the existing Spring Creek Mine permit area. SCC would use MDEQ approved native seed mixes in certain specified areas identified as pastureland prior to mine-related disturbance (i.e., convert post-mine land use from pastureland to native habitats in those locations). Where appropriate, SCC will incorporate regionally-sourced, pure live sagebrush seeds and appropriate forb species in sagebrush plantings to enhance forage potential for sage-grouse.

Spring Creek Coal LLC has an approved weed control plan on file with the Big Horn County Weed Coordinator (7-22-2153, ARM). SCC would use weed-free seed to control noxious weeds. Herbaceous and woody riparian areas associated with Youngs Creek, Little Youngs Creek, and Squirrel Creek within the AM5 will be seeded with the approved riparian seed mixes. If mulch is used, weed-free sources would be utilized if available and cost-effective.

Additionally, SCC will utilize best management practices to prevent establishment of, or to control, noxious weeds until Phase IV Bond Release. This final stage of bond release will be complete when SCC has finalized all regrading, established revegetation to support postmining land use, and reclaimed all lands within drainage basins.

Methods of weed control include, but are not limited to: prevention, cutting or mowing, cultivation or tillage, crop or plant competition, burning, biological, and chemicals or herbicides. Implementation of these practices would adhere to established criteria as outlined by the State of Montana Department of
Agriculture Environmental Management Division’s County Noxious Weed Control Act, and supplemental Weed Control Guide and Title 82, Chapter 3, regulating coal mining.

Based on the information you provided, your project is within two miles of six active sage grouse leks, and traverses three No Surface Occupancy (NSO) areas (Map 1).

Density Disturbance Calculation Tool (DDCT) Analysis:

The proposed project is to occur in a designated Core Area for sage grouse. The Program has calculated the density and disturbance levels within the project area using a Density Disturbance Calculation Tool. The results were compared to allowable thresholds set forth in the Executive Order 12-2015. Your project results are as follows. See the AM5 Haul Road Corridor Project Map (Map 2) and Density Disturbance Calculation Tool Explanation and Results Summary.

DDCT Analysis Area Acres: 26,051.86
Total Preliminary Disturbance Acres: 440.76
Total Disturbed Acres in Analysis Area: 1,644.51
DDCT Result: 6.31%
New Disturbed Acres: 440.76
Affected Leks Within the DDCT Analysis Area: 8

Discussion:

MSUMRA requires this type of project to avoid or minimize impacts for designated State sensitive species, such as the Greater sage-grouse. The AM5 amendment application was submitted prior to the effective date of Executive Order 12-2015; however other ancillary state permits are needed for the project such as a Stormwater Construction Permit, which requires consultation with the Sage Grouse Habitat Conservation Program.

The Montana Department of Environmental Quality is required to follow Executive Order 12-2015 guidance to determine the project’s impacts to sage grouse habitat. Therefore, DEQ contacted the Program for input during the permitting process and development of the Draft Environmental Impact Statement (DEIS) for the proposed project.

The Program worked with DEQ and SCC to review the proposed AM5 amendment for consistency with Executive Order 12-2015. Based on the scope and duration of the project, it was determined that unavoidable impacts will occur from the project. The complete Montana Environmental Policy Act (MEPA) analysis can be found in the Draft Environmental Impact Statement for the Proposed Addition of a Haul Road to the Spring Creek Mine.

The Program analysis determined that the proposed project would deviate from multiple Executive Order 12-2015 stipulations applicable to new uses and activities in Core Areas and General Habitat (Executive Order 12-2015 Attachment D). These deviations are described below.
Based on these results, the Program, DEQ, and SCC collaborated through the MEPA process to develop a compensatory mitigation approach to address project impacts and deviations from Executive Order 12-2015. For details on the SCC Mitigation Plan approved by Montana Sage Grouse Oversight Team (MSGOT) on April 26, 2018, see DEIS Section 2.1.4.2 Compensatory Mitigation, and Appendix B: Greater Sage-grouse Mitigation Plan for SCC’s Proposed AM5 Haul Road Project.

Surface Disturbance

EO Stipulation (Core Areas only): Surface disturbance will be limited to 5% of suitable sage-grouse habitat averaged across the area affected by the project.

Project Deviation: The Density Disturbance Calculation threshold of 5% in suitable habitat in Core Areas would be exceeded (6.31%) due to existing surface disturbance in the analysis area, and the size of the project disturbance limits, used for this calculation.

Surface Occupancy

EO Stipulation – Core Areas: Within 0.6 miles of the perimeter of active sage-grouse leks there will be no surface occupancy (NSO) for new activities. NSO, as used in these recommendations, means no surface facilities, including roads, shall be placed within the NSO area.

EO Stipulation – General Habitat: Within 0.25 miles of the perimeter of active sage-grouse leks there will be no surface occupancy (NSO).

Project Deviations: The disturbance corridor would pass through three 0.6-mile NSO buffers for active leks in the Core Areas through which the project passes, and one 0.25-mile NSO buffer for an active lek in General Habitat.

Seasonal Use

EO Stipulation – Core Areas: Activities (new) will be prohibited from March 15 - July 15 outside of the NSO perimeter of an active lek in Core Areas where breeding, nesting, and early brood-rearing habitat is present (production, maintenance, and emergency activity exempted). Discretionary maintenance and production activity will not occur between the hours of 4:00 - 8:00 a.m. and 7:00 - 10:00 p.m. between March 15 - July 15.

EO Stipulation – General Habitat: Activities (new) will be prohibited from March 15 - July 15 within 2.0 miles of an active lek where breeding, nesting, and early brood-rearing habitat is present. Discretionary maintenance and production activity will not occur between the hours of 4:00 - 8:00 a.m. and 7:00 - 10:00 p.m. between March 15 - July 15.

Project Deviations: The proposed project would be inconsistent with this stipulation during both the construction and operational phases of the project. Disturbances would occur during the
seasonal use restriction period from March 15 through July 15 for the duration of the project. Discretionary maintenance activity associated with one or more project phases would also occur between the hours of 4:00 to 8:00 a.m. and 7:00 to 10:00 p.m. during that period. The proposed disturbance corridor is within 2.0 miles of six active leks.

Transportation

EO Stipulation (Core Areas only): Locate main roads used to transport production and/or waste products greater than 2 miles from the perimeter of active sage-grouse leks.

Project Deviation: The disturbance corridor would be closer to six active lek sites than the recommended distance of 2.0 miles for the construction phase and for the life of the project.

Overhead Power Lines

EO Stipulation – Core Areas:
 a. If economically feasible, power lines within 4 miles of active leks should be buried;
 b. If not economically feasible, then power lines should be consolidated or co-located with existing above ground rights of way, such as roads or power lines, at least 0.6 miles from the perimeter of active leks;
 c. If co-location is not possible, the power lines should be located as far as economically feasible from active leks and outside of the 0.6-mile active lek buffer.

EO Stipulation – General Habitat: New overhead power lines will be located outside of General Habitat whenever possible. Where avoidance is not possible, develop a route or siting location that uses topography, vegetative cover, site distance, etc. to effectively protect identified sage grouse habitat in a cost-efficient manner.

Project Deviations: SCC has stated that it is not economically feasible to bury the new 34.5kV overhead power line. Because SCC co-located the power line alignment within the disturbance limit for the proposed project, it would be within the 0.6-mile NSO buffers for the same three active leks as the road itself. SCC will follow the APLIC (2015) guidelines to deter avian predator perching.

Noise

EO Stipulation (Core Areas and General Habitat): New project noise levels, either individual or cumulative, should not exceed 10 dBA (as measured by L50) above baseline noise at the perimeter of an active lek from 6:00 p.m. to 8:00 a.m. during the breeding season (March 1 – July 15).

Project Deviations: Noise levels would increase above the recommended thresholds during construction and some reclamation activities, but are expected to be within those parameters
during operation. This assessment is based on the SCC statement that no more than four haul trucks will be using the road corridor per hour. Alternative noise modeling scenarios using a higher rate of haul truck traffic exceeded the EO noise stipulations for the operational phase of the project.

Consistency with the Executive Order 12-2015 and Assessing Project Impacts

MSUMRA requires coal mines to avoid or minimize impacts for designated State sensitive species such as the Greater Sage-grouse. The AM5 amendment application was submitted prior to the effective date of Executive Order 12-2015; however other ancillary state permits needed for the project, such as a Stormwater Construction Permit, required consultation with the Sage Grouse Program.

Due to the size and scope of this project, and the nature of operational requirements, the haul road would deviate from several stipulations of Executive Order 12-2015, including: surface disturbance, no-surface-occupancy within lek buffers, transmission lines, noise, etc. SCC has acknowledged that this project cannot be brought into consistency with Executive Order 12-2015. Therefore, DEQ and SCC worked collaboratively with the Program and considered Executive Order 12-2015 guidance to inform development of mitigation to offset impacts of the proposed amendment. The Mitigation Plan includes compensatory mitigation to accomplish off-site mitigation.

Previously, MSGOT endorsed (December 2016) developing a mitigation approach informed by the Thunder Basin Grasslands Prairie Ecosystem Association Strategy. After more thorough research and analysis during development of the Draft EIS, it was recognized that voluntary actions undertaken under membership within the Association and participation in the Association’s Strategy cannot be simultaneously used to fulfill any required mitigation in Montana. This is because SCC received regulatory relief from potential takings violations of the federal Endangered Species Act in exchange for implementing the voluntary actions. Consequently, the same actions can’t also be required to fulfill regulatory requirements under MSUMRA or the mitigation hierarchy under the Executive Order 12-2015.

Additionally, the parties realized that opportunities for effective, on-site mitigation were limited. Previous anthropogenic disturbances such as existing coal mining, and coal bed methane exploration, in addition to the cumulative impacts of potential future projects independent of the proposed haul road are already impacting, and will continue to impact habitat in this area. Also, any benefits of on-site mitigation would likely be negated by the haul road project itself and the intensive nature and permit duration of the activity now being considered.

Therefore, the Program strongly recommended consideration of off-site mitigation to offset the direct and secondary impacts of the proposed haul road on sage grouse. SCC voluntarily agreed to this approach to fulfill its mitigation obligation.
Recommendations:

Spring Creek Coal LLC, DEQ, and the Program collaboratively developed the Mitigation Plan which is included in Environmental Impact Statement analysis. Under the agency modified alternative, implementation of the Mitigation Plan is binding and will be attached to any permit DEQ may issue. It is the Program’s and MSGOT’s expectation that the Mitigation Plan will be an integral part of the permit. The complete Program letter package includes this consultation letter, the Mitigation Plan document, MSGOT April 26, 2018 Meeting Brief Sheet, and Draft MSGOT April 26, 2018 Meeting Minutes (not yet approved by MSGOT as final). These documents are enclosed with this letter, and the complete package shall always be presented together.

The Mitigation Plan:

- describes the transportation corridor and summarizes activities that would occur within it;
- summarizes potential impacts to sage grouse and sage grouse habitats;
- describes adherence to the mitigation hierarchy through avoidance, minimization, reclamation, and compensatory mitigation, including a financial obligation to deposit funds into the Stewardship Account prior to initiating construction; and
- describes additional voluntary conservation efforts that will be recognized by the State of Montana and the Program in the general area outside of the transportation corridor itself.

Spring Creek Coal LLC has voluntarily committed to this Mitigation Plan (including compensatory mitigation), and would minimize impacts to sage grouse as required by MSURMA.

The Program greatly appreciates the extensive effort and cooperation by SCC and its consultants in developing a meaningful and significant compensatory Mitigation Plan that substantially supports sage grouse conservation in southeast Montana. It is an important example of an “all hands, all lands” approach that will strengthen sage grouse habitat conservation in Montana.

Subject to the stipulations described above and voluntarily agreed to by SCC in the enclosed Mitigation Plan, your activities are consistent with the Montana Sage Grouse Conservation Strategy. Your proposed project or activity may need to obtain additional permits or authorization from other Montana state agencies or possibly federal agencies. They are very likely to request a copy of this consultation letter, so please retain it for your records.

Please be aware that if the location or boundaries of your proposed project or activity change in the future, or if new activities are proposed within one of the designated sage grouse habitat areas, please visit https://sagegrouse.mt.gov/projects/ and submit the new information.
Thanks for your interest in sage grouse and your commitment to taking the steps necessary to ensure Montana’s Sage Grouse Conservation Strategy is successful.

Sincerely,

Carolyn Sime
Montana Sage Grouse Habitat Conservation Program Manager

Enclosure: Draft Environmental Impact Statement for the Proposed Addition of a Haul Road to the Spring Creek Mine: Appendix B: Greater Sage-grouse Mitigation Plan for the Spring Creek Mine’s Proposed AMS Haul Road Project
Enclosure: MSGOT April 26, 2018 Meeting Brief Sheet
Enclosure: Draft MSGOT April 26, 2018 Meeting Minutes (not yet approved by MSGOT as final)

cc: Shawn Thomas
DNRC-Trust Land Management Administrator
P.O. Box 201601
Helena, MT 59620-1601

cc: Craig Jones
DEQ-Sr. MEPA/MFSA Coordinator
1520 East 6th Ave
Helena, MT 59620

cc: John Ensign
MT Fish, Wildlife and Parks – Region 7 Wildlife Program Manager
352 I-94 Business Loop
PO Box 1630
Miles City, MT 59301

cc: Catherine Wightman
MT Fish, Wildlife and Parks – Helena Headquarters Sage Grouse Lead
1420 East 6th Ave
PO Box 200701
Helena, MT 59620
Literature Cited:

Density Disturbance Calculation Tool Explanation and Results

[#1308] AM5 Haulroad Corridor

Created on 02/09/2018 4:49 PM

Project stage changed from Returned to Due Diligence.

Results are based on the data submitted by the proponent. DDCT calculation results are as follows.

<table>
<thead>
<tr>
<th>DDCT Analysis Area</th>
<th>Proposed Disturbances Area</th>
<th>Existing + Proposed Disturbances Area within DDCT Analysis Area</th>
<th>DDCT Result</th>
<th>New disturbed acres</th>
<th>Affected Leks within the DDCT Analysis Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>26,051.86 acres</td>
<td>440.76 acres</td>
<td>1,644.51 acres</td>
<td>6.31%</td>
<td>440.76 acres</td>
<td>8</td>
</tr>
</tbody>
</table>

Result calculated on 02/09/2018 4:48 PM

Analysis Process and General Definitions

Existing Disturbances: All surface disturbances existing on the ground prior to any Proposed Disturbances that would be created by a new project.

Preliminary Disturbances: All surface disturbances associated with this project, as submitted to the Projects On-line Tool.

Total Preliminary Disturbance Acres: The number of acres contained within the entire polygon(s) delineating the disturbance area of this proponent's project.

Previously Proposed Disturbances: All Preliminary Disturbances proposed by other people prior to the current Preliminary Disturbance being submitted. Once a Preliminary Disturbance is finalized, the disturbance becomes an Existing Disturbance.

DDCT Analysis Area Acres: The number of acres within a polygon created by the following steps:

1. Map the Preliminary Disturbance polygon submitted by proponent.
2. Classify the habitat where proposed Preliminary Disturbance would occur: core area, general habitat, connectivity area, outside the Executive Order (none of the above). May include unsuitable habitat.
3. Buffer Preliminary Disturbance(s) that would only occur in core habitat by four miles.
4. Look to see if the 4-mile buffer includes any active leks.
5. If yes, buffer those leks by four miles and add the acres to the polygon.
6. Remove any portion of the polygon that is not classified as core habitat so the DDCT Analysis Area only contains acres in core habitat.
7. Finalize the polygon. This is the DDCT Analysis Area polygon.
8. Calculate the number of acres in the DDCT analysis area polygon.

Total Disturbed Acres in DDCT Analysis Area: The total number of acres of disturbance within the DDCT Analysis Area polygon: all Existing Disturbances + Previously Proposed Disturbances + current Preliminary Disturbance.

DDCT Result: The Total Disturbed in DDCT Analysis Area acres divided by the DDCT Analysis Area acres x 100 to determine the percent disturbance which is compared to Executive Order 12-2015 5% disturbance threshold for core areas.

New Disturbed Acres: the total of new ground disturbance as a result of the project. This is portion of Preliminary Disturbances that do not overlap with already Existing Disturbances or Previously Proposed Disturbances. Acres are calculated from the resulting polygon, which is all new ground disturbance.

Affected Leks within DDCT Analysis Area: The total number of leks where any portion of the No Surface Occupancy area is within the DDCT Analysis Area.

Lek Distances: The shortest distance between the Preliminary Disturbance and any active leks with 4 miles of the Preliminary Disturbance.
1308 - Spring Creek Mine AM5 Haul Road Corridor Project
SUMMARY:

In December 2015, Cloud Peak Energy submitted an application to the Montana Department of Environmental Quality (DEQ) to add new lands to the current Surface Mining Permit under the Montana Strip and Underground Mine Reclamation Act (MSUMRA). This proposed permit amendment (AMS) is for a transportation corridor, or haul road, connecting Cloud Peak’s existing Spring Creek Mine in Montana with its Youngs Creek Mine in Wyoming. The existing Spring Creek Mine is located in Montana approximately 12 miles northwest of Decker, Montana. The proposed haul road would be approximately nine miles long and is located on mostly private lands owned by Cloud Peak Energy.

MSUMRA requires this type of project to avoid or minimize impacts for designated State sensitive species, such as the Greater Sage-grouse. The AMS amendment application was submitted prior to the effective date of Executive Order 12-2015 (EO), however other ancillary state permits will be needed for the project such as a Stormwater Construction Permit, which will require consultation with the Sage Grouse Program. The haul road would deviate from several stipulations of EO, including: no-surface-occupancy within lek buffers, noise, loss of vegetation in core areas, etc. Therefore, DEQ and Cloud Peak Energy worked collaboratively with the Program and considered EO guidance to inform development of mitigation to offset impacts of the proposed amendment.

Previously, MSGOT endorsed (December 2016) developing a mitigation approach informed by the Thunder Basin Grasslands Prairie Ecosystem Association Strategy. After more thorough research and analysis during development of the Draft EIS, it was recognized that voluntary actions undertaken under membership within the Association and participation in the Association’s Strategy cannot be simultaneously used to fulfill any required mitigation in Montana. This is because Cloud Peak Energy received regulatory relief from potential takings violations of the federal Endangered Species Act in exchange for implementing the voluntary actions. The same actions can’t also be required to fulfill regulatory requirements under MSUMRA or the mitigation hierarchy under the EO. Instead, the State of Montana will acknowledge the voluntary actions that Cloud Peak Energy will undertake but will not require them as part of issuing state permits.

Additionally, the parties realized that opportunities for effective, on-site mitigation were limited. Previous anthropogenic disturbances such as existing coal mining, and coal bed methane exploration, in addition to the cumulative impacts of potential future projects independent of the proposed haul road are already impacting, and will continue to impact, habitat in this area. Also, any benefits of on-site mitigation would likely be negated by the haul road project itself and the intensive nature and permit duration of the activity now being considered. Therefore, the Program strongly recommended consideration of off-site mitigation for the project to offset the direct and secondary impacts of the proposed haul road on sage-grouse. Cloud Peak voluntarily agreed.

[continued]
Cloud Peak Energy and the Program collaboratively developed the proposed mitigation plan. The mitigation plan:

- describes the transportation corridor and summarizes activities that would occur within it
- summarizes potential impacts to sage grouse and sage grouse habitats
- describes adherence to the mitigation hierarchy through avoidance, minimization, reclamation, and compensatory mitigation, including a financial obligation to deposit funds into the Stewardship Account prior to initiating construction; and
- describes additional voluntary conservation efforts that will be recognized by the State of Montana and the Program in the general area outside of the transportation corridor itself.

DEQ, Cloud Peak Energy, and the Program seek MSGOT’s approval of the mitigation plan, which includes compensatory mitigation to accomplish off-site mitigation. MCA § 76-22-105. Cloud Peak Energy has voluntarily committed to this proposed mitigation plan (including compensatory mitigation) and would minimize impacts to sage-grouse, as required by MSURMA.

If MSGOT approves the proposed mitigation plan, DEQ would incorporate it into the draft EIS. The draft EIS would be released for public comment this Spring. DEQ expects to complete the Final EIS by the end of Summer 2018. When the EIS is complete, and if the amendment is ultimately approved by DEQ, the proposed mitigation plan would be part of the project approval, included in DEQ’s Record of Decision, and incorporated into state permits as appropriate. Funds would be deposited into the Stewardship Account prior to construction.

PROGRAM RECOMMENDATION:

The Program Manager recommends MSGOT approve the Greater Sage-grouse Mitigation Plan for the Spring Creek Mine’s Proposed AM5 Haul Road Project.
These abbreviated summary minutes and the audio recording will become the official adopted minutes at the next Montana Sage Grouse Oversight Team meeting when they will be approved. Until then, they are considered a draft.

MINUTES
MONTANA SAGE GROUSE OVERSIGHT TEAM
Tuesday April 26, 2018 Meeting Summary
Teleconference Meeting
Lee Metcalf Building, Directors Conference Room 111

Note: Pursuant to Senate Bill 261 Section 1 (2015 Montana Legislature), meetings of the Montana Sage Grouse Oversight Team (MSGOT) are to be recorded electronically. The electronic recording is the official record. These summary minutes provide an abbreviated summary of the action taken and public comment. The time designations listed are approximate and may be used to locate the referenced discussion on the audio recording of this meeting. Access to the electronic copy of these minutes and the audio recording is provided from the Sage Grouse Habitat Conservation Program webpage hosted by the Montana Department of Natural Resources and Conservation at https://sagegrouse.mt.gov. The agenda, summary minutes, MSGOT meeting materials, and audio recordings are listed by meeting date on the MSGOT Meeting Archive webpage.

Members Present
John Tubbs, Montana Department of Natural Resources & Conservation, Director
Tom Livers, Montana Department of Environmental Quality, Director
Jim Halvorson, Montana Board of Oil and Gas, Administrator, by Phone
Diane Ahlgren, Rangelands Resources Executive Committee, by Phone
Senator Mike Lang, Malta, by Phone
Patrick Holmes, Montana Governor’s Office, by Phone
Casey Knudson, Representative HD 33, by Phone
Mike Tooley, Montana Department of Transportation, Director
Martha Williams, Montana Department of Wildlife, Fish and Parks, Director by Phone

Staff Present
Ms. Carolyn Sime, Sage Grouse Habitat Conservation Program, Manager

Call to Order
00:00:56 Director Tubbs called the meeting to order.

Cloud Peak Energy’s Spring Creek Mine Amendment 5 Transportation Corridor Mitigation Plan

00:00:56 Director Tubbs: Read a briefing of the proposed executive action to consider a Greater Sage-grouse Mitigation Plan for Cloud Peak Energy’s Spring Creek Mine proposed mine permit amendment (Amendment 5) to build a new transportation corridor. Asked for introductions from other participants on phone.

00:02:55 Ms. Sime: Thanked MSGOT members for accommodating the teleconference meeting to address the timely needs of the EIS process for the Cloud Peak Energy’s Spring Creek Mine project.

00:03:20 Director Livers: Thanked MSGOT for making special meeting accommodations. This project began in spring 2016 with an EA for proposal of the transportation corridor from Cloud Peak’s existing Spring Creek Mine in Montana to their Youngs Creek Mine in Wyoming. The project traverse’s sage grouse core habitat and requires deviation from the Executive Order. MSGOT previously agreed on a process for collaboration, and consideration of mitigation measures prior to taking the plan out for public comment. DEQ will incorporate MSGOT’s action into the EIS. DEQ asked for approval in consideration of a Greater Sage-grouse Mitigation Plan for Cloud Peak Energy’s Spring Creek Mine proposed haul route proposal.
00:05:30 Ms. Sime: Acknowledged support and engagement of DEQ’s staff with Program providing technical support and thanked DEQ for hosting. This was an opportunity to see how the Program can provide technical support to agencies. This was a collaborative effort between the DEQ, Spring Creek Mine and the Program. Spring Creek Mine provided field based data for the review. MSGOT is being asked to approve a proposed corridor, approximately nine miles long that connects two holdings. One in Montana and the other in Wyoming. By statute MSGOT is the entity to review and approve mitigation plans that include a compensatory component. Mitigation was triggered by the Montana Surface Mine and Reclamation Act that requires a proponent to mitigate for potential impact to state species of special concern. While the permit amendment was submitted prior to the implementation of the Program’s mitigation framework, it provides a platform for identifying measures that might be incorporated into the project design and implementation. To make sure those impacts are minimized to the extent possible, the Executive Order provided the platform for identifying measures that might be incorporated into the Plan and how the mitigation hierarchy would be applied.

The Program met with DEQ and Cloud Peak to work collaboratively through the mitigation plan, involving several meetings and several drafts. The draft for consideration today represents a plan supported by all parties.

Section 5 of the Plan, focuses on the mitigation hierarchy. It is important to note that Cloud Peak had to balance impacts to sage grouse and those of other resources. Section 5.4 discusses methods the parties used to determine compensatory mitigation. This mitigation plan comes before MSGOT has approved the HQT. That process will begin at the next MSGOT meeting.

The Program developed four different mitigation options for consideration. Two were developed using the draft HQT. One was to bury powerline, another had the powerline overhead. Two options applied the functional acre approach from the Draft HQT. Two other options, applied the physical acre approach. One physical acre approach is specific to the state of Utah with four physical acres exchanged for every four acres disturbed. The other physical acre approach uses methodology from the Keystone pipeline example. After several drafts, the parties agreed to the Keystone methodology for the Mitigation Plan.

Referring to Table 2 in the Mitigation Plan; the physical acre approach selected, is based on physical acres in designated habitat. Once habitat types are delineated, ratios are applied to the physical acres and a monetary value is assigned, based on a USDA National Agriculture Statistics Survey Report value of $650 per acre. This was the same dollar figure applied to the Keystone project. Table 2 identifies acres assigned to Core Area habitat. Steep acres are subtracted out because they are not likely to provide sage grouse habitat. Averaging is applied to arrive at $1,779,828.00.

Cloud Peak entered into a Candidate Conservation Agreement with Assurances (CCAA), which has been finalized. During development of the Mitigation Plan, the parties earned that practices can’t be used for mitigation where implementation would be required by the CCAA. The actions must be voluntary. This information will be useful in future mitigation considerations. Cloud Peak will be implementing measures above what was agreed to in the CCAA. The Program wanted to acknowledge voluntary actions being taken the company. The CCAA includes 111 acres that were deducted from the amount shown in Table 2. Using the same $650 per acre valuation, amounts to $72,000. For a final figure of $1,707,353 as the amount the parties agreed to and the amount that would be deposited into the Stewardship Account.
With approval by MSGOT, funds will be deposited into the Stewardship Account. The deposit will be made before construction begins. The Draft Policy Guidance Document up for discussion next week will provide instruction about how funds deposited into the Stewardship Account would be used within three years and within the same service area as the impact. Mitigation would be in place prior to the impact to allow for implementation prior to the impact. This process was a good faith effort by everyone and a good learning experience.

00:18:18 Director Tubbs: Asked for Public Comment on the topic of Cloud Peak proposal prior to the MSGOT discussion (change in agenda).

00:18:57 Darryl Maunder Director Environmental and Regulatory Affairs with Cloud Peak Energy, expressed support of the Mitigation Plan offered.

00:22:15 Director Tubbs: Asked for additional public comment, hearing none, asked for MSGOT discussion.

00:22:45 Senator Lang: Supports approving the Plan but wants to leave the door open to be adaptive.

00:23:27 Ms. Ahlgren: Asked if the $650 per acre value is a straight market value.

00:23:59 Ms. Sime: Can't confirm if this is a purchase or rental price at this time.

00:24:26 Director Tubbs: Will try to get an answer to that question today. Understands this is a Keystone physical acre approach based on rangeland values in Montana.

00:24:54 Ms. Ahlgren: Asked if the HQT would be applied later.

00:25:06 Ms. Sime: If MSGOT approved this mitigation plan, effort to develop mitigation would be a done. MSGOT has offered to approve projects on a case-by-case basis in an effort to be adaptive and move projects though in a timely manner.

00:25:48 Director Tubbs: This will be a component within the draft EIS the DEQ is working on to allow for public comment. There are still many more steps to go in DEQ’s EIS process.

00:26:25 Ms. Ahlgren: Throughout the proposal Cloud Peak and Spring Creek Mine are used interchangeably. Asked if the two are interchangeable in signing the contract.

00:27:00 Director Livers: For purposes of today, they are interchangeable and effective for the decision to be made.

00:27:36 Ms. Ahlgren: Referring to page 24 and 25, voluntary mitigation link to grazing on the land. Mitigation measures should not negatively affect grazing.

00:28:30 Director Tubbs: Cloud Peak’s staff are probably working with lessees.

00:28:55 Mr. Maunder: Happy to discuss grazing. Grazing programs targeted at protecting sage grouse can be chosen. These were not one of the selected measures. Believes grazing is compatible with sage grouse. No impact to grazing in the area. These are Cloud Peak lands and the company is careful how the land is grazed. The land is managed to be compatible with sage grouse. If land is managed well for cattle it should be good for sage grouse.

00:31:05 Ms. Sime: Getting back to Ms. Ahlgren’s question about the Keystone land valuation figure of $650/ acres. The value came from a 2016 publication following a survey-based
These abbreviated summary minutes and the audio recording will become the official adopted minutes at the next Montana Sage Grouse Oversight Team meeting when they will be approved. Until then, they are considered a draft.

00:31:56 Senator Lang: Asked if these are Montana or national values.

00:32:05 Ms. Sime: The reported value was for Montana.

00:32:21 Director Tubbs: This was a survey of producers, they then averaged the responses.

00:32:39 Director Williams: Asked if it would be good policy to distribute funds specific to the service areas.

00:33:04 Director Tubbs: Per the draft Guidance Documents, where funds are provided up front, the funds would be used within the service area where the disturbance occurred.

00:33:40 Ms. Sime: This may be something to be incorporated into a motion for this specific project because that level of detail is not addressed within the draft plan being considered today.

00:34:17 Director Tooley: Asked how the figure for compensatory mitigation was determined. This process appears to be time consuming. Asked if the process was burdensome.

00:34:54 Ms. Sime: This was a negotiated outcome without formal guidance from a state mitigation plan. This was a learning process all along the way. The parties had four to five meetings prior to a final version.

00:36:00 Director Tooley: Noted the project crosses the state line with Wyoming. Asked if there are requirements for Wyoming to collaborate.

00:36:26 Ms. Sime: The Program did not collaborate with Wyoming. Those discussions had already been finalized prior to initiation of the negotiations in Montana.

00:37:00 Director Livers: Confirmed the project was already permitted on Wyoming side. Regarding directing mitigation to a specific service area, suggested MSGOT could incorporate this language into the action for this project only and have further discussion about service areas at the next MSGOT meeting.

00:38:06 Director Tubbs: MSGOT will continue to be a decision-making body. Will have discussion about adjacency and the public will have opportunity for comment in the future. The priority would be to apply mitigation to the service area where the project disturbance occurs. The Stewardship Account funds will be expended to address impacts within three years of the impact.

00:39:44 Director Livers: MSGOT could defer discussion until next week. MSGOT could come back and condition the action at that time.

00:40:11 Director Tubbs: MSGOT could make that part of the motion. MSGOT decision should not impact the company's ability to continue forward with DEQ's EIS process. MSGOT can have further internal discussion at a later time.

00:40:54 Senator Lang: The decision should be deferred until the next MSGOT meeting.

00:41:25 Director Tubbs: Asked for additional discussion.

00:41:30 Ms. Ahlgren: Agrees it should be deferred until later.
These abbreviated summary minutes and the audio recording will become the official adopted minutes at the next Montana Sage Grouse Oversight Team meeting when they will be approved. Until then, they are considered a draft.

00:41:55 Director Williams: Asked if the motion remains as is, could MSGOT amend the decision next week.

00:42:20 Director Tubbs: This is the subject of the May 4th MSGOT meeting.

00:42:33 Director Tubbs: Asked for motion.

00:42:38 Director Livers: Moved that MSGOT accept the recommendation and approve the Sage Grouse Mitigation Plan for Cloud Peaks Haul Road Project. Seconded by Director Tooley. All MSGOT members voted aye, motion passed unanimously.

00:43:30 Director Tubbs: Asked for public comment on other issues. None heard.

Adjournment

00:43:56 Director Livers moved to adjourn. Director Tooley seconded. Motion passed unanimously. Meeting Adjourned.

Chair for this meeting:

/s/

Director John Tubbs
MINUTES
MONTANA SAGE GROUSE OVERSIGHT TEAM

May 4, 2018 Meeting Summary
Montana State Capitol, Helena, Room 152

Note: Pursuant to Senate Bill 261 Section 1 (2015 Montana Legislature), meetings of the Montana Sage Grouse Oversight Team (MSGOT) are to be recorded electronically. The electronic recording is the official record. These summary minutes provide an abbreviated summary of the action taken and public comment. The time designations listed are approximate and may be used to locate the referenced discussion on the audio recording of this meeting. Access to the electronic copy of these minutes and the audio recording is provided from the Sage Grouse Habitat Conservation Program webpage hosted by the Montana Department of Natural Resources and Conservation at https://sagegrouse.mt.gov. The agenda, summary minutes, MSGOT meeting materials, and audio recordings are listed by meeting date on the MSGOT Meeting Archive webpage.

Members Present:
John Tubbs, Montana Department of Natural Resources & Conservation, Director
Jim Halvorson, Montana Board of Oil and Gas, Administrator
Diane Ahlgren, Rangelands Resources Executive Committee
Senator Mike Lang, Malta, Montana
Mike Tooley, Montana Department of Transportation, Director
Patrick Holmes, Montana Governor's Office
Martha Williams, Montana Department of Wildlife, Fish and Parks, Director

Staff Present:
Ms. Carolyn Sime, Sage Grouse Habitat Conservation Program, Manager

Call to Order
00:00:28 Director Tubbs called the meeting to order.
00:00:11 Approval of January 30, 2018 Meeting Minutes. Motion to approve by Director Williams, seconded by Director Tooley. Motion passed unanimously.

Reports and Implementation of Executive Order 12-2015
00:03:00 Director Tooley: pass
00:03:03 Director Tubbs: pass
00:03:04 Director Williams: pass
00:00:05 Mr. Holmes: pass
00:03:06 Administrator Halvorson: pass
00:03:07 Ms. Ahlgren: pass
00:03:09 Ms. Sime: Introduced Jamie McFadden, newest member of Sage grouse team.

Initiation of Second Stewardship Account Grant Cycle [Handout 1]
00:04:06 Ms. Sime: Agenda item under consideration today, initiation of the second grant cycle of stewardship grant program. To date, there are four conservation easements. One easement has closed. The other three are pending while the Program continues to work with Montana Land Reliance and Nature Conservancy. Through these grants, MSGOT has obligated or committed $3,727,500 of the Stewardship funds. Beginning July 1,
2018, $1,475,500 will be available for the second grant cycle. Approval by MSGOT, would allow time to advertise a granting opportunity, followed by review of submittals and recipient selection, prior to the end of calendar year 2018.

00:06:07 Director Tubbs: Asked about potential types of applications MSGOT might receive.

00:06:26 Ms. Sime: Included in the brief sheet, how the Stewardship Account incentivizes voluntary conservation, primarily on private land for the creation of credits. The types of credit projects include preservation such as an easement or term lease. Restoration could include reseeding. Another type might be a habitat enhancement project. Stewardship funds could be used for any one of these types of credit projects. MSGOT may want to consider the different credit types such as a permanent easement vs a short-term easement. Another consideration could be the location of the conservation easement to address where credits are available within certain service areas. At the moment there is no third party available for a habitat exchange. A project application could include anything explicit in statute.

00:08:25 Director Tubbs: Asked for public comment.

00:09:00 Mr. Glenn Marks, Montana Association of Land Trusts.

00:10:22 Mr. Kendall Van Dyke, Montana Land Reliance.

00:12:08 Director Tubbs: Asked for additional public comment. None.

00:12:20 Ms. Ahlgren: Commended Ms. Sime for the detailed briefing summary. Appreciates bullet point to establish a habitat exchange. Asked for explanation about reimbursing the stewardship account.

00:13:30 Ms. Sime: The bullet list on third page of the briefing sheet, reiterates statutory language. Understands it to mean, should MSGOT transfer credits they have created, to a habitat exchange, and those credits were marketed, the exchange would reimburse the stewardship account once those credits are sold in the market. Stewardship funds would then come back to the state for future grants.

00:14:30 Director Tubbs: Stated it would be like a revolving account.

00:14:43 Ms. Ahlgren: Asked if the habitat exchange created credits on its own, that would not affect the state.

00:15:00 Ms. Sime: Any habitat exchange that develops credits on their own, independent of stewardship funds, would be retained by the exchange.

00:15:44 Mr. Holmes: Based on public discussion there is a need to look at the multiple layers of MSGOT approval required within the state grant process. Efficiency for partners can be problematic within our complex system. Recommends MSGOT be thoughtful in ways to streamline the process and build consistency.

00:16:51 Director Williams: Supports going forward with the next grant cycle. It would be helpful for some clarification and streamlining of the process. Unclear about the timing of the process.

00:17:24 Director Tubbs: Staff is taking note and we learned a lot during the first cycle. There are two cues we need to give the applicant. The Program has a set criteria to follow when evaluating a project and the final approval criteria to enter into an agreement. In terms of pace, the hope would be to have an application cycle in July.
These abbreviated summary minutes and the audio recording will become the official adopted minutes at the next Montana Sage Grouse Oversight Team meeting when they will be approved. Until then, they are considered a draft.

00:18:52 Ms. Sime: Have not laid out a timeline yet. Director Tubbs identified two points, the selection of the applicant and execution of a grant agreement. Asked how MSGOT would like to be involved in the preparation of an EA and public comment process. At the time we entered the grant agreement with Montana Land Alliance, we had not begun negotiations. If negotiations are not completed prior to the grant cycle or grant agreement it may require that third touch while moving through an EA process with public involvement. This was an important part of the first round of grants. There may be an option for creativity in the MEPA process with a programmatic EA and or checklist.

00:20:38 Director Tubbs: Suggests there may be additional opportunities to discuss timing during the latter part of the meeting today. MSGOT can guide the process as we move on. Asks for motion to have the process for the second cycle of grants to begin.

00:21:28 Mr. Holmes: made a motion to begin the process for the next cycle for Stewardship Grants. Ms. Ahlgren seconded the motion. All voted in favor, motion passes unanimously.

Draft Mitigation HQT Technical Manual Document [Handout 2]

01:00:00 Director Tubbs: Asked MSGOT to have the presentation on the Policy Guidance side of the HQT, opening for questions on the technical manual. A presentation of the policy document will explain why we care about direct and indirect impacts. The policy is what makes the difference and will link it together.

Draft Mitigation Policy Guidance Document [Handout 3]

001:42:00 Director Tubbs: Asked if an entity works with a private market entity and not the stewardship account, would the policy credit and debit multipliers be the same.

01:43:14 Ms. Sime: The model results are policy neutral. We want to provide clear policy signals regardless of who is engaged. The credit price is dependent on the credit actors...If a credit or debit vendor other than MSGOT is involved, they are free to negotiate their own price for a credit.

01:44:10 Director Tubbs: A third party vendor is sought after. All the state has to offer is a cost based model. Not a value model. In a market driven system, there would be a demand driven price and the price for a credit could be higher or lower than what we see here.

01:44:44 Mr. Holmes: Looking at a project on existing disturbance. Asked for explanation why the direct impact score is not zero.

01:45:14 Ms. Sime: It’s not zero because there is still some underlying habitat value on the land greater than zero.

01:45:41 Mr. Holmes: Does the existing HQT distinguish between different types of habitat disturbance. Asked if a cultivated field is treated differently than an existing road or well pad or pipeline.

01:46:14 Ms. Sime: All disturbances are not created equal. The model looks at each disturbance type differently. Literature is used to inform what the impacts might be and to create buffer distances. The same buffer distances are used to create the basemap. There is consistency within the model in the way all anthropogenic disturbances are treated if
existing or a new project. They can vary depending on the disturbance type. The disturbance types are listed in the appendices of the technical document.

Director Williams: Asks if the location, type, size, and duration of a project matters if it is existing or new disturbance and would it be calculated differently.

Director Tubbs: To incentivize construction on existing disturbance the program assumes the direct impacts would be zero and we would not run the HQT on the direct footprint within existing disturbance but would run it on the indirect impacts.

Ms. Sime: The model will just run and we should get more detailed numbers at the end. The model will still report the direct impacts but the only thing that advances through to the dollar amount, is the portion associated with the indirect impacts.

Director Tubbs: Defining what disturbance is, becomes critical. Not clear in oil and gas field how we treat the well pad and the small spaces in-between.

Ms. Sime: What is disturbance and how do we define it? If a site is disturbed or not takes definition in the EO and is what was used to create the heads up digitized layers used to calculate DDCT results. The Program will have the same data for General Habitat. The guidance document gets the definitions from the EO which provides definitions for both existing and unsuitable habitat.

Lunch Break

Ms. Sime: Recap of principles presented so far. Beginning with slide “What drives the number of debits”.

Director Tubbs: Asked for Next Steps slide. Looking at draft rules but will not entertain a motion. Will allow stakeholders an opportunity for more time to review the material. Concurrence of documents in parallel with the rule. Would like to allow the public opportunity for input on the peer review. The group will not change anything staff has recommended. Final hours and want to get it done right. No final actions will be taken today. A deliberate and short term peer review of the two documents and public comment for the documents can be done concurrently. Asks MSGOT to be flexible for a meeting time. Will add two weeks to allow for review.

Director Tubbs: Asks for public comment.

Rusty Shaw, Denbury Resources Inc.

Glenn Marx, Montana Association of Land Trusts.

Dave Galt; Consultant with Browning, Kaleczyc, Berry and Hoven.

Kendal VanDyke, Montana Land Reliance.

John Bradly, Montana Wildlife Federation.

Lauren Asmith, Environmental Defense Fund.

Steve Platt, Montana Chapter of Montana Hunters and Anglers.

Alan Olson, Montana Petroleum Association.
These abbreviated summary minutes and the audio recording will become the official adopted minutes at the next Montana Sage Grouse Oversight Team meeting when they will be approved. Until then, they are considered a draft.

03:50:47 Gary Wiens, Rural Electric Coop.
03:51:27 Shelby Demars, Montana Association of Oil, Gas and Coal Counties.
03:52:13 Janet Ellis Montana Audubon.
03:55:31 Geoff Feiss, General Manager Telecommunication.

04:00:50 Director Tubbs: Asks for MSGOT comments.

04:00:54 Director Tooley: The public comments were enlightening. Concerned about the 65/35 issue and looks forward to resolving this.

04:01:32 Director Williams: Agrees we have come far and there is more to learn and people need to process the information. Looks forward to discussing the timing and process. FWP will have comments.

04:02:09 Mr. Holmes: Appreciates the heavy lift and substantive comments. Values this collaborative effort and hard work. Incumbent on MSGOT to reflect on the substantive comments and provide an adaptive approach moving forward. This won't be the last bite at the apple. Appreciates everyone's hard work on this and there is more work to be done.

04:03:40 Senator Lang: Got involved to keep bird off the list and produce economic value in Montana. The process has gotten complicated. HQT can get us there simply when following stipulations. Not for the appraisal value. It is the private landowner's decision what the value of his land is and he should make choices about what is in the easement. Mitigation cost but it's a choice and can be in there.

Wants to see a copy of Appendix E mentioned by Mr. Barson.
There is not one thing in the room that will change what has happened to the bird in the past three years. Two things we don't want to address that affect the bird are mother nature and predation. Model predictions say the numbers will be down due to draught. Flooding and snow has been going on for hundreds of years. The predation issue seems to be something we don't want to handle. No one seems to want to accept that predation is an issue. Studies show 52-67% of bird nest problem is due to predation. We want to just make people pay more to do things. Idaho went into their predation issue and are in a lawsuit with the watershed people to stop that.

Wish we had started with HQT and put it out the door two months ago and went with adaptive management. The Governor in his letter to the BLM, said he didn't like adaptive management and wanted concrete stuff. There is mention the birds don't adapt but the birds do adapt. See the birds at the Phillips County, 1920 Bodine gas field. Trying to make someone else feel guilty because you ruined the environment and want someone to pay for it. When it's housing development that is taking out habitat.

If we want to get after private people we're going to have to entice them. What is wrong with a 45-year lease. If you haven't solved the problem in 45 years you are no good at it. It doesn't have to go on for perpetuity. It's bad the way we have designed it. When there might be the best habitat, best birds, best land, but you're going to penalize him because he only wants a 45-year lease. That's a penalty. Other than the land guys, asks if anyone has gone out and talked to the landowners. Most people don't want to tie up their land in perpetuity. They want the birds and to be good stewards of the land. Suspects we won't have the acres we will need. Would love to see an all-day meeting with the
directors to go into the tool and see what goes on. Wants to know what we bought for the taxpayers. What are we getting for our buck. We need to know we spend the taxpayer’s money wisely.

04:10:10 Administrator Halvorson: Looks forward to peer review and public comment on some of the parameters cited in literature in the HQT. Peer review doesn’t mean it’s right just internally consistent. Particularly where we changed the distance for a well between the two versions.

04:11:15 Ms. Ahlgren: Looks forward to public comment. Need stakeholder meeting to go over changes. Happy to hear private landowner acknowledged. Landowners seem to be good at sitting back, waiting to see what happens but we need to be involved to make this work. Doesn’t like term easements, as a landowner. There may be opportunity in term leases.

In the existing disturbance examples; that is going to need to be defined because there could be a huge dollar difference.
Has struggled with appraisal approach. Need to get credit values defined. Don’t understand the percentages and would like to listen in on stakeholder to better understand the issue. Looking at it from what would benefit the landowner.

04:14:35 Director Tubbs: Appreciates that it is daunting to pick up the documents a couple of weeks before the meeting. Need to make sure we have a definition of existing disturbance. The base layer drives everything of direct and indirect. Need to make sure we define and understand direct and indirect. Need to understand construction, operation and recovery. Didn’t talk about prior and existing rights but is backbone of EO. There is quite a bit of things to consume. MSGOT needs to lock closer to the ground and engage partners at a deeper level.

04:18:42 Mark Bostrom, Operations Manager CARDD: The proposed rules would have MSGOT and the Program implement the Mitigation Habitat Quantification Tool Technical Manual and the Mitigation Policy Guidance documents. The way it is structured, the rule is going to have the process of administration that the Program is going to incorporate into the documents (the HQT and the policy Guidance Document) as an initial version and subsequent versions, because of the way the statute was structured, has MSGOT at the designation of sub components. Version 1.0 will be the initial layout. Incremental changes could be made with an MSGOT published, publicly noticed meeting. At five years there will be a policy revision and audit looking at a major change.
Reading from the Briefing Sheet: "specifically, the proposed rules describe the process that MSGOT and the Program will use to administer the mitigation system through time. Adaptive management is a core principle for continuous improvement. Both the proposed rules and the documents contain specific sections about how MSGOT will adaptively manage the review and update of the HQT, the Habitat Quantification Tool Technical Manual and the Mitigation System Policy Guidance. Both the proposed rules and the documents have sections specifically devoted to adaptive management.

The HQT Technical Manual and the Policy Guidance document will each undergo an annual review involving stakeholders, agency partners, and others participating in the mitigation system. After the annual review, MSGOT could make changes to the documents, but only after notice and public comment and during a publicly-announced MSGOT meeting. Changes anticipated on an annual basis include: updating spatial data layers, refining methodologies, and the HQT base map (update anthropogenic disturbance layer and incorporate new credit site data). MSGOT and the Program may
also consider updates to incorporate new science. Mitigation would also be addressed in
the Program’s annual reports.

Every five years, a more substantive review will occur. Methods and data sources will be
thoroughly evaluated. The five-year review could yield significant changes. If so, the
outcome would be development of a new, subsequent version of the HQT Technical
Manual and Policy Guidance, which in turn triggers new rulemaking. Changes would
only be undertaken after notice and comment through publicly-announced MSGOT
meetings and in a collaborative spirit with participants engaged in mitigation.

MSGOT is free to initiate rulemaking at intervals shorter than five years."

Looking at the draft rule itself, new terminology has been added as well as definitions.
These are reflected in the HQT and Policy Document. Adaptive Management,
Additionality, Durability, HQT, Mitigation System and Mitigation Sequence. This follows
the hierarchy of avoid, minimize, reduce and compensatorily mitigate.

Definitions for the manual and document include a version number. This will be how the
Program tracks methodology through time. This is important because the HQT and
Policy version you use should follow you through time so future changes don’t affect you.

Mr. Bostrom briefly went through the new draft rule language.

04:33:00 Director Tubbs: Asked about concurrent reviews. Administrative action. Some of the
public comment expressed concern for peer review prior to publication of rule. Seems
we’re setting up a framework here that is somewhat independent of what would be
adopted as Version 1.0.

04:34:03 Mr. Bostrom: You could incorporate peer review changes to this document as Version
1.0 as the base version. Any changes that come could be 1.1.

04:34:30 Director Tubbs: Until it is adopted the first time, it would be 1.0 and a draft. This is the
first review. Once we have a final draft it would be Version 1.0. Once adopted is when
the numbering takes over.

04:35:15 Mr. Bostrom: Asked if the timeline would be helpful.

04:35:29 Ms. Sime: At January MSGOT meeting it was discussed that peer review would be
concurrent with public comment to move things forward. We can always change these
timelines. Envisioned peer review as neutral parties with no vested interest, to review
draft. Possible to be concurrent in part because the process is transparent. Peer review
can inform but peer review comments may not agree. We will have to reconcile
comments from peers.

04:37:34 Director Tubbs: What is before us is the decision how to direct not adopt. The next big
decision is to approve the draft. Given a few weeks of time, would call MSGOT back to
provide a published version of the draft. The rule is 20 days past publication we can ask
for a 30-day public comment period. The Program will need time to consume the comments.
Then the final rule addresses all public comment.

04:39:30 Director Tubbs: asks for public comment on the rule. None.

04:39:50 Administrator Halvorson: Asked if there will be two processes. Approval of the two
doctors or would they be concurrent.
04:40:09 Director Tubbs: They will occur at the same meeting on a parallel track. May look at rule differently if peer review find a need for changes in the framework. Would like to finish this up while under this administration. Need to meet the needs of stakeholder group, to have the group come together on the last 5% of disagreement. Another stakeholder meeting is key. May still have division and may need to make policy call. Feels the stakeholders are ready for this with the adaptive management approach. Suggests rule notice begin with public meetings beginning June 28. MSGOT would need to meet.

04:43:25 Ms. Sime: There was discussion of a MSGOT teleconference meeting within two to three weeks.

04:43:56 Director Tubbs: Suggests June 12 with publication of June 22. Take September meeting and move out two weeks to first week of October. Stakeholder meeting in next three weeks. Hope for concurrence.

04:45:30 Senator Lang: Why do we need this rule stuff when we don’t have an HQT or manual yet. The rule is how we will implement the HQT and Policy manual. Asks if MSGOT can pull out things we don’t agree with so the process can go through. If it’s something we need we can adapt later.

04:48:47 Director Tubbs: MSGOT can make those motions. Cautions changes to the science based processes of the HQT. The Policy Document can be changed by MSGOT based on the desire of MSGOT. Would like to have value of stakeholder meeting to work out differences first. The documents will be available for comments together. After that MSGOT can proceed with draft rule or change what the program is recommending. If there isn’t concurrence after the stakeholder meeting MSGOT will have to decide.

04:50:20 Director Williams: Has always thought proposed rules were a starting place. Comfortable with the process being concurrent if stakeholder group meets and MSGOT can discuss changes not agreed on. Asks how long peer review will take.

04:52:00 Ms. Sime: As outlined originally at tentative closing date was set for public comment and peer review for July 10. Mid-May to mid-July were dates set for review. Recognize reviewers may be out doing field work during this time.

04:53:20 Director Tubbs: Don’t mind adding this to the end of their review time. Issue the current draft now and let them know we may have another version after the stakeholder meeting. If we notice June 12 gives the group more time.

04:54:47 Mr. Holmes: Important we include all individuals that should be part of the group. Wants to make sure we have the right peer review group. Information should be passed along to the stakeholder group. Wants to see areas of disagreement flagged and identified. Prefers stakeholder group input first.

04:56:22 Director Tubbs: Peer reviewers may not be able to answer the policy issues.

04:56:34 Ms. Sime: As a peer reviewer if asked to review a preliminary product won’t take much time on it. Preference is that the peer reviewers are looking at our best work.

04:57:23 Senator Lang: Can MSGOT select peer reviewers.

04:57:35 Director Tubbs: If you have names to nominate pass them along. Carolyn has already done a lot of work putting the list together. If there are new names get them in the door within a couple of weeks.
These abbreviated summary minutes and the audio recording will become the official adopted minutes at the next Montana Sage Grouse Oversight Team meeting when they will be approved. Until then, they are considered a draft.

04:58:41 Ms. Sime: Because these are public documents, anyone can solicit comments from others they think have information to offer.

04:59:16 Director Tubbs: if you have name forward them after looking at the criteria for peer review selection.

04:59:58 Director Tubbs: June 12 meeting notice needs to include stakeholder input. The meeting can be remote for MSGOT members who don't want to travel. Meeting arranged for October 2. Cancel the September meeting.

Public Comment on Other Matters

05:12:53 Director Tubbs: Asked for public comment

05:04:00 Dave Gault. Consultant with Browning, Kalezyc, Berry and Hoven.

Adjournment

05:04:52 Moved to adjourn. Halvorson made a motion to adjourn, Mr. Helmes seconded. Motion passed unanimously. Meeting Adjourned.

Chair for this meeting:

/is/

Director John Tubbs
Table of Contents
1.0 Introduction and Background ... 1
2.0 Description of Haul Road Disturbance Corridor .. 2
 2.1 General Characteristics ... 2
 2.2 Vegetation Communities and Physical Characteristics .. 3
 2.2.1 Vegetation Communities ... 3
 2.2.2 Physical Characteristics .. 6
 2.3 Sage-Grouse Populations ... 7
3.0 Project Activities and Features within the Disturbance Corridor 7
4.0 Project Deviations from Montana EO 12-2015 .. 9
 4.1 Expected Deviations from Montana EO 12-2015 ... 9
 4.2 Potential Direct and Indirect Impacts due to Deviations from Montana EO 12-2015 .. 12
5.0 Adherence to the Mitigation Hierarchy ... 14
 5.1 Avoidance ... 15
 5.2 Minimization ... 16
 5.3 Reclamation .. 17
 5.4 Compensatory Mitigation .. 18
 5.5 Additional Voluntary Efforts ... 24
6.0 References .. 26
List of Tables

Table 1. Habitat Community Types within the Disturbance Limit for the Spring Creek Mine’s Proposed Haul Road Project, as described in WESTECH 20154

Table 2. Montana Sage-grouse Compensatory Mitigation Obligation for Impacts Associated with the Spring Creek Mine’s Proposed Haul Road Project22

List of Figures

Figure 1. Cloud Peak Energy’s Proposed AM5 Haul Road Project between the Spring Creek Mine and Youngs Creek Mine ...31

Figure 2. Sage-grouse Core Areas and Lek No Surface Occupancy (NSO) Buffers near the Spring Creek Mine’s Proposed AM5 Haul Road Project.............................32

Figure 3. Baseline Vegetation Communities in the Spring Creek Mine’s Proposed AM5 Haul Road Project Disturbance Corridor ...33

Figure 4. Slope Analysis in the Spring Creek Mine’s Proposed AM5 Haul Road Project Disturbance Corridor ...34

Figure 5. Terrain Roughness Analysis in the Spring Creek Mine’s Proposed AM5 Haul Road Project Disturbance Corridor ...35
List of Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM5</td>
<td>Amendment 5</td>
<td></td>
</tr>
<tr>
<td>APLIC</td>
<td>Avian Power Line Interaction Committee</td>
<td></td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practices</td>
<td></td>
</tr>
<tr>
<td>CPE</td>
<td>Cloud Peak Energy Resources LLC</td>
<td></td>
</tr>
<tr>
<td>dBA</td>
<td>A-weighted decibel</td>
<td></td>
</tr>
<tr>
<td>DEQ</td>
<td>Montana Department of Environmental Quality</td>
<td></td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
<td></td>
</tr>
<tr>
<td>EO</td>
<td>Montana Executive Order</td>
<td></td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
<td></td>
</tr>
<tr>
<td>HQT</td>
<td>Habitat Quantification Tool</td>
<td></td>
</tr>
<tr>
<td>HRRP</td>
<td>Habitat Recovery and Replacement Plan</td>
<td></td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolt</td>
<td></td>
</tr>
<tr>
<td>Lidar</td>
<td>Light Detection and Ranging</td>
<td></td>
</tr>
<tr>
<td>m²</td>
<td>Square meters</td>
<td></td>
</tr>
<tr>
<td>MCA</td>
<td>Montana Code Annotated</td>
<td></td>
</tr>
<tr>
<td>MFWP</td>
<td>Montana Fish, Wildlife and Parks</td>
<td></td>
</tr>
<tr>
<td>MPH</td>
<td>Miles per hour</td>
<td></td>
</tr>
<tr>
<td>MSGOT</td>
<td>Montana Sage Grouse Oversight Team</td>
<td></td>
</tr>
<tr>
<td>MSUMRA</td>
<td>Montana Strip and Underground Mine Reclamation Act</td>
<td></td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Services</td>
<td></td>
</tr>
<tr>
<td>NSO</td>
<td>No Surface Occupancy</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Montana Sage Grouse Habitat Conservation Program</td>
<td></td>
</tr>
<tr>
<td>SCM</td>
<td>Spring Creek Mine</td>
<td></td>
</tr>
<tr>
<td>SMCRA</td>
<td>Surface Mining Control and Reclamation Act of 1977</td>
<td></td>
</tr>
<tr>
<td>Stewardship Act</td>
<td>Montana Greater Sage-grouse Stewardship Act</td>
<td></td>
</tr>
<tr>
<td>Stewardship Fund</td>
<td>Montana Sage Grouse Stewardship Fund</td>
<td></td>
</tr>
<tr>
<td>WESTECH</td>
<td>WESTECH Environmental Services, Inc.</td>
<td></td>
</tr>
<tr>
<td>YCM</td>
<td>Youngs Creek Mine</td>
<td></td>
</tr>
</tbody>
</table>
1.0 Introduction and Background

Cloud Peak Energy Resources LLC (CPE) is the parent company for both the Spring Creek Mine (SCM) near Decker, Montana, and the Youngs Creek Mine (YCM) in northern Wyoming, which abuts the Montana/Wyoming state line. In December 2015, SCM submitted an Amendment application (AM5) to add lands to their Surface Mining Permit (#C1979012) in order to construct an approximately 8.5-mile-long haul road corridor connecting their SCM-permitted property with the YCM-permitted property in northern Wyoming (Figure 1). The proposed haul road project would be entirely within the state of Montana. It would facilitate equipment sharing between the two mines and the transportation of coal resources from YCM to SCM for additional processing and transport. The geographic area delineated within the AM5 application constitutes the maximum area in which new activity can occur without initiating a new permit amendment application, and is also referred to as the “disturbance limit” or “disturbance corridor” for analysis purposes.

The proposed haul road corridor encompasses approximately 969.7 acres (970 acres, rounded). However, SCM strives to minimize impacts wherever possible and the actual disturbance limit for this project would differ from what is permitted. In this instance, SCM would operationally (via fencing) limit access to approximately 7 acres along the east-central edge of the disturbance boundary to honor the recommended buffer distance (U.S. Fish and Wildlife Service 2017) around a golden eagle (Aquila chrysaetos) nest. That change in acreage is reflected throughout the rest of this document; i.e., physical disturbance would impact approximately 962.4 total acres rather than the total permitted acreage.

The disturbance corridor for the haul road project would pass through two Core Population Areas (i.e., Core Areas) and General Habitat for the greater sage-grouse (Centrocercus urophasianus), as designated by Montana Fish, Wildlife and Parks (MFWP 2015) and addressed in State of Montana in Executive Orders (EOs) 12-2015 and 21-2015 (State of Montana 2015a, 2015b) (Figure 2). No designated sage-grouse Connectivity Areas are present in the project area. Core Areas have the highest conservation value for greater sage-grouse (hereafter, sage-grouse); General Habitat also provides habitat for sage-grouse, though it is not identified as a higher value type (Montana Code Annotated [MCA] 76-22-103(3) and (7), respectively).

Current guidance for managing existing and planned activities within these sage-grouse habitats is outlined in Montana EO 12-2015 (State of Montana 2015a). That EO also created the Montana Sage Grouse Habitat Conservation Program (Program) and set forth the state’s approach for the conservation, regulatory protection, and management of sage-grouse habitats; i.e., Montana’s sage-grouse Conservation Strategy. The 2015
Appendix B: Greater Sage-grouse Mitigation Plan

Montana Legislature passed the Montana Greater Sage-grouse Stewardship Act (Stewardship Act, 2015 MCA 76-22-101 to 76-22-118) which codified the Montana Sage Grouse Oversight Team (MSGOT) and Montana Sage Grouse Stewardship Fund (Stewardship Fund), both of which are intended to support the state’s comprehensive efforts on behalf of sage-grouse.

Although SCM submitted the AM5 amendment application prior to January 1, 2016, the effective date of EO 12-2015 (State of Montana 2015a), other related ancillary permitting processes were completed after that date. Additionally, both the Montana Strip and Underground Mine Reclamation Act (MSUMRA) and the Surface Mining Control and Reclamation Act of 1977 require mitigation for designated State sensitive species, such as the sage-grouse. Therefore, the Montana Department of Environmental Quality (DEQ) followed EO guidance and contacted the Program for input during the permitting process and development of the Draft Environmental Impact Statement (EIS) for the proposed project. The Program worked with the DEQ and SCM to review the proposed AM5 amendment for consistency with EO 12-2015.

SCM’s Mitigation Plan for the haul road project is organized to:

- describe the disturbance corridor for the proposed haul road project;
- summarize project activities that would occur within the disturbance limit;
- summarize potential project impacts to sage-grouse and sage-grouse habitats;
- describe avoidance, minimization, and reclamation efforts, and the collaborative approach used to identify the appropriate level of compensatory mitigation, and document the financial obligation agreed to by the Program and CPE (on behalf of SCM); and
- describe additional voluntary conservation efforts undertaken in the general area outside the corridor itself.

2.0 Description of Haul Road Disturbance Corridor

2.1 General Characteristics

The haul road project is located in southeastern Big Horn County, Montana, west of the Tongue River Reservoir and west-northwest of Decker, Montana. The disturbance corridor itself spans portions of Townships 8 and 9 South, and Range 39 East. The majority of the project would occur on lands owned by subsidiaries of CPE. Approximately 1.2 miles of the disturbance corridor would pass through a Montana State-owned section; the State granted SCM a commercial lease for this purpose in September 2015.
The disturbance corridor is generally characterized by a wide diversity of habitat types and topographic gradients. It crosses four main drainages from north to south: Squirrel Creek, Dry Creek, Youngs Creek, and Little Youngs Creek (Figure 1). Squirrel Creek and Youngs Creek are perennial streams. Little Youngs Creek is an intermittent creek and Dry Creek is ephemeral (flows only for brief periods in response to precipitation or snow melt). Multiple additional unnamed, ephemeral tributaries of those four drainages also dissect the area. All four main channels flow into the Tongue River southeast of the project area. The project area is in a semi-arid region, averaging 11.6 inches of precipitation annually. Elevations within the disturbance corridor range from approximately 3,680 to 4,220 feet above mean sea level.

The current primary land use in the vicinity of the haul road project is cattle grazing (rangeland and pastureland), with hay (irrigated and dryland) production occurring along the terraces of Youngs Creek and Little Youngs Creek in the southern portion of the disturbance corridor. The overall rangeland condition of the general project area based on baseline vegetation sampling was identified as in the “low good condition class” (WESTECH Environmental Services, Inc. [WESTECH] 2015).

2.2 Vegetation Communities and Physical Characteristics

2.2.1 Vegetation Communities

Vegetation community types within the disturbance corridor were delineated during baseline inventories completed by WESTECH Environmental Services, Inc. (WESTECH 2015) as part of the DEQ permitting process (Figure 3). That survey area included the proposed disturbance corridor and immediately surrounding lands. Those community types were defined by, and named for, dominant and codominant plant species (Table 1). The same nomenclature was used to identify and quantify habitats for which compensatory mitigation would be required due to project-related disturbance (see Section 5.4).

Shrubland communities are the most common (Figure 3, Table 1) in the disturbance corridor, though most stands are intersected and/or influenced by other habitat types (e.g., conifers) or features such as topography or existing infrastructure. Big sagebrush (Artemisia tridentata) is the most common shrub type and occurs on all topographic positions in the sampling area, except major drainage floodplains and terraces where introduced grasses (e.g., haylands) and riparian/wetland communities dominate (WESTECH 2015). Silver sagebrush (Artemisia cana) and/or skunkbush sumac (Rhus aromatica) dominate or codominate most of the remaining shrub communities.

Conifer-dominated communities (including conifer breaks) are scattered throughout the project area, but are most common in the northern half (Figure 3) of the disturbance corridor. These communities are dominated by ponderosa pine (Pinus ponderosa)
and/or Rocky Mountain juniper (*Juniperus scopulorum*), typically with a grass understory (WESTECH 2015).

Table 1. Habitat Community Types within the Disturbance Limit for the Spring Creek Mine’s Proposed Haul Road Project, as described in WESTECH 2015.

<table>
<thead>
<tr>
<th>Baseline Vegetation Community Type¹</th>
<th>Core Area Acreage</th>
<th>General Habitat Acreage</th>
<th>Total Acreage within Corridor Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrublands (native grass and crested wheatgrass understory)</td>
<td>338.24</td>
<td>266.69</td>
<td>604.93</td>
</tr>
<tr>
<td>Conifers/Conifer-dominated Breaks</td>
<td>20.48</td>
<td>106.22</td>
<td>126.70</td>
</tr>
<tr>
<td>Shrub-dominated Breaks</td>
<td>22.19</td>
<td>55.20</td>
<td>77.39</td>
</tr>
<tr>
<td>Native Grasslands</td>
<td>37.09</td>
<td>14.59</td>
<td>51.68</td>
</tr>
<tr>
<td>Drainage Bottom (herbaceous and mesophytic shrub - moist meadow)</td>
<td>1.34</td>
<td>17.01</td>
<td>18.35</td>
</tr>
<tr>
<td>Other Habitats²</td>
<td>14.11</td>
<td>52.85</td>
<td>66.69</td>
</tr>
<tr>
<td>Existing Infrastructure/Surface Impacts³</td>
<td>7.49</td>
<td>8.92</td>
<td>16.41</td>
</tr>
<tr>
<td>Totals</td>
<td>440.94</td>
<td>521.48</td>
<td>962.42</td>
</tr>
</tbody>
</table>

¹ Nomenclature for vegetation community types follows the Baseline Vegetation Report and/or map codes prepared for the AM5 project: Baseline Vegetation Inventory, Arrowhead Amendment Project, Big Horn County, Montana. WESTECH Environmental Services, Inc. (WESTECH) 2015.

² Other Habitats = hay cropland, pastureland-grazed/go-back land, prairie dog colonies (all Tame Pasture communities), and Deciduous tree bottom per WESTECH 2015. Also includes a small (0.39 acre) pond identified from CPE’s surveyed features shapefiles (all shapefiles provided to the Program).

³ Existing Infrastructure/Surface Impacts = roads (improved gravel, two-tracks: 7.44 acres in Core Area; 8.54 acres in General Habitat) and other surface or soil impacts resulting from grazing, agriculture, or human activities (WESTECH 2015). Roads include those mapped during the original baseline inventory and subsequent additions from CPE’s surveyed features shapefiles (all shapefiles provided to the Program).

Shrub-dominated breaks normally occur on broken, moderately steep to very steep erodible slopes, and on shallow soils frequently associated with rock outcroppings (WESTECH 2015). Vegetation cover is typically sparse and dominated by grass, shrubs, and/or conifer species, depending on soil characteristics. This community type is found on highly dissected terrain within the disturbance corridor.

Native upland grasslands within the disturbance limit are completely dominated by native grass (and forb) species with only limited, sporadic occurrences of introduced species (WESTECH 2015). This community type is comprised largely of bluebunch...
Appendix B: Greater Sage-grouse Mitigation Plan

wheatgrass (*Agropyron spicatum*), western wheatgrass (*Agropyron smithii*), and needle-and-thread (*Stipa comata*). Native upland grasslands are present in a variety of topographical settings and aspects throughout the corridor.

Two communities of drainage bottom comprise a generalized type of moist meadow (relative to potential sage-grouse use): herbaceous bottom and mesophytic low shrub bottom (WESTECH 2015). As the name indicates, these communities are limited to drainage bottoms and adjacent lands that receive supplemental water from snow catchment, overflow, sub-irrigation, or seepage, such as toe slopes, swales, and coulee banks. Herbaceous bottom communities are characterized by various grasses, sedges (*Carex* spp.), and common cattails (*Typha latifolia*). The low shrub bottom type may include silver sagebrush, skunkbush sumac, western snowberry (*Symphoricarpos occidentalis*), Wood’s rose (*Rosa woodsia*), and/or common chokecherry (*Prunus virginiana*), with various grasses also present.

Some less abundant habitat types are grouped into a broad “Other Habitats” category in Table 1. Most habitats within this category are part of the “Tame Pasture” community delineated during the baseline vegetation inventory (WESTECH 2015), including two small black-tailed prairie dog (*Cynomys ludovicianus*) colonies. Pasturelands (native and/or planted) and haylands comprise the majority of the “Other Habitats” category, and approximately 3 percent of the disturbance corridor itself. Pasturelands are used primarily for cattle grazing and occur on stream terraces and atop plateaus (when supplemental water is provided) throughout the area. Haylands are limited to floodplains and terraces along major treed drainage bottoms, and consist primarily of introduced grass species such as crested wheatgrass (*Agropyron cristatum*) and smooth brome (*Bromus inermis*), with alfalfa (*Medicago sativa*) seeded variably among fields. The vegetation baseline report also included an area of big sagebrush/crested wheatgrass at the northern end of the disturbance limit in the Tame Pasture community. However, as shrub canopy cover in that area is commensurate with the big sagebrush communities with native grasses in the understory (WESTECH 2015), acreages identified as big sagebrush/crested wheatgrass are combined with other shrublands in Table 1 and for compensatory mitigation purposes.

The remaining types grouped into the “Other Habitats” category in Table 1 are Deciduous Tree Bottom and a small (0.39 acre) pond. The tree bottom community is described as riparian gallery forest comprised largely of the plains cottonwood (*Populus deltoides*), peachleaf willow (*Salix amygdaloides*), boxelder (*Acer negundo*), and green ash (*Fraxinus pennsylvanica*) (WESTECH 2015). Deciduous tree bottom communities are restricted to Youngs Creek and Squirrel Creek within the narrow disturbance corridor, with a small population along Little Youngs Creek. The understory in this community type is dominated by weeds induced by sustained, intensive cattle use (WESTECH
Appendix B: Greater Sage-grouse Mitigation Plan

2015). Invasive and/or weed species documented in the survey area include cheatgrass
(*Bromus tectorum*), Canada thistle (*Cirsium arvense*), field bindweed (*Convolvulus arvensis*), common hounds'-tongue (*Cynoglossum officinale*), and dalmatian toadflax (*Linaria dalmatica*).

Existing infrastructure and other forms of surface impacts were also delineated within the disturbance corridor during the baseline vegetation inventory (WESTECH 2015). Most (97%) of these features consist of improved gravel or two-track roads, though soil disturbance associated with grazing or agriculture also falls into this category (Table 1).

2.2.2 Physical Characteristics

As described above, multiple vegetative communities within the disturbance corridor occur in various topographic settings (WESTECH 2015). Terrain is an important component of the structural niche occupied by terrestrial species, such as sage-grouse (Riley et al. 1999). The degree of terrain slope (angle) within the disturbance limit was analyzed based on light detection and ranging (lidar) imagery generated for an overlapping CPE project. This optical remote-sensing technique uses laser light to densely sample the surface of the earth, producing highly accurate location, height, and distance measurements. The lidar bare earth data were converted into a multi-point terrain database, which was then used to generate a high-resolution (3 meter x 3 meter [3m²] pixels) raster image. The slope analysis was then applied to the raster file using Geographic Information System (GIS) mapping software. Results from this analysis demonstrated that moderately steep to steep slopes occur throughout the haul road disturbance corridor (Figure 4). Much of the area has a slope of 20 degrees (36.4%) or more; such terrain may be avoided by sage-grouse in otherwise suitable (i.e., sagebrush) habitats (Baxter et al. 2017, Walker et al. 2016, Caudill et al. 2013, Bruce et al. 2011, Bunnell et al. 2004).

Terrain roughness (ruggedness or irregularity) within the disturbance corridor was assessed using the same lidar bare earth data, 3m² resolution raster image, and GIS software (Geomorphometry and Gradient Metrics (V2.0, http://evansmurphy.wix.com/evansspatial), Surface Texture, Roughness toolbox). Roughness was calculated as the standard deviation of each pixel’s elevation relative to its neighbors within a 100-meter radius (i.e., circle) of each pixel (Walker et al. 2016, Doherty et al. 2008). This approach provides an objective measure of topographic heterogeneity (Riley et al. 1999). According to that analysis, nearly the entire AM5 Corridor is classified as “highly rugged” or “extremely rugged” (Crawford 2008, Riley et al. 1999). As with slope, terrain roughness has been shown to have a negative effect on habitat selection by sage-grouse in all seasons (Walker et al. 2016, Coates et al. 2014, Dzialak et al. 2011 and 2012, Doherty et al. 2008).
2.3 Sage-Grouse Populations
As shown on Figure 2, six confirmed active (i.e., birds present in at least 1 of the last 10 years) (MFWP 2017) sage-grouse leks are present in the immediate vicinity of the haul road project. Long-term (1981-2017) attendance data collected for these six leks by SCM and other entities indicate that the local sage-grouse population in that area has fluctuated over time. Average peak male counts per lek, per year at these six sites were highest during the early and later 1980s and mid-2000s, with a smaller peak from 1999 through 2001. Annual attendance indices did not exceed nine (9) males per lek per year even in highest cycle periods; the highest male count at an individual lek over time was 20. Annual indices were below the long-term average of 2.9 males per lek per year during 18 of the last 33 monitoring years in which males were classified; sexes were grouped in 4 years.

Results from some research have shown that a combination of factors and impacts may have more influence over long-term persistence by sage-grouse than a single anthropogenic line or point feature (Leu and Hanser 2011). This may also be true in the vicinity of the haul road project. Natural weather occurrences such as extended droughts, persistent cold and wet springs, or untimely severe storms can impact nesting and brood-rearing efforts, with results from poor nest success in a given year extending into one or more subsequent years. Such impacts could be exacerbated by changes in climate conditions at multiple scales. Conifer encroachment into sagebrush communities, outbreaks of diseases such as West Nile virus, and invasive species such as cheatgrass also can have negative impacts on sage-grouse and their habitats. Other contributing factors include, but are not limited to: grazing management practices that may degrade important nesting and brood-rearing habitats; habitat loss or fragmentation through natural (e.g., wildfire) or manmade causes; networks of roads and trails needed to support energy development and ranching operations; energy-related infrastructure such as fences, pipelines, and powerlines; flooding due to coal bed natural gas discharge water; and traffic and noise associated with extractive industries, highways, and railroads. All of these impacts have occurred within the general project area at varying levels and durations over time.

3.0 Project Activities and Features within the Disturbance Corridor
As described above, the proposed project would create a haul road that would enable equipment to be shared between the SCM and YCM, and coal to be transported from the YCM north to SCM’s existing facilities in Montana (Figure 1). Coal would be transported using trucks hauling approximately 280 tons. Other regular support traffic would consist of water trucks for dust suppression, motor graders for road maintenance, and various mid-weight (e.g., fuel trucks) and light-duty (e.g., pickup
Appendix B: Greater Sage-grouse Mitigation Plan

trucks, vans) vehicles needed for equipment maintenance and to transport personnel to
and from work sites, respectively. SCM anticipates that average daily haul traffic would
consist of four trucks per hour (two loaded, two empty) running at approximately 15-
minute intervals, and an average of 1.4 support vehicles per hour, for a total average of
approximately 130 vehicle trips per day (Maunder 2017). This level of traffic could
occur up to 24 hours per day and 7 days per week, year-round. The average speed limit
for all traffic would be 16 miles per hour (mph), with a maximum of 30 mph and a
restricted limit of 10 mph for haul trucks traveling downhill in steeper terrain.

Supporting construction features and infrastructure to occur within the disturbance
corridor include the following:

- road corridor approximately 8.5 miles long by 120-foot driving width;
 - safety berms measuring up to 12-feet high and 25-feet wide;
 - road height 30 to 92 feet above natural ground surface in some places (highest
elevation at deeper drainage crossings);
 - approximately 6.5 million cubic yards of cut and fill materials during
 construction (designed for balance between cut and fill within the
disturbance corridor);
 - average road base width of 296 feet (approximately 303 total acres disturbed
 or encompassed by the road bed);
- 31 culverts with appropriate designs to maintain stream flow, manage run-off
 and erosion, and facilitate wildlife movements at four major stream crossings;
 - diameter ranges from 1 to 27 feet (average 2 feet);
 - largest located at four primary stream crossings - culvert length ranges from
 324 to 608 feet (386- to 668-foot road base), diameter ranges from 10 to 27 feet,
 height of road above natural ground surface ranges from 30 to 92 feet;
 - constructed during late summer or fall (drier times of year);
- overhead, 34.5 kilovolt (kV) high voltage distribution line;
 - approximately 8.33 miles long;
 - co-located along the eastern side of the road alignment;
 - single-pole construction with five lines (three conductors, one ground, one
 fiber optic), built to current Avian Power Line Interaction Committee (APLIC)
 recommendations to minimize risks of electrocution and collision, and
 prevent perching or nesting by avian predators (APLIC 2006, 2012, 2015);
Appendix B: Greater Sage-grouse Mitigation Plan

- pole height approximately 60-65 feet above ground;
- average distance between poles 300-350 feet (total between 130-160 poles);
- portable or stationary lighting, strategically located for safety;
- wildlife-friendly fencing along outer limit of disturbance corridor, built per MFWP (2012) and/or Natural Resources Conservation Service (NRCS 2012) recommendations to facilitate wildlife movements (further adjustments in fence placement or design may be made in the future based on wildlife movement patterns);
- soil stockpiles;
- sediment and settling ponds; and
- other sediment (e.g., erosion) control and Best Management Practices (BMPs).

Road construction is targeted to begin as soon as possible upon completion of the permitting process and may take up to 2 years to conclude, dependent on weather and ground conditions, availability of contractors and/or equipment, and other factors. The road is expected to be in use until 2030 or 2031, after which the area would be reclaimed per SCM’s DEQ permit requirements.

4.0 Project Deviations from Montana EO 12-2015

Stipulations recommended in EO 12-2015 (State of Montana 2015a) are designed to maintain existing sage-grouse populations and levels of suitable sage-grouse habitat by regulating uses and activities in Core Areas and General Habitat in a manner that sustains sage-grouse abundance and distribution in Montana. The Montana EO and the Stewardship Act delineated Core Areas as those of “highest conservation priority” (State of Montana 2015a, MCA 76-22-103(3)). As a result, stipulations and conditions for development under the EO are most conservative in Core Areas. Delineated General Habitat areas represent those important for maintaining the abundance and distribution of sage-grouse across Montana, but not identified as a Core or Connectivity Areas (MCA 76-22-103(7)). Development scenarios in General Habitat are more flexible than in Core Areas, but must still be designed and managed to maintain sage-grouse populations and habitats (State of Montana 2015a).

4.1 Expected Deviations from Montana EO 12-2015

The proposed project would deviate from multiple stipulations applicable to new uses and activities in Core Areas and General Habitat (State of Montana 2015a, Attachment D, as amended). Summaries of those stipulations and expected deviations are described below.
• Surface Disturbance

EO Stipulation (Core Areas only): Surface disturbance will be limited to 5% of suitable sage-grouse habitat averaged across the area affected by the project.

Project Deviation: The Density Disturbance Calculation threshold of 5% in suitable habitat in Core Areas would be exceeded due to existing surface disturbance in the analysis area used for this calculation.

• Surface Occupancy

EO Stipulation – Core Areas: Within 0.6 miles of the perimeter of active sage-grouse leks there will be no surface occupancy (NSO) for new activities. NSO, as used in these recommendations, means no surface facilities including roads shall be placed within the NSO area.

EO Stipulation – General Habitat: Within 0.25 miles of the perimeter of active sage-grouse leks there will be no surface occupancy (NSO).

Project Deviations: The disturbance corridor would pass through the 0.6-mile NSO buffer for three active lek sites in the immediate project area (Figure 2), and the 0.25-mile NSO buffer for one active lek (northern-most on Figure 2).

• Seasonal Use

EO Stipulation – Core Areas: Activities (new) will be prohibited from March 15 - July 15 outside of the NSO perimeter of an active lek in Core Areas where breeding, nesting, and early brood-rearing habitat is present (production, maintenance, and emergency activity exempted). Discretionary maintenance and production activity will not occur between the hours of 4:00 - 8:00 a.m. and 7:00 - 10:00 p.m. between March 15 - July 15.

EO Stipulation – General Habitat: Activities (new) will be prohibited from March 15 - July 15 within 2.0 miles of an active lek where breeding, nesting, and early brood-rearing habitat is present. Discretionary maintenance and production activity will not occur between the hours of 4:00 - 8:00 a.m. and 7:00 - 10:00 p.m. between March 15 - July 15.

Project Deviations: The proposed project would occur during the seasonal use restriction period from March 15 through July 15. Discretionary maintenance activity associated with one or more project phases would also occur between the hours of 4:00 to 8:00 a.m. and 7:00 to 10:00 p.m. during that period. The proposed disturbance corridor is within 2.0 miles of six active leks.
• Transportation

EO Stipulation (Core Areas only): Locate main roads used to transport production and/or waste products greater than 2 miles from the perimeter of active sage-grouse leks.

Project Deviation: The disturbance corridor would be closer to six active lek sites than the recommended distance of 2.0 miles.

• Overhead Power Lines

EO Stipulation – Core Areas:

a. If economically feasible, power lines within 4 miles of active leks should be buried;

b. If not economically feasible, then power lines should be consolidated or co-located with existing above ground rights of way, such as roads or power lines, at least 0.6 miles from the perimeter of active leks;

c. If co-location is not possible, the power lines should be located as far as economically feasible from active leks and outside of the 0.6 mile active lek buffer.

EO Stipulation – General Habitat: New overhead power lines will be located outside of General Habitat when possible. Where avoidance is not possible, develop a route or siting location that uses topography, vegetative cover, site distance, etc. to effectively protect identified sage grouse habitat in a cost-efficient manner.

Project Deviations: It is not economically feasible for SCM to bury the new overhead power line. Because SCM co-located the power line alignment within the disturbance limit for the proposed project, it would be within the 0.6-mile NSO buffer for three active leks. SCM will follow the APLIC guidelines. Due to the project location, it is not possible to avoid General Habitat.

• Noise

EO Stipulation (Core Areas and General Habitat): New project noise levels, either individual or cumulative, should not exceed 10 dBA (as measured by L_{50}) above baseline noise at the perimeter of an active lek from 6:00 p.m. to 8:00 a.m. during the breeding season (March 1 – July 15).
Appendix B: Greater Sage-grouse Mitigation Plan

Project Deviations: Noise levels would increase above the recommended thresholds during construction and reclamation, but are expected to be within those parameters during operation.

4.2 Potential Direct and Indirect Impacts due to Deviations from Montana EO 12-2015

In addition to EO requirements, State permitting regulations (e.g., MSUMRA) require that potential impacts to sage-grouse and their habitats be considered and addressed prior to implementation of new development project activities not identified as exempt in EO 12-2015 (State of Montana 2015a).

Attachment H of EO 12-2015 (State of Montana 2015a) provides specific habitat definitions to assist with identifying important sage-grouse habitats in the state, and for purposes of implementing the EO relative to sage-grouse. These definitions are important during impact assessments and compensatory mitigation calculations for new projects to ensure that guidance outlined in the EO is followed to the extent practicable, and that appropriate levels of mitigation are applied when deviations from EO stipulations cannot be avoided. Definitions applicable to the haul road project are provided below.

“Suitable Habitat” – is within the mapped occupied range of sage grouse, and:

1. Generally has 5% or greater canopy cover of sagebrush, where “sagebrush” includes all species and sub-species of the genus Artemisia. This excludes mat-forming sub-shrub species such as A. frigida (fringed sagewort) and A. pedatifida (birdfoot sage). Sagebrush canopy cover may be less than 5% when complimented by other shrubs suitable for sage grouse cover requirements; or

2. Is moist meadow containing forbs suitable for brood-rearing within 300 yards of suitable sagebrush cover (as defined above). Introduced species such as alfalfa may be very important on these sites where native forbs are not available.”

“Unsuitable Habitat” – is land within the historic range of sage grouse that did not, does not, nor would not provide sage grouse habitat due to natural ecological conditions such as badlands or canyons.”

The intent of this broad definition of “unsuitable habitat” is to identify and describe smaller areas within larger sage-grouse habitat blocks that are unsuitable to the species due to topography or other natural ecological conditions, and that have not historically and do not currently provide sage-grouse habitat, nor are they likely to in the future.
Aspects of the project that are not consistent with the EO stipulations (State of Montana 2015a), and other project components, would have direct and indirect impacts on sage-grouse and their habitats in the project area. Direct impacts (e.g., injuries or fatalities to sage-grouse, habitat loss or fragmentation) are caused by the action and occur at the same time and place. Indirect impacts result from project attributes (noise, potential for noxious weed establishment or spread, etc.) and occur later in time or extend farther from the project site. Due to the expected life of the project, and the multi-year timeframe needed for sagebrush habitats to be fully reclaimed, any project-related impacts would persist for many years.

Construction of the proposed project could result in the direct loss of sage-grouse, including nests, within the disturbance corridor, depending on the timing of project initiation. During construction and, to a lesser extent, reclamation, such losses could occur through collisions of adult or young sage-grouse with vehicles or heavy equipment, or the loss of eggs or young chicks in the path of those vehicles. Collisions with vehicles and power lines could also occur during the operations phase of the project (Coates et al. 2014, Dinkins et al. 2014). Collisions with fence lines bordering the new road might occur, depending on their location relative to the terrain, whether or not marking devices have been installed, and other factors (Stevens et al. 2012).

A total of approximately 4.0 non-contiguous miles of the haul road disturbance corridor would traverse two sage-grouse Core Areas (PRB1 and PRB2) (State of Montana 2015b) (Figure 2). Those segments would encompass approximately 440.9 non-contiguous acres. The remaining corridor length (approximately 4.4 non-contiguous miles) would intersect approximately 521.5 non-contiguous acres designated as sage-grouse General Habitat (State of Montana 2015b). Although vegetation removal would be limited to only what was needed, construction, operation, and reclamation of the proposed haul road in these areas would result in the loss or fragmentation of potential sage-grouse nesting and brood-rearing habitats. Such impacts have been cited as an important factor in the rangewide decline of sage-grouse populations (Atamian et al. 2010, Crawford et al. 2004, Connelly and Braun 1997).

As noted, the disturbance corridor would intersect the 0.6-mile NSO buffer for three of the six leks in the immediate project vicinity. The entire disturbance corridor is located closer to all six lek sites than the recommended distance of 2.0 miles for transportation corridors. These factors would result in expected or potential impacts to breeding, nesting, and brood-rearing activities and habitats. Due to their fidelity to leks and nest sites, such responses could have a more lasting impact on the local population (Connelly et al. 2011). Sage-grouse movements (primarily of young broods) could also be hindered by project features such as the elevated road and steep berms or especially long culverts in some locations.
New perch sites such as power poles and fence posts would potentially increase the risk of avian predation on adult and young sage-grouse during all life stages, particularly in areas with few naturally tall features (Connelly et al. 2004, Ellis 1987). Sage-grouse also tend to avoid areas where power poles and power lines occur. This is believed to stem from their association of tall structures with perches for avian predators such as ravens (\textit{Corvus corax}) or larger raptor species (Hanser et al. 2011, Connelly et al. 2004). Results from a viewshed analysis conducted for the proposed project indicated that the top of the power poles would be visible from five of the six sage-grouse leks located near the disturbance corridor. That analysis was based on 50-foot pole spacing (vs. actual 300- to 350-foot spacing) and visibility from approximately 2 feet above ground level at the center of each lek, to simulate the average height of an adult male sage-grouse.

New traffic and noise levels associated with all phases of the haul road project would occur in extremely or relatively close proximity to all six active leks in the immediate project area. Noise levels would increase above thresholds recommended in EO 12-2015 (State of Montana 2015a) during construction and reclamation, but are expected to be within those parameters during operation. These regular and extended periods of increased noise levels would potentially disrupt breeding activities for any birds present (Blickley et al. 2012, Walker et al 2007), and could result in displacement of sage-grouse and/or abandonment of one or more leks.

As indicated, potential impacts from the proposed project would influence multiple life stages and seasonal needs of sage-grouse in the area for an extended period of time, either directly through impacts to sage-grouse or their habitats or indirectly. This would be especially true when added to existing impacts in the vicinity of the project. Together, these factors could result in the loss, avoidance, or displacement of sage-grouse from the immediate project area and reduced breeding efforts or success, which ultimately could impact productivity and overall population viability for at least the life of the project.

5.0 Adherence to the Mitigation Hierarchy

Montana EO 12-2015 (State of Montana 2015a) states that all new land uses or activities subject to State agency review, approval, or authorization shall follow the sequencing approach of avoid, minimize, reclaim, and compensate, as appropriate (page 4, Section G, 13). That section further states that “mitigation shall be required even if the adverse impacts to sage-grouse are indirect or temporary,” and describes a variety of mitigation tools with which to meet that requirement. Section N, 15 (page 8) clarifies that these requirements also apply to new activities associated with existing land uses in place prior to the effective date of the EO, as is the case for the proposed haul road project. As noted, mitigation for sensitive species such as sage-grouse is also required by MSUMRA and SMCRA.
The Program worked with the DEQ and SCM to review the proposed AM5 amendment for consistency with EO 12-2015. During project discussions conducted in early February 2018, SCM provided the Program with a list, detailing efforts during project planning to select a disturbance corridor that, to the extent possible, avoided or minimized potential impacts to sage-grouse and their habitats during construction, operation, and reclamation. This approach was also used to balance impacts to overlapping species’ needs (e.g., sage-grouse lekking and nesting raptors) to the extent practicable. Examples of these efforts, and additional voluntary actions that SCM has already implemented or has made commitments to implement on behalf of sage-grouse and their habitat, are provided in the following subsections. In addition to these actions, all prior DEQ permit commitments would be adhered to throughout the life of the project, including monitoring and reporting requirements.

5.1 Avoidance

SCM’s initial efforts to avoid impacts to sage-grouse and their habitats occurred during the planning phase of the project. These included meeting with DEQ to discuss options to achieve this goal and through adoption of recommendations outlined in Montana EO 12-2015 (State of Montana 2015a), to the extent practicable for the project. Examples of avoidance efforts include:

- analyzed at least five (5) distinct alternative routes to identify the best option to avoid potential impacts to sage-grouse and other wildlife and their habitats during construction, operation, and reclamation of the road corridor. The final route selection was based on the following parameters:
 - minimization of the length of the haul road traversing sage-grouse Core Areas to the extent practicable, given the project location and other resource concerns;
 - maximization of distance between the proposed road alignment and proximate wildlife features such as grouse leks and raptor nests;
 - elimination or reduction of sight lines and noise relative to proximate wildlife features through use of natural (topography) or manmade (placement of topsoil piles, etc.) barriers;
 - minimization of noise and dust by selecting the shortest linear travel distance; and
 - alignment of the road to avoid as many active lek NSOs as possible given other resource concerns; and

- complete initial vegetation removal within the disturbance corridor during the non-breeding season (July 16 through March 14), most likely accomplished by
mowing the disturbance corridor outside the stipulation period to remove sagebrush.

5.2 Minimization
Where avoidance was or is not possible, SCM identified options to minimize potential impacts to sage-grouse and their habitats and deviations from EO 12-2015 (State of Montana 2015a. Such efforts include:

- design the road alignment to minimize surface disturbance within lek buffers and provide the greatest possible visual and audio barriers between the disturbance corridor and wildlife-related features, including strategic placement of cut and fill material to create or enhance such barriers;
- consolidate infrastructure (e.g., co-located the road and overhead power line);
- space new overhead transmission line poles along the haul road route to minimize placement within 0.6-mile NSO lek buffers;
- select single power pole construction (vs. H-frame) and install deterrents on power poles to reduce perching options for avian predators, and follow other BMPs recommended by APLIC (2015, 2012, 2006) to minimize potential impacts to sage-grouse and other avian species;
- limit the number of other light poles and potential perches for avian predators;
- turn idling equipment off during operation of the haul road to the extent practicable (i.e., when weather conditions allow based on equipment needs);
- limit blasting needed in rocky areas etc., during the construction phase to daytime hours (8:00 a.m. to 6:00 p.m.);
- conduct continuous noise level monitoring at active sage-grouse lek perimeters from March 1 through July 15 during road construction and reclamation;
- discontinue construction between 6:00 p.m. and 8:00 a.m. if individual or cumulative noise levels exceed 10 dBA above baseline noise at that location;
- implement other appropriate BMPs during all phases to minimize erosion, employ weed control, and control trash and other predator attractants, etc.;
- build new fencing to current standards for sage-grouse and big game, place fencing as close to the road berm as possible and/or install markers on fence wires to enhance visibility per current guidelines from the MFWP (2012) and/or USDA (2012) Natural Resources Conservation Service;
• enhance the likelihood of wildlife using new culverts as crossings by consulting the latest research such as the Wildlife Crossing Structure Handbook – Design and Evaluation in North America (U.S. Department of Transportation Federal Highway Administration, Publication No. FHWA-CFL/TD-11-003);
 o construct/remove road segments near or at stream crossings during low flow periods;
 o keep construction equipment out of wetland/riparian/saturated areas, or time construction to occur when ground is frozen to minimize soil compaction; and
 o include erosion protection at culvert crossings to minimize impacts to stream flow and channels; and
• modify grazing lease to support cheatgrass control and manage livestock presence in sage-grouse brood habitat in riparian areas to extent practicable using fencing and rotational practices.

5.3 Reclamation
SCM has strict reclamation standards that must be met per its State mining permits issued under MSUMRA and SMCRA. Under these permits, conservation measures and reclamation requirements are developed on a case-by-case basis.

The EO (State of Montana 2015a) states that reclamation should reestablish native grasses, forbs, and shrubs during interim and final reclamation to achieve cover, species composition, and life form diversity commensurate with the surrounding plant community or desired ecological condition to benefit sage-grouse and replace or enhance sage-grouse habitat. This guidance is also consistent with permit requirements under MSUMRA and SMCRA. Where sagebrush establishment is prescribed, it is defined as meeting the standard outlined in the individual reclamation plan for the operator.

In addition to its State permit requirements for wildlife habitat replacement, the SCM had previously developed a separate Habitat Recovery and Replacement Plan (HRRP) for sage-grouse (refer to State Mining Permit C1979012; HRRP and Section 17.24.312). The HRRP and SCM’s current permit document outline multiple additional commitments to enhancing sage-grouse habitats. Those commitments are in addition to compensatory mitigation outlined in Section 5.4 for the proposed haul road project.

The HRRP and SCM’s current permit include methods and techniques that would also be applied during reclamation of the haul road corridor, which would provide maximum benefit to such efforts and ensure consistent reclamation practices, which ultimately would contribute to a more balanced reclaimed landscape across SCM’s
Appendix B: Greater Sage-grouse Mitigation Plan

combined project areas. Examples of measures adopted for the proposed haul road project and/or already included in the HRRP specifically to benefit sage-grouse include, but are not limited to:

- reclaiming any temporary construction disturbance immediately upon completion of that project phase;
- performing reclamation work between 8:00 a.m. and 7:00 p.m. from March 15 through July 15;
- removing all project-related infrastructure at project end;
- continuing to investigate additional methods to establish or enhance sagebrush communities in reclamation;
- using native seed mixes in certain specified areas identified as Pastureland prior to mine-related disturbance (i.e., convert post-mine land use from Pastureland to native habitats in those locations);
- incorporating regionally-sourced, pure live sagebrush seeds and appropriate forb species in sagebrush plantings, per specifications, to enhance forage potential for sage-grouse;
- removing unnecessary fencing in appropriate areas; and
- maintaining SCM’s existing commitment outlined in the HRRP to work with MFWP to assist them with finding eligible lands (locally or elsewhere in the state) for applying a pool of funds committed to by SCM toward landowner incentive programs or similar conservation efforts that will provide protection of sage-grouse habitat through improved grazing systems, conservation easements, or funding to purchase or retire private mineral leases (for example).

5.4 Compensatory Mitigation

A collaborative process between the Program and SCM identified the level of compensatory mitigation obligation for the proposed haul road project. The parties agreed to develop a compensatory mitigation approach specific to this project to avoid permitting delays while the State of Montana continued efforts to finalize a mitigation approach and supporting Habitat Quantification Tool (HQT).

On December 5, 2017, the Program provided SCM with four specific options for achieving compensatory mitigation objectives for the project. The options were:

- apply a functional acre approach using the July 2017 draft version of the Program’s HQT for the disturbance limit with an overhead power line scenario;
Appendix B: Greater Sage-grouse Mitigation Plan

- apply a functional acre approach using the July 2017 draft HQT for the disturbance limit with a buried power line scenario;

- apply a physical acre approach using fixed ratios, as outlined in the draft Keystone XL Pipeline project’s draft Sage-grouse Conservation Plan (WESTECH 2017) for impacts to sage-grouse habitat in eastern Montana, and modified by the Program (i.e., averaged the ratios); or

- apply a physical acre approach following Utah’s preliminary fixed ratio of 4:1 (four acres mitigated for every 1 acre impacted), regardless of habitat type.

The physical acre method is based on site-specific data for habitat types within the project footprint rather than the functional habitat acres calculated by the State’s draft HQT (a raster-based GIS model).

SCM chose to follow the physical acre approach based on the draft Keystone XL pipeline mitigation agreement procedure to determine SCM’s compensatory mitigation obligation for the haul road project. This approach was selected because of the draft nature of Montana’s HQT and accompanying policy guidance.

To inform the analysis of “unsuitable habitat” as described in the EO, SCM performed a GIS analysis to calculate parameters for slope and terrain roughness for the proposed haul road project to identify smaller patches of unsuitable habitats within the Core Areas and General Habitat intersected by the disturbance corridor (see Section 2.2.2).

Having site-specific, field-based data enabled the adoption of a more refined approach and accurate accounting of impacted vegetation communities, which then informed adjustments to total acreages. Project impacts to sage-grouse habitats were calculated by overlaying the project footprint onto current boundaries for Core Areas and General Habitats, and calculating physical acreages, by vegetation type. Vegetation communities within the disturbance corridor were identified using detailed mapping data collected in the field during baseline inventories (WESTECH 2015), as required by MSUMRA and DEQ). GIS-based analyses were used to calculate slope and roughness characteristics, as described in Section 2.2.2. Those acreages were adjusted to:

- exclude unsuitable habitats (as defined above), if any;

- exclude vegetation types (i.e., “Other” communities) known not to provide sage-grouse habitat within the narrow disturbance corridor boundary; and

- exclude other vegetation communities such as conifer-dominated habitats and steep (i.e., ≥20° slope), rugged terrain not typically used by sage-grouse, as noted in the current EO (12-2015) and/or documented in peer-reviewed literature.
A mitigation ratio was assigned to each vegetation category based on vegetation types and location in Core Area or General Habitat. Ratios account for direct and indirect (those extending beyond the project footprint and timeline) impacts of the project, and are generally based on habitat values relative to sage-grouse. For example, intact sagebrush patches with native grasses and forbs in the understory would have a higher ecological value to sage-grouse than native grassland alone, with sagebrush in Core Areas valued even higher than in General Habitats. These value differences are based, in part, on the reliance of sage-grouse on sagebrush throughout their life-cycle, the longer recovery time for sagebrush habitats, and the greater importance placed on Core Areas as a higher conservation priority.

The use of ratios also ensures that the proposed compensatory mitigation is commensurate with the impacts of the project. Here, the ratios are project-specific and incorporate Universal Principles of Compensatory Mitigation (Sprague et al. 2015), as listed below.

1. **Commensurate.** Compensatory mitigation should be reasonably related to the project and proportional to the reasonably foreseeable residual impacts. For residual impacts, the compensatory mitigation must take into account both direct and indirect impacts, as well as other factors such: as the quality of the resource; the degree to which the resource is important, scarce, sensitive, or requires protection; the timeliness of the compensatory mitigation; the risk of a measure’s failure; and any applicable mitigation standard (e.g., net benefits for sage-grouse).

2. **Magnitude of Impacts to the Resource.** Consider the baseline condition and trend of the resource in terms of quantity, quality, and characteristics at the impacted site, as well as the amount of change to the baseline condition, considering direct and indirect impacts. The magnitude of impacts must be compared to the applicable mitigation standard to determine the magnitude of the benefits to the resource requiring compensation. This assessment is based on site-specific surveys of the project area, habitat or species information in local databases, aerial photography, and/or project-specific GIS shapefiles rather than the HQT model described above.

3. **Timeliness.** The preference is to achieve the compensatory mitigation outcome(s) prior to the impacts resulting from a project. The value of the compensatory mitigation should be adjusted to account for any lack of timeliness with the compensatory mitigation measures, which reflects increased uncertainty and results in a time-value delay of conservation benefits.
4. **Risk.** Consider the risk of mitigation ineffectiveness, or loss of durability when determining the amount of compensatory mitigation, including consideration of the risk from foreseeable changing circumstances such as climate change, wildfire, and invasive species.

5. **Additionality.** Ensure that compensatory mitigation demonstrates financial and resource additionality (i.e., a compensatory mitigation measure is demonstrably new and would not have occurred within the compensatory mitigation measure) and demonstrably augments, rather than duplicates, similar projects funded or foreseeably expected to be funded by government appropriations.

6. **Mitigation Banks/Mitigation Funds.** When a project proponent uses a mitigation bank or mitigation exchange, verify that the credits are equivalent to the required compensatory mitigation obligation. When a project proponent makes a financial contribution to a mitigation fund, the acres of compensatory mitigation need to be converted into monetary terms to determine the appropriate contribution to the fund.

7. **Landscape Vulnerability.** Policy to consider residual impacts to irreplaceable resources that are considered important, scarce, sensitive, or have a protective legal mandate that has been previously identified in a mitigation strategy as warranting compensatory mitigation. Irreplaceable resources can be defined as those resources recognized through existing legal authorities as requiring particular protection from impacts and that, because of their high value or function and unique character, cannot be restored or replaced.

For SCM’s haul road project, mitigation acreage ratios were applied at rates of **4.22:1** for habitat impacts in Core Area and **3.2:1** for such impacts in General Habitat. The Core Area ratio was derived by averaging the two ratios applied to habitats in Core Area for the Keystone XL pipeline. No changes were made to the Keystone XL pipeline ratio for General Habitat. These ratios are intended to appropriately mitigate adverse direct and indirect impacts to grouse and their habitat within the disturbance corridor.

The final adjusted acreage total for Core Area and General Habitat categories for the haul road project were multiplied by their respective ratios, and the two products were summed. That combined total acreage was then multiplied by a cost-per-acre; such costs could be based on regional market values or another value agreed to by both parties. For the haul road project, a value of $650/acre was agreed upon (U.S. Department of Agriculture 2016).

For Appendix B: Greater Sage-grouse Mitigation Plan
SCM will also undertake multiple additional voluntary restoration and enhancement actions in the general project area (see Section 5.5). In recognition of these efforts, the Program incorporated approximately 111.5 acres of expected benefits; at $650/acre, these voluntary actions were valued at $72,475.00. As indicated, these voluntary efforts are in addition to reclamation otherwise required by DEQ permits and to required compensatory mitigation per the EO. The monetary value of these voluntary actions decreased SCM’s total compensatory mitigation obligation (Table 2).

Table 2. Montana Sage-grouse Compensatory Mitigation Obligation for Impacts Associated with the Spring Creek Mine’s Proposed Haul Road Project.

<table>
<thead>
<tr>
<th>Baseline Vegetation Community Type</th>
<th>Core Area Acreage</th>
<th>General Habitat Acreage</th>
<th>Total Acreage within Corridor Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrublands (native grass and crested wheatgrass understory)</td>
<td>338.24</td>
<td>266.69</td>
<td>604.93</td>
</tr>
<tr>
<td>Shrub-dominated Breaks</td>
<td>22.19</td>
<td>55.20</td>
<td>77.39</td>
</tr>
<tr>
<td>Native Grasslands</td>
<td>37.09</td>
<td>14.59</td>
<td>51.68</td>
</tr>
<tr>
<td>Drainage Bottom (herbaceous and mesophytic shrub - moist meadow)</td>
<td>1.34</td>
<td>17.01</td>
<td>18.35</td>
</tr>
<tr>
<td>Existing Infrastructure/Surface Impacts</td>
<td>7.49</td>
<td>8.92</td>
<td>16.41</td>
</tr>
<tr>
<td>Conifers/Conifer-dominated Breaks</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Other Habitats</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

ACREAGE SUBTOTALS

| | 406.35 | 362.41 | 768.76 |

All community acreages with slopes ≥20° not previously excluded (i.e., additional acreages subtracted from subtotals above)

| | -5.20 | -35.74 | -40.94 |

REVISED ACREAGE SUBTOTALS (accounting for slope)

| | 401.15 | 326.67 | 727.82 |

Total mitigation ratios: Core Area Acres x 4.22; General Habitat Acres x 3.2

| | 1,692.853 | 1,045.344 | 2,738.197 |

SUBTOTAL for MITIGATION OBLIGATION: Adjusted Acreage (2,738.197) x $650/acre

| | | $1,779,828.05 |

Total mitigation obligation adjusted for SCM’s additional voluntary conservation efforts (111.5 estimated acres benefitted x $650/acre)

| | | $72,475.00 |

GRAND TOTAL AM5 COMPENSATORY MITIGATION OBLIGATION

| | | $1,707,353.05 |
Appendix B: Greater Sage-grouse Mitigation Plan

1 Nomenclature for vegetation community types follows the Baseline Vegetation Report and/or map codes prepared for the AM5 project: Baseline Vegetation Inventory, Arrowhead Amendment Project, Big Horn County, Montana. WESTECH Environmental Services, Inc. (WESTECH) 2015.

2 Existing Infrastructure/Surface Impacts = roads (improved gravel, two-tracks: 7.44 acres in Core Area; 8.54 acres in General Habitat) and other surface impacts resulting from grazing, agriculture, or human activities (e.g., soil impacts) (WESTECH 2015). Roads include those mapped during the original baseline inventory and subsequent additions from CPE’s surveyed features shapefiles (all shapefiles provided to the Program).

Table 2. Continued.

3 Vegetation communities identified in Table 1 that were accepted for exclusion from compensatory mitigation obligations by the Montana Sage Grouse Habitat Conservation Program included all conifer-dominated types and all types grouped into the “Other Habitats” category (i.e., hay cropland, pastureland-grazed/go-back land, prairie dog colonies [all Tame Pasture communities], Deciduous tree bottom, and a small pond): approximately 193.66 total acres (126.7 conifer-dominant acres, 66.96 “Other Habitats” acres). This approach was supported by one or more of the following resources: references to reducing conifer habitats in Montana EO 12-2015; numerous peer-reviewed journal articles quantifying the detrimental impacts of conifers on sage-grouse use of sagebrush communities, survival of hens and nests, and overall population growth; and site-specific data demonstrating that such habitats are not used by sage-grouse in the AM5 Corridor.

4 Additional acreages accepted for exclusion from compensatory mitigation obligations by the Montana Sage Grouse Habitat Conservation Program included all vegetation acres in areas with slopes ≥20° (36.4%) and not previously excluded: approximately 75.34 total acres (5.20 in Core Area and 35.74 in General Habitat). This approach was supported by references to badlands and canyons in Montana EO 12-2015 and numerous recent peer-reviewed journal articles quantifying avoidance of steeper and more rugged terrain that might otherwise serve as sage-grouse habitat.

5 The Montana Sage Grouse Habitat Conservation Program accepted the acreages and total compensatory mitigation obligation for the AM5 Corridor outlined in Table 2 via an email to representatives of CPE and DEQ on 2/23/2018.

SCM committed to a compensatory mitigation obligation of $1,707,353.05 to be deposited in the Montana Sage Grouse Stewardship Fund (see MCA 76-22-111((1)(a)(ii)). Funds would be deposited after confirmation of approval for both the permit amendment and the compensatory mitigation plan, and before construction begins.

The MSGOT and Program would disburse these funds through the Stewardship Account granting process to conserve habitat and sage-grouse populations through offsite mitigation. Offsite mitigation is preferred in this case due to the existing mining activity in the immediate area and the new addition of the haul road. Any benefit of onsite mitigation would be negated until such activities were completed and disturbed lands fully reclaimed. Greater conservation benefits to sage-grouse can be secured offsite.
5.5 Additional Voluntary Efforts

In addition to these efforts, CPE is voluntarily implementing a variety of additional actions that will contribute to offsetting the short- and long-term impacts of the proposed haul road project. These efforts are consistent with guidance provided in Montana EO 12-2015 (State of Montana 2015a). It is important to note that these voluntary efforts are above and beyond any DEQ permit (mitigation) requirements associated with the haul road project or existing SCM operations. That is, they have been or will be implemented regardless of permit and compensatory mitigation requirements for sage-grouse. All voluntary actions listed below will be implemented on CPE property in Montana.

- CPE has implemented or will implement the following efforts in the vicinity of the haul road project.
 - Installed four (4) guzzlers to enhance water features in the area in 2017, seven (7) stock tank escape ramps to be installed; Sage-grouse and sharp-tailed grouse have already been documented using at least one guzzler via motion-triggered trail cameras.
 - Inventoried all overhead power lines planned for removal in 2017.
 - Removed 6.0 non-contiguous miles of overhead power line through 2017; several additional miles of overhead lines will be removed.
 - Committed to secure a protective agreement for conservation purposes on 700 contiguous acres in sagebrush habitat; minimum 10-year commitment with renewal options.
 - Committed to focused conifer removal across approximately 490 non-contiguous acres in and immediately adjacent to sagebrush habitats.
 - Committed to more than 2.0 miles of fence removal; 1 mile passes within 150 feet to 0.25 mile of active leks (fence marking and additional removals may occur).
 - Committed to on-going treatments for mosquito larvae control for West Nile virus in stock tanks and tire storage areas.
 - Committed to not use anti-coagulant poisons for control of black-tailed prairie dogs; colonies in and near the AM5 haul road area serve as primary breeding sites for sage-grouse.
 - Committed to treat burned areas for cheatgrass.
Appendix B: Greater Sage-grouse Mitigation Plan

- Committed to protect natural green acres (i.e., potential brood-rearing habitat) from trampling and other impacts of livestock grazing.
- Committed to closure and reclamation of 0.75 mile (non-contiguous) of two-tracks and other roads.

- CPE has implemented or will implement the following efforts associated with SCM.
 - Installed one (1) guzzler to enhance water features and four (4) escape ramps in stock tanks on a neighboring cooperator’s land in 2017.
 - Installed two (2) guzzlers and two stock tank escape ramps on Spring Creek surface in 2017.
 - Applied dust suppressant on 1.1 miles of high-use gravel road in sagebrush habitat immediately northeast of the northern-most Core Area in the project area in 2017 (on-going annually).
 - Committed to on-going treatments or drainage of stock tanks for mosquito larvae control for West Nile virus.
 - Committed to treat outside tires for mosquito larvae control for West Nile virus.
 - Committed to install bat houses at strategic locations for mosquito control to help manage West Nile virus.
 - Committed to focused conifer removal across approximately 660 non-contiguous acres in and immediately adjacent to sagebrush habitats.
 - Committed to additional sagebrush and forb reclamation.
 - Committed to closure and reclamation of approximately 1.0 non-contiguous mile of two-tracks and other roads.
 - Committed to marking approximately 1.5 non-contiguous miles of fence (additional marking and fence removals may occur).
 - Committed to not use anti-coagulant poisons for control of black-tailed prairie dogs; colonies in and near the AM5 haul road area serve as primary breeding sites for sage-grouse.
 - Committed to treat burned areas for invasive grass and weed species.
 - Committed to treating 35 acres of cheatgrass invasion areas.
6.0 References

Appendix B: Greater Sage-grouse Mitigation Plan

Appendix B: Greater Sage-grouse Mitigation Plan

ONE 6(10): e26273. Available at:

http://dx.doi.org/10.1890/ES11-00315.1.

Ellis, K.L. 1987. Effects of new transmission line on breeding male sage grouse at a lek in northwestern Utah. 15th Sage-grouse workshop transactions of the western states sage-grouse committee. Western Association of Fish and Game Agencies, 28-30 July 1987, Midway, Utah, USA.

Appendix B: Greater Sage-grouse Mitigation Plan

U.S. Department of Interior Fish and Wildlife Service. 2017. Wyoming ES – Species of Concern, Raptors in Wyoming. Table 1 – Service’s Wyoming Ecological Services Field Office’s Recommended Spatial and Seasonal Buffers for Breeding Raptors. Also used by the Montana Ecological Services Field Office in Helena, Montana (J. Berglund, Montana Ecological Services Field Office-Helena, personal
Appendix B: Greater Sage-grouse Mitigation Plan

communication to G. McKee, Great Plains Wildlife Consulting, Inc.). Available at: https://www.fws.gov/wyominges/Species/Raptors.php.

Figure 1. Cloud Peak Energy’s Proposed AM5 Haul Road Project between the Spring Creek Mine and Youngs Creek Mine.
Figure 2. Sage-grouse Core Areas and Lek No Surface Occupancy (NSO) Buffers near the Spring Creek Mine’s Proposed AM5 Haul Road Project.
Figure 3. Baseline Vegetation Communities in the Spring Creek Mine’s Proposed AM5 Haul Road Project Disturbance Corridor.
Figure 4. Slope Analysis in the Spring Creek Mine’s Proposed AM5 Haul Road Project Disturbance Corridor.
Figure 5. Terrain Roughness Analysis in the Spring Creek Mine’s Proposed AM5 Haul Road Project Disturbance Corridor.
Appendix C: Alluvial Valley Floor (AVF) Determination.
Alluvial Valley Floor (AVF) Determination

Regulatory Framework
The Montana Strip and Underground Reclamation Act (MSUMRA) § 82-4-201 through 82-4-254, MCA, and its implementing rules, Administrative Rules of Montana (ARM) 17.24.301 through 17.24.1309, specifically § 82-4-227(3) (b) (i)-(ii) MCA, and ARM 17.24.301 and 17.24.325 set forth the process for identifying an alluvial valley floor (AVF) located in the arid and semi-arid lands of Montana. The “significance” of an AVF is determined based on the criteria set forth in ARM 17.24.325 and 17.24.805. Any mine proposal or mine related disturbance within a valley holding a stream, or adjacent to and connected to a valley holding a stream, must have an AVF determination. MSUMRA requires protection of identified AVFs from impacts of coal mining that are adverse to agricultural activities or farming.

An AVF determination consists of three separate evaluations. The first evaluation determines the presence and extent or absence of AVFs based on criteria defined in ARM 17.24.325(2). The second evaluation determines the significance of the AVF for adversely affected agricultural or farming operations, ARM 17.24.805: “The significance of the impact of the proposed operations on farming is based on the relative importance of the vegetation and water of the grazed or hayed alluvial valley floor area to the farm’s production…” It is important to note here that significance of an AVF is not the same significance used in environmental assessment. The third evaluation determines the essential hydrologic functions of each AVF, ARM 17.24.325 (3)(c)(i)(ii) and (e). If the first evaluation determines that no AVF is present, then further evaluation is not warranted. If an AVF is identified, then significance and essential hydrologic functionality of that AVF must be determined. The key to the existence of an AVF is the presence of both geomorphic characteristics and water availability for agricultural activities or farming.

AVF Discussion
For the complete document “Alluvial Valley Floor Determination for Four Drainages intersected by Cloud Peak Energy’s Proposed Amendment, AM5, to Spring Creek Mine”. The proposed amendment crosses four drainages requiring an AVF determination. Listed from north to south the drainages are Squirrel Creek, Dry Creek, Youngs Creek, and Little Youngs Creek.

Dry Creek did not demonstrate presence of an AVF due to minimal geologic structure and inadequate water resources. Squirrel, Youngs, and Little Youngs creeks all have AVF presence determinations. Due to the presence of AVF these three creeks were evaluated for significance to the farm or ranch operation they are associated with.
Appendix C: Alluvial Valley Floor Determination

Pursuant to ARM 17.24.325(3)(a)(ii)(A–C), DEQ utilized existing scientific data and surface operator information to determine whether any statutory exclusions were applicable to the significance determination for each of these creeks. Due to the undeveloped nature of Squirrel Creek and negligible size of impacted acreage in the Youngs Creek and Little Youngs Creek AVFs, the AVFs in each of the three creeks are considered insignificant to agriculture (Spring Creek AM5, AVF Determination).

The final step for this AVF determination was evaluating the hydrologic function of the AVF creeks. All three creeks demonstrate intact hydrologic functionality. Alluvial and groundwater aquifers interact with stream flows showing characteristic water storage capacity and natural flow regulation are present. Squirrel Creek represents a losing stream through the study area and both Youngs and Little Youngs creeks are gaining streams through the study area. These functionalities would be maintained and monitored through the life of the project.

Compaction is expected in the top few feet of the groundwater aquifer through construction and reclamation of the road and associated disturbance. The compaction is not expected to affect the water moving through the groundwater aquifer. These impacts are not expected due to water levels in the aquifer being below the zone of compaction a majority of the year. To ameliorate the compacted area, the compacted strata would be ripped to break up the massive structure during reclamation. The hydrologic function of the creeks is expected to continue supporting the farm and ranch operations they are associated with (Spring Creek AM5, AVF Determination).
Appendix C: Alluvial Valley Floor Determination

Page left blank for two-sided printing.