Federal Draft
Environmental Impact Statement

and

State of Montana Supplemental Draft
Environmental Impact Statement

for the
Montana Alberta Tie Ltd. (MATL)
230-kV Transmission Line

VOLUME I

February 2008

United States
Department of Energy

State of Montana
Department of Environmental Quality
COVER SHEET

Responsible Agencies: U.S. Department of Energy (DOE) and Montana Department of Environmental Quality (DEQ) are co-lead agencies; the Bureau of Land Management (BLM), U.S. Department of the Interior, is a cooperating agency.

Location: Cascade, Teton, Chouteau, Pondera, Toole, and Glacier Counties, Montana.

For general information on the State of Montana Major Facility Siting Act process, contact: Tom Ring, Environmental Sciences Specialist, Montana Department of Environmental Quality (DEQ), PO Box 200901, Helena, MT 59620-0901, or (406) 444-6785. For general information on the State of Montana Environmental Policy Act process, contact: Greg Hallsten, Environmental Science Specialist, at the above address, (406) 444-3276.

Comments: For the convenience of commentors, the Montana DEQ has agreed to receive all comments on this document and to provide them to DOE for consideration. Comments may be submitted to Tom Ring at the above address or via electronic mail at matl@mt.gov.

Abstract: MATL proposes to construct and operate a merchant 230-kV transmission line between Great Falls, Montana, and Lethbridge, Alberta, that would cross the U.S.-Canada border north of Cut Bank, Montana. The transmission line would transmit 300 megawatts (MW) of electric power south and 300 MW north. In order to build and operate the line, MATL must first obtain a Presidential permit from DOE to cross the U.S.-Canada border, a certificate of compliance from the Montana DEQ to construct the line in Montana, and a right-of-way grant from the BLM to cross any BLM-administered lands.

In March 2007, DOE and DEQ prepared a joint document that was a Draft Environmental Assessment for DOE and a Draft EIS for DEQ. Based largely on the public comments received on the March 2007 document, DOE determined that an EIS was the appropriate level of review. For the same reasons, DEQ decided to prepare a supplement to its Draft EIS. The Notice of Intent to prepare this Federal Draft EIS was published on June 7, 2007 (72 FR 31569).

This EIS analyzes the “No Action” alternative, three alternative transmission line alignments, and 11 local routing options. This EIS will be used by DOE, DEQ, and BLM to ensure that they have the environmental information needed to render informed decisions.

Comment Period: The agencies will prepare a Final EIS after considering all comments received or postmarked during the 45-day public comment period that will begin when the U.S. Environmental Protection Agency publishes a Notice of Availability of this Draft EIS in the Federal Register. The agencies will consider late comments to the extent practicable. Locations and times for public hearings will be announced in the Federal Register as well as in local media. The Draft EIS will be available on DOE’s NEPA website at www.eh.doe.gov/nepa/documentspub.html.
Table of Contents

VOLUME I

SUMMARY .. S-1

S.1 Introduction ... S-1

S.2 Purpose and Benefit to the State of Montana .. S-2
 S.2.1 Benefits to Electricity Generators and Consumers in Montana S-2
 S.2.2 Benefits to Existing Transmission Systems ... S-2
 S.2.3 Benefits as Stated by the Applicant ... S-3

S.3 General DOE, MFSA, NEPA/MEPA, and BLM Requirements S-4
 S.3.1 Purpose and Need for DOE Action ... S-4
 S.3.2 DEQ MFSA Requirements .. S-5
 S.3.3 BLM Requirements ... S-6
 S.3.4 NEPA/MEPA Process .. S-6

S.4 Alternatives Description .. S-9
 S.4.1 Details Common to All Action Alternatives .. S-11
 S.4.2 Alternative 1 — No Action .. S-16
 S.4.3 Alternative 2 — MATL’s Proposed Project .. S-16
 S.4.4 Alternative 3 — MATL B ... S-16
 S.4.5 Alternative 4 — DEQ-Developed ... S-17
 S.4.6 Local Routing Options .. S-17
 S.4.7 Alternatives Considered But Dismissed .. S-20

S.5 Affected Environment .. S-22

S.6 Comparison of Alternatives and Impacts ... S-23
 S.6.1 Cumulative Impacts ... S-24
 S.6.2 Unavoidable Adverse Impacts ... S-45
 S.6.3 Irreversible or Irretrievable Commitments of Resources S-45
 S.6.4 Short-Term Use and Long-Term Productivity .. S-46

S.7 Regulatory Restrictions Analysis .. S-46

S.8 Intentional Destructive Acts ... S-48

Chapter 1 Purpose, Benefits and Need for the Proposed Actions 1-1
 1.1 Project Background ... 1-6
 1.2 Purpose, Benefit, and Need .. 1-8
 1.2.1 Purpose and Benefit to the State of Montana .. 1-8
 1.2.2 Benefits as Stated by the Applicant ... 1-9
 1.2.3 Need for the Facility ... 1-10
Table of Contents

1.2.4 Purpose and Need for DOE Action...1-10

1.3 Scope of this Document... 1-10
 1.3.1 Alternatives Considered for Detailed Analysis.................................1-11
 1.3.2 Other Analysis Used in this Document..1-12

1.4 Agency Permitting Actions and Authorities ... 1-13

1.5 Public Participation and Issues of Concern.. 1-17
 1.5.1 Opportunities for Public and Agency Input ..1-17
 1.5.2 Issues of Concern ..1-18

1.6 Definition of Terms.. 1-20

Chapter 2 Description of Alternatives.. 2-1

 2.1 Development of Alternatives .. 2-1
 2.2 Alternative 1 - No Action... 2-2
 2.3 Alternative 2 – Proposed Project (MATL A).. 2-3
 2.4 Alternative 3 – MATL B ... 2-27
 2.5 Alternative 4 – Agencies’ Alternative ... 2-32
 2.6 Development of Local Routing Options for Alternatives 2 and 4 2-41
 2.6.1 Diamond Valley Area... 2-41
 2.6.2 Teton River Crossing Area .. 2-43
 2.6.3 Southeast of Conrad ... 2-45
 2.6.4 West of Conrad.. 2-45
 2.6.5 Northwest of Conrad.. 2-45
 2.6.6 Belgian Hill Area.. 2-45
 2.6.7 Bullhead Coulee Area... 2-50
 2.6.8 South of Cut Bank.. 2-50
 2.7 Alternatives Considered but Dismissed.. 2-50

Chapter 3 Affected Environment and Environmental Impacts................... 3-1

 3.1 Land Use and Infrastructure ... 3-2
 3.1.1 Analysis Methods .. 3-2
 3.1.2 Affected Environment .. 3-3
 3.1.3 Environmental Impacts... 3-13
 3.1.3.1 Alternative 1 - No Action.. 3-13
 3.1.3.2 Alternatives 2, 3, and 4 – Action Alternatives 3-13
 3.1.3.3 Local Routing Options... 3-24

 3.2 Geology and Soils ... 3-25
 3.2.1 Analysis Methods ... 3-25
 3.2.2 Affected Environment .. 3-25
 3.2.3 Environmental Impacts... 3-31
Table of Contents

3.2.3.1 Alternative 1 - No Action ... 3-32
3.2.3.2 Alternative 2 - Proposed Project .. 3-32
3.2.3.3 Alternative 3 – MATL B ... 3-33
3.2.3.4 Alternative 4 – Agency Alternative ... 3-34
3.2.3.5 Local Routing Options ... 3-35

3.3 Engineering and Hazardous Materials ... 3-36
3.3.1 Analysis Methods ... 3-36
3.3.2 Affected Environment .. 3-36
3.3.3 Environmental Impacts ... 3-38
 3.3.3.1 Alternative 1 - No Action ... 3-38
 3.3.3.2 Alternatives 2, 3, and 4 – Action Alternatives 3-38
 3.3.3.3 Local Routing Options ... 3-40

3.4 Electric and Magnetic Fields ... 3-41
3.4.1 Analysis Methods .. 3-41
3.4.2 Affected Environment ... 3-42
3.4.3 Environmental Impacts ... 3-48
 3.4.3.1 Alternative 1 - No Action ... 3-49
 3.4.3.2 Alternative 2 – Proposed Project .. 3-49
 3.4.3.3 Alternatives 3 and 4 – MATL B and Agency Alternative 3-55

3.5 Water Resources .. 3-57
3.5.1 Analysis Methods .. 3-57
3.5.2 Affected Environment ... 3-58
3.5.3 Environmental Impacts ... 3-62
 3.5.3.1 Alternative 1 - No Action ... 3-63
 3.5.3.2 Alternative 2 – Proposed Project .. 3-63
 3.5.3.3 Alternatives 3 and 4 .. 3-64
 3.5.3.4 Local Routing Options ... 3-64

3.6 Wetlands and Floodplains .. 3-65
3.6.1 Analysis Methods .. 3-65
3.6.2 Affected Environment ... 3-66
3.6.3 Environmental Impacts to Wetlands... 3-73
 3.6.3.1 Alternative 1 - No Action ... 3-75
 3.6.3.2 Alternative 2 – Proposed Project .. 3-75
 3.6.3.3 Alternatives 3 – MATL B ... 3-76
 3.6.3.4 Alternative 4 – Agency Alternative .. 3-77
3.6.4 Environmental Impacts to Floodplains... 3-79
3.6.5 Local Routing Options .. 3-81

3.7 Vegetation .. 3-82
3.7.1 Analysis Methods ... 3-82
3.7.2 Affected Environment ... 3-82
 3.7.2.1 Riparian Vegetation .. 3-85
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.3 Environmental Impacts</td>
<td>3-88</td>
</tr>
<tr>
<td>3.7.3.1 Alternative 1 – No Action</td>
<td>3-88</td>
</tr>
<tr>
<td>3.7.3.2 Alternatives 2, 3, and 4 – Action Alternatives</td>
<td>3-88</td>
</tr>
<tr>
<td>3.7.3.3 Local Routing Options</td>
<td>3-91</td>
</tr>
<tr>
<td>3.8 Wildlife</td>
<td>3-92</td>
</tr>
<tr>
<td>3.8.1 Analysis Methods</td>
<td>3-92</td>
</tr>
<tr>
<td>3.8.2 Affected Environment</td>
<td>3-92</td>
</tr>
<tr>
<td>3.8.2.1 Mammals</td>
<td>3-94</td>
</tr>
<tr>
<td>3.8.2.2 Birds</td>
<td>3-99</td>
</tr>
<tr>
<td>3.8.2.3 Reptiles and Amphibians</td>
<td>3-104</td>
</tr>
<tr>
<td>3.8.3 Environmental Impacts</td>
<td>3-104</td>
</tr>
<tr>
<td>3.8.3.1 Alternative 1 - No Action</td>
<td>3-104</td>
</tr>
<tr>
<td>3.8.3.2 Alternatives 2, 3, and 4 – Action Alternatives</td>
<td>3-105</td>
</tr>
<tr>
<td>3.8.3.3 Local Routing Options</td>
<td>3-111</td>
</tr>
<tr>
<td>3.9 Fish</td>
<td>3-112</td>
</tr>
<tr>
<td>3.9.1 Analysis Methods</td>
<td>3-112</td>
</tr>
<tr>
<td>3.9.2 Affected Environment</td>
<td>3-112</td>
</tr>
<tr>
<td>3.9.3 Environmental Impacts</td>
<td>3-114</td>
</tr>
<tr>
<td>3.9.3.1 Alternative 1 - No Action</td>
<td>3-114</td>
</tr>
<tr>
<td>3.9.3.2 Alternatives 2, 3, and 4 – Action Alternatives</td>
<td>3-114</td>
</tr>
<tr>
<td>3.9.3.3 Local Routing Options</td>
<td>3-115</td>
</tr>
<tr>
<td>3.10 Threatened, Endangered, and Candidate for Listing Species</td>
<td>3-116</td>
</tr>
<tr>
<td>3.10.1 Analysis Methods</td>
<td>3-116</td>
</tr>
<tr>
<td>3.10.2 Affected Environment</td>
<td>3-116</td>
</tr>
<tr>
<td>3.10.2.1 Vegetation</td>
<td>3-116</td>
</tr>
<tr>
<td>3.10.2.2 Wildlife</td>
<td>3-118</td>
</tr>
<tr>
<td>3.10.2.3 Fish</td>
<td>3-124</td>
</tr>
<tr>
<td>3.10.3 Environmental Impacts</td>
<td>3-125</td>
</tr>
<tr>
<td>3.10.3.1 Alternative 1 - No Action</td>
<td>3-125</td>
</tr>
<tr>
<td>3.10.3.2 Alternatives 2, 3, and 4 – Action Alternatives</td>
<td>3-125</td>
</tr>
<tr>
<td>3.10.3.3 Local Routing Options</td>
<td>3-130</td>
</tr>
<tr>
<td>3.11 Air Quality</td>
<td>3-131</td>
</tr>
<tr>
<td>3.11.1 Analysis Methods</td>
<td>3-131</td>
</tr>
<tr>
<td>3.11.2 Affected Environment</td>
<td>3-131</td>
</tr>
<tr>
<td>3.11.3 Environmental Impacts</td>
<td>3-135</td>
</tr>
<tr>
<td>3.11.3.1 Alternative 1 - No Action</td>
<td>3-135</td>
</tr>
<tr>
<td>3.11.3.2 Alternatives 2, 3, and 4 – Action Alternatives</td>
<td>3-136</td>
</tr>
<tr>
<td>3.11.3.3 Local Routing Options</td>
<td>3-136</td>
</tr>
<tr>
<td>3.12 Audible Noise</td>
<td>3-137</td>
</tr>
<tr>
<td>3.12.1 Analysis Methods</td>
<td>3-137</td>
</tr>
<tr>
<td>3.12.2 Affected Environment</td>
<td>3-138</td>
</tr>
</tbody>
</table>
Table of Contents

3.12.3 Environmental Impacts .. 3-139
 3.12.3.1 Alternative 1 – No Action ... 3-139
 3.12.3.2 Alternatives 2, 3, and 4 – Action Alternatives 3-139
 3.12.3.3 Local Routing Options ... 3-142

3.13 Socioeconomics ... 3-143
 3.13.1 Analysis Method .. 3-143
 3.13.2 Affected Environment ... 3-144
 3.13.2.1 Demographics .. 3-144
 3.13.2.2 Economic Activity ... 3-149
 3.13.2.3 Local Resources .. 3-159
 3.13.3 Environmental Impacts ... 3-162
 3.13.3.1 Alternative 1 – No Action ... 3-163
 3.13.3.2 Alternative 2 – Proposed Project ... 3-163
 3.13.3.3 Alternatives 3 and 4 – MATL B and Agency Alternative3-174
 3.13.3.4 Environmental Justice ... 3-176

3.14 Paleontological and Cultural Resources ... 3-182
 3.14.1 Analysis Methods ... 3-182
 3.14.2 Affected Environment .. 3-184
 3.14.3 Environmental Impacts ... 3-189
 3.14.3.1 Alternative 1 – No Action ... 3-192
 3.14.3.2 Alternative 2 – Proposed Project ... 3-192
 3.14.3.3 Alternative 3 – MATL B ... 3-193
 3.14.3.4 Alternative 4 – Agency Alternatives... 3-193

3.15 Visuals ... 3-194
 3.15.1 Analysis Methods ... 3-194
 3.15.2 Affected Environment .. 3-194
 3.15.3 Environmental Impacts ... 3-200
 3.15.3.1 Alternative 1 – No Action ... 3-202
 3.15.3.2 Alternatives 2, 3, and 4 – Action Alternatives 3-202
 3.15.3.3 Local Routing Options ... 3-209

3.16 Local Routing Options .. 3-210
 3.16.1 Analysis Methods ..3-210
 3.16.2 Affected Environment ... 3-211
 3.16.3 Environmental Impacts ... 3-211
 3.16.3.1 Diamond Valley Area ... 3-214
 3.16.3.2 Teton River Crossing Area ... 3-214
 3.16.3.3 Southeast of Conrad .. 3-215
 3.16.3.4 West of Conrad .. 3-215
 3.16.3.5 Northwest of Conrad ... 3-216
 3.16.3.6 Belgian Hill Road Area ... 3-216
 3.16.3.7 Bullhead Coulee Area ... 3-217
 3.16.3.8 South of Cut Bank .. 3-217
Table of Contents

3.17 Electrical Transmission System Operation and Reliability........................ 3-218
3.17.1 Existing Transmission System..3-218
3.17.2 System Reliability Constraints and Influences3-221

3.18 Information Regarding Findings for MFSA Certification....................... 3-224
3.18.1 Need..3-224
3.18.2 Nature of Probable Environmental Impacts ..3-225
3.18.3 Facility Minimizes Adverse Environmental Impact3-225
3.18.4 Locating Transmission Lines Underground ...3-226
3.18.5 Facility is Consistent with Regional Plans for Expansion of the
 Appropriate Grid of the Utility Systems Serving the State and
 Interconnected Utility Systems...3-227
3.18.6 Facility Would Serve the Interests of Utility System Economy and
 Reliability ...3-227
3.18.7 Location of the Proposed Facility Conforms to Applicable State and
 Local Laws ...3-227
3.18.8 Facility Would Serve the Public Interest, Convenience, and Necessity...3-227
3.18-9 Public and Private Lands ...3-228
3.18-10 DEQ Issuance of Necessary Decisions, Opinions, Orders,
 Certifications, and Permits ..3-228

Chapter 4 Cumulative Impacts and Other NEPA and MEPA
 Considerations .. 4-1
4.1 Cumulative Impacts ..4-3
4.1.1 Region of Influence for Cumulative Impacts ...4-4
4.1.2 Past and Present Actions Potentially Contributing to
 Cumulative Impacts ..4-4
4.1.3 Reasonably Foreseeable Future Actions Potentially Contributing to
 Cumulative Impacts ..4-5
4.2 Cumulative Impacts on Land use and Infrastructure 4-16
4.3 Cumulative Impacts on Geology and Soils .. 4-19
4.4 Cumulative Impacts Related to Hazardous Materials 4-20
4.5 Cumulative Impacts on EMF and Health and Safety 4-20
4.6 Cumulative Impacts on Water Resources ... 4-21
4.7 Cumulative Impacts on Wetlands and Floodplains 4-23
4.8 Cumulative Impacts on Vegetation ..4-23
4.9 Cumulative Impacts on Wildlife ...4-25
4.10 Cumulative Impacts on Fish ..4-30
4.11 Cumulative Impacts on Special Status Species 4-30
4.12 Cumulative Impacts on Air Quality ..4-31
4.13 Cumulative Noise Impacts ...4-32
4.14 Cumulative Socioeconomic and Environmental Justice Impacts 4-33
4.15 Cumulative Impacts on Paleontological and Cultural Resources 4-36
4.16 Cumulative Visual Resource Impacts ... 4-38
Table of Contents

4.17 Unavoidable Adverse Impacts ... 4-42
4.18 Irreversible and Irretrievable Commitments of Resources 4-43
4.19 Relationship between Short-Term Use and Long-Term Productivity 4-44
4.20 Regulatory Restrictions Analysis ... 4-46
4.21 Intentional Destructive Acts ... 4-45

Chapter 5 Consultation and Coordination .. 5-1
Chapter 6 List of Preparers ... 6-1
Chapter 7 Glossary and Acronym List ... 7-1
Chapter 8 References .. 8-1
Chapter 9 Distribution List .. 9-1

VOLUME 2 - Response to Public Comments

Appendices

A DEQ Local Realignment Segments Preliminary Analysis (In March 2007 document)
B Types of H-frame Structures (In March 2007 document)
C MATL Noxious Weed Control Plan (In March 2007 document)
D Draft MATL Reclamation & Revegetation Plan (In March 2007 document)
E Drainages and Wetland Areas That Would Be Avoided (In March 2007 document)
F Revised Draft DEQ Environmental Specifications
G Alternatives Considered But Dismissed by MATL (In March 2007 document)
H Land Use Types By Milepost
I Impaired River Segments Summary Sheets (In March 2007 document)
J Summary of Surface Water Resources and Water Quality (In March 2007 document)
K Priority Pollutant Monitoring Data (In March 2007 document)
L Photographic Simulations
M MATL System Impact Study and WECC Letter
N Farm Cost Review for MATL Project
O Potential Wind Farm Mitigation Measures Adapted from BLM Programmatic EIS for Wind Energy Development on BLM Lands in the Western U.S.
Table of Contents

Figures

S-1	Project Study Area	S-10
S-2	Proposed MATL Powerline Typical Support Structures	S-12
S-3	Local Routing Options	S-19

| 1.1-1 | Project Study Area | 1-2 |
| 1.1-2 | NERC Regions and Balancing Authorities | 1-7 |

2.3-1	Alternative 2 Alignment	2-4
2.3-2	Alternative 2 Alignment - South	2-5
2.3-3	Alternative 2 Alignment - Middle	2-6
2.3-4	Alternative 2 Alignment - North	2-7
2.3-5	Proposed MATL Powerline Typical Structures	2-10

2.4-1	Alternative 3 Alignment - (MATL B)	2-28
2.4-2	Alternative 3 Alignment - South	2-29
2.4-3	Alternative 3 Alignment - Middle	2-30
2.4-4	Alternative 3 Alignment - North	2-31

2.5-1	Alternative 4 Alignment	2-35
2.5-2	Alternative 4 Alignment - South	2-36
2.5-3	Alternative 4 Alignment - Middle	2-37
2.5-4	Alternative 4 Alignment - North	2-38

2.6-1	Local Routing Options	2-40
2.6-2	Local Routing Options in Diamond Valley Area	2-42
2.6-3	Local Routing Option at Teton River Crossing	2-44
2.6-4	Local Routing Options Southeast of Conrad	2-46
2.6-5	Local Routing Option West of Conrad	2-47
2.6-6	Local Routing Option Northwest of Conrad	2-48
2.6-7	Local Routing Options in the Belgian Hill Area	2-49
2.6-8	Local Routing Options Bullhead Coulee Area	2-51

2.7-1	Dismissed Alignments in Diamond Valley Area	2-54
2.7-2	Dismissed Alignments West of Conrad	2-56
2.7-3	Dismissed Alignments in Bullhead Coulee Area	2-57

3.1-1	Proposed MATL Powerline Land Use Analysis Area - South	3-5
3.1-2	Proposed MATL Powerline Land Use Analysis Area - Middle	3-6
3.1-3	Proposed MATL Powerline Land Use Analysis Area - North	3-7
Table of Contents

Figures (Cont.)

3.2-1 Soil Erosion Potential ... 3-28
3.4-1 Existing Transmission Lines Larger than 69kV in Project Vicinity 3-45
3.4-2 Proposed MATL Powerline Electric Field Strength for Normal Operating Conditions, Optimized Phasing .. 3-51
3.4-3 Proposed MATL Powerline Magnetic Field Strength for Normal Operating Conditions, Optimized Phasing .. 3-52
3.5-1 Watersheds Intersecting the Study Area 3-58
3.5-2 Hydrogeologic Features and Water Quality 3-60
3.6-1 Wetlands in Study Area – South ... 3-69
3.6-2 Wetlands in Study Area – Middle .. 3-70
3.6-3 Wetlands in Study Area – North ... 3-71
3.8-1 Proposed MATL Powerline Mule Deer Winter Range and Species of Special Concern – South ... 3-95
3.8-2 Proposed MATL Powerline Mule Deer Winter Range and Species of Special Concern – Middle ... 3-96
3.8-3 Proposed MATL Powerline Mule Deer Winter Range and Species of Special Concern – North ... 3-97
3.13-1 Census Tracts in the Region Surrounding the Proposed Project 3-177
3.15-1 Locations of Visual Importance – South .. 3-197
3.15-2 Locations of Visual Importance – Middle ... 3-198
3.15-3 Locations of Visual Importance – North .. 3-199
3.15-4 Visual Simulation Locations .. 3-206
3.15-5 Proposed MATL Powerline Bootlegger Trail-Visual Simulation of Monopole Construction ... 3-207
3.15-6 Proposed MATL Powerline Marias River Crossing Visual Simulation 3-208
4.1-1 Proposed Highwood Generating Station ... 4-7
4.1-2 Areas of Interest in Wind Farm Development 4-10
4.16-1 Two 1.5 MW Turbines with Passing Crane Truck and Crazy Mountains in the Background ... 4-39
4.16-2 Turbines on West Side of US Highway 191 with Big Belt Mountains in Background ... 4-40
4.16-3 Judith Gap Operations and Control Facility with Foothills of Big Snowy Mountains in the Background ... 4-39

ix
Table of Contents

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>Summary of Construction Tasks and Required Resources and Equipment</td>
</tr>
<tr>
<td>S-2</td>
<td>Summary of Impacts by Resource Area</td>
</tr>
<tr>
<td>S-3</td>
<td>Project Costs</td>
</tr>
<tr>
<td>1.4-1</td>
<td>Permits and Other Requirements for the Project</td>
</tr>
<tr>
<td>2.3-1</td>
<td>Typical Design Characteristics</td>
</tr>
<tr>
<td>2.3-2</td>
<td>Additional Design Characteristics</td>
</tr>
<tr>
<td>2.3-3</td>
<td>Summary of Construction Tasks and Required Resources and Equipment</td>
</tr>
<tr>
<td>2.3-4</td>
<td>MATL Proposed Environmental Protection Measures</td>
</tr>
<tr>
<td>3.1-1</td>
<td>Land Ownership and Jurisdiction within Analysis Area</td>
</tr>
<tr>
<td>3.1-2</td>
<td>Agricultural Lands in the Analysis Area</td>
</tr>
<tr>
<td>3.1-3</td>
<td>Type of Land Use Crossed by Alternatives 2, 3, and 4 (Miles)</td>
</tr>
<tr>
<td>3.1-4</td>
<td>Acres of Production in CRP or Cropland Affected By H-Frame or Monopole Structures in Alternatives 2, 3, and 4</td>
</tr>
<tr>
<td>3.1-5</td>
<td>Miles of Federal/State Land and Special Management Areas and Conservation Easements Crossed</td>
</tr>
<tr>
<td>3.1-6</td>
<td>Highways Crossed by Alternative</td>
</tr>
<tr>
<td>3.3-1</td>
<td>Maximum Steady State Induced Voltages for Selected Separation Distances and Lengths of Parallel</td>
</tr>
<tr>
<td>3.3-2</td>
<td>Areas Where Transmission Line and Pipeline Separation and Length of Parallel May Create Voltages Above 15 Volts</td>
</tr>
<tr>
<td>3.4-1</td>
<td>EMF Level of Some Common Household Appliances</td>
</tr>
<tr>
<td>3.4-2</td>
<td>Short Circuit Currents for Various Object in Milliamperes</td>
</tr>
<tr>
<td>3.4-3</td>
<td>EMF Effects</td>
</tr>
<tr>
<td>3.5-1</td>
<td>Hydrology – Comparison of Alternatives</td>
</tr>
<tr>
<td>3.6-1</td>
<td>Wetland Types Mapped in Analysis Area</td>
</tr>
<tr>
<td>3.6-2</td>
<td>Percentage and Area of Wetland Types in Analysis Area</td>
</tr>
<tr>
<td>3.6-3</td>
<td>Wetlands Potentially Affected By Alternative 2</td>
</tr>
<tr>
<td>3.6-4</td>
<td>Wetlands Potentially Affected By Alternative 3</td>
</tr>
<tr>
<td>3.6-5</td>
<td>Wetlands Potentially Affected By Alternative 4</td>
</tr>
<tr>
<td>Table Number</td>
<td>Table Title</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>3.7-1</td>
<td>Project Area Level IV Ecoregions</td>
</tr>
<tr>
<td>3.7-2</td>
<td>Dominant Plant Species Combinations in The Project Area</td>
</tr>
<tr>
<td>3.7-3</td>
<td>Category One and Two Noxious Weeds Found In Counties within the Project Area</td>
</tr>
<tr>
<td>3.7-4</td>
<td>Native Vegetation Cover Types Crossed By Alternatives 2, 3, and 4</td>
</tr>
<tr>
<td>3.7-5</td>
<td>Estimated Operational Disturbance for H-Frame Structures by Native Cover Type</td>
</tr>
<tr>
<td>3.8-1</td>
<td>Species Observed in the Analysis Area During Field Investigations</td>
</tr>
<tr>
<td>3.8-2</td>
<td>Bat Species Likely to Occur in the Analysis Area</td>
</tr>
<tr>
<td>3.8-3</td>
<td>Waterfowl and Shore Birds Sighted On Benton Lake NWR Since 1961</td>
</tr>
<tr>
<td>3.8-4</td>
<td>Raptors Observed at the Kevin Rim, 1993-1994</td>
</tr>
<tr>
<td>3.8-5</td>
<td>Reptile and Amphibian Species Likely to Occur in the Analysis Area</td>
</tr>
<tr>
<td>3.8-6</td>
<td>Mule Deer Winter Range Impacted By Alternatives</td>
</tr>
<tr>
<td>3.9-1</td>
<td>Fish Species Known To Occur Within the Project Area</td>
</tr>
<tr>
<td>3.10-1</td>
<td>Plant Species of Concern Reported To Occur Within or Adjacent to the Project Area</td>
</tr>
<tr>
<td>3.10-2</td>
<td>Special Status Wildlife Species Reported to Occur Within or Adjacent to the Project Area by NHP</td>
</tr>
<tr>
<td>3.10-3</td>
<td>Linear Miles of Special Status Species’ Habitat Range by Alternative</td>
</tr>
<tr>
<td>3.11-1</td>
<td>State of Montana and National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>3.12-1</td>
<td>Noise Levels of Common Sources</td>
</tr>
<tr>
<td>3.12-2</td>
<td>Audible Noise Effect</td>
</tr>
<tr>
<td>3.13-1</td>
<td>Demographic Profiles of Counties within the Project Analysis Area</td>
</tr>
<tr>
<td>3.13-2</td>
<td>Race and Ethnicity within Counties in the Project Analysis Area</td>
</tr>
<tr>
<td>3.13-3</td>
<td>Employment and Data Trends by County, 2000 – 2005</td>
</tr>
<tr>
<td>3.13-4</td>
<td>Industry Sector Earnings Trends – Cascade County</td>
</tr>
<tr>
<td>3.13-5</td>
<td>Industry Sector Earnings Trends – Teton County</td>
</tr>
<tr>
<td>3.13-6</td>
<td>Industry Sector Earnings Trends – Chouteau County</td>
</tr>
<tr>
<td>3.13-7</td>
<td>Industry Sector Earnings Trends – Pondera County</td>
</tr>
<tr>
<td>3.13-8</td>
<td>Industry Sector Earnings Trends – Toole County</td>
</tr>
<tr>
<td>3.13-9</td>
<td>Industry Sector Earnings Trends – Glacier County</td>
</tr>
<tr>
<td>3.13-10</td>
<td>Per Capita Personal Income Trends</td>
</tr>
<tr>
<td>3.13-11</td>
<td>Costs of Dryland Farming Around Pole(s)</td>
</tr>
<tr>
<td>3.13-12</td>
<td>Costs of Irrigated Farming Around Pole(s)</td>
</tr>
</tbody>
</table>
Table of Contents

Tables (Cont.)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.13-13</td>
<td>Estimated Annual and 50-Year Gross Costs to Farmers from MATL</td>
<td>3-167</td>
</tr>
<tr>
<td>3.13-14</td>
<td>Estimated Total Annual Payments</td>
<td>3-168</td>
</tr>
<tr>
<td>3.13-15</td>
<td>Estimated Annual Net Effect on Farmers</td>
<td>3-169</td>
</tr>
<tr>
<td>3.13-16</td>
<td>Acres and Easement Payment</td>
<td>3-169</td>
</tr>
<tr>
<td>3.13-17</td>
<td>Payment to Farmers Annually to Compensate for Farmer Losses</td>
<td>3-170</td>
</tr>
<tr>
<td>3.13-18</td>
<td>Tax Benefit Estimates from MATL with 3% Tax Rate</td>
<td>3-175</td>
</tr>
<tr>
<td>3.13-19</td>
<td>Racial and Ethnic Composition (by Percentage) in 2000 of Census Tracts</td>
<td>3-178</td>
</tr>
<tr>
<td>3.13-20</td>
<td>Low-Income Compositions (by Percentage) in 2000 for Census Tracts</td>
<td>3-179</td>
</tr>
<tr>
<td>3.14-1</td>
<td>Results of Class I Inventory</td>
<td>3-186</td>
</tr>
<tr>
<td>3.14-2</td>
<td>Results of Class III Inventory, Alternative 2</td>
<td>3-188</td>
</tr>
<tr>
<td>3.15-1</td>
<td>Visual Impact Levels from Various Observation Points</td>
<td>3-202</td>
</tr>
<tr>
<td>3.15-2</td>
<td>Comparison of Distance Zones from Various Observation Points</td>
<td>3-203</td>
</tr>
<tr>
<td>3.16-1</td>
<td>Differences Between Local Routing Options and Alternative 2</td>
<td>3-212</td>
</tr>
<tr>
<td>3.18-1</td>
<td>Summary Comparison of Environmental Impacts and Costs by Action Alternative</td>
<td>3-229</td>
</tr>
<tr>
<td>4.1-1</td>
<td>Bids Accepted By MATL</td>
<td>4-2</td>
</tr>
<tr>
<td>4.1-2</td>
<td>Potential Generation Projects in the Vicinity of the MATL Line from</td>
<td>4-6</td>
</tr>
<tr>
<td></td>
<td>Northwestern and WAPA Interconnection Queues</td>
<td></td>
</tr>
<tr>
<td>4.1-3</td>
<td>Montana Department of Environmental Quality Permits and Approvals</td>
<td>4-11</td>
</tr>
<tr>
<td>4.1-4</td>
<td>Authorizations, Permits, Reviews, and Approvals by Other Agencies</td>
<td>4-13</td>
</tr>
<tr>
<td>4.9-1</td>
<td>Avian Fatality Rates Observed at Some Wind Energy Projects</td>
<td>4-28</td>
</tr>
<tr>
<td>4.9-2</td>
<td>Bat Fatality Rates Observed at Wind Energy Projects</td>
<td>4-29</td>
</tr>
<tr>
<td>4.14-1</td>
<td>Summary of Estimated Economic Effects of Different Levels of Wind Generation in the Study Area</td>
<td>4-34</td>
</tr>
<tr>
<td>4.20-1</td>
<td>Regulatory Restrictions Analysis</td>
<td>4-45</td>
</tr>
<tr>
<td>5.0-1</td>
<td>MATL Proposed Project Non-Governmental Organizations Contacted</td>
<td>5-4</td>
</tr>
</tbody>
</table>
Summary

S.1 Introduction

This document is both a State of Montana Supplemental Draft Environmental Impact Statement (EIS) and a U.S. Department of Energy (DOE) Federal Draft EIS (referred to herein as the Draft EIS for both state and federal purposes) prepared for the United States portion of the proposed Montana Alberta Tie Ltd. (MATL) 230-kilovolt (kV) transmission line.

MATL has proposed to construct an international 230-kV alternating current merchant (private) transmission line that would originate at an existing NorthWestern Energy (NWE) 230-kV switch yard at Great Falls, Montana, and extend north to a new substation to be constructed northeast of Lethbridge, Alberta, crossing the U.S.-Canada international border north of Cut Bank, Montana (proposed Project). Approximately 130 miles of the 203-mile transmission line are proposed to be constructed in the U.S. The line would be constructed and owned by MATL, a private Canadian corporation owned by Tonbridge Power. The proposed line would be part of the Western Interconnection¹ (western grid), and a phase shifting transformer would be installed at the substation near Lethbridge to control the direction of power flows on the line. In order to develop the proposed Project, MATL must obtain Federal and State authorizations.

MATL has submitted an application for a certificate of compliance (certificate) to the Montana Department of Environmental Quality (DEQ) under the Montana Major Facility Siting Act (MFSA), (75-20-101, et seq., Montana Code Annotated [MCA]). MATL has also applied to DOE for a Presidential permit (permit) to construct, operate, maintain, and connect facilities for the transmission of electric energy at the U.S.-Canada international border and to the U.S. Bureau of Land Management (BLM) for a right-of-way (ROW) grant for Transportation and Utility Systems and Facilities on Federal Land. MATL must receive all three authorizations before it can implement the proposed Project. In response to the application for a certificate, DEQ must prepare a report, conduct an environmental review, and issue an approval before construction may begin. These are required by the Montana Environmental Policy Act (MEPA) and MFSA. The DOE and BLM actions also require an environmental review conducted in accordance with the National Environmental Policy Act (NEPA).

¹ While the power system in North America is commonly referred to as “the grid,” there are actually three distinct power grids or “interconnections.” The Eastern Interconnection includes the eastern two-thirds of the continental United States and Canada from Saskatchewan east to the Maritime Provinces. The Western Interconnection includes the western third of the continental United States (excluding Alaska), the Canadian provinces of Alberta and British Columbia, and a portion of Baja California Norte, Mexico. The third interconnection comprises most of the State of Texas. The three interconnections are electrically independent from each other except for a few small direct current transmission lines that link them.
Summary

S.2 Purpose and Benefit to the State of Montana

The proposed MATL transmission line would connect the Montana electric system with the Alberta electric system, provide access to potential markets for new and existing power generation facilities in the vicinity of the proposed transmission line, and improve transmission access to markets seeking new energy resources. Expected benefits of the proposed Project are summarized below.

S.2.1 Benefits to Electricity Generators and Consumers in Montana

The proposed transmission line would have the capacity to carry up to 300 megawatt (MW) of electric power north and 300 MW south for a total capacity of up to 600 MW. However, due to constraints on the current system where the MATL line would tie in at Great Falls, the full capacity of 300 MW to the south may not be realized unless additional upgrades are made to the transmission system south of Great Falls. The added transmission capacity from the proposed MATL transmission line could support a modest increase in new power generation in Montana. While new generation higher than 600 MW would need more transmission capacity than MATL’s proposed Project could provide the construction and operation of the proposed Project would provide opportunities for development of smaller energy generation projects of up to 600 MW, such as wind energy, in Montana. Currently, MATL has sold all the “capacity” of the line to potential wind farms. The development of wind farms along the MATL line is considered to be a reasonably foreseeable future action under federal law and is analyzed under the cumulative impacts.

Additional expected benefits to Montana generators and consumers include: additional connection with markets that demand energy; additional wholesale electricity purchasing options for Montana utilities, which could result in lower electricity rates due to an increase in supplier competition; and increased opportunities for western grid optimization during high Montana export and low Alberta-to-British Columbia export scenarios.

S.2.2 Benefits to Existing Transmission Systems

A modified transmission system, including a tie line between Montana and Alberta, may also result in benefits to transmission system operators whose service areas include Montana and to utilities that provide transmission service within the state. A modified transmission system could provide more options for power routing within Montana, increase energy transactions between Montana and Alberta, and allow for easier balancing of energy surpluses and shortages within and between balancing authority areas. Because tie lines are able to connect with adjacent electric systems, different generation resources can combine to provide a level of reliability that one jurisdiction
Summary

could not otherwise afford to provide if that jurisdiction had to cover the same resources independently. The MATL line could also create another opportunity for Montana’s largest privately owned transmission and distribution utility, NWE, to obtain regulating reserves for its transmission system control area. Regulating reserves are likely to become increasingly important as more wind energy is built in NWE’s jurisdiction.

S.2.3 Benefits as Stated by the Applicant

The MATL transmission line would be a merchant line, the primary purpose of which is to financially benefit the owner/operators. The MATL application for certification described the following benefits to MATL, the U.S., and Canada:

The Project would be the United States’ first power transmission interconnection with Alberta and is expected to facilitate development of additional sources of generation (e.g., windfarms both in northern Montana, and southern Alberta), and improve transmission system reliability in Montana, Alberta, and on a regional basis in both the U.S. and Canada. In addition, the Project would promote increased trade in electrical energy across the international border, and provide a transmission route to balance energy surplus/shortage situations in an efficient and economic manner.

In addition, MATL asserts that system stability studies conducted under the direction of the Western Electricity Coordinating Council Peer Review Group indicate that the proposed Project would not adversely affect transmission system stability (Tonbridge Power, Inc. 2007).

The proposed Project is needed to provide transmission capacity between Lethbridge and Great Falls. There is currently no direct high voltage power transmission connection between Alberta and Montana. Although additional capacity is not needed to provide power to Montana customers, additional capacity would allow increased electricity trading between Alberta and Montana and could facilitate development of wind farms or other generation facilities in the vicinity of the northern part of the proposed transmission line.

Because Montana makes more electricity than it consumes, to be economically viable, any new generation resources in Montana must offer competitive pricing and have adequate transmission access to compete in out-of-state markets or replace an existing supplier choosing to take higher profits by selling out of state. Either way, additional transmission capacity is not needed to serve Montana customers, but it is essential for the viability of new generation enterprises (DEQ 2004).
Summary

This line could support a modest increase of new electricity generators by connecting them to regional electric systems and thus potentially to electricity markets. The proposed line would be capable of shipping up to 300 MW of power north and 300 MW south at the same time. The amount of new generation that would be able to be shipped south into Montana by MATL is currently unknown due to transmission constraints south of Great Falls, which is the southern terminus of the MATL line. To the extent that southerly electrical flows on the MATL transmission line are constrained, this would reduce MATL’s ability to ship power from additional generators. It also may result in more electricity flowing from Montana into Alberta than from Alberta into Montana.

S.3 General DOE, MFSA, NEPA/MEPA, and BLM Requirements

MEPA requires that decision makers consider the effects of their actions on the human environment. MFSA requires that need, environmental effects, costs, electric reliability and other factors are considered before making a decision. State agencies must inform the public of the decision making process and seek participation in the process. Similarly, NEPA requires that Federal decision makers be fully informed of the potential environmental consequences of their agency’s proposed actions, provide an opportunity for public participation in the environmental review process, and document the reasons for their decisions. The information contained in this Draft EIS will provide a basis for DEQ to make findings required for certification and for federal agencies to determine whether it is in the public interest to grant a Presidential permit, and BLM to grant a ROW. DEQ, DOE, and the BLM will use this information to decide which alternative(s) could be implemented and which mitigation measures, if any, would be appropriate for inclusion as a condition of the certificate, permit, or ROW grant. DEQ, DOE, and BLM will document their decisions in separate Records of Decision.

S.3.1 Purpose and Need for DOE Action

DOE has the responsibility for implementing Executive Order (E.O.) 10485 (September 9, 1953), as amended by E.O. 12038 (February 7, 1978), which requires the issuance of a Presidential permit for the construction, operation, maintenance, and connection of electric transmission facilities at the United States international border. DOE may issue the permit if it determines the project to be consistent with the public interest and after obtaining favorable recommendations from the U.S. Departments of State and Defense. In determining if a proposed Project is consistent with the public interest, DOE considers:

1. Potential environmental impacts in accordance with NEPA and Council on Environmental Quality (CEQ) and DOE implementing regulations at 40 Code of Federal Regulations (CFR) Parts 1500-1508 and 10 CFR Part 1021, respectively;
2. The proposed project’s impact on electric reliability, that is whether the proposed Project would adversely affect the operation of the U.S. electric power supply system under normal and contingency conditions; and

3. Any other factors that DOE may consider relevant to the public interest.

DOE will consider this EIS in determining whether to grant a Presidential permit to MATL. DOE’s action responds to MATL’s request for a Presidential permit.

S.3.2 DEQ MFSA Requirements

Under MFSA, DEQ requires a certificate of compliance for construction of electric transmission lines defined as facilities. The purposes of MFSA are to: (1) ensure the protection of the state's environmental resources; (2) ensure the consideration of socioeconomic impacts; (3) provide citizens with an opportunity to participate in facility siting decisions; and (4) establish a coordinated and efficient method for the processing of all authorizations required for regulated facilities. DEQ must find that the selected alternative meets the set of criteria listed in 75-20-301, MCA, and applicable administrative rules to be eligible for transmission line certification.

DEQ would approve a transmission line facility as proposed or as modified or an alternative to the proposed facility if it finds and determines:

- the need for the facility;
- the nature of probable environmental impacts;
- that the facility minimizes adverse environmental impact, considering the state of available technology and the nature and economics of the various alternatives;
- what part, if any, would be located underground;
- the facility is consistent with regional plans for expansion of the appropriate grid of the utility systems serving the state and interconnected utility systems;
- the facility would serve the interests of utility system economy and reliability;
- that the location of the proposed facility conforms to applicable state and local laws;
- that the facility would serve the public interest, convenience, and necessity;
- that DEQ has issued all necessary decisions, opinions, orders, certifications, and permits; and,
Summary

- that the use of public lands for location of the facility was evaluated, and public lands were selected whenever their use is as economically practicable as the use of private lands (75-20-301[1], MCA).

S.3.3 BLM Requirements

BLM has responsibility to issue ROW grants for electric transmission lines on BLM-administered lands in accordance with the Federal Land Policy and Management Act of 1976 and regulations at 43 CFR Part 2800.

A ROW grant provides for the construction, operation, maintenance, and termination of a specific project for a specific period of time. Before issuing a ROW grant, BLM will:

- complete a NEPA analysis or approve a previously completed NEPA analysis;
- determine whether the project complies with Federal and State laws and land use plans;
- consult with other governmental entities;
- hold public meetings if sufficient public interest exists; and
- take any other action necessary to fully evaluate and decide whether to approve or deny the application.

It is BLM’s policy to encourage proponents to locate projects within designated or existing ROW corridors to the maximum extent feasible. However, no designated or existing ROW corridor is present on approximately 0.3 mile of BLM land that would be crossed.

S.3.4 NEPA/MEPA Process

Initially, the DOE considered an environmental assessment (EA) to be the appropriate level of review under NEPA for the proposed Project while DEQ considered the appropriate level of review for MEPA to be an EIS analysis. DOE issued a “Notice of Intent to Prepare an Environmental Assessment and to Conduct Public Scoping Meetings and Notice of Floodplain and Wetlands Involvement; Montana Alberta Tie, Ltd.” in the Federal Register on November 18, 2005 (70 FR 69962). In addition, DOE mailed a copy of the notice to each owner of land within and adjacent to the MATL-proposed corridor. Names were obtained from Montana land ownership records.
DEQ and DOE hosted public meetings in December 2005 and DEQ hosted a public meeting in June 2006. At these meetings the public was asked to identify issues and concerns to be addressed during the review. During each meeting, MATL and DEQ representatives presented briefings. Maps and other information were available for review, and representatives from each agency were available to discuss the project, answer questions, and receive public comments.

Meeting dates and locations were:

- Conrad on December 5, 2005
- Great Falls on December 6, 2005
- Cut Bank on December 7, 2005
- Cut Bank on June 26, 2006

In March 2007, the agencies published a document titled *Draft Environmental Impact Statement for the Montana –Alberta Tie Ltd. (MATL) 230-kV Transmission Line* that served as a Draft EIS for DEQ and an EA for DOE (March 2007 document). In order to receive public comments, DEQ and DOE hosted three public hearings after the March 2007 document was issued:

- Conrad on March 27, 2007
- Cut Bank on March 28, 2007
- Great Falls on March 29, 2007

Based on comments received on the March 2007 document relating to land use and potential effects on farming, DOE determined an EIS to be the appropriate NEPA compliance document. Accordingly, on June 7, 2007, DOE published a Notice of Intent to Prepare an EIS and to Conduct Scoping in the *Federal Register* (72 FR 31569) and invited additional comments for a 30-day period. Throughout the scoping processes, stakeholders submitted comments via letters, phone calls, and emails.

DEQ decided to prepare this Supplemental Draft EIS to address issues raised in comments on the March 2007 document. Comments received on that document indicated additional analysis was needed to describe the costs of farming around the proposed structures and to compare these costs to the additional costs associated with alternative locations for the line. In addition, substantial changes to state tax law were enacted during Montana’s May 2007 special legislative session which changed the analysis of socioeconomic impacts.
Under MFSA, the Montana Department of Transportation (MDT); Montana Department of Natural Resources and Conservation (DNRC); Montana Fish, Wildlife and Parks (FWP); Montana Department of Revenue; and the Montana Public Service Commission are required to report to DEQ information related to the impact of the proposed project on each agency’s area of expertise. The report may include opinions on the advisability of granting, denying, or modifying the certificate (75-20-216[6], MCA). Other agencies having interest or responsibility in the project approval process include the Montana State Historic Preservation Office (SHPO), U.S. Department of Agriculture Farm Service Agency, and the U.S. Fish and Wildlife Service.

Based on comments received from the participating agencies and the public, the following issues and concerns were identified:

(1) impacts on farming, ranching, and other land uses such as difficulties and hindrances of farming and spraying around the transmission line structures, potential for interference with Differential Global Positioning System (DGPS)-guided farm equipment, potential for noxious weed growth, interference with existing and future pivot or mechanical irrigation systems, and additional fencing needs;

(2) impacts on protected, threatened, endangered, special status, and sensitive animal and plant species and their critical habitats, such as increased perch opportunities for birds of prey that could result in increased predation on species such as the swift fox and sharp-tailed grouse, disturbance of rare plant species, interference with migratory and feeding flight paths of waterfowl, avian mortality from bird strikes, and potential impacts on critical wildlife habitats;

(3) impacts on floodplains and wetlands, such as size and degree of impacts on known and delineated floodplains, wetlands, waters of the U.S., and other special aquatic sites;

(4) impacts on cultural and historic resources including potential disturbance of Native American settlements and religious sites;

(5) impacts on human health and safety related to minimum ground clearance of the line, corona effects (including audible noise and radio and television interference), and other electromagnetic field effects;

(6) impacts on air, soil, and water, such as soil erosion and resultant sedimentation to surface water, mass movement of unstable geologic materials and soils, reclamation constraints, and impacts on existing air quality;

(7) visual impacts to homes, historic homesteads, and tribal landscapes;
(8) socioeconomic impacts to taxes and disturbance of residential property in Cascade, Teton, Chouteau, Pondera, Toole, and Glacier counties from the construction and operation of the line; and

(9) impacts from development of wind or other generation projects that could occur as reasonably foreseeable future actions.

On September 6, 2007, DOE invited the BLM to participate as a cooperating agency in the preparation of the EIS. DOE requested BLM’s involvement to address BLM’s authority to approve MATL’s request for a ROW grant and the proposed Project’s relationship to relevant BLM land use plans. The BLM accepted the invitation to be a cooperating agency on October 12, 2007.

Following publication of this Draft EIS, the agencies will hold a 45-day comment period during which the public is invited to submit comments. Also during this time, the agencies will hold additional public hearings.

Following the comment period, the agencies will analyze the comments received and will include their responses in the Final EIS. The agencies will use the Final EIS in their respective decision making processes. Federal agency decisions will be issued subsequent to the Final EIS, in the form of a Record of Decision for each agency or as a letter of concurrence, no sooner than 30 days after the Final EIS is available. In the case of DEQ, a decision on whether to issue a certificate of compliance could be timed to coincide with the decisions of the Federal agencies.

S.4 Alternatives Description

This Draft EIS evaluates the proposed Project, three other alternatives, and several local routing options. The No Action alternative, designated Alternative 1, reflects the status quo and serves as a benchmark against which the proposed Project and other alternative actions can be evaluated. The proposed Project is Alternative 2 (Figure S-1). Alternative 3 was developed by MATL in response to a single siting criterion under MFSA that gives consideration to paralleling existing utility corridors. Alternative 4 describes an additional alignment (Figure S-1) that was developed based on comments and issues raised during the scoping process. In addition, 11 possible local routing options were developed.

2 Throughout this EIS, many references are made to the Project study area and analysis area. The Project study area is the area that includes the proposed and alternative alignments and areas where roads may be built or improved. The study area was defined by MATL in its MFSA application to DEQ. The analysis area is the area evaluated for each resource. Different resources have different analysis areas. For some resources, the analysis area is the entire study area. For other resources, it may be a smaller area defined by the potential extent of impacts or a larger region defined by the units (for example, counties) for which relevant data are available.
Summary

These local routing options, which could apply to Alternative 2 and in some instances to Alternative 4, were based on landowner or MATL input and comments on the March 2007 document. The agencies have not identified a preferred alternative.

S.4.1 Details Common to All Action Alternatives

Two types of transmission line support structures would be used: H-frame structures made of laminated or round wood poles and metal monopoles (Figure S-2). The typical span between structures of either type (ruling span) would be about 800 feet, but could range from 500 feet to 1,600 feet. Approximately six to seven (average of 6.6) structures per mile would be required for an 800-foot ruling span.

Either type of support structure would incorporate 230-kV design standard synthetic insulators, hardware, and ground wires to provide nearly corona-free operation, as well as reduce audible noise and radio and television interference. Ground clearance under the conductors for either type of support structure would be a minimum of 21.2 feet. MATL would be required to comply with requirements of the National Electric Safety Code. Spacing between the two poles of a typical 65-foot high H-frame structure would be about 23 feet. A typical monopole would be about 90 feet high.

MATL would install bird strike diverters or similar warning devices in high risk areas such as lakes, river crossings, wildlife refuge areas, and high ridge crossings. MATL would comply with appropriate regulations of the Federal Aviation Administration (FAA) and install FAA-recommended colored aerial markers for aviation safety at river crossings. In addition aerial markers would be installed at major pipeline crossings as determined by consultation with pipeline companies.

MATL proposes to construct a new substation on farmland or range/pasture land approximately 10 miles south of Cut Bank at a location next to the site where Naturener USA has proposed to build the McCormick Ranch wind park. The approximate location of the substation would be in the southeast quarter of Sec. 27 T32N R5W. The interconnection at the Great Falls switch yard would require NWE to enlarge the switch yard to accommodate the MATL tie line and other proposed lines. The expanded Great Falls switch yard would be located on farmland or range/pasture land. MATL would submit a copy of an executed interconnection agreement with NWE to the agencies as an addendum to the MFSA application, if such an agreement becomes valid. It is unlikely the line would be built unless a valid interconnection agreement is obtained.

MATL anticipates only minimum development of access roads to construct, operate, and maintain the line because most of the Project ROW would be accessed from public roads, existing two-track roads (unmaintained trails), and farm fields. MATL does not anticipate maintenance of these access points with the exception of certain gate installations.
FIGURE S-2
PROPOSED MATL POWERLINE
TYPICAL SUPPORT STRUCTURES

H-FRAME
Ruling Span - 800 feet

MONOPOLE
Ruling Span - 800 feet

Right-Of-Way Width - 45 ft
Safety Zone Width - 30 ft on each side of ROW
Summary

Construction is anticipated to take 4 to 6 months to complete. A summary of construction tasks is included in Table S-1. Additional tasks would include the following:

- **Pre-Construction**: Environmental permitting, cultural resource clearance, final transmission structure siting, engineering design, land procurement, various utility studies, and major procurement.

- **Surveying**: survey control, alignment centerline location, and profile surveys. Light Detection and Ranging (LIDAR) would be used to provide much of this information. LIDAR is an airborne laser mapping technology that directly measures the shape of the earth’s surface under the aircraft. LIDAR generates wide-area elevation information that can be used to make models showing details such as buildings, trees, and power lines.

- **Geotechnical Survey**: Investigations would be completed at selected key locations to establish foundation requirements. The geotechnical information is used to reduce problems during erection of the structures and assist with the cost estimate and bidding process for the project.

- **Access Planning and Preparation**: Crews would gain access primarily from existing public roads and trails as well as within the transmission line ROW. Graded surface access roads are planned for a few steep hillsides. Existing roads and trails would be left in comparable or better condition than before construction or to those conditions specified by landowners during easement lease negotiations.

 Gates would be installed where fences cross the ROW. Locks would be installed at landowner’s request. Gates not in use would be closed but not locked unless requested by the landowner.

- **Delivery and Assembly**: Structure components, including poles, X-braces, cross-arms, insulators, and hardware for structures would be delivered and assembled.

 For H-frame structures poles would be set directly in holes and backfilled with compacted native soil or gravel. Any excess soil would be evenly regraded around the structure or hauled off site, depending on the landowner’s preference. At heavy angled and dead-end structures, cast-in-place concrete footings would be installed.

 For monopoles after the pole is set in the hole, cement would be used, instead of soil, to backfill within approximately 1 foot of the soil surface. The salvaged topsoil material would be replaced on top of the cement. Any excess soil would be evenly regraded around the structure or hauled off site, depending on the landowner’s preference.
TABLE S-1
SUMMARY OF CONSTRUCTION TASKS AND REQUIRED RESOURCES AND EQUIPMENT

<table>
<thead>
<tr>
<th>Task</th>
<th>Crew Size</th>
<th>Typical Wage Level ($/hour)</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Fencing/Reclamation</td>
<td>2</td>
<td>$15 to $18</td>
<td>¾ -ton post pounder</td>
</tr>
<tr>
<td>Framing</td>
<td>6</td>
<td>$17 to $20</td>
<td>Teleking 5-ton crane, Bobcat, 1-ton crewcab pickup</td>
</tr>
<tr>
<td>Setting</td>
<td>8</td>
<td>$17 to $20</td>
<td>330 Texoma digger, 35-ton setting crane, gravel truck, concrete truck, air compressor w/ tamper, Bobcat, (2) 1-ton crewcab pickups</td>
</tr>
<tr>
<td>Anchoring</td>
<td>3</td>
<td>$20 to $22</td>
<td>radial arm digger or retrofitted trench hoe</td>
</tr>
<tr>
<td>Material Handling</td>
<td>2</td>
<td>$17 to $20</td>
<td>(2) trucks</td>
</tr>
<tr>
<td>Pole Hauling</td>
<td>3</td>
<td>$20 to $22</td>
<td>pole truck, pickup</td>
</tr>
<tr>
<td>Stringing</td>
<td>31</td>
<td>$20 to $26</td>
<td>Tensioner, puller, 30-ton crane and pickup, soft line winder and pickup, cat pulling sock line and pickup, crane and pickup, flat deck and small crane, rider pole crew digger, pole truck</td>
</tr>
</tbody>
</table>

Notes:

ªWage levels extrapolated from “Montana Prevailing Wage Rates – Heavy Construction” Rates Effective March 10, 2006

- Conductor Installation: After erecting structures, conductor and ground wires would be installed. Large reels of conductor and overhead ground wire would be delivered to pre-selected pulling and tensioning sites (about every 2 miles) along the transmission line alignment. Adjustments made during tensioning would prevent the cable from sagging too much to comply with the applicable regulations.

- Reclamation: All disturbed areas would be reclaimed. These efforts typically include gate repair as necessary, regrading and revegetation, and waste material removal.

MATL proposes to commence construction as soon as all property rights are obtained, the interconnection agreement has been finalized, and all necessary state and federal authorizations are issued. MATL may not begin any construction activities unless and until it obtains all required permits.
MATL would design, construct, operate, and maintain the proposed transmission system in accordance with the National Electrical Safety Code (NESC), U.S. Department of Labor Occupational Safety and Health Act (OSHA) Standards, and other requirements and guidance as appropriate.

Construction staging areas would be located in previously disturbed areas whenever possible. In general, construction staging areas would either be located in communities near the ROW where rail and truck service are available or in rural areas where equipment could be unloaded from tractor-trailers. Construction staging areas would be on private land and would be subject to landowner negotiations and agreements. Construction staging areas would likely be located near Cut Bank, Valier, Conrad, Brady, Dutton, or Great Falls. MATL expects that staging areas would be established in three locations, with each staging area occupying about 5 acres. However, a few smaller areas (about 2.5 acres) might be used.

NWE and Alberta Electric System Operator system dispatchers would direct normal line operations, using MATL’s facilities to operate circuit breakers, determine the amount of power required to serve the loads and configure the power system accordingly, schedule the proper generation amount, and monitor the power system to ensure reliable service. Circuit breakers would operate automatically to ensure safe transmission line operation. Normal farming and other activities would be permitted on transmission line ROWs if these activities do not interfere with line operation and maintenance or create safety problems.

Maintenance programs would include routine aerial and ground patrols. Aerial patrols would be conducted annually and as needed to check for damage to conductors, insulators, or structures after severe wind, ice, wild fires, or lightning storms. Ground patrols generally would occur every 5 years to detect equipment in need of repair or replacement. Ground patrols and subsequent repair activities would be scheduled to minimize crop and property damage. Noxious weed control plans would help guide herbicide treatments. Vegetation clearing may also be required in certain areas to minimize fire hazards.

For emergencies, crews would respond promptly to repair or replace damaged equipment. MATL would meet with respective landowners to arrange compensation for any damages incurred during emergency repair operations.

In its applications to DEQ and DOE, MATL has committed to project-specific environmental protection measures that may be used to avoid or reduce the intensity and/or duration of the impacts to resources. MATL proposes to implement a worker education program and on-site monitors to ensure that the site-specific environmental protection measures are strictly followed. Other guidance MATL proposes to use includes Western Area Power Administration’s (WAPA) Construction Standard 13

S.4.2 Alternative 1 — No Action

Under Alternative 1 the proposed Project would not be approved or constructed. Existing electrical transmission service in north-central Montana would be maintained and operated at its current level. In addition, plans to construct new generation facilities in the analysis area would need to consider other transmission alternatives or not be built. Selection of Alternative 1 would likely preclude the construction of the proposed facility in Canada as well.

S.4.3 Alternative 2 — MATL’s Proposed Project

Alternative 2 is to construct and operate a 129.9 mile long, 230-kV merchant transmission line between Great Falls, Montana, and Lethbridge, Alberta, as described in MATL’s application to DEQ, its application to DOE for a Presidential permit and its application to the BLM for a ROW grant. The proposed alignment would have an operational ROW width of 45 feet with an additional 30 feet on either side to create a 105-foot safety zone. The line would extend from the expanded 230-kV Great Falls switch yard north of Great Falls to a proposed new substation south of Cut Bank, and then north to the Montana-Canada border at the western edge of the Red Creek Oil Field. Monopole structures would be used on 53 miles of the line where it would cross cropland and Conservation Reserve Program (CRP) land diagonally. H-frame structures would be used for the remainder of this alternative.

S.4.4 Alternative 3 – MATL B

Alternative 3 would be 121.6 miles long and would be similar to Alternative 2 in that the width of the ROW, types of access roads, implementation, conductors, markers, substations, construction, operations, maintenance, and MATL’s proposed environmental protection measures would be the same as those described for Alternative 2 and in details common to all alternatives. The Alternative 3 alignment would be different from Alternative 2 in that it would generally parallel an existing 115-kV transmission line along the entire route from the Great Falls switch yard to a substation near Cut Bank and use only H-frame structures. Alternative 3 was developed by MATL in response to a single siting criterion under MFSA that gives consideration to paralleling existing utility corridors (Circular MFSA-2). This alternative alignment was not intended to address potential land use issues or maintenance issues but is the shortest and potentially the least costly alternative under consideration.
Summary

S.4.5 Alternative 4 - DEQ-Developed

Alternative 4 was developed by the DEQ to address public concerns regarding line interference with farming activities and close proximity to residences. This alternative would be 139.6 miles long and would be similar to Alternative 2 in that width of the ROW, types of access roads, implementation, conductors, markers, substations, construction, operations, maintenance, and MATL’s proposed environmental protection measures would be the same as those described for Alternative 2 and in details common to all alternatives. The differences in environmental impacts between Alternatives 2 and 4 are discussed in Section S.6. Alternative 4 would incorporate a higher degree of environmental protection than either Alternative 2 or 3 since it would employ DEQ’s draft Environmental Specifications contained in Appendix F.

The Alternative 4 alignment would use portions of the Alternative 2 alignment from north of Conrad to the Montana-Alberta border. In other areas it would maximize the use of range and pasture land, where available. Where cultivated land would be crossed, it would generally be located along field or strip boundaries. Alternative 4 would require the use of monopole structures on all 88.9 miles of cropland and CRP land, not just where cropland and CRP land are crossed on the diagonal as in Alternative 2.

Although Alternative 4 is analyzed as a whole, the agencies could select some or all parts of this alternative or other realignments (i.e., the local routing options described in the following section) whose environmental impacts have been considered in this EIS.

MATL has indicated that because Alternative 4 is longer than the other alternatives this alternative would be more expensive than Alternatives 2 and 3. MATL estimates that Alternative 4 would result in a 12-month delay and a $7 million increase in direct costs. MATL has stated that if Alternative 4 is selected, the project would be unlikely to be built since it would have difficulties obtaining adequate financing for the project due to additional costs and delays.

Comments received from landowners indicate that Alternative 4 would minimize impacts to farmland. Although MATL has indicated a reluctance to implement this alternative, it is possible that MATL could reconsider this position if this alternative were selected by the agencies.

S.4.6 Local Routing Options

Based on public comments received on the March 2007 document, the agencies worked with landowners to refine Alternatives 2 and 4 to address landowner concerns related to costs, impacts to farming, impacts to other land uses, and proximity to residences.
Summary

They developed eleven local routing options for Alternative 2 (Figure S-3), a subset of which could also be included in Alternative 4.

The local routing options would not change environmental impacts for most resource areas. Several of the local routing options would result in fewer impacts on crop production, including lower costs for farming around transmission line structures.

Diamond Valley local routing options. Three local routing options (Diamond Valley South, Diamond Valley Middle, and Diamond Valley North) were identified for the Diamond Valley area. These are alternative alignments for one segment of the line, applicable to both Alternatives 2 and 4. All three options would result in less diagonal crossing of farm fields, but two options (Diamond Valley Middle and Diamond Valley North) could interfere with aerial spraying because they would create acute angles with the existing NWE 115-kV transmission line. Also, the Diamond Valley North option could require relocation of a grain bin to avoid safety problems. Compared with Alternative 2, the Diamond Valley North option would reduce by one the number of residences within 1/2 mile of the alignment; the Diamond Valley Middle option would increase by one the number of residences within this distance; and the Diamond Valley South option would decrease the proximity of the line to one residence.

Teton River Crossing local routing option. The local routing option for the Teton River Crossing Area could apply to Alternatives 2 and 4. It would allow one transmission line structure to be on a slightly more elevated terrace that would avoid an area that is reported to have flooded in 1964. It would also locate structures at the edge of fields to reduce interference with farming. It could, however, result in some clearing of tall growing riparian vegetation.

Southeast of Conrad local routing option. The Southeast of Conrad local routing option for Alternative 2 would reduce the crossing of cropland, but would increase by one the number of residences within 1/2 mile of the alignment and would increase the chance of encountering cultural resource sites.

West of Conrad local routing option. The West of Conrad local routing option for Alternative 2 would decrease the diagonal crossing of cropland and reduce potential interference with aerial crop dusting.

Northwest of Conrad local routing option. The Northwest of Conrad local routing option for Alternative 2 would decrease the diagonal crossing of cropland, but increase the chance of encountering cultural resource sites.
Summary

Belgian Hill Road area local routing option. The Belgian Hill Road area local routing option for Alternative 2 would increase the distance between the transmission line and nearby residences, slightly reduce the diagonal crossing of cropland, and reduce but not fully avoid the crossing of irrigated fields. Portions of this option also could be used for Alternative 4. Like the local routing option for Alternative 2, the option for Alternative 4 would increase the distance between the transmission line and nearby residences and reduce but not fully avoid the crossing of irrigated fields. The option for Alternative 4 would also decrease by one the number of residences within ½ mile of the alignment and avoid diagonal crossing of farmland.

Bullhead Coulee South local routing option. The Bullhead Coulee South local routing option for Alternatives 2 and 4 would avoid interference with the planned location of a wind turbine unrelated to the proposed MATL transmission line, but would increase the potential for soil erosion.

Bullhead Coulee North local routing option. The Bullhead Coulee North local routing option for Alternatives 2 and 4 would reduce interference with farming.

South of Cut Bank local routing option. The South of Cut Bank local routing option for Alternatives 2 and 4 would move the alignment to follow property boundaries better, is located farther away from one residence, and would result in greater potential for general local acceptance. This routing option would generally parallel Alternative 2.

S.4.7 Alternatives Considered But Dismissed

Several alignment and construction-detail alternatives were considered but eliminated from detailed study.

- Many local realignment options
- MATL C alignment
- Building the line underground
- Unguyed, self-supporting angle and dead-end structures
- Requiring the use of helicopters to string the line
- Requiring monopole structures in all areas
- Cut Bank to Shelby alternatives
- NWE 115-kV transmission line rebuild alternative

Numerous local realignment options were considered but eliminated from detailed analysis for one or more of the following reasons: did not address local land use concerns; did not reduce impact to farming; encountered greater geologic and topographic constraints compared to other alternatives being carried forward, would be
more costly than the estimated cost savings to farmers, or would not reduce farming and land use impacts as well as other alternatives being carried forward.

The MATL C Alignment is in the MFSA application. It was dismissed from detailed study because it did not fully address issues raised during scoping. Specifically, although it would cross less cropland diagonally than Alternative 2, it would have crossed more farm land diagonally in the segment beginning south of Brady and continuing to approximately 10 miles north of Conrad. This alternative also would be located very close to several residences, and would not use as much range and pasture land, or parallel existing transmission lines as much as other alignments.

Building the line underground was dismissed because it would cost between two and 15 times more than overhead construction and because digging the trenches required to bury the line would result in greater construction disturbance to the land and require more time to install. The use of unguied, self supporting angle and dead-end structures would reduce some of the impacts on land uses but this alternative was dismissed because of the substantially higher costs for these structures. Similarly, the use of helicopters to string the line would avoid the construction of some access roads but would increase the cost of construction. Also, helicopters are most commonly used in extremely hilly terrain or in large marshy areas where ground access would be difficult. This alternative was dismissed because most of the study area is accessible from the ground.

The use of monopole support structures instead of H-frame structures for the entire length of the line was dismissed because of added costs with little additional land use benefits on rangeland. However, the use of monopoles is now proposed for 53 miles of cropland and CRP (89 miles) crossed diagonally under Alternative 2 and is also analyzed for all cropland and CRP crossings under Alternative 4.

Two alternatives between Cut Bank and Shelby were identified but dismissed. In one alternative, MATL would build the proposed line from the border to Shelby where it would tie into WAPA’s transmission system. Energy producers or other subscribers would then have to pay MATL for the use of its project between the border and Shelby and then pay WAPA for the use of its transmission system from Shelby to Great Falls. This alternative was dismissed because it would result in a substantial increase in transmission costs for those proposing to ship energy into the Great Falls area. In the second alternative, MATL and WAPA would jointly rebuild portions of WAPA’s existing Shelby-Great Falls 230-kV line to a double circuit configuration. However, WAPA declined to pursue this alternative because it would reduce the reliability of its system.
MATL also considered an alternative that would combine its proposed transmission line with a rebuilt and updated version of NWE’s existing 115-kV line between Cut Bank and Great Falls. This alternative was dismissed because it would create unacceptable operating logistics to maintain electric service while the line was being rebuilt and upgraded and because of the economics associated with the partnership.

S.5 Affected Environment

The 1,444,790-acre Project study area contains sparsely populated semi-arid rolling hills, gentle ridges, and plateaus bisected by alluvial corridors of the Marias and Teton rivers and their tributaries. The area has low topographic relief with elevations ranging from 4,372 feet above sea level in the northwest corner of the study area to about 3,016 feet above sea level on the Missouri River in the southeast corner of the area. Winters are extremely cold with desiccating winds and snow. May and June are the wettest months; however, perennial streams and rivers are sustained primarily from moisture derived from mountain snowpack.

The bedrock geologic units are primarily glaciated Cretaceous shales and sandstones. This region includes portions of eight hydrologic subbasins in Montana, all of which contribute to the lower Missouri River Basin. The primary surface water features in the analysis area are Cut Bank Creek, the Marias River and the Dry Fork Marias River, Pondera Coulee, the Teton River, Benton Lake, Hay Lake, and the Missouri River. Isolated prairie potholes, lakes, and stock reservoirs are scattered throughout the analysis area.

The majority of the land (90 percent) is privately owned, with the remainder being owned or managed by state, Federal, and local government agencies. Over 88 percent of the Project study area is considered agricultural lands, including irrigated and non-irrigated cropland and rangeland. Some dry land crops and grazing occur on state and federal lands. Management of agricultural lands can involve the use of Differential Global Positioning System (DGPS)-guided farming equipment and vehicles (e.g., tractors, sprayers, combines) and other equipment used for irrigation, aerial and ground based spraying, plowing, seeding, fertilizing, and harvesting. These activities occur on 73 percent of the Project study area. This agricultural land base gives the landscape its characteristic and dominant patterns of linear strips of dryland cultivation and circular and rectangular shapes associated with irrigated fields. Views are typically expansive throughout the entire Project area, extending across rolling uplands and plains to the Rocky Mountain Front and island ranges such as the Sweet Grass Hills and Highwood Mountains. Portions of Cascade, Chouteau, Glacier, Pondera, Teton, and Toole counties are in the Project study area.
Numerous oil and gas fields are located within the northern portion of the study area. Gathering lines and pipelines between 8 and 20 inches in diameter occur within or traverse the Project study area, including main lines, and transmission/trunk lines. Existing electric and magnetic fields (EMF) levels in the project vicinity are primarily dominated by EMF from common household appliances. Existing transmission and distribution lines also contribute to EMF levels.

S.6 Comparison of Alternatives and Impacts

No natural resources would experience a substantial impact from implementation of any action alternative. Potential impacts and cumulative impacts are similar for all three action alternatives.

The no action alternative would forgo the socioeconomic benefits of the proposed Project. Under this alternative there would be no additional employment from construction or operation of the transmission line, no increase in county or state tax revenue, and no additional impacts or compensation to farmers for use of their land. There would be no increased transmission capacity for new or existing power generators.

All of the action alternatives would result in some loss of and interference with crop production. Alternative 3 would have the most impacts to crop production because it would include the most diagonal crossing of crop lands and because H-frame structures would be used on all cropland crossings. Alternative 3 would add to impacts associated with farming around structures because this alternative would closely parallel an existing 115-kV transmission line between Great Falls and Cut Bank. Alternative 4 would have less impact to crop production than the other action alternatives because it would include the least diagonal crossing of cropland and would use monopoles on all cropland crossings.

Construction activities under all of the action alternatives could result in increased soil erosion and release of sediment to streams, lakes, and wetlands, although best management practices would reduce or avoid potential impacts. The 500-foot wide analysis area associated with Alternative 4 would have the highest potential for soil erosion and sediment discharge to surface waters because it would cross the largest area of potentially unstable soils, the most streams, and the largest area of identified wetlands. The analysis area would, however, avoid crossing the edge of Black Horse Lake and its associated wetlands. The analysis area associated with Alternative 2 would cross the smallest area of unstable soils, while the analysis area associated with Alternative 3 would cross the least number of streams and the smallest area of identified wetlands, but the largest number of lakes.
Summary

All action alternatives would produce some localized short-term emissions of particulate matter during construction. In addition, all action alternatives would emit very small amounts of greenhouse gasses, principally from vehicle and equipment operations during construction.

Under all action alternatives some bird mortality could result from collisions with transmission lines even after mitigating measures are applied; potential impacts would be somewhat less under Alternative 4 than the other alternatives because Alternative 4 would not be located as close to the Benton Lake National Wildlife Refuge. Under all action alternatives, portions of the transmission line would cross some potential habitat for special status species. Although no adverse effects to special status species are expected from any of the action alternatives, Alternative 2 would cross more potential habitat for special status species than Alternatives 3 and 4.

Under all action alternatives, nearby residents and motorists using travel corridors would be exposed to views of a transmission line; Alternative 3 would expose the largest number of nearby residences and the longest length of travel corridors to near-field views within ½ mile of the proposed line. Alternative 4 would have the lowest overall visibility to nearby residences and travel corridors, but Alternatives 2 and 4 would have the smallest number of residences within 1/4 mile.

Under any of the alternatives, no disproportionately high and adverse impacts would be expected to minority or low-income populations.

S.6.1 Cumulative Impacts

CEQ regulations implementing the procedural provisions of NEPA define cumulative impacts as “the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions” (40 CFR § 1508.7). The regulations further explain that “cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time.”

MEPA defines cumulative impacts as “the collective impacts on the human environment of the proposed action when considered in conjunction with other past, present, and future actions related to the proposed action by location or generic type” (75-1-220(3), MCA). Related future actions may only be considered when these actions are under concurrent consideration by any agency through pre-impact statement studies, separate impact statement evaluations, or permit processing procedures (75-1-208(11), MCA). DEQ considers cumulative impacts when making the findings under MFSA (Administration Rules of Montana (ARM) 17.20.1604 (1)(b) and 1607(1)(a)(vii)).
Summary

Pursuant to ARM 17.4.627, whenever a state agency prepares a joint environmental impact statement that must comply with NEPA and MEPA, the joint document must be prepared in compliance with both statutes. The State agency may accede to and follow more stringent federal requirements, such as additional content. NEPA requires reasonably foreseeable future actions to be included in the cumulative impacts analysis, not just those undergoing concurrent review.

Analysis of cumulative environmental impacts of a proposed Project and other actions helps to ensure that agency decisions consider the full range of consequences of the agencies’ actions to the extent information is available.

At least 17 pipelines and 8 transmission lines transect the Project study area and vicinity. Other present and past activities in the vicinity of the proposed Project include farming (irrigated and non-irrigated), grazing, weed management, hunting and general recreation; growth of cities and towns, residential areas, and industrial and commercial areas; and development of Federal and state highways and county roads, railroads and railroad rights-of-way, communication facilities, military installations, conservation easements, airports, and national trails. Reasonably foreseeable future actions that could occur in the Project study area include the development of wind farms, rebuilding and relocating a WAPA transmission line, the Southern Montana Electric Highwood Generating Station 250 MW coal-fired power plant proposed to be built outside Great Falls and the transmission line that would connect it to the local electric system, the proposed gas-fired Great Falls Energy Center 275 MW power plant, development of irrigation systems, and the potential for MATL to upgrade the capacity of the line from 300 MW to 400 MW in each direction.

DOE views wind development as a reasonably foreseeable future action. Various developers of wind farms that would be located near the MATL transmission line have purchased all the line capacity. However, wind farm developers that have purchased the capacity on the MATL line might not be the same power suppliers that use the line in the future. MATL has indicated that its transmission service rights contracts do not require the holder to supply any particular form of power generation. In light of the foregoing, DOE believes that MATL’s proposed Project is separate from and has an existence and utility independent from the wind farms. While the wind farms would be the first users, it is reasonably foreseeable that other shippers can own the right to ship electricity over the proposed line. As a result, DOE does not view the currently subscribed wind farms as “connected actions” as defined in 40 C.F.R. § 1508.25(a) (1). Therefore, the impacts from potential wind farms are evaluated as cumulative impacts of the proposed Project, consistent with 40 C.F.R. § 1508.7.

Table S-2 summarizes impacts to natural resources, including cumulative impacts, considerations of environmental justice, and impacts to the existing transmission system (engineering and electric system reliability) among the alternatives analyzed.
Summary

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use – General Impacts</td>
<td>Facility construction traffic may conflict with movement of farm equipment on roads. Loss of and interference with crop production due to structures and roads, increased potential for weed introduction and spread, potential for equipment damage from hitting a structure, increased time to farm around poles, and some DGPS-guided equipment may be affected. Cropland crossings also increase the potential for crop duster accidents.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>New projects would generally have short-term construction impacts and longer term changes to land use depending on the project. Wind development is generally compatible with a wide variety of land uses and generally would not preclude recreational, wildlife habitat conservation, military, livestock grazing, oil and gas leasing, dry land farming, or other activities that currently occur.</td>
<td></td>
</tr>
<tr>
<td>Land Use – Total Amount of Land Crossed</td>
<td>There would be no additional impacts.</td>
<td>129.9 miles.</td>
<td>121.6 miles. Alt 3 disturbs the least.</td>
<td>139.6 miles. Alt 4 disturbs the most.</td>
<td>Impacts would depend on the type, location and design of development.</td>
</tr>
<tr>
<td>Land Use – Total Cropland Crossed</td>
<td>93.3 miles</td>
<td>95.3 miles. Alt 3 crosses the most.</td>
<td>88.9 miles. Alt 4 crosses the least.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use – Total Cropland Crossed Diagonally</td>
<td>54.9 miles</td>
<td>68.4 miles. Alt 3 crosses the most cropland diagonally.</td>
<td>28 miles. Alt 4 crosses the least cropland diagonally.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource</td>
<td>No Action</td>
<td>Alternative 2</td>
<td>Alternative 3</td>
<td>Alternative 4</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Land Use – Type of structure used on cropland</td>
<td>Monopoles used on 53 miles of diagonal crossings of cropland; H-frames used on cropland not crossed diagonally</td>
<td>H-frames on the entire line, including cropland</td>
<td>Monopoles used for all cropland crossing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use – Total distance crossing Public Land, Special Management Areas and conservation easements</td>
<td>35.3 miles</td>
<td>24.7 miles. Alt. 3 would cross the least</td>
<td>43.9 miles. Alt 4 would cross the most</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Land (FWP owned) crossed, Great Falls Shooting Sports Complex</td>
<td>0.7 miles crossed</td>
<td>0.5 miles crossed</td>
<td></td>
<td>Alt 4 would avoid the Great Falls Shooting Sports Complex.</td>
<td></td>
</tr>
<tr>
<td>State Land – Lewis and Clark Heritage Greenway Conservation Easement.</td>
<td>0.1 miles at the edge of the Lewis and Clark Heritage Greenway Conservation Easement.</td>
<td>0.1 miles at the edge of the Lewis and Clark Heritage Greenway Conservation Easement.</td>
<td>0.1 miles at the edge of the Lewis and Clark Heritage Greenway Conservation Easement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montana State Trust Lands crossed</td>
<td>10.6 miles crossed</td>
<td>5.9 miles. Alt 3 would cross the least</td>
<td>11.0 miles. Alt 4 would cross the most</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation easements crossed</td>
<td>USFWS - 0.0 miles</td>
<td>USFWS - 3.8 miles</td>
<td>USFWS - 1.7 miles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM Land crossed</td>
<td>0.3 miles</td>
<td>0.1 miles</td>
<td>0.3 miles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geology – Miles on Soil and Geologic Resources Prone to Mass Movement</td>
<td>There would be no additional impacts.</td>
<td>5 miles. Potential impacts would largely be mitigated by pole placement designed to span sensitive slopes and engineering design.</td>
<td>3 miles. Alt 3 has the least potential for mass movement that could result in pole instability. Potential impacts would largely be mitigated by pole placement designed to span sensitive slopes and engineering design.</td>
<td>20 miles. Alt 4 has the most potential for mass movement that could result in pole instability. Potential impacts would largely be mitigated by pole placement designed to span sensitive slopes and engineering design.</td>
<td>Impacts would depend on the type, location and design of development.</td>
</tr>
<tr>
<td>Soils – Miles on Unstable Soils (greater than 20 percent slope)</td>
<td>There would be no additional impacts.</td>
<td>16 miles. Soil erosion impacts would be mitigated by erosion control measures.</td>
<td>12 miles. Alt 3 has the least potential for soil erosion. Soil erosion impacts would be mitigated by erosion control measures.</td>
<td>24 miles. Alt 4 has the most potential for soil erosion. Soil erosion impacts would be mitigated by erosion control measures.</td>
<td>Additional development could cause increased soil erosion. Erosion control and storm water control would mitigate impacts.</td>
</tr>
<tr>
<td>Engineering - The structural reliability of electric transmission facilities in the area.</td>
<td>There would be no additional impacts.</td>
<td>No adverse impact to structural reliability is anticipated. All facilities are proposed to be constructed in compliance with accepted engineering standards.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>None expected.</td>
</tr>
<tr>
<td>Resource</td>
<td>No Action</td>
<td>Alternative 2</td>
<td>Alternative 3</td>
<td>Alternative 4</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Hazardous Materials</td>
<td>There would be no additional impacts.</td>
<td>Wood structures would be treated with pentachlorophenol.</td>
<td>Same as Alt 2.</td>
<td>Same as Alt 2.</td>
<td>Construction, operation, and decommissioning future activities could require the use of some hazardous materials. Wastes would have to be managed as required by state and federal law.</td>
</tr>
<tr>
<td>Electric and Magnetic Fields- Exposure Levels</td>
<td>There would be no additional impacts. Exposure levels in the project vicinity are primarily dominated by EMF from common household appliances.</td>
<td>Exposure levels outside the ROW would be less than 3.8 mG</td>
<td>Same as Alt 2.</td>
<td>Same as Alt 2.</td>
<td>If the line capacity increased to 400 MW in each direction, the electric field and the mean magnetic field would be higher, but electric field strength would remain below the state standard of 1 kV/m at the edge of the ROW in subdivision and residential areas, and the increase in the mean magnetic field would be slight</td>
</tr>
</tbody>
</table>
TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric and Magnetic Fields-- Length of 500-foot-wide Alignment Buffer Zone Within 100 feet of a Pipeline</td>
<td>There would be no additional impacts.</td>
<td>To ensure safety, pipelines near a transmission line would need to be grounded. 7.0 miles of the alignment would be within 100 ft of a pipeline 8” or larger.</td>
<td>9.8 miles of the alignment would be within 100 ft of a pipeline 8” or larger. Alt 3 has the longest distance where pipelines may need to be grounded.</td>
<td>5.7 miles of the alignment would be within 100 ft of a pipeline 8” or larger. Alt 4 has the shortest distance where pipelines may need to be grounded.</td>
<td>Impacts would depend on the type and location of development.</td>
</tr>
<tr>
<td>Electric and Magnetic Fields-- Radio or TV Interference</td>
<td>There would be no additional impacts.</td>
<td>None anticipated for nearby residents. May be some potential for interference with DGPS guidance systems. MATL would correct DGPS interference.</td>
<td>Same as Alt 2. MATL would correct DGPS interference.</td>
<td>Same as Alt 2. MATL would correct DGPS interference.</td>
<td>There is a potential for wind farm power lines to cause interference, but this impact would depend on the type, location and design of development and might be avoided by proper siting and design.</td>
</tr>
<tr>
<td>Resource</td>
<td>No Action</td>
<td>Alternative 2</td>
<td>Alternative 3</td>
<td>Alternative 4</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Water – General Impacts</td>
<td>There would be no additional impacts.</td>
<td>Minor short-term adverse impacts to surface water quality could occur by temporarily increasing sources of sediment from the time of construction to reclamation completion. This impact would be mitigated by avoiding disturbance of water and riparian areas or by implementing measures to reduce sediment transport. The potential for impact is related to the number of stream and lake crossings.</td>
<td>Same as Alt 2.</td>
<td>Same as Alt 2.</td>
<td>Future development activities combined with the proposal could increase sediment and other pollutants to water resources in the analysis area and potentially affect water quantity and quality. Construction would likely cause increased stormwater runoff and soil erosion. Because projects would be required to reduce the potential for sedimentation, require proper pesticide application, and comply with waste water discharge requirements, and to employ mitigation measures, these impacts are likely to be minor and short term.</td>
</tr>
<tr>
<td>Water – Potential Number of Perennial Stream or River Crossings</td>
<td>There would be no additional impacts.</td>
<td>10 crossings within the 500-foot wide alignment</td>
<td>6 crossings. Alt 3 poses the lowest potential for impact within the 500-foot wide alignment.</td>
<td>17 crossings. Alt 4 poses the greatest potential for impact within the 500-foot wide alignment.</td>
<td>Impacts would depend on the type and location of development.</td>
</tr>
<tr>
<td>Resource</td>
<td>No Action</td>
<td>Alternative 2</td>
<td>Alternative 3</td>
<td>Alternative 4</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Water – Potential Number of Lake Crossings</td>
<td>There would be no additional impacts.</td>
<td>4 crossings within the alignment.</td>
<td>6 crossings. Alt 3 poses the greatest potential for impact within the alignment.</td>
<td>2 crossings. Alt 4 poses the least potential for impact within the alignment.</td>
<td>Impacts would depend on the type and location of development.</td>
</tr>
<tr>
<td>Wetlands - General</td>
<td>There would be no additional impacts.</td>
<td>Structures would not be placed in wetlands. Construction disturbance could result in a change in wetland plant community if wetland hydrology is altered. This impact would be mitigated if wetlands were undisturbed during construction and maintenance. Potential impact is related to the area of wetlands crossed.</td>
<td>Same as Alt 2.</td>
<td>Same as Alt 2.</td>
<td>Impacts would depend on the type, location and design of development.</td>
</tr>
<tr>
<td>Wetlands – Total Wetlands and Potential Wetlands Crossed</td>
<td>There would be no additional impacts.</td>
<td>67.6 acres crossed within the 500-foot wide alignment, including 64.4 acres of marshland, 0.8 acre lake wetlands, and 2.4 acres of river wetlands.</td>
<td>62.3 acres crossed within the 500-foot wide alignment, including 58 acres of marshland, 0.8 acre lake wetlands, and 3.5 acres of river wetlands. Alt 3 would cross the least total area of wetlands.</td>
<td>76.4 acres crossed within the 500-foot wide alignment, including 74 acres of marshland and 2.4 acres of river wetlands. Alt 4 would cross the largest total area of wetlands, but would avoid crossing wetlands associated with lakes.</td>
<td>Impacts would depend on the type and location of development.</td>
</tr>
</tbody>
</table>
TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floodplains</td>
<td>There would be no additional impacts.</td>
<td>Line would cross floodplains at the Teton, Dry Fork Marias, and Marias river crossings, but no transmission line structures would be placed in 100-year floodplains. A local routing option for the Teton River crossing would place a structure in a slightly higher location that was not inundated in the 1964 flood.</td>
<td>Same as Alt. 2, except that the local routing option is not applicable.</td>
<td>Same as Alt. 2.</td>
<td>There are no reasonably foreseeable future actions that would impact floodplains.</td>
</tr>
<tr>
<td>Vegetation – General</td>
<td>There would be no additional impacts.</td>
<td>Temporary loss of vegetation and increased potential for weed emergence and dispersion in disturbed areas until reclaimed. Potential impact is dependent on the number of acres disturbed.</td>
<td>Same as Alt. 2.</td>
<td>Same as Alt. 2.</td>
<td>Future activities would likely disrupt vegetation in a similar manner. Revegetation would likely make impacts minor and short term.</td>
</tr>
<tr>
<td>Vegetation – Number of non-cropland acres to be disturbed for construction</td>
<td>There would be no additional impacts.</td>
<td>214 acres.</td>
<td>206 acres. Alt 3 would disturb the fewest acres.</td>
<td>240 acres. Alt 4 would disturb the most acres.</td>
<td>Impacts would depend on the type, location and design of development.</td>
</tr>
</tbody>
</table>
TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation – Native</td>
<td>There would be no additional impacts.</td>
<td>32.7 miles of grassland/shrubland and riparian vegetation would be crossed</td>
<td>22.5 miles of grassland/shrubland, riparian vegetation, and forest would be</td>
<td>47.8 miles of grassland/shrubland, riparian vegetation, and forest would be</td>
<td>Impacts would depend on the type, location and design of development.</td>
</tr>
<tr>
<td>range, forest and riparian</td>
<td></td>
<td></td>
<td>crossed</td>
<td>crossed</td>
<td></td>
</tr>
<tr>
<td>vegetation cover crossed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildlife - General</td>
<td>There would be no additional impacts.</td>
<td>Short-term impacts include loss of individuals during construction or direct disturbance of species during critical periods in their life-cycles. Long-term impacts include habitat alterations, electrocutions, and collisions. Collisions would be reduced by line marking.</td>
<td>Same as Alt 2.</td>
<td>Same as Alt 2.</td>
<td>Activities would result in disturbance and displacement of wildlife during the construction, followed by some permanent loss of habitat. Bird and bat mortalities are expected due to collisions with wind turbines.</td>
</tr>
<tr>
<td>Wildlife – Mule Deer</td>
<td>There would be no additional impacts.</td>
<td>19.4 miles of habitat would be crossed. Minor to no impact to mule deer population relative to the size of the existing habitat and individual mobility.</td>
<td>20.5 miles of habitat would be crossed. Minor to no impact to mule deer population relative to the size of the existing habitat and individual mobility.</td>
<td>27.7 miles of habitat would be crossed. Minor to no impact to mule deer population relative to the size of the existing habitat and individual mobility.</td>
<td>Impacts would depend on the type, location and design of development. Herd animals could be affected if developments are placed along migration paths or in fawning areas.</td>
</tr>
<tr>
<td>Winter Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource</td>
<td>No Action</td>
<td>Alternative 2</td>
<td>Alternative 3</td>
<td>Alternative 4</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Wildlife – Birds</td>
<td>There would be no additional impacts.</td>
<td>Collisions with transmission line could result in bird loss. The potential for bird collisions would be greatest in those portions of the line located near wetlands and the Benton Lake National Wildlife Refuge.</td>
<td>Similar to Alt 2.</td>
<td>Similar to Alt. 2, but line would be farther from the Benton Lake National Wildlife Refuge</td>
<td>Additional development could reduce habitat. Wind farms potentially associated with the proposed line could cause estimated 2 to 3 mortalities per year of raptors (such as eagles and hawks) and 480 to 960 mortalities per year of passerine birds (such as sparrows, larks, warblers, and crows) from collisions with turbines.</td>
</tr>
<tr>
<td>Wildlife – Bats</td>
<td>There would be no additional impacts.</td>
<td>Wind farms associated with the MATL project could cause an estimated 28 to 1,711 bat mortalities per year from collisions with turbines.</td>
</tr>
</tbody>
</table>

TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA
TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>There would be no additional impacts.</td>
<td>Fish habitat may be slightly affected by construction activity that contributes sediment to streams. Potential for impact is related to potential for impact to rivers and streams – 10 perennial river or stream crossings in the 500-foot wide alignment but no in-stream activities anticipated. Alt 3 has the least potential to slightly affect fish habitat.</td>
<td>Similar to Alt. 2, – 6 perennial river or stream crossings in the 500-foot wide alignment, but no in-stream activities anticipated. Alt 4 has the highest potential to slightly affect fish habitat.</td>
<td>Similar to Alt. 2, – 17 perennial river or stream crossings in the 500-foot wide alignment, but no in-stream activities anticipated. Alt 4 has the highest potential to slightly affect fish habitat.</td>
<td>Cumulative impacts that adversely affect water resources could adversely affect fish and fish habitats.</td>
</tr>
<tr>
<td>Special Status Species</td>
<td>There would be no additional impacts.</td>
<td>All known occurrences of special status plant species are located outside the study area. Potential for impact is based on potential impact to their habitat (wetlands).</td>
<td>Alt 3 has the least likelihood of these species because the alignment crosses less wetland habitat than Alts 2 and 4.</td>
<td>See Alt 2 and 3.</td>
<td>Construction activities could affect threatened, endangered, and sensitive species in the same manner that vegetation could be affected.</td>
</tr>
<tr>
<td>- Vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource</td>
<td>No Action</td>
<td>Alternative 2</td>
<td>Alternative 3</td>
<td>Alternative 4</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Special Status Species – Wildlife Habitat crossed. Although no black-footed ferrets are found in the area, prairie dog towns if crossed by the proposed alignments may be habitat for this federally listed endangered species. Alternatives also would cross actual or potential habitat for 5 bird species listed as sensitive species by Montana and/or BLM and 3 fish species listed as sensitive by Montana.</td>
<td>There would be no additional impacts. 19.9 miles. Alt 2 crosses the most habitats for one or more special status species. The biological assessment concluded that there would be no effect on black-footed ferrets or their critical habitat.</td>
<td>11.3 miles. Alt 3 crosses the least habitat for special status species.</td>
<td>11.7 miles.</td>
<td>Construction activities could affect threatened, endangered, and sensitive species in the same manner that wildlife and aquatic resources could be affected in general.</td>
<td></td>
</tr>
<tr>
<td>Resource</td>
<td>No Action</td>
<td>Alternative 2</td>
<td>Alternative 3</td>
<td>Alternative 4</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>--------------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Air Quality – General</td>
<td>There would be no additional impacts.</td>
<td>Some localized short-term emissions of particulate matter would occur during construction.</td>
<td>Same as Alt. 2.</td>
<td>Same as Alt 2.</td>
<td>Construction of new facilities such as wind farms and other electrical generating facilities would generally have short-term impacts similar to construction impacts of the transmission line, but because of differences in timing, few impacts would likely be cumulative with air quality impacts of the proposed action. Operation of future facilities could increase other emissions, but few impacts would be cumulative with air quality impacts of the proposed action. Furthermore, construction of new facilities could either help reduce or contribute to emissions of greenhouse gasses; this depends on the type, size, and quantity of any generation built.</td>
</tr>
</tbody>
</table>
TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise – General</td>
<td>There would be no additional impacts.</td>
<td>Short-term, localized construction noise. Operation of the transmission line would not add substantially to existing background noise levels.</td>
<td>Same as Alt 2.</td>
<td>Same as Alt 2.</td>
<td>Construction of new facilities such as wind farms and other electrical generating facilities would generally have short-term impacts would vary in magnitude and duration based on the size and complexity of the project. Operation of wind turbines would result in noise; noise levels would depend on the observer's location.</td>
</tr>
<tr>
<td>Social Resources</td>
<td>No change to existing conditions and trends.</td>
<td>Increased short-term construction and long-term maintenance employment opportunities. Potential for impact to local schools, community structure and social services from influx of workers is small.</td>
<td>Same as Alt 2.</td>
<td>Same as Alt 2.</td>
<td>Any large development or numerous simultaneous small developments could strain local services. Smaller projects would have impacts similar to Alt 2. There could be a perception that wind turbines change the local character of a given area. There could be disagreement over wind turbine location.</td>
</tr>
</tbody>
</table>
TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics – Short term</td>
<td>There would be no change in employment opportunities.</td>
<td>There would be short-term construction-related employment opportunities.</td>
<td>Same as Alt 2.</td>
<td>Same as Alt 2.</td>
<td>Depending on the size and number of activities and location, impacts could vary from very minor to large.</td>
</tr>
<tr>
<td>Economics – Counties</td>
<td>There would be no opportunities for long-term operation and maintenance employment and no increased county tax revenues.</td>
<td>There would be opportunities for long-term operation and maintenance employment. County tax revenues would increase.</td>
<td>Same as Alt 2.</td>
<td>Same as Alt 2.</td>
<td>Depending on the size and number of activities and location, impacts could vary from very minor to large. Such impacts would include jobs, income, taxes and effects on social services.</td>
</tr>
<tr>
<td>Economics – State</td>
<td>There would be no increased opportunity for power import or export, no increased competition that could reduce costs to ratepayers, less opportunity for wind or other power generation facility start up and no increased state tax revenues.</td>
<td>Opportunities to import or export electric power would increase. Increased competition may reduce cost to ratepayers. Creation of opportunities to start up wind generation facilities. State tax revenue would increase.</td>
<td>Same as Alt. 2</td>
<td>Same as Alt 2.</td>
<td>Depending on the size and number of activities, impacts could vary from very minor to large. Such impacts would include jobs, income, and taxes, as well as changes in the local electric system.</td>
</tr>
<tr>
<td>Resource</td>
<td>No Action</td>
<td>Alternative 2</td>
<td>Alternative 3</td>
<td>Alternative 4</td>
<td>Cumulative Impacts</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>Economics – Landowners and Farmers</td>
<td>No change in existing conditions and trends.</td>
<td>Farmers would incur additional costs estimated at $82,000 to $86,000 per year. MATL would compensate landowners with one time easement payments, annual per-pole payments, and annual flat fees for the additional costs of farming caused by the transmission line. Some agricultural landowners would also receive a state property tax exemption for property within 660 feet of the centerline. Long-term impacts on land values are likely to be small.</td>
<td>Additional cost to farmers is estimated to be $108,000 to $109,000 per year. Compensation would be provided as described for Alt 2. Alt. 3 would have the highest cost to farmers before compensation. Some agricultural landowners would also receive a state property tax exemption for property within 660 feet of the centerline. Long-term impacts on land values are likely to be small.</td>
<td>Additional cost to farmers is estimated to be $57,000 to $59,000 per year. Compensation would be provided as described for Alt 2. Alt. 4 would have the lowest cost to farmers before compensation. Some agricultural landowners would also receive a state property tax exemption for property within 660 feet of the centerline. Long-term impacts on land values are likely to be small.</td>
<td>Depending on the size and number of activities and location, impacts could vary from very minor to large.</td>
</tr>
<tr>
<td>Paleontological Resources – The Two Medicine Formation is the geologic unit with a high probability of containing fossils.</td>
<td>There would be no additional impacts.</td>
<td>Construction activity could disturb fossil sites. Since most of the Two Medicine Formation is covered by 1 to 15 feet of material, little or no impact is anticipated.</td>
<td>Similar to Alt 2.</td>
<td>Similar to Alt 2.</td>
<td>Future activities could uncover or destroy currently unknown paleontological resources.</td>
</tr>
</tbody>
</table>
TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural Resources</td>
<td>There would be no new impacts to cultural resources or Traditional Cultural Properties.</td>
<td>Construction could disturb archaeological or historical resources. The 500-foot wide analysis area would encompass 8 known sites eligible for the NRHP and 33 sites of undetermined eligibility. Traditional Cultural Properties or potential locations identified by knowledgeable Tribal members would be avoided.</td>
<td>Similar to Alt. 2. Alt 3 would encompass 7 sites eligible for the NRHP and 9 sites of undetermined eligibility.</td>
<td>Similar to Alt 2. Alt 4 would encompass 4 sites eligible for the NRHP and 19 sites of undetermined eligibility.</td>
<td>Future activities could uncover or destroy currently unknown cultural resources.</td>
</tr>
<tr>
<td>Visuals – General</td>
<td>There would be no additional impacts.</td>
<td>Decline in aesthetic quality of view sheds, increase in visual contrast or landscape change due to contrast with natural landscape. Potential impact is primarily dependent on proximity of viewers and residences to the transmission line.</td>
<td>Same as Alt 2.</td>
<td>Same as Alt 2.</td>
<td>Impacts would depend on the type and location of development. Future activities would increase the developed character of the landscape for the long term. In particular, wind farms would be highly visible because of the introduction of turbines into rural landscapes with few other comparable structures.</td>
</tr>
<tr>
<td>Visuals – Residences within ¼ mile</td>
<td>No residences would be exposed to the view of a new transmission line.</td>
<td>20 residences.</td>
<td>25 residences. Alt 3 would be visible from the highest number of residences within this distance.</td>
<td>20 residences.</td>
<td></td>
</tr>
</tbody>
</table>

S-42
TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visuals – Number of Residences ¼ - ½ mile</td>
<td>No residences would be exposed to the view of a new transmission line.</td>
<td>51 residences.</td>
<td>65 residences. Alt 3 would be visible from the highest number of residences within this distance.</td>
<td>45 residences. Alt 4 would be visible from the lowest number of residences within this distance.</td>
<td></td>
</tr>
<tr>
<td>Visuals – Residences within ½ to 1 mile</td>
<td>No residences would be exposed to the view of a new transmission line.</td>
<td>111 residences.</td>
<td>139 residences. Alt 3 would be visible from the highest number of residences within this distance.</td>
<td>111 residences.</td>
<td></td>
</tr>
<tr>
<td>Visuals – Within ½ mile of a travel corridor (I-15 and US Highways 2 and 87)</td>
<td>No travel corridors would be exposed to the view of a new transmission line.</td>
<td>6.1 miles.</td>
<td>7.6 miles. Alt 3 would have the longest near-field visibility from travel corridors.</td>
<td>5.0 miles. Alt 4 would have the shortest near-field visibility from travel corridors.</td>
<td></td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>No change in existing conditions.</td>
<td>No disproportionately high and adverse impacts to minority or low-income populations were identified.</td>
<td>Same as Alt. 2</td>
<td>Same as Alt. 2</td>
<td>Future activities could have an impact on environmental justice depending on location and size of the project, but the proposed project would not contribute to cumulative adverse effects.</td>
</tr>
</tbody>
</table>
TABLE S-2
SUMMARY OF IMPACTS BY RESOURCE AREA

<table>
<thead>
<tr>
<th>Resource</th>
<th>No Action</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric System Reliability - The ability of the electric system to operate within established criteria under normal and emergency conditions.</td>
<td>No change.</td>
<td>No adverse effect on electric system reliability.</td>
<td>Same as Alt. 2</td>
<td>Same as Alt. 2</td>
<td>Depending on the project, there might be changes in the local electric system.</td>
</tr>
</tbody>
</table>

Notes:
Alt Alternative
BLM Bureau of Land Management
CRP Conservation Reserve Program
DGPS Differential Global Positioning System
EMF Electric and Magnetic Field
FWP Montana Dept. of Fish, Wildlife and Parks
kV/m Kilovolt per meter
mG Milligauss
MW Megawatt
NA Not applicable
NRHP National Register of Historic Places
ROW Right of Way
USFWS U.S. Fish and Wildlife Service
USFS U.S. Forest Service
S.6.2 Unavoidable Adverse Impacts

Unavoidable short-term adverse impacts from the proposed Project would be expected to occur to wetlands, land use (including transportation), noise, visuals, and native vegetation. Unavoidable long-term adverse impacts would occur to land use, birds, and visuals.

Construction activities could have short-term adverse impacts on land use, transportation, noise, and visuals, due to construction traffic and the establishment of staging areas, tensioning sites, access, and structure assembly areas. Construction activities could also have short-term adverse impacts on wetland resources from the alteration of surface water drainage patterns, disturbances and trampling of vegetation during construction, and from an increase in sedimentation to localized wetland areas from disturbances on adjacent properties. MATL’s transmission line structures would not be placed in wetland areas, so no long-term impacts are expected for wetland resources. Native vegetation would be unavoidably disturbed, and weed infestations may occur for the short term during construction and before reclamation.

Long-term impacts to land use include loss of production of farmland, increased risk to aircraft, and interference with farming activities. An increase in avian mortality would be unavoidable and long term. Visual resources would experience unavoidable adverse impacts to the aesthetic quality of the landscape by transmission lines.

S.6.3 Irreversible or Irretrievable Commitments of Resources

If concrete footings are used, the concrete would be left in place and irreversibly committed. Fuel used during construction and decommissioning would be irreversibly committed. If wood structures are used, it is probable that these poles would not be available for future transmission projects and would be irreversibly committed. Energy lost during transmission line operation (line losses) would be irretrievably committed.

Paleontological and cultural resources, including traditional cultural properties, are nonrenewable resources. The MATL project would increase access to the areas where these resources may be located. This increased access could lead to intentional damage from looting and vandalism, including unauthorized relic collecting, theft, and defacement, and result in the loss of information and destruction of the resource. Any impacts to these resources would constitute an irreversible commitment of resources.
Summary

S.6.4 Short-Term Use and Long-Term Productivity

Short-term uses are characterized by existing land use as affected by the proposed Project and all activities that such land use facilitates. Long-term productivity involves sustaining the interrelationships of each resource in a condition sufficient to support ecological, social, and economic health.

All action alternatives would manage resources within requisite regulatory standards for air quality, water quality, cultural resource preservation, and wildlife management. Impacts from any of the action alternatives to visual resources and farming activities would not adversely affect long-term productivity of the resource. Beneficial impacts to socioeconomic resources would be realized from all action alternatives. Because Alternative 4 contains additional environmental mitigation measures for avoiding adverse impacts to farming, riparian areas, visual resources, and surface water, this alternative presents the most protective alternative for the maintenance and enhancement of long-term productivity of the environment while benefiting socioeconomic resources.

S.7 Regulatory Restrictions Analysis

MEPA requires the disclosure of any regulatory impacts on the private property rights of an applicant. These impacts are usually estimated in terms of economic cost. Alternatives and mitigation measures are designed to further protect environmental, cultural, visual, and social resources, although they add to the cost of the Project. Alternatives and mitigation measures that are required by federal or state laws and regulations to meet minimum environmental standards do not need to be evaluated for extra costs to the project proponent. If approved, DEQ would require that the project meet standards for noise and electric field strength in residential and subdivided areas, unless affected landowners waive these requirements. The project would be required to meet minimum standards set forth in the National Electrical Safety Code and Federal Aviation Administration requirements for marking the line.

Project costs and costs of mitigation are presented in Table S-3. Monetary values of impacts, except for estimated costs to farmers, cannot reasonably be quantified. Many potential adverse environmental impacts are minimized through measures proposed by the applicant and the application of environmental specifications. A plan for monitoring the facility is described in environmental specifications for the project, as required by administrative rules implementing MFSA and further detailed in ARM 17.20.1901.
TABLE S-3
PROJECT COSTS

<table>
<thead>
<tr>
<th></th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (miles)</td>
<td>129.9</td>
<td>121.6</td>
<td>139.9</td>
</tr>
<tr>
<td>(53 miles monopoles, 76.9 miles H-frames)</td>
<td></td>
<td>(all H-frames)</td>
<td>(88.9 miles monopoles, 51 miles H-frames)</td>
</tr>
<tr>
<td>Construction cost</td>
<td>$39,874,650</td>
<td>$35,689,600</td>
<td>$43,994,350</td>
</tr>
<tr>
<td>a H-frame structures $293,500 per mile; monopole structures $326,500 per mile (MATL 1/26/07).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cost with mitigating measures</td>
<td>$40,619,150</td>
<td>$36,346,600</td>
<td>$44,873,350</td>
</tr>
</tbody>
</table>

Bond requirements and other mitigation measures that might be imposed by DEQ would add from 1.3 to 1.9 percent to the basic construction cost of Alternative 2. Alternative 3 would be less expensive to build than Alternative 2. Alternative 4, including bond, would cost 12.5 percent more than the basic construction cost of Alternative 2 or 11.1 percent more than the cost of Alternative 2 including bond.

Mitigation measures whose costs can be estimated are precision mapping of unstable soils, archaeologist observation of construction, wetlands delineation, bonding for reclamation and revegetation, and the use of conductors with dulled, non-reflective surfaces. Monopole structures in addition to the 53 miles that MATL has committed to use for diagonal crossings of cultivated cropland might also be required in some areas.

The costs of other measures, such as damage payments are not readily quantifiable but would add to the total cost of the Project.

MATL has already negotiated easements across portions of the proposed Project alignment. The cost to MATL of acquiring these easements is unknown. If MATL has already paid for ROW access to lands that may be crossed by the Alternative 2 alignment, and that alignment is not permitted, MATL may lose the money already spent. Alternative 2 with additional mitigation measures and the use of monopoles on selected portions of the transmission line would impose the least regulation on MATL’s private property rights while reducing environmental impacts.
Summary

S.8 Intentional Destructive Acts

Intentional destructive acts, such as sabotage, terrorism, vandalism, and theft, sometimes occur at electric utility facilities. These acts include shooting at insulators, power lines, transmission towers, or substation equipment; vandalism; and theft of equipment, supplies, tools, or materials. Vandalism and thefts are most common. However, these acts do not generally cause a disruption of electric service to the area.

In general, it is possible that destroying support towers or other equipment may result in disruption of electrical service depending on the size (voltage and capacity) of the transmission line, the particular act, and the configuration of the local transmission system. However, given the characteristics of the proposed MATL transmission line project and its rural location, it is unlikely that intentional destructive acts would occur. Furthermore, even if such an act did occur, it is not likely to have a major impact on the regional transmission system or local electrical service because the electric system is designed to withstand the instantaneous loss (regardless of the cause) of key elements and still provide uninterrupted service to customers.
1.0 Purpose, Benefits and Need for the Proposed Actions

Background
Montana-Alberta Tie Ltd. (MATL) is proposing to construct and operate an international 230-kilovolt (kV) alternating current, merchant (private) transmission line that would originate at an existing NorthWestern Energy (NWE) Great Falls 230-kV switch yard near Great Falls, Montana, and extend north to a new substation to be constructed northeast of Lethbridge, Alberta, crossing the U.S.-Canada international border north of Cut Bank, Montana. Approximately 130 miles of the 203-mile transmission line is proposed to be constructed in Montana. The line would be owned by MATL, a private Canadian corporation owned by Tonbridge Power. The proposed line would be part of the Western Interconnection (western grid), and a phase shifting transformer would be installed at the substation near Lethbridge to control the direction of power flows on the line.

Before constructing and operating the proposed transmission line, MATL must obtain a Presidential permit from the U.S. Department of Energy (DOE) (10 CFR Part 205 320 et seq) and a Certificate of Compliance (certificate) from the State of Montana Department of Environmental Quality (DEQ) under the Montana Major Facility Siting Act (MFSA)(75-20-101, et seq., Montana Code Annotated [MCA]). MATL has submitted an application for a certificate to the DEQ and an application to DOE for a Presidential permit. These applications address the portion of the transmission line between Great Falls and the border between the United States and Canada. Figure 1.1-1 shows the location of the proposed facility and alternatives.

Environmental Review
DEQ approval of the proposed Project must be obtained before construction may begin. In response to the application for a certificate, DEQ must conduct an environmental review. This review is required by the Montana Environmental Policy Act (MEPA)(75-1-101 et seq., MCA) and MFSA. Granting a Presidential permit also requires an environmental review conducted in accordance with the National Environmental Policy Act (NEPA) of 1969 (42 USC §§ 4321-4347). Because of the similarities in the two environmental review processes and the requirements of the regulations implementing NEPA and MEPA, and to reduce the burden and expense of preparing separate documents, DOE and DEQ decided to cooperate as joint lead agencies in the preparation of a single environmental review document that would address both purposes. Initially, DOE considered an environmental assessment (EA) to be the appropriate level of review under NEPA while the DEQ considered the appropriate level of review for MEPA to be an environmental impact statement (EIS) analysis.
DEQ initiated its process by publishing notice in Montana newspapers that an application for the MATL project had been received and started the public scoping process. The notice ran in five newspapers for two weeks. In addition a press release alerted other media of the proposal and meetings. In June 2006 another notice of a scoping meeting ran in four area newspapers after MATL revised its proposed alignment north of Cut Bank.

On November 18, 2005, DOE published in the Federal Register (70 FR 69962) a Notice of Intent to Prepare an EA and to Conduct Public Scoping Meetings and Notice of Floodplain and Wetlands Involvement. That notice opened a 45-day scoping period during which the public was invited to participate in the identification of potential environmental impacts that may result from construction of the MATL transmission line project and reasonable alternatives. Scoping meetings were held in the project area as described in Section 1.5.1.

In March 2007, the DEQ and DOE published a draft document that was both the DEQ Draft EIS and the DOE EA (March 2007 document). The document was distributed for public comment and three public hearings were conducted to receive comments on the document during a 55-day public comment period. Based on comments received on the March 2007 document relating to land use and potential effects on farming, DOE determined an EIS to be the appropriate NEPA compliance document. Accordingly, on June 7, 2007, DOE published in the Federal Register (72 FR 31569) a Notice of Intent to Prepare an EIS and to Conduct Scoping. On July 27, 2007, MATL submitted to the U.S. Bureau of Land Management (BLM) an Application for Transportation and Utility Systems and Facilities on Federal Land. On September 6, 2007, DOE invited BLM to participate as a cooperating agency in the preparation of the EIS. DOES requested BLM’s involvement to address BLM’s authority to approve MATL’s request for a special use permit and the proposal’s relationship to relevant BLM land use plans. On October 12, 2007, BLM informed DOE of its intent to be a cooperating agency in the preparation of this EIS.

Comments received on the March 2007 document indicated additional analysis was needed to describe the costs of farming around the proposed structures and to compare these costs to the additional costs associated with alternative locations for the line. In addition substantial changes to state tax law took place in Montana’s April 2007 special legislative session which changed the analysis of socioeconomic impacts. These issues are addressed further in this document, which is both a Federal Draft EIS and a State of Montana Supplemental Draft EIS (November 2007 document).
Chapter 1

Purpose and Benefit

General DOE Requirements

The Department of Energy has the responsibility for implementing Executive Order (E.O.) 10485 (September 9, 1953), as amended by E.O. 12038 (February 7, 1978), which requires the issuance of a Presidential permit for the construction, operation, maintenance, and connection of electric transmission facilities at the United States international border. DOE may issue the permit if it determines that the project is in the public interest, and after obtaining favorable recommendations from the U.S. Departments of State and Defense. In determining if a proposed Project is consistent with the public interest, DOE considers:

1. Potential environmental impacts in accordance with the National Environmental Policy Act of 1969 (NEPA) and Council on Environmental Quality and DOE implementing regulations at 40 CFR 1500-1508 and 10 CFR 1021, respectively;

2. The proposed Project’s impact on electric reliability, that is whether the proposed Project would adversely affect the operation of the U.S. electric power supply system under normal and contingency conditions; and

3. Any other factors that DOE may consider relevant to the public interest.

General NEPA/MEPA and MFSA Requirements

MEPA requires that decision makers consider the effects of their actions on the environment, and that state agencies inform the public of the decision making process and allow participation in the process. Similarly, NEPA requires that Federal decisionmakers be fully informed of the potential environmental consequences of their actions and document the reasons for their decisions. If DEQ and DOE determine that issuing a certificate or granting a Presidential permit would be in the public interest, the information contained in this document would provide a basis upon which those decisions are made. DEQ and DOE would consider this information in deciding which alternative(s) could be implemented and which mitigation measures, if any, would be appropriate for inclusion as a condition of the certificate or permit. DEQ and DOE will document its decisions in separate Records of Decision. The BLM would also document its decision with an issuance of a Decision Record and Findings of No Significant Impacts.

MFSA requires a certificate of compliance for development of this electric transmission line. The purposes are to: (1) ensure the protection of the state's environmental resources; (2) ensure the consideration of socioeconomic impacts; (3) provide citizens with an opportunity to participate in facility siting decisions; and (4) establish a coordinated and efficient method for the processing of all authorizations required for regulated facilities (DEQ 2006). A summary of how the Project and alternatives would
address each MFSA-required finding, including probable impacts, is provided in Section 3.18.

Under MFSA, the Montana Departments of Transportation (MDT), Natural Resources and Conservation (DNRC), Fish, Wildlife and Parks (FWP), and Revenue, and the Public Service Commission are required to report to DEQ information related to the impact of the proposed site on each agency’s area of expertise. The report may include opinions on the advisability of granting, denying, or modifying the certificate (75-20-216[6], MCA).

Organization of the November 2007 document

This February 2008 document is presented in 2 volumes; Volume 1 is the Environmental Impact Statement and Volume 2 contains the responses to public comments on the March 2007 document.

Volume I, Chapter 1 includes a description of the project, purpose, benefit, and need for the project, relevant agency permitting actions, public participation, issues of concern, and other background information. Chapter 2 of this February 2008 document contains the descriptions of MATL’s proposed Project and the alternatives to the Project, along with alternatives considered but dismissed. Chapter 3 presents the affected environment and impacts analysis. Cumulative impacts, unavoidable adverse impacts, and irreversible and irretrievable impacts are in Chapter 4. Consultation and coordination with other agencies and interested groups is in Chapter 5. The list of people who prepared this document is in Chapter 6. Chapter 7 presents a glossary and acronym list. References are in Chapter 8.

Volume II contains comments on the March 2007 document and agency responses to those comments.

Twelve appendices (Appendix A through L) were included in the March 2007 document EA and are not included in this November 2007 document unless changed or updated. Three additional and three revised appendices are included in this February 2008 document. These appendices follow the references and include:

- **Appendix F** — Revised Draft DEQ Environmental Specifications
- **Appendix H** — Land Use Types By Milepost
- **Appendix L** — Photographic Simulations
- **Appendix M** — MATL System Impact Study and WECC Letter
- **Appendix N** — Farm Cost Review for MATL Project
- **Appendix O** — Potential Wind Farm Mitigation Measures BLM Programmatic EIS for Wind Energy Development on BLM Lands in the Western U.S.
1.1 Project Background

In North America, electricity moves from power generating facilities to customers using a transmission system. The North American Electric Reliability Corporation (NERC) is responsible for improving the reliability and security of the electric power system in North America. NERC works with eight Regional Reliability Councils to improve the reliability of the bulk power system. The members of the regional councils come from all segments of the electric industry: investor-owned utilities, Federal power agencies, rural electric cooperatives, state, municipal and provincial utilities, independent power producers, power marketers, and end-use customers (NERC 2006). These entities account for virtually all the electricity supplied and used in the U.S., Canada, and a portion of Baja California, Mexico (Figure 1.1-2). Montana is located primarily within the Western Grid (see text box) under the direction of the Western Electricity Coordinating Council (WECC), one of the eight regional councils.

By design, the Western Grid system is weakly tied to the eastern portion of the North American Grid. There is currently no direct high voltage power transmission connection between Alberta and Montana (Figure 1.1-2).

To ensure reliable electrical transmission service, NERC authorizes “balancing authorities” in critical areas throughout the system that are responsible for maintaining load-interchange-generation balance within a balancing authority area. The WECC region contains 44 transmission operators and 35 balancing authorities (Figure 1.1-2). NWE and DOE’s Western Area Power Administration (WAPA) are the two balancing authorities in Montana (NERC 2007). A description of the existing transmission system in Montana and Alberta, and how reliability could be affected by the Project is provided in Section 3.17.

While the power system in North America is commonly referred to as “the grid,” there are actually three distinct power grids or “interconnections.” The Eastern Interconnection includes the eastern two-thirds of the continental United States and Canada from Saskatchewan east to the Maritime Provinces. The Western Interconnection includes the western third of the continental U.S. (excluding Alaska), the Canadian provinces of Alberta and British Columbia, and a portion of Baja California Norte, Mexico. The third interconnection comprises most of the state of Texas. The three interconnections are electrically independent from each other except for a few small direct current ties that link them. Within each interconnection, electricity is produced the instant it is used, and flows over virtually all transmission lines from generators to loads.
FIGURE 1.1-2
NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL REGIONS AND BALANCING AUTHORITIES

NERC Regions and Balancing Authorities

Source: North American Electric Reliability Council
Electric Reliability Council of Texas, Inc. (ERCOT)
Florida Reliability Coordinating Council (FRCC)
Midwest Reliability Organization (MRO)
Northeast Power Coordinating Council (NPCC)
ReliabilityFirst Corporation (RFC)
Southeastern Electric Reliability Corporation (SERC)
Southwest Power Pool, Inc. (SPP)
Western Electricity Coordinating Council (WECC)

As of January 12, 2006

GIS map by Ed Madej - TTEI-HE
Fig1_1-2_MATL_NERC_Regions_020107_JA.mxd
Chapter 1

1.2 Purpose, Benefit, and Need

This section describes the purpose and benefit of the proposed action to the State of Montana as required under MEPA and MFSA (Section 1.2.1). This section also addresses purpose and need for the Federal action as required under NEPA (Section 1.2.4) and purpose and benefit to the applicant (Section 1.2.2) and the need for the facility under MEPA (Section 1.2.3). DEQ will make several findings, including a finding of need, before a certificate can be issued under MFSA. Under MFSA, consideration will be given to the benefits of the project to the applicant and to the state.

1.2.1 Purpose and Benefit to the State of Montana

The purpose for the proposed MATL transmission line is to connect the Montana electrical transmission grid with the Alberta electrical transmission grid (no direct connection currently exists), provide access to potential markets for new and existing power generation facilities in the vicinity of the proposed transmission line, and improve transmission access to markets seeking new energy resources. Expected benefits of the proposed Project are summarized below and examined in detail in Section 3.13.

Benefits to Electricity Generators and Consumers in Montana

The proposed transmission line could transport 300 MW of power north and 300 MW south on a firm basis (guaranteed). Customers who have signed agreements with MATL to ship power on a firm basis are currently wind farm developers in Montana and are listed in Table 4.1-2. Although the electricity generated by these wind farms may be shipped over the MATL transmission line and the majority of the revenue earned by MATL may be from wind farm operators, the MATL transmission line and the potential wind farms are not connected actions. Potential wind farms along the MATL line are considered to be reasonably foreseeable future actions and are discussed as cumulative impacts in Chapter 4.

Due to constraints on the current electrical grid system where MATL would tie in at Great Falls, the full capacity of 300 MW to the south may not be realized at all times. The added electrical transmission capacity from the MATL line could support a modest increase in new power generation in Montana. When the firm capacity is not being fully used by the contracted firm power generators, the line would be available for short-term, non-firm transfers of power from other generation sources. If the proposed transmission line is approved, MATL will have already sold the firm capacity of the line to four potential wind farms before construction begins. The known information regarding the four wind energy generation companies that have contracted with MATL is provided in Chapter 4.
Additional expected benefits to Montana generators and consumers include: additional connection with markets that demand energy from sustainable sources, such as electricity generated from wind power; additional wholesale electricity purchasing options for Montana utilities, which could result in lower rates due to an increase in supplier competition; and increased opportunities for western grid system optimization during high Montana export and low Alberta-BC export scenarios.

Benefits to Existing Transmission Systems

A modified transmission system, including a tie line between Montana and Alberta, may also result in benefits to transmission system operators whose service areas include Montana and to utilities that provide transmission service within the state. A modified transmission system could provide more options for power routing within Montana, increase energy transactions between Montana and Alberta, and allow for easier balancing of energy surpluses and shortages within and between balancing authority areas. Because tie lines are able to connect with adjacent electric systems, different generation resources can combine to provide a level of reliability that one jurisdiction could not otherwise afford if that jurisdiction had to cover the same resources independently. The MATL line could also create another opportunity for Montana’s largest privately owned transmission and distribution utility, NWE, to obtain regulating reserves for its transmission system control area.

1.2.2 Benefits as Stated by the Applicant

The MATL transmission line is a merchant line the primary purpose of which is to financially benefit the owner/operators. The MATL application for certification described the following benefits to MATL, the U.S., and Canada (MATL 2006b):

The Project would be the United States’ first power transmission interconnection with Alberta and is expected to facilitate development of additional sources of generation (e.g., wind farms both in northern Montana, and southern Alberta), and improve transmission system reliability in Montana, Alberta, and on a regional basis in both the U.S. and Canada. In addition, the Project would promote increased trade in electrical energy across the international border, and provide a transmission route to balance energy surplus/shortage situations in an efficient and economic manner.

In addition, MATL asserts that system stability studies conducted under the direction of the WECC Peer Review Group indicate that the proposed Project would not adversely affect transmission system stability (Tonbridge Power, Inc. 2007).
Chapter 1 Purpose and Benefit

1.2.3 Need for the Facility

The need for this line is the additional transfer capacity it would provide, if built. This line would directly connect Montana’s and Alberta’s regional operating transmission systems, and would allow power to flow directly between these two systems where there is no current connection.

Because Montana makes more electricity than it consumes, to be economically viable, any new generation resources in Montana will offer competitive pricing and have adequate transmission access to compete in out-of-state markets or replace an existing supplier choosing to take higher profits by selling out of state (DEQ 2004). Either way, additional transmission capacity is not needed to serve Montana customers, but it is essential for the viability of new generation enterprises (DEQ 2004).

The MATL transmission line could support a modest increase of new electricity generators, such as wind, in the study area by connecting them to regional grids and thus potentially to electricity markets. The MATL transmission line is proposed to be capable of shipping up to 300 MW north and 300 MW south. The amount of new generation that would be able to be shipped south into Montana by MATL is currently unknown due to potential transmission constraints south of Great Falls, which would be the southern terminus of the MATL transmission line. To the extent that southerly electrical flows on the MATL transmission line are constrained, this would reduce MATL’s ability to meet the need for increased capacity. It also might result in more electricity flowing north from Montana into Alberta than from Alberta to Montana.

1.2.4 Purpose and Need for DOE Action

DOE will consider this EIS to determine whether to grant a Presidential permit to MATL for the construction, operation, maintenance, and connection of the proposed 230-kV transmission line that would cross the U.S.-Canada border. The purpose of DOE’s action is to respond to MATL’s request for a Presidential permit. BLM will use this EIS to determine whether granting an easement to MATL for the proposed transmission line would be compatible with its West HiLine Resource Management Plan.

1.3 Scope of this Document

The objective of this February 2008 document is to evaluate the potential environmental impacts associated with the proposed actions of issuing a MFSA certificate of compliance, a DOE Presidential permit, and a BLM easement that would result in the construction and operation of the proposed MATL 230-kV transmission line (the Project) or two action alternatives. This document also provides information pertaining
to findings necessary for transmission line certification in accordance with MFSA (Section 3.18). The document also considers a “No Action” alternative, the impacts of not certifying or permitting the proposed facility, or amending the land use management plan. The alternatives are described in Chapter 2 along with several local routing options. The description of the environment that would be affected by the proposed Project and alternatives and an analysis of impacts to human health and the environment are provided in Chapter 3. Resource areas that are discussed in detail in this document are: land use, geology and soils, engineering, hazardous materials, water, wetlands, vegetation, wildlife, fish, special status species, air quality, noise, transportation, human health and electromagnetic fields, socioeconomics, visuals, cultural resources, and the transmission grid.

This February 2008 document analyzes only those project-related facilities constructed inside the U.S. Neither the U.S. nor agencies of the State of Montana have jurisdiction over the regulation or permitting of facilities in Canada.

1.3.1 Alternatives Considered For Detailed Analysis

A discussion of how alternatives were developed, alternatives considered but dismissed from detailed analysis, and complete descriptions of the four alternatives considered for detailed analysis is provided in Chapter 2. A summary of the four alternatives is presented below.

Alternative 1 — No Action

Under Alternative 1, the proposed Project would not be approved by DEQ, DOE, or BLM and, consequently, would not be constructed. Existing electrical transmission service in north-central Montana would be maintained and operated at its current level. In addition, plans to construct new generation facilities in the analysis area would need to consider other transmission alternatives or not be built.

Alternative 2 — Proposed Action

Alternative 2 is to construct and operate a merchant transmission line between Great Falls, Montana and Lethbridge, Alberta, as described in MATL’s application to DEQ (MATL 2006b), application to DOE for a Presidential permit, and application to the BLM for an easement. The Alternative 2 proposed alignment is 129.9 miles long (within Montana) and extends from the 230-kV Great Falls switch yard north of Great Falls to a proposed new substation near Cut Bank, and extends north to the Montana-Canada border at the western edge of the Red Creek Oil Field. Monopole structures would be used on 53 miles of the line where it would cross cropland and Conservation Reserve Program (CRP) land diagonally. H-frame structures would be used for the remainder of this alternative.
Alternative 3 – MATL B

Alternative 3 would be 121.6 miles long and would be similar to Alternative 2 in that the width of the right-of-way, types of access roads, implementation, conductors, markers, substations, construction, operations, maintenance, and potential environmental protection measures would be the same as those described for Alternative 2. The Alternative 3 alignment would be different from Alternative 2 in that it would generally parallel an existing 115-kV transmission line along the entire route from the Great Falls switch yard to a substation near Cut Bank and use only H-frame structures. Alternative 3 was developed by MATL in response to a single preferred location MFSA siting criterion that recommends paralleling existing utility corridors (Circular MFSA-2, section 3.1). This alternative alignment was not intended to address potential land use issues or maintenance issues.

Alternative 4 – Agency-Developed

Alternative 4 was developed by DEQ within MATL’s study area to address concerns raised by the public and interested agencies during the scoping period. Issues of concern that helped shape Alternative 4 are: potential adverse impacts to farmers from diagonal crossings of farm fields using H-frame structures, limitations on private property use due to crossings on private land, and disturbance of visual resources. The alignment under Alternative 4 would be 139.6 miles long and would be generally constructed along field boundaries and where diagonal crossings would not impact farming practices or other private land use. Public land (both Federal- and state-owned) would be used when its use would be as economically practicable as the use of nearby private land. Alternative 4 would also include additional environmental protection measures recommended by DEQ and DOE, but not required under Alternatives 2 and 3. The use of monopoles would be required where the line would cross cropland and CRP land. The width of the right-of-way, project implementation, conductors, markers, substations, types of access roads, construction, operations, and maintenance would be the same as Alternatives 2 and 3.

1.3.2 Other Analyses Used In This Document

Portions of the EIS describing some of the potential impacts resulting from potential development of wind generation projects were summarized and updated from the Final Programmatic Environmental Impact Statement on Wind Energy Development on BLM-Administered Lands in the Western United States (BLM 2005). This document assessed the environmental, social, and economic impacts associated with wind energy development on BLM-administered land. This analysis was used to evaluate cumulative impacts on the environment that would result from the incremental impact of an action alternative when added to other reasonably foreseeable future actions such as increased wind energy development projects.
1.4 **Agency Permitting Actions and Authorities**

Together, DEQ, DOE, and BLM are responsible for the preparation of this November 2007 document. DEQ administers MFSA, MEPA, the Montana Hazardous Waste Act, the Montana Water Quality Act, and the Clean Air Act of Montana. After a certificate is issued, MFSA (75-20-401[1], MCA) would preempt all other state and local laws except those pertaining to air quality, water quality, worker health and safety, noxious weed control, and instances where the state has a property right such as on state-owned land.

The location of the proposed MATL transmission line will conform to applicable state and local laws and regulations, except where the DEQ may refuse to apply any local law or regulation if it finds that the law or regulation is unreasonably restrictive in view of existing technology, of factors of cost or economics, or of the needs of consumers, whether located inside or outside the directly affected government subdivisions.

In addition to DEQ, DOE, and BLM, other local, state, and Federal agencies have jurisdiction over certain aspects of MATL’s proposed Project. **Table 1.4-1** provides a comprehensive listing of agencies and their respective permit/authorizing responsibilities with respect to the proposed Project.

The initial step in the Montana regulatory process is filing of the MFSA application, which is required by DEQ, under Title 75, Chapter 20, MCA. MATL submitted its MFSA application in December 2005. For DOE, the initial step was MATL’s submission of its application for a Presidential permit on October 7, 2005 (70 FR 65891, November 1, 2005). For BLM, MATL must submit an application for Transportation and Utility Systems and Facilities on Federal Land prior to beginning construction of the transmission line.

Electricity Export Authorization

Exports of electricity from the United States to a foreign country are regulated by DOE pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.824a(e)). However, in its application to DOE for a Presidential permit, MATL indicated that it intends to operate the proposed merchant transmission line as an “open access” transmission facility, as that term is defined by the U.S. Federal Energy Regulatory Commission, and that MATL would not export electric energy to Canada on its own account. Therefore, MATL does not intend to seek, nor does it require an electricity export authorization. However, any other entity exporting electricity to Canada using the MATL facilities, if authorized, would require an electricity export authorization issued by DOE.
<table>
<thead>
<tr>
<th>Permit*</th>
<th>Agency</th>
<th>Description</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificate of Compliance</td>
<td>Montana Department of Environmental Quality</td>
<td>Reviews project application, conducts reviews of project impacts, approves and coordinates other permit activities, and monitors project to determine compliance with terms of certificate.</td>
<td>Montana Major Facility Siting Act</td>
</tr>
<tr>
<td>Section 401 Certification</td>
<td>Montana Department of Environmental Quality</td>
<td>Provides review of potential adverse water quality impacts from discharges associated with dredged or fill materials in wetlands and other Waters of the U.S.</td>
<td>Montana Water Quality Act</td>
</tr>
<tr>
<td>318 Authorization</td>
<td>Montana Department of Environmental Quality</td>
<td>Provides for a temporary narrative water quality standard for turbidity due to construction.</td>
<td>Montana Water Quality Act</td>
</tr>
<tr>
<td>Land Use License (DS-432)</td>
<td>Montana Department of Natural Resources and Conservation</td>
<td>Licensing structures and improvements on state lands and across navigable water bodies.</td>
<td>Title 77, MCA</td>
</tr>
<tr>
<td>Pre-construction Authorization</td>
<td>Montana Department of Natural Resources and Conservation</td>
<td>Authorizes construction prior to easement grant by the Board of Land Commissioners</td>
<td>85-2-402 and 85-2-407, MCA</td>
</tr>
<tr>
<td>Utility Crossing Consultation and Occupancy Permit</td>
<td>Montana Department of Transportation</td>
<td>Jurisdictional authority for issuing encroachment and occupancy permits; issuing approach permits; and review and approval of modification to Federal-aid eligible highways.</td>
<td>60-6-111, MCA; Title 75, Chap. 20, Sec. 103 and 401</td>
</tr>
<tr>
<td>FEDERAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presidential Permit</td>
<td>U.S. Department of Energy</td>
<td>Issuance of a permit must be found to be consistent with the public interest and DOE must obtain concurrence of the Secretary of State and Secretary of Defense before permit can be issued.</td>
<td>Executive Orders 10485 and 12038</td>
</tr>
<tr>
<td>Section 404</td>
<td>U.S. Army Corps of Engineers</td>
<td>Controls discharge of dredged or fill materials in wetlands and other Waters of the U.S.</td>
<td>Section 404 of the Clean Water Act (33 CFR 323.1, 330)</td>
</tr>
<tr>
<td>Notice of Proposed Construction/Alteration</td>
<td>Federal Aviation Administration</td>
<td>Structure location, height, lighting, and documentation relative to air traffic corridors.</td>
<td>14 CFR Part 77, Objects Affecting Navigable Airspace</td>
</tr>
</tbody>
</table>

TABLE 1.4-1
PERMITS AND OTHER REQUIREMENTS FOR THE PROJECT
<table>
<thead>
<tr>
<th>Permit</th>
<th>Agency</th>
<th>Description</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Plan</td>
<td>Occupational Safety & Health Administration</td>
<td>Provides guidance to on-site construction worker safety along with emergency contacts, hospital routes, etc.</td>
<td>29 CFR 1910</td>
</tr>
<tr>
<td>Tariff Review and Approval</td>
<td>Federal Energy Regulatory Commission</td>
<td>Approval of rates for transmission in interstate commerce for jurisdictional utilities, power marketers, power pools, power exchanges and independent system operators.</td>
<td>Title 18 CFR</td>
</tr>
<tr>
<td>Utility Permit for Interstate Crossing</td>
<td>U.S. Federal Highways Administration</td>
<td>Review and approval of Montana Department of Transportation permit for transmission lines in the Interstate Highway System right-of-way.</td>
<td>23 CFR Part 645</td>
</tr>
<tr>
<td>Section 7 Consultation</td>
<td>U.S. Fish and Wildlife Service</td>
<td>Identifies any species and its habitat listed as endangered or threatened that may be impacted by the project.</td>
<td>Federal Endangered Species Act of 1973</td>
</tr>
<tr>
<td>A Biological Opinion or Concurrence with the Biological Assessment</td>
<td>U.S. Fish and Wildlife Service</td>
<td>USFWS must concur with the Biological Assessment or prepare a Biological Opinion.</td>
<td>Federal Endangered Species Act of 1973</td>
</tr>
<tr>
<td>Section 106 Consultation</td>
<td>Advisory Council on Historic Preservation and Montana State Historic Preservation Office</td>
<td>Consultation between project applicants and Federal agencies regarding impacts on cultural resources that are either listed or eligible for listing on the NRHP.</td>
<td>Section 110 and 106 of the National Historic Preservation Act</td>
</tr>
<tr>
<td>Compatibility Review</td>
<td>U.S. Department of Agriculture, Farm Service Agency</td>
<td>Facility siting on CRP contracted land requires a compatibility review to determine a facility’s potential impact to the CRP status of the affected property.</td>
<td>Food Security Act of 1985</td>
</tr>
</tbody>
</table>
TABLE 1.4-1
PERMITS AND OTHER REQUIREMENTS FOR THE PROJECT

<table>
<thead>
<tr>
<th>Permit</th>
<th>Agency</th>
<th>Description</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noxious Weed Management Plan</td>
<td>County Weed Control Districts</td>
<td>Provides containment, suppression, and eradication of noxious weeds.</td>
<td>Title 7, MCA</td>
</tr>
<tr>
<td>Easement Grants and Road Crossing Permits</td>
<td>Boards of County Commissioners</td>
<td>Consider issuance of right-of-way easement grants and road-crossing permits for county property and roadways.</td>
<td>County Commissioners</td>
</tr>
</tbody>
</table>

Notes:

a Refers to permit, notice, review authority, certificate, license, consultation or law.

CFR Code of Federal Regulations
MCA Montana Code Annotated
USC United States Code

Eminent Domain

Eminent domain is the process by which the state can acquire private property for public use. The state is limited in that “just compensation to the full extent of the loss” will be paid to the property owner when exercising eminent domain (Montana Legislative Services 2005). Different property types and land uses have been identified by the legislature as appropriate public uses of eminent domain. Among these uses, power lines and their associated rights of way are included with the stipulation that rights of way are designed to be most compatible with the greatest public benefit and the least private harm (Evans 2001). Before acquiring property through the use of eminent domain, the state will prove that public interest requires taking the property based on several criteria and then proceed through the legal process (Evans 2001). It is through eminent domain that states have the power to provide transportation corridors and other infrastructure needs for their citizens.

Any Presidential permit that DOE may issue does not convey any rights of eminent domain.
1.5 Public Participation and Issues of Concern

The scoping process is used to identify all issues relevant to the Project as proposed by the applicant and to develop alternatives to the proposed Project. Members of the public, the agencies, and the interdisciplinary EIS team all helped to define the issues for the scope of analysis. Information related to consultation and coordination among public and government entities can be found in Chapter 5.

1.5.1 Opportunities for Public and Agency Input

DOE issued a “Notice of Intent to Prepare an Environmental Assessment and to Conduct Public Scoping Meetings and Notice of Floodplain and Wetlands Involvement; Montana Alberta Tie, Ltd.” in the Federal Register on November 18, 2005 (70 FR 69962). In addition, DOE mailed a copy of the notice, using Montana land ownership records, to each owner of land on the MATL-proposed corridor.

DEQ and DOE hosted public meetings in December 2005. In addition, DEQ hosted a public meeting in June 2006 because MATL changed its proposed alignment north of Cut Bank. During the meetings, the public was asked to identify issues and concerns to be addressed during the review. During each meeting, MATL and DEQ representatives presented briefings. Maps and other information were available for review, and representatives from each agency were available to discuss the project, answer questions, and receive public comments.

Meeting dates and locations are listed below:

- Conrad on Monday, December 5, 2005, at Norley Hall,
- Great Falls on Tuesday, December 6, 2005, at the Great Falls Civic Center,
- Cut Bank on Wednesday, December 7, 2005, at the Glacier County Voting Center, and

Additionally, throughout the scoping process, stakeholders expressed their concerns via letters, phone calls, and emails.

A Draft EIS/EA was released for public review in March 2007. Three public hearings were held to receive public comments:

- Conrad on Tuesday, March 27, 2007, at Norley Hall,
- Cut Bank on Wednesday, March 28, 2007, at the Glacier County Voting Center, and
- Great Falls on Thursday, March 29, 2007, at the Great Falls Civic Center.
On June 7, 2007, DOE published in the *Federal Register* (72 FR 31569) a Notice of Intent to Prepare an EIS and to Conduct Scoping and invited additional comments for a 30-day period.

Following publication of this draft EIS, the agencies will hold a 45-day comment period. During that time, the agencies will host additional public hearings allowing the public to submit their comments and will also accept written comments from the public.

Other agencies having interest or responsibility in the project approval process include: FWP, Montana State Historic Preservation Office (SHPO), DNRC, MDT, MDOR, MPSC, U.S. Department of Agriculture (USDA) Farm Service Agency, BLM, and U.S. Fish and Wildlife Service (FWS).

1.5.2 Issues of Concern

Based on comments received from participating agencies and the public before and after the issuance of the March 2007 document, ten issues and concerns were identified and are briefly described below.

1. Impacts on farming, ranching, and other land uses:

 Concerns were expressed regarding potential difficulties and hindrances of farming around the transmission line structures, potential for interference with Differential Global Positioning System (DGPS)-guided farm equipment, potential for noxious weed growth, interference with existing and future pivot or mechanical irrigation systems, and additional fencing needs. One commenter noted that when the original NWE 115-kV Great Falls to Cut Bank line was constructed in the mid-1960s, farmers on the west side of the Golden Triangle expressed concern over the H-frame structures, especially the difficulty of farming around them. With cultivation toolbars and sprayers today ranging up to 120 feet in length, an additional diagonal transmission line presents obstacles to farmers. Requests were made for evaluation of a monopole line that follows (where possible) existing roads, property or section lines, or field boundaries. Realignments of the proposed line could be made at turning points located on land historically used for grazing or placed in CRP. Some stakeholders commented that the proposed line should connect to the WAPA 230-kV line at Shelby, negating the need for a new line that would cross diagonally through cropland all the way to Great Falls.
(2) Impacts on protected, threatened, endangered, and sensitive animal and plant species and their critical habitats:

Concerns were expressed about increased perch opportunities for birds of prey and resulting effects on sharp-tailed grouse populations and special status wildlife. There was concern over disturbance of rare plant species that may occur within the project area. Concerns were also expressed regarding interference with migratory and feeding flight paths of waterfowl, bird strike, and potential impacts on critical wildlife habitats.

(3) Impacts on floodplains and wetlands:

Concerns were expressed about the size and degree of impacts on known and delineated floodplains, wetlands, waters of the U.S., and other special aquatic sites.

(4) Avian mortality:

Concerns were expressed regarding bird mortality and suggestions were made for the use of bird strike mitigation practices currently implemented at the FWS Benton Lake National Wildlife Refuge and other applicable sites in the northern Great Plains.

(5) Impacts on cultural and historic resources:

Concerns were expressed regarding potential disturbance of Native American settlements and religious sites in the alignments.

(6) Impacts on human health and safety:

Concerns were expressed regarding specific voltage and current specifications, minimum ground clearance of the line, corona effects (including audible noise and radio and television interference), and other electromagnetic field effects from the operation of the 230-kV transmission line on human health and safety.

(7) Impacts on air, soil, and water:

Concerns were expressed regarding highly erodible soils, such as soil erosion and resultant sedimentation to surface water; mass movement and unstable geologic materials and soils; reclamation constraints; and potential increased soil erosion and impacts on existing air quality.

(8) Visual impacts:

Concerns were expressed regarding visual impacts to homes, historic homesteads, and tribal landscapes.
(9) Socioeconomic impacts:

Concerns were expressed regarding potential impacts to taxes and disturbance of residential property in Cascade, Teton, Chouteau, Pondera, Toole, and Glacier counties from the construction and operation of the line. Farmers expressed concerns regarding socioeconomic impacts associated with the costs of farming around transmission structures.

(10) Impact from development of wind generation projects:

Concerns were expressed regarding the potential wind energy and other electrical generation development, or limitations of that development that may be associated with the new Montana Alberta Tie 230-kV Transmission Line as “reasonable and foreseeable” development.

1.6 Definition of Terms

All technical terms, regulatory language and acronyms used in this document are defined in Chapter 7. Terms that are used to identify an area of study and common electrical power transmission units are defined as follows:

- The facility location, also referred to as the alignment, is the 500-foot-wide swath encompassing each alternative. It is defined as 250 feet on either side from a reference centerline; however, unless otherwise stated, a pole may be placed anywhere within the alignment. The alignments for the proposed Project and alternatives are shown in maps.

- The study area is a 2,260-square-mile area that includes the proposed and alternative alignments and areas where roads may be built or improved. The study area was defined by MATL in its MFSA application to DEQ.

- The safety zone is a term used in discussions of safety, and electric and magnetic fields, and is a 105-foot-wide area centered on the transmission line within the alignment for each alternative. The term is also used in the discussion of payments to landowners.

- The analysis area is the area evaluated for each resource. Different resources have different analysis areas. For some resources, the analysis area includes the area directly affected. On the other hand, because impacts to water resources can be realized downstream from ground disturbance, the analysis area for water resources is the entire study area.

- If an alternative is selected and the line permitted, MATL proposes to negotiate a 45-foot-wide right-of-way with each landowner. It would fall within one of the alternative alignments evaluated in the environmental analysis.

- Megawatt (MW) is a unit used to measure the amount of electrical power transmitted through a transmission line. One megawatt equals 1,000,000 watts.

- Kilovolt (kV) is a unit used to measure the voltage at which a transmission line is operated. One kilovolt equals 1,000 volts.
Chapter 2

2.0 Description of Alternatives

2.1 Development of Alternatives

This environmental analysis evaluates the proposed MATL 230-kV transmission line (the Project) and three alternatives and several local routing options to the Project. MFSA requires DEQ to find that the facility as proposed, or as modified, minimizes adverse environmental impacts, considering the state of available technology and the nature and economics of the alternatives. NEPA and MEPA require DOE and DEQ to evaluate the proposed Project, reasonable alternatives to the proposed Project that would fulfill its purpose and need, and the No Action alternative.

The No Action alternative reflects the status quo and serves as a benchmark against which the Project and other alternative actions can be evaluated. The No Action alternative is Alternative 1. The proposed Action is Alternative 2. Alternatives 3 and 4 describe two additional alignments that were developed based on comments and issues raised during the scoping process. In addition, ten possible local routing options were developed that could be included in the proposed Project (Alternative 2). These local routing options were based on landowner or MATL input and comments on the March 2007 document and are discussed in Section 2.6. Alternatives that were eliminated from further study are discussed in Section 2.7.

Development of Alternatives

The development of alternatives was based on scoping comments, baseline information in the MATL MFSA application (MATL 2006b), technical analysis of the baseline information and issues, and mandates of the laws, rules, and regulations administered by the agencies. MATL developed three possible transmission line alignments for the MFSA application. This environmental review analyzes two of those MFSA alignments: MATL A - the proposed Project (Alternative 2), and MATL B - an alignment generally following the NWE 115-kV transmission line from Great Falls to Cut Bank (Alternative 3). The third alignment developed by MATL (MATL C) was not analyzed in detail because it did not address scoping comments as well as other alternatives.

Issue-Driven Modifications to the Proposed Project

Issues raised during scoping are summarized in Chapter 1. In response to concerns about diagonal crossings of farmed fields, land use and right-of-way issues, pole construction types and their relationship to land use issues, visual impacts, and wildlife, the agencies began developing Alternative 4 by looking at eight local realignments to the alignment in Alternative 2. Local realignments could resolve site specific issues.
The eight local realignment segments are described in detail in Appendix A (March 2007 document). Since some of the local realignment segments overlapped, DEQ and DOE met to compare potential effects and evaluate the tradeoffs among the local realignments. They selected five of the eight segments and combined them with portions of Alternative 2 to make Alternative 4. Alternatives and local realignment segments that were eliminated from further consideration are identified in Section 2.7 and in Appendix A of the March 2007 document. These remaining segments represent a balance among resource impacts, MFSA criteria for approval listed in 75-20-301(1)(c) and (h), MCA, and the following location criteria for electric transmission lines listed in section 3.1.1 of Circular MFSA-2:

- Where there is the greatest potential for general local acceptance,
- Where the alignment uses or parallels existing utility and transportation corridors,
- In nonresidential areas,
- On rangeland rather than cropland,
- On non-irrigated or flood irrigated land rather than mechanically irrigated land,
- In geologically stable areas with non-erodible soils in flat or gently rolling terrain,
- In roaded areas where existing roads can be used for access to the facility during construction and maintenance,
- So that structures need not be located on a floodplain,
- Where the facility would create the least visual impact,
- At a safe distance from residences and other areas of human concentration, and
- In accordance with applicable local, state, or Federal management plans when public lands are crossed.

Several local routing options were developed following comments on the March 2007 document. These local routing options address specific concerns and are discussed in Sections 2.6 and 3.16.

2.2 Alternative 1 — No Action

Under Alternative 1, the proposed Project would not be approved by DEQ, DOE or the BLM and, therefore, could not be built by MATL. Existing electrical transmission service in southern Alberta and north-central Montana would be maintained and operated at its current level. In addition, only limited wind development of wind generation resources along the proposed alignment in the Cut Bank area would occur due to limitations of the current transmission system. Selection of Alternative 1 would likely preclude the construction of the proposed facility in Canada as well.
Alternative 2 is the proposed Project. Alternative 2 is further defined by the alignment, right-of-way, pole design, access roads, construction and operation stages, and environmental protection measures included in MATL’s application to DEQ (MATL 2006b). MATL’s commitments stated in its application would become part of DEQ’s MFSA certificate of compliance unless otherwise conditioned by DEQ. The following description is based on MATL’s application to DEQ. The study area for which MATL provided baseline information is shown on Figure 1.1-1.

Description of Alignment

The Alternative 2 alignment is 129.9 miles long and is shown in Figure 2.3-1. Figure 2.3-2 shows the southern portion of the alignment in more detail, Figure 2.3-3 shows the middle part, and Figure 2.3-4 shows the northern part. The proposed alignment is dominated by agriculture (90.1 percent) interspersed with patches of non-farmland, mostly grasslands. Except for grazing land near the Marias and Teton rivers, and coulees and drainages, the alignment would cross mostly non-irrigated farmland.

The U.S. portion of the alignment would begin at the 230-kV Great Falls switch yard north of Great Falls. For almost 2 miles the alignment would go directly north following an existing NWE transmission line. The alignment then would turn directly west for 1 mile using FWP land on the south side of the Great Falls Shooting Sports Complex (Complex), then north again, passing along the hills on FWP land on the west side of the Complex. The alignment would parallel the east side of Highway 87, cross the highway at milepost 5\(^4\), and continue northwest along Black Horse Lake Flat (the south side of Black Horse Lake), then go north over dry cropland interspersed with some pasture through a low point in the bluffs above Black Horse Lake Flat. At milepost 8 the alignment would turn slightly to the west, diagonally traversing dry cropland approximately 1 mile east of Benton Lake National Wildlife Refuge. At milepost 14 the alignment would extend west for approximately 9 miles, turn north for about 2 miles, and then northwest for about 3 miles, crossing farmland and the following coulees (from south to north): headwaters of Huntley, unnamed (2), Timber, unnamed, Kinsey, and Hunt Coulee. From the Great Falls switch yard to this point about 4 miles of State of Montana land would be crossed. The alignment would pass over the eastern end of Teton Ridge.

\(^3\) The proposed Federal action is for DOE to issue a Presidential permit for the proposed transmission line described in MATL’s Presidential permit application. In this EIS this action is defined as Alternative 2, the proposed Project. DOE would normally label this as the Proposed Action. However, because this document is both a Federal and State of Montana EIS, DOE will be adopting the nomenclature used by DEQ and refer to the Proposed Action as the “proposed Project.”

\(^4\) All references to mileposts refer to the distance along an alignment from the Great Falls switch yard toward the U.S. Canada border.
FIGURE 2.3-1
ALTERNATIVE 2 ALIGNMENT

NOTE:
ALT = ALTERNATIVE

LEGEND

MAJOR HIGHWAYS
SECONDARY ROADS

MILE MARKERS
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS
STUDY AREA BOUNDARY

GIS map by Ed Madej / TTEMI-HE Fig2_3-1_MATL_ALT2_Alignment_ALL_111607.mxd
FIGURE 2.3-2
ALTERNATIVE 2 ALIGNMENT SOUTH

NOTE:
ALT = ALTERNATIVE

LEGEND

ALT 2 - ALIGNMENT
ALT 2 MILE MARKERS
ALT 3 - ALIGNMENT
ALT 3 MILE MARKERS
ALT 4 - ALIGNMENT
ALT 4 MILE MARKERS
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS

STUDY AREA BOUNDARY
MAJOR HIGHWAYS
SECONDARY ROADS

GIS map by Ed Madej - TTEMI-HE Fig2_3-2_MATL_ALT2_Alignment_South_111907.mxd
FIGURE 2.3-3
ALTERNATIVE 2 ALIGNMENT MIDDLE

LEGEND

- ALT 2 - ALIGNMENT
- ALT 2 MILE MARKERS
- ALT 3 - ALIGNMENT
- ALT 3 MILE MARKERS
- ALT 4 - ALIGNMENT
- ALT 4 MILE MARKERS
- CITIES AND TOWNS
- ALIGNMENT END AND EXIT POINTS

NOTE:
ALT = ALTERNATIVE

STUDY AREA BOUNDARY
MAJOR HIGHWAYS
SECONDARY ROADS

GIS map by Ed Madej - TTEMI-HE Fig2_3-3_MATL_ALT2_Alignment_Middle_111907.mxd
FIGURE 2.3-4
ALTERNATIVE 2 ALIGNMENT
NORTH

NOTE:
ALT = ALTERNATIVE

LEGEND

STUDY AREA BOUNDARY

MAJOR HIGHWAYS

SECONDARY ROADS

MARIAS SUBSTATION

CITIES AND TOWNS

ALIGNMENT END AND EXIT POINTS

ALT 2 - ALIGNMENT
ALT 2 MILE MARKERS
ALT 3 - ALIGNMENT
ALT 3 MILE MARKERS
ALT 4 - ALIGNMENT
ALT 4 MILE MARKERS
From the crossing of Hunt Coulee at approximately milepost 36, the alignment would traverse approximately 1 mile of cropland and rangeland to the Teton River.

The alignment would span the Teton River about 2.7 miles west of Kerr Bridge, on State of Montana land in a ¼-mile-wide gap in a riparian cottonwood stand avoiding an area of unstable slopes. From the river the alignment would go northwest and north across cultivated farmland until it intersects and crosses Interstate 15 about 2½ miles north of Brady about milepost 53. The alignment would continue northwest, crossing South Pondera Coulee and the Burlington Northern Santa Fe Railroad and Pondera Coulee, and continue northwest south of Conrad, passing approximately 3 miles west of Conrad.

At milepost 64 the alignment would turn generally north and would cross the eastern end of the Benton Bench. North of the Benton Bench the alignment would cross farmland to the Dry Fork of the Marias River. From milepost 69 north of the river the alignment would continue north about 12 miles over mostly cultivated farmland. From Belgian Hill along Highway 44 the line would go north to about the mid point of Trunk Butte. At milepost 77 the alignment would skirt the edge of farmland and pass through range and pasture land on the north side of Trunk Butte heading west-northwest toward Bullhead Creek. The alignment would follow the south side of Bullhead Creek until crossing the creek approximately 2 ½ miles east of Bullhead Lake. The alignment would traverse farmland and near milepost 81 head northwest. The alignment would cross Abbott Coulee about 2 ½ miles west of Willow Rounds and head northwest to the Marias River.

The alignment would cross the Marias River just west of the existing NWE 115-kV transmission line at milepost 90. The crossing would be approximately ½ mile east of the junction of the Two Medicine River and Cut Bank Creek on State of Montana and BLM land. North of the Marias River the alignment would extend approximately 8 miles northwest, running roughly parallel to Cut Bank Creek to a new Marias Substation south of Cut Bank. The exact location of this substation has not been determined. The alignment would turn north and cross Highway 2 at milepost 100 approximately 1½ miles east of Cut Bank crossing rangeland. From here north the alignment would cross cultivated farmland to cross Old Maids Coulee. North of Cut Bank, about 10½ miles, the alignment would turn east at milepost 112 for approximately 3 miles turning north near Hay Lake and passing the east side of Hay Lake. The alignment would continue north about 14½ miles from Hay Lake over mostly cultivated land to the Montana-Alberta border at a location that coincides with the proposed alignment in Canada. Along this stretch the alignment would pass the eastern edge of Grassy Lake near milepost 121. The border crossing would be at the western edge of the Red Creek Oil Field and would avoid existing oil and gas wells in this area.
Chapter 2

Description of Alternatives

Rights-of-Way

MATL proposes an operational right-of-way width of 45 feet plus 30 feet on either side to create a 105-foot safety zone for the proposed Project based on structure type, location, proven construction methods, and safety and operations zones. Transmission line easement requirements would depend on structure widths. The 105-foot-wide zone is to minimize the potential for encroachment and to ensure that if buildings are proposed near the line, the safety zone would be large enough to prevent them from encroaching near the line. The safety zone is based on safety considerations associated with line-to-ground clearances and access needs for line repairs and power line maintenance activities.

As discussed below under Transmission Line Structures, the Project would use a combination of H-frame structures with three-pole structures used at medium and heavy angles (Appendix B of the March 2007 document) and dead ends (Glossary) across cultivated ground at right angles as well as on range and pasture lands. Monopoles would be used on nearly all cultivated fields and fields enrolled in the CRP lands that are crossed diagonally (Figure 2.3-5). Where the line would turn a corner, angle-bracing guy wires would be used and additional easement space would be required (Appendix B of the March 2007 document).

MATL would coordinate with the Real Estate Management Bureau of DNRC’s Trust Land Management Division for rights-of-way and easements across state owned school trust lands and navigable waterways administered by the state. MATL also would coordinate with the BLM Lands and Realty office to seek approval following a compatibility assessment with the BLM’s West HiLine Resource Management Plan and completion of the NEPA review process. In addition to fee-owned public lands, areas covered by conservation easements including the FWS wetland easements and the Farm Service Agency’s CRP would require that MATL seek compatibility reviews by these agencies on specific parcels to ensure compliance with the terms of the easements.

During the right-of-way acquisition process, MATL has committed to (1) coordinate with each affected landowner in order to develop final alignment and specific tower locations, (2) provide clear information about the right-of-way acquisition process, compensation, construction, and maintenance activities, and (3) understand landowner plans for use of the transmission alignment area in order to address the impact of tower and right-of-way location. The right of eminent domain could be used to obtain easements. The eminent domain process is discussed in Chapter 1.
FIGURE 2.3-5
PROPOSED MATL POWERLINE
TYPICAL SUPPORT STRUCTURES

H-FRAME
Ruling Span - 800 feet

MONOPOLE
Ruling Span - 800 feet

Ground Level

60' - 95' (65' TYPICAL)

85' - 100' (90' TYPICAL)

Direct Embedded
10% + 2'

Direct Embedded or Caisson Foundation
10% + 4'

Right-Of-Way Width - 45 ft
Safety Zone Width - 30 ft on each side of ROW
Chapter 2

Description of Alternatives

Project Design and Implementation

MATL would design, construct, operate, and maintain the proposed transmission system in accordance with the National Electrical Safety Code (NESC), U.S. Department of Labor Occupational Safety and Health Act (OSHA) Standards, and other guidance as appropriate for safety and protection of property. The following sections describe the system components, general construction methods, and operation of the proposed transmission line.

Transmission Line Structures

Laminated wood or wood pole H-frames would be the primary support structures used to cross range and pasture lands. MATL committed in a letter to DEQ (J.C. van’t Hof, MATL President and CEO to Richard Opper, Director Montana DEQ, July 23, 2007) to use monopoles on approximately 53 miles of diagonal alignment that crosses cultivated land using metal monopoles. Additional steel structures may be used for special applications such as monopole dead-end structures. Figure 2.3-5 illustrates the typical H-frame and monopole structures. Design characteristics of the laminated or round wood-pole H-frame support structures and metal monopole structures are summarized in Table 2.3-1. MATL has not specified the exact locations where the monopole structures would be used.

MATL would use different types of H-Frame structures to address the various angles that would be necessary to accommodate changes in terrain and land use. These structures are shown in Appendix B of the March 2007 document. The proposed laminated or round wood-pole H-frame structures would incorporate 230-kV design standard synthetic insulators, hardware, and ground wires to provide nearly corona-free operation, as well as reduce audible noise and radio and television interference. On the typical suspension structure, three insulator strings would be hung from each structure. Each string would have 12 individual insulators.

On H-frame structures, one overhead galvanized steel ground wire, about 3/8-inch in diameter, would be installed on one side of the top of the structure for lightning protection. A second ground wire carrying a fiber optic cable for communications would be installed on the other side. On monopoles only the fiber optic ground wire would be used. At this time the fiber optic capacity of the line would only be used for MATL communications and those of MATL customers. MATL would also use the communication capacity to connect MATL facilities and those of NWE and the Alberta Electric System Operator. No plans have been made to use the excess fiber capacity for commercial purposes.
TABLE 2.3-1
TYPICAL DESIGN CHARACTERISTICS

<table>
<thead>
<tr>
<th>Design Element</th>
<th>H-frame</th>
<th>Monopole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 2 Length in Montana</td>
<td>129.9 miles</td>
<td></td>
</tr>
<tr>
<td>Length of H-frame or Monopole used in Montana</td>
<td>Approximately 76.9 miles</td>
<td>Approximately 53 miles</td>
</tr>
<tr>
<td>Right-of-Way Width</td>
<td>45 feet</td>
<td>Same as H-frame</td>
</tr>
<tr>
<td>Safety Zone Width</td>
<td>30 feet on each side of right-of-way</td>
<td>30 feet on each side of right-of-way</td>
</tr>
<tr>
<td>Thermal Capacity for 230-kV line</td>
<td>625 MVA @ 212° Fahrenheit</td>
<td>Same as H-frame</td>
</tr>
<tr>
<td>Nominal Voltage</td>
<td>230,000 volts (230 kV)</td>
<td>Same as H-frame</td>
</tr>
<tr>
<td>Conductor Size</td>
<td>1590 kcmil Falcon</td>
<td>Same as H-frame</td>
</tr>
<tr>
<td>Conductor Type</td>
<td>ACSR</td>
<td>Same as H-frame</td>
</tr>
<tr>
<td>Overhead Ground Wire</td>
<td>3/8-inch-diameter galvanized</td>
<td>Optical ground wire (diameter of < 0.433 inches)</td>
</tr>
<tr>
<td>Electric field at edge of right-of-way</td>
<td>5.39 kV/m</td>
<td>1-conductor side: 4.78 kV/m 2-conductor side: 4.29 kV/m</td>
</tr>
<tr>
<td>Electric field at edge of safety zone</td>
<td>1.67 kV/m</td>
<td>1-conductor side: 1.02 kV/m 2-conductor side: 0.98 kV/m</td>
</tr>
<tr>
<td>Magnetic field at edge of right-of-way</td>
<td>228.13 mG</td>
<td>1-conductor side: 329.66 mG 2-conductor side: 304.63 mG</td>
</tr>
<tr>
<td>Magnetic field at edge of safety zone</td>
<td>70.57 mG</td>
<td>1-conductor side: 97.89 mG 2-conductor side: 83.88 mG</td>
</tr>
<tr>
<td>Electrostatic short-circuit current limit</td>
<td>5 mA</td>
<td>Same as H-frame</td>
</tr>
<tr>
<td>Structure Height Above Ground (approximate)</td>
<td>65 feet average</td>
<td>90 feet average</td>
</tr>
<tr>
<td>Length of Span (approximate)</td>
<td>800-foot ruling span</td>
<td>800-foot ruling span</td>
</tr>
<tr>
<td>Minimum Ground Clearance of Conductor</td>
<td>21.2 feet at 212°F</td>
<td>Same as H-frame</td>
</tr>
<tr>
<td>Typical Structure Base Dimensions</td>
<td>2 poles, 1 foot x 2 foot</td>
<td>1 pole, 30-36 inch radius</td>
</tr>
<tr>
<td>Total land temporarily disturbed for conductor reel and pole storage yards</td>
<td>15-20 acres</td>
<td>Same as H-frame</td>
</tr>
<tr>
<td>Area required for each structure base during operations</td>
<td>44 square feet</td>
<td>28 square feet</td>
</tr>
<tr>
<td>Approximate Cost per mile (U.S. $)</td>
<td>$293,500</td>
<td>$326,500</td>
</tr>
</tbody>
</table>

Notes:
- ACSR = aluminum core steel reinforced, kcmil = 1,000 circular mils
- kV = kilovolts, kV/m = kilovolts per meter
- mA = milliampere, mG = milligauss
- MVA = megavolt-amperes
- SNC Lavalin - Revised Design Characteristics, E-mail from B. Williams (MATL) to T. Ring (DEQ), October 18, 2007. Application Revision.
- Additional space may be required for angle structures.
For the H-frame structures, holes would be augered into the ground to accommodate the new structures. New poles are typically set in the ground 10 percent of the pole’s length plus 2 feet (that is, an 80-foot pole would be buried 10 feet). Spacing between two poles of a proposed 230-kV H-frame structure would be about 23 feet. Typical ruling span length would be about 800 feet, but could range from 500 feet to 1,600 feet. Approximately six to seven (average of 6.6) structures per mile would be required for an 800-foot ruling span. Depending on terrain and type of structure, total disturbance at each structure location during construction would be about 44 square feet for H-frame and 28 square feet for monopole. Pentachlorophenol would be used as a preservative to treat the wood pole structures.

For monopole structure installation, the holes would be 10 percent of the pole length plus 4 feet deep, but have a slightly larger diameter. After the pole is set in the hole, cement would be used, instead of soil, to backfill within approximately 1 foot of the soil surface. The salvaged topsoil material would be replaced on top of the cement and smoothed evenly around the pole. The excess soil from each hole would be evenly regraded around the structure, or hauled off site, depending on the landowner’s preference. Additional design characteristics for the project are summarized in Table 2.3-2.

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Length in Montana (miles)</td>
<td>129.9</td>
<td>121.6</td>
<td>139.9</td>
</tr>
<tr>
<td>H-frame</td>
<td>507</td>
<td>803</td>
<td>337</td>
</tr>
<tr>
<td>Monopole</td>
<td>350</td>
<td>0</td>
<td>587</td>
</tr>
<tr>
<td>Pulling/tensioning sites (10,000 ft³)</td>
<td>65</td>
<td>61</td>
<td>70</td>
</tr>
<tr>
<td>Staging areas (land temporarily disturbed for conductor reel and pole storage yards)</td>
<td>3 to 5 areas</td>
<td>3 to 5 areas</td>
<td>3 to 5 areas</td>
</tr>
<tr>
<td>Access road (14 feet wide)</td>
<td>3 miles</td>
<td>5 miles</td>
<td>7 miles</td>
</tr>
<tr>
<td>Road disturbance area (16.8 feet wide)²</td>
<td>6 acres</td>
<td>10 acres</td>
<td>14 acres</td>
</tr>
</tbody>
</table>

Notes:
NA = Not applicable

² Constructed access road estimates are based on minimal need in areas of steep terrain only.
Construction disturbance for a road is assumed to be 20 percent greater than the actual roadbed area.

For construction near water bodies, no pole structures would be installed below the normal high-water mark or within a 100-year floodplain. MATL may use a helicopter for special locations such as major river crossings. If construction occurs during summer or fall months, it may be possible to use a boat to string the line across water bodies. If construction occurs during the winter months, clear-span bridges could be used when a stream is dry or frozen (MATL 2006b). Small watercourses could possibly
be crossed if sufficiently frozen; where crossing isn’t possible, other potential options include portable bridge placement or use of existing access roads. Construction across water bodies would be postponed if any excessive flows or flood conditions are present or anticipated. The use of a helicopter or boat would be the construction contractor’s choice unless dictated to do otherwise.

Transmission Line Conductors

Electrical conductors provide the medium for flow of electrical energy. The proposed conductor configuration and size for H-frame and monopole support structures are shown in Table 2.3-1. The conductor consists of strands of reinforced steel cable encased by aluminum strands. The steel cable provides the tensile strength to support the conductor; the aluminum conducts most of the electrical current.

For both types of support structures (H-frame and monopole), the minimum proposed clearance between the conductor and the ground would be 21.2 feet. The electric and magnetic fields (EMF) are slightly different for H-frame and monopole structures due to the difference in configuration of the conductors (Table 2.3-1 and Figures 3.4-2 and 3.4-3).

Markers and Warning Devices

In order to reduce bird collisions with the ground wire, MATL would install bird warning devices in high risk areas such as near Hay Lake, the Marias River, Dry Fork Marias River, and Teton River crossings, east of Benton Lake National Wildlife Refuge (NWR), and high ridge crossings such as the Benton Bench northwest of Conrad. For example, the “firefly” bird flapper/diverter would alert birds to the transmission line through light, motion, and reflectivity (Section 3.8). For daytime deterrence, this diverter uses highly reflective materials and fluorescent colors designed to be seen and avoided by birds. These markers glow in the dark for about 10 hours for night time deterrence. The “firefly” also rotates in 3- to 5-mile-per-hour wind conditions to increase visibility. MATL proposes to explore other technology and deploy it as needed for site-specific application.
Chapter 2

Description of Alternatives

MATL would comply with appropriate regulations of the Federal Aviation Administration (FAA). MATL would install FAA-recommended colored aerial markers for aviation safety and these markers would be installed at major pipeline crossings as determined by consultation with pipeline companies. These ball markers are up to 36 inches in diameter (though 20-inch markers are permitted on approaches to airports where the lines are within 50 feet of the ground) and are available in international orange, white, and yellow (installed with alternating colors). Reflective tape can be installed on the markers to increase their nighttime visibility for aircraft.

New and Upgraded Substations

MATL proposes to construct a new substation, the Marias Substation, next to the proposed Naturener USA McCormick Ranch wind park. This substation would be located approximately 10 miles south of Cut Bank, but the exact location and potential disturbance area has not been determined. The Marias Substation and the expanded 230-kV Great Falls switch yard would be located in farmland or range/pasture land, not in a residential or subdivided area.

North of Great Falls, across the river from Giant Springs State Park, MATL is proposing to interconnect with the NWE 230-kV Great Falls switch yard, requiring NWE to enlarge the switch yard to accommodate the MATL tie line and other proposed lines. MATL would submit a copy of an executed interconnection agreement with NWE to the agencies as an addendum to the application, if the agreement becomes valid. It is unlikely the line would be built unless a valid interconnection agreement is obtained.

Access Roads

As a result of relatively flat topography and associated agricultural land uses that predominate in the Project study area, MATL anticipates only minimum development of access roads to construct, operate, and maintain the proposed Project. The majority of the Project right-of-way would be easily accessed from public roads, existing two-track roads, and farm fields. MATL does not anticipate maintenance of these access points with the exception of gate installations at key locations, if necessary. MATL proposes that disturbances resulting from access requirements would be reclaimed to conditions similar to what existed pre-project or to those conditions specified by landowners during easement-lease negotiations. Obstacles to travel along the right-of-way would potentially include:

- Slopes greater than 5 percent forcing the contractor to construct temporary access roads,
- Coulees or intermittent stream channels,
- Flowing streams and rivers, or wetlands,
- Areas with highly erodible soils,
- Areas providing habitat for sensitive wildlife or plant species,
Chapter 2

Description of Alternatives

- Pipelines, railroad tracks, irrigation ditches, or other linear features, and
- Heritage or archaeological sites.

The Marias and Teton River valley crossings might be challenging access because of rugged topography. Grading and recontouring might be required in these potentially difficult construction sites to gain access to reinforced structures that would support conductor spans of these valleys. MATL would reclaim these areas in coordination with landowners and appropriate agencies. MATL expects that other specific sites would be identified and addressed in subsequent reclamation plans as system design and associated access planning proceeds.

Construction

Construction is anticipated to take 4 to 6 months to complete. Table 2.3-3 provides a summary of construction tasks and required resources and equipment. Transmission line construction tasks would include the following:

- **Pre-Construction**: Environmental permitting, cultural resource clearance, final transmission structure siting, engineering design, land procurement, various utility studies, and major procurement.

- **Surveying**: Initial line survey work would consist of survey control, alignment centerline location, and profile surveys. Access surveys would occur before construction. Light Detection and Ranging (LIDAR) would be used to provide much of this information. LIDAR is an airborne laser mapping technology that directly measures the shape of the earth’s surface under the aircraft. LIDAR generates wide-area elevation information that can be used to make models showing details such as buildings, trees, and power lines.

- **Geotechnical Survey**: Investigations would be completed at selected key locations (for example, medium and heavy angle deflection points) to establish foundation requirements. Geotechnical measurements would also be obtained at a frequency of one location for every two miles of line when crossing problem soils. The geotechnical information is used to reduce problems during erection of the structures and assist with the cost estimate and bidding process for the project.

- **Access Planning and Preparation**: Crews would gain access from public roads as well as within the transmission line right-of-way for constructing, operating, and maintaining the line. When possible, access to the right-of-way would be by existing trails and roads. Trails are generally two-track routes and are not maintained. Because access for line construction would be truck travel within the right-of-way, graded surface access roads are not planned except at the Teton River crossing. Trails would be located at right angles to streams and washes. Existing roads and trails would be left in comparable or better condition than before construction. The safety zone is designed to minimize the potential for encroachment and to ensure that if buildings are proposed near the line, the safety zone would be large enough to prevent them from encroaching near the line.
Gates would be installed where fences cross the right-of-way. Locks would be installed at landowner’s request. Gates not in use would be closed but not locked unless requested by the landowner.

<table>
<thead>
<tr>
<th>Task</th>
<th>Crew Size</th>
<th>Typical Wage Level ($/hour)</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Fencing/Reclamation</td>
<td>2</td>
<td>$15 to $18</td>
<td>¾-ton post pounder</td>
</tr>
<tr>
<td>Framing</td>
<td>6</td>
<td>$17 to $20</td>
<td>Teleking 5-ton crane, Bobcat, 1-ton crewcab pickup</td>
</tr>
<tr>
<td>Setting</td>
<td>8</td>
<td>$17 to $20</td>
<td>330 Texoma digger, 35-ton setting crane, gravel truck, concrete truck, air compressor w/ tamper, Bobcat, (2) 1-ton crewcab pickups</td>
</tr>
<tr>
<td>Anchoring</td>
<td>3</td>
<td>$20 to $22</td>
<td>radial arm digger or retrofitted trench hoe</td>
</tr>
<tr>
<td>Material Handling</td>
<td>2</td>
<td>$17 to $20</td>
<td>(2) trucks</td>
</tr>
<tr>
<td>Pole Hauling</td>
<td>3</td>
<td>$20 to $22</td>
<td>pole truck, pickup</td>
</tr>
<tr>
<td>Stringing</td>
<td>31</td>
<td>$20 to $26</td>
<td>Tensioner, puller, 30-ton crane and pickup, soft line winder and pickup, cat pulling sock line and pickup, crane and pickup, flat deck and small crane, rider pole crew digger, pole truck</td>
</tr>
</tbody>
</table>

Notes:
“Wage levels extrapolated from “Montana Prevailing Wage Rates – Heavy Construction” Rates Effective March 10, 2006

- **Delivery and Assembly:** Framing crews would deliver poles, X-braces, cross-arms, insulators, and hardware to structure sites on flatbed trucks, and then assemble individual structures. For H-frame structure installation, poles would be set directly in holes that are 10 percent of the pole length, plus 2 feet deep. Crews would backfill the holes and compact the native soil material to prevent structure movement or settling. Any excess soil from each hole would be evenly regraded around the structure, or hauled off site, depending on the landowner’s preference. For H-frame structures located in problem soils that are difficult to compact to the required density, gravel would be used to backfill around the poles. At heavy angled and dead-end structures, cast-in-place concrete footings would be installed. Crews would assemble structures and place hardware using man-lift trucks. Guy wires would be screwed into the ground using standard construction practices.

For monopole structure installation, the holes would be 10 percent of the pole length plus 4 feet deep, but have a slightly larger diameter. After the pole is set in the hole, cement would be used, instead of soil, to backfill within approximately 1 foot of the soil.
surface. The salvaged topsoil material would be replaced on top of the cement. Any excess soil from each hole would be evenly regraded around the structure, or hauled off site, depending on the landowner’s preference.

- **Conductor Installation:** After erecting all structures, conductor and ground wires would be installed. Large reels of conductor and overhead ground wire would be delivered to pre-selected pulling and tensioning sites (about every 2 miles) along the transmission line alignment. About 10,000 to 16,000 feet of conductor and overhead ground wire would be installed for each pull. Methods used to install conductor and overhead ground wire would include using a small line (p-line) attached to the conductor or ground wire to pull the cable through pulleys attached to the insulator strings. Once the conductor/ground wire is pulled the necessary length, it would be tightened. Adjustments made during tensioning would prevent the cable from sagging too much (due to ambient temperature and heating caused by flow of electricity) and would comply with the NESC.

- **Reclamation:** All disturbed areas associated with transmission line construction would be reclaimed. These efforts typically include gate repair as necessary, regrading and revegetation, and waste material removal.

MATL proposes to commence construction as soon as all property rights are obtained and all necessary authorizations are issued by DEQ, DOE and the BLM. However, MATL may not commence any construction activities unless and until it obtains all required permits.

Construction Staging Areas

Construction staging areas (sometimes referred to as “lay-down areas”) would be located in previously disturbed areas, such as rail yards, siding areas, construction yards, and fallow lots, whenever possible. Some construction staging areas may be on undisturbed land when disturbed sites are not available. In general, construction staging areas would either be located in communities near the right-of-way where rail and truck service are available, or in rural areas where equipment could be unloaded from tractor-trailers. In all cases, construction staging areas would be on private land and would be subject to landowner negotiations and agreements. Construction staging areas would likely be located near Cut Bank, Valier, Conrad, Brady, Dutton, or Great Falls. MATL expects that staging areas would be established in three of these six locations, with each staging area occupying about 5 acres. However, a few smaller areas (about 2.5 acres) might be used.

Operations

NWE and Alberta Electric System Operator system dispatchers located at power control centers would direct normal line operations, using MATL’s facilities to operate circuit breakers, determine the amount of power required to serve the loads and configure the power system accordingly. Dispatchers also would schedule the proper generation amount, and monitor the power system to ensure reliable service. Circuit breakers
would operate automatically to ensure safe transmission line operation. Normal farming and other activities would be permitted on transmission line rights-of-way, if these activities do not interfere with line operation and maintenance or create safety problems. Grid reliability is discussed in Section 3.17.

Maintenance

Maintenance programs would include routine aerial and ground patrols. Aerial patrols would be conducted annually and as needed to check for damage to conductors, insulators, or structures after severe wind, ice, wild fires, or lightning storms. Ground patrols generally would occur every 5 years to detect equipment in need of repair or replacement. When possible, ground patrols and subsequent repair activities would be scheduled to minimize crop and property damage. Noxious weed control plans would help guide herbicide treatments (see Appendix C MATL Noxious Weed Control Plan in the March 2007 document). Vegetation clearing may also be required in certain areas to minimize fire hazards.

For emergencies, crews would respond promptly to repair or replace damaged equipment. MATL would meet with respective landowners to arrange compensation for any damages incurred during emergency repair operations.

Environmental Protection Measures

MATL proposes project-specific environmental protection measures, shown in Table 2.3-4, that may be used to avoid or reduce the intensity and/or duration of the impacts to resources. MATL proposes to implement a worker education program and on-site monitors to ensure that site-specific environmental protection measures would be strictly followed. Other guidance MATL proposes to use includes WAPA’s Construction Standard 13 (WAPA 2001), and Raptor-Safe Power Line Construction Practices (Edison Electric Institute [EEI] and Avian Power Line Interaction Committee [APLIC] 1996). Applicable standards from Standard 13 that MATL would adopt include:

- **Landscape Preservation (Section 13.3):** Includes guidance on preserving landscape features, constructing and restoring construction roads, and constructing and restoring construction facilities, such as offices and storage yards.

- **Preservation of Cultural Resources (Section 13.4):** Provides requirements for treatment and notification of known or discovered cultural sites or artifacts.

- **Noxious Weed Control (Section 13.5):** Requires a “clean vehicle policy” when entering and leaving construction areas to prevent transport of noxious weed plants and/or seed.
• **Disposal of Waste Material (Section 13.8):** Requires removing and disposing of all waste material generated during construction.

• **Pollutant Spill Prevention, Notification, and Cleanup (Section 13.10):** Requires measures to prevent spills of pollutants and appropriate response if a spill occurs. Includes any solvent, fuel, oil, paint, pesticide, engine coolant, or similar substance.

• **Prevention of Air Pollution (Section 13.13):** Ensures that construction activities and equipment operation reduce air pollutant emissions, and that nuisance dust is controlled.

TABLE 2.3-4
MATL PROPOSED ENVIRONMENTAL PROTECTION MEASURES

<table>
<thead>
<tr>
<th>Environmental Protection Measures and Monitoring</th>
<th>Intended Effectiveness</th>
<th>Locations (if known)</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction personnel would be instructed on the location and identification of sensitive resources within or adjacent to the Project right-of-way, as well as regulations pertaining to the protection of cultural and ecological resources.</td>
<td>Would help prevent damage to sensitive and/or protected resources.</td>
<td>Throughout Project area. Sensitive areas would be identified further during design phase.</td>
<td>Prior to construction</td>
</tr>
<tr>
<td>Erosion Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion Control Plan identifying locations and specifications of measures to minimize erosion and sedimentation.</td>
<td>Re-establish vegetation and implement physical barriers to minimize soil movement on exposed slopes.</td>
<td>See MATL’s draft Reclamation & Revegetation Plan in Appendix D of the March 2007 document. As the design phase continues, a SWPPP would be prepared as part of the MPDES permit.</td>
<td>Pre-construction</td>
</tr>
<tr>
<td>Construction contractor would implement erosion control measures (for example, water bars, drainage contours, straw bales, filter cloth, or similar). All off-site vegetative materials would be certified “weed free.”</td>
<td>Implemented in areas with steep slopes to minimize soil movement.</td>
<td>See Appendix D of the March 2007 document. As the design phase continues, a SWPPP would be prepared as part of the MPDES permit.</td>
<td>During construction</td>
</tr>
<tr>
<td>Access</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access would be limited to existing roads or two-track utility corridor, unless not feasible for transport of equipment/material.</td>
<td>Avoidance of new permanent vehicular access and long-term ground disturbance.</td>
<td>Potentially the Marias River and Teton River crossings may require some new access. This would be finalized and identified by milepost during design phase.</td>
<td>During construction</td>
</tr>
</tbody>
</table>
TABLE 2.3-4
MATL PROPOSED ENVIRONMENTAL PROTECTION MEASURES

<table>
<thead>
<tr>
<th>Environmental Protection Measures and Monitoring</th>
<th>Intended Effectiveness</th>
<th>Locations (if known)</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>General engineering design plans would be developed for unforeseen temporary use areas.</td>
<td>Disturbance minimization and/or protection of natural resources.</td>
<td>Throughout Project area – This would be finalized and identified by milepost during design phase.</td>
<td>Pre- and during construction</td>
</tr>
<tr>
<td>All construction vehicle movement or temporary use areas outside the right-of-way would be coordinated with the authorizing agency and restricted to pre-designated access, contractor acquired access, or existing roads.</td>
<td>By limiting access to the Project area, unnecessary impacts to soils and vegetation would be avoided or minimized.</td>
<td>Throughout Project area – This would be finalized and identified by milepost during design phase.</td>
<td>During construction</td>
</tr>
<tr>
<td>At sites with soils that are sensitive to compaction, construction would be done with low bearing-pressure vehicles or compacted soil would be rehabilitated after construction by discing, plowing, or other means.</td>
<td>Weight limiting/distributing to reduce soil compaction and ground cover damage.</td>
<td>Croplands throughout Project area</td>
<td>During/post construction</td>
</tr>
<tr>
<td>Access road widening would be restricted unless essential for project implementation.</td>
<td>Minimizes damage to soils and vegetation.</td>
<td>Throughout Project area</td>
<td>During construction</td>
</tr>
<tr>
<td>Construction would be planned to avoid periods of intense farming (for example, grain harvest), as applicable.</td>
<td>Avoid impacting farming practices and implement crop damage compensation.</td>
<td>Croplands throughout Project area.</td>
<td>During construction</td>
</tr>
<tr>
<td>Fences, gates, and cattle guards would be repaired or replaced to their original condition if damaged during construction.</td>
<td>Replacement or repair as an effective resolution to property damage.</td>
<td>Cropland and range land as required throughout Project area.</td>
<td>Post-construction</td>
</tr>
<tr>
<td>MATL would work with the MDT in the design and construction of structures along or crossing any highway right-of-way.</td>
<td>Minimizes traffic disruption.</td>
<td>MDT maintained roads</td>
<td>Design and pre-construction</td>
</tr>
<tr>
<td>Existing roads would be properly maintained, and grading may be necessary.</td>
<td>Maintenance of proper drainage.</td>
<td>Throughout Project area</td>
<td>During and post construction</td>
</tr>
<tr>
<td>Access not required for operation/maintenance would be closed using the most effective method with landowner concurrence.</td>
<td>Prevention of permanent motorized vehicle use and resulting disturbance to soil/vegetation.</td>
<td>Throughout Project area</td>
<td>Post-construction</td>
</tr>
</tbody>
</table>
TABLE 2.3-4
MATL PROPOSED ENVIRONMENTAL PROTECTION MEASURES

<table>
<thead>
<tr>
<th>Environmental Protection Measures and Monitoring</th>
<th>Intended Effectiveness</th>
<th>Locations (if known)</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>During project final design, structures and associated disturbances would be located to avoid or minimize impacts to known sensitive features such as water courses, residences, or cultural resource sites.</td>
<td>Avoid/minimize impact to sensitive features.</td>
<td>To be identified by milepost during final project design</td>
<td>Pre-construction</td>
</tr>
<tr>
<td>All construction vehicles would be restricted to the certificated construction right-of-way, associated facilities, and permitted access roads.</td>
<td>Avoid/minimize environmental impact</td>
<td>Throughout Project area</td>
<td>During construction</td>
</tr>
</tbody>
</table>

Surface Water, Wetlands, and Floodplains

Locations for new structures would be selected to avoid 100-year floodplains and, where practicable, to avoid the need for construction activity within 100-year floodplains.	Avoidance would prevent potential disturbance within 100-year floodplains.	Marias River, Teton River, and Old Maids Coulee crossings	Pre-/during construction
MATL would prepare an erosion control plan, whereby measures, locations of measures, and specification for measures would be used to minimize erosion and sedimentation. As a part of this a SWPPP would be submitted to DEQ.	Effective erosion control planning to reduce erosion.	See Appendix D of the March 2007 document. As the design phase continues, a SWPPP would be prepared as part of the MPDES permit.	Pre-construction
Unavoidable wetland impacts would require permits from U.S. Army Corps of Engineers to comply with Section 404 of the Clean Water Act.	Mitigate unavoidable impacts to wetlands and other waters of the U.S.	See Appendix E of the March 2007 document for a description of drainages and wetland areas that would be avoided, if possible. Any unavoidable areas would be identified by milepost during the final design phase.	During design and construction
If work in a 100-year floodplain is unavoidable, DNRC and county floodplain administrators would be consulted during the design phase and, if required, appropriate permit(s) would be obtained and implemented.	Permit stipulations would avoid or mitigate potential disturbance within floodplains.	Marias River, Old Maids Coulee, and Teton River crossings	Pre-/during construction
TABLE 2.3-4
MATL PROPOSED ENVIRONMENTAL PROTECTION MEASURES

<table>
<thead>
<tr>
<th>Environmental Protection Measures and Monitoring</th>
<th>Intended Effectiveness</th>
<th>Locations (if known)</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wherever possible, placement of new structures and associated construction activities would occur out of wetland boundaries.</td>
<td>Avoidance of impacts to wetlands and other waters of the U.S.</td>
<td>See Appendix E of the March 2007 document for a description of wetland areas that would be avoided if possible. Any unavoidable areas would be identified by milepost during the final design phase.</td>
<td>Pre-/during construction</td>
</tr>
<tr>
<td>Disturbed areas would be reclaimed by appropriate contouring and replanting with an approved seed mix. All seed mixtures would be certified “weed free.”</td>
<td>Re-establishing desirable vegetation cover on disturbed sites to prevent soil loss and weed infestation.</td>
<td>Throughout Project area. Also see MATL’s draft Noxious and Invasive Weed Plan and draft Reclamation and Revegetation Plan (Appendices C and D of the March 2007 document).</td>
<td>Post-construction</td>
</tr>
<tr>
<td>If feasible, equipment would go around wooded areas. Tree removal would be kept to a minimum.</td>
<td>Avoiding or selectively cutting trees would protect limited forested habitats. Avoidance is preferred.</td>
<td>No forested areas have specifically been identified to date. Also see MATL’s draft Reclamation and Revegetation Plan (Appendix D of the March 2007 document)</td>
<td>During construction</td>
</tr>
<tr>
<td>Noxious weeds would be controlled through implementation of noxious weed control plans approved by appropriate county agencies.</td>
<td>These efforts would reduce or eliminate introduction and spread of invasive, noxious plants.</td>
<td>Throughout Project area. Also see MATL’s draft Noxious and Invasive Weed Plan and draft Reclamation and Revegetation Plan (Appendices C and D of the March 2007 document).</td>
<td>Pre-/during construction</td>
</tr>
<tr>
<td>Disturbed areas would be reclaimed to pre-construction condition or landowner requests as site work is completed.</td>
<td>Reduce or eliminate erosion, and weed invasion.</td>
<td>Throughout Project area. Also see MATL’s draft Reclamation and Revegetation Plan (Appendix D of the March 2007 document).</td>
<td>During/post construction</td>
</tr>
<tr>
<td>Any reseeding would be done with an approved seed mixture.</td>
<td>Reduce or eliminate spread or invasion of noxious weeds.</td>
<td>Throughout project area. Also see MATL’s draft Reclamation and Revegetation Plan (Appendix D of the March 2007 document).</td>
<td>Post construction</td>
</tr>
</tbody>
</table>
TABLE 2.3-4
MATL PROPOSED ENVIRONMENTAL PROTECTION MEASURES

<table>
<thead>
<tr>
<th>Environmental Protection Measures and Monitoring</th>
<th>Intended Effectiveness</th>
<th>Locations (if known)</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>If necessary, vehicle wash stations would be located at appropriate locations and would be used to minimize the spread of noxious weeds along the right-of-way. All construction equipment would be thoroughly washed prior to first use on the Project.</td>
<td>Cleaning would remove mud, dirt, and plant parts from undercarriages, tires, grills, radiators etc. This would reduce potential of spreading noxious weeds.</td>
<td>Need and location of vehicle wash stations would be determined during final design stage.</td>
<td>During construction</td>
</tr>
<tr>
<td>All fill mixture brought into construction areas would be free of noxious weeds.</td>
<td>Borrow site should be inspected to minimize movement of noxious weeds.</td>
<td>Throughout Project area. Also see MATL's draft Reclamation and Revegetation Plan (Appendix D of the March 2007 document).</td>
<td>During construction</td>
</tr>
<tr>
<td>All on-site servicing or refueling of construction equipment would be performed using protective spill containment or absorption mats.</td>
<td>To prevent spills of pollutants, such as fuels and lubricants.</td>
<td>Throughout Project area</td>
<td>During construction</td>
</tr>
<tr>
<td>Storage of oil fluids or petroleum products on site would be prohibited. All petroleum products would be removed to a disposal facility authorized for disposal.</td>
<td>Reduces chances of spills and ensures proper storage and disposal of fuels and lubricants.</td>
<td>Throughout Project area</td>
<td>During construction</td>
</tr>
<tr>
<td>All construction debris and trash would be contained and removed on a daily basis.</td>
<td>Daily containment and removal would prevent accumulation and windblown trash.</td>
<td>Throughout Project area</td>
<td>During construction</td>
</tr>
<tr>
<td>Traffic management and control of local roadways would be considered during construction.</td>
<td>Avoid unnecessary impacts to local traffic patterns.</td>
<td>State highway crossings and all county highway crossings. County crossings would be identified by milepost during final design and encroachment permits would be obtained, as required, from local county offices.</td>
<td>During construction</td>
</tr>
</tbody>
</table>

Health & Safety

<table>
<thead>
<tr>
<th>Health & Safety</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All on-site servicing or refueling of construction equipment would be performed using protective spill containment or absorption mats.</td>
<td>To prevent spills of pollutants, such as fuels and lubricants.</td>
<td>Throughout Project area</td>
<td>During construction</td>
</tr>
<tr>
<td>Storage of oil fluids or petroleum products on site would be prohibited. All petroleum products would be removed to a disposal facility authorized for disposal.</td>
<td>Reduces chances of spills and ensures proper storage and disposal of fuels and lubricants.</td>
<td>Throughout Project area</td>
<td>During construction</td>
</tr>
<tr>
<td>All construction debris and trash would be contained and removed on a daily basis.</td>
<td>Daily containment and removal would prevent accumulation and windblown trash.</td>
<td>Throughout Project area</td>
<td>During construction</td>
</tr>
<tr>
<td>Traffic management and control of local roadways would be considered during construction.</td>
<td>Avoid unnecessary impacts to local traffic patterns.</td>
<td>State highway crossings and all county highway crossings. County crossings would be identified by milepost during final design and encroachment permits would be obtained, as required, from local county offices.</td>
<td>During construction</td>
</tr>
</tbody>
</table>

Human Health & Environment

<table>
<thead>
<tr>
<th>Human Health & Environment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATL would address individual complaints concerning radio and television interference as needed.</td>
<td>Alleviate individual impacts to radio and television users in vicinity of line.</td>
<td>As required, throughout Project area.</td>
<td>Pre/post-construction</td>
</tr>
<tr>
<td>Design would incorporate reduction or elimination of induced current and voltages.</td>
<td>Eliminate impacts associated with proximity and electric shock.</td>
<td>Throughout Project area</td>
<td>Pre-construction</td>
</tr>
</tbody>
</table>
TABLE 2.3-4
MATL PROPOSED ENVIRONMENTAL PROTECTION MEASURES

<table>
<thead>
<tr>
<th>Environmental Protection Measures and Monitoring</th>
<th>Intended Effectiveness</th>
<th>Locations (if known)</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design and construction would be such to reduce electromagnetic field to the extent feasible.</td>
<td>Reduce potential for EMF effects.</td>
<td>Throughout Project area</td>
<td>Pre-construction</td>
</tr>
<tr>
<td>Land Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction would be planned to avoid periods of intense farming (for example, grain harvest) as applicable.</td>
<td>Avoid crop damage or compensate for damage.</td>
<td>Croplands throughout Project area.</td>
<td>Pre-/during construction</td>
</tr>
<tr>
<td>Fences, gates, and cattle guards would be repaired or replaced to their original condition if damaged during construction.</td>
<td>Resolution of potential property damage through replacement or repair.</td>
<td>Throughout Project area</td>
<td>Post-construction</td>
</tr>
<tr>
<td>MATL would secure encroachment permits from the MDT and counties for the design and construction of structures along or crossing any highway right-of-way.</td>
<td>Minimize impacts and safety concerns in the vicinity of roads and highways.</td>
<td>Final location of crossings would be determined during final design stage.</td>
<td>Pre-construction</td>
</tr>
<tr>
<td>Cultural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A project map would be provided to the contractor identifying all sensitive areas relative to the selected alternative. Prepare unanticipated discoveries plan.</td>
<td>Contractor awareness and mitigation implementation (notification and/or avoidance).</td>
<td>To be identified once cultural resources inventory and study are completed.</td>
<td>Pre-construction</td>
</tr>
<tr>
<td>Archeological monitors (including tribal) would be used when working in the vicinity of archeological sites.</td>
<td>Would monitor and work closely with MATL and contractor to ensure application of mitigation/avoidance measures.</td>
<td>The need for this would be assessed once the cultural resources inventory and study are completed.</td>
<td>During construction</td>
</tr>
<tr>
<td>Selective pole placement would be used to avoid impacts to cultural resource sites.</td>
<td>Cultural resource site protection.</td>
<td>To be identified once cultural resources inventory and study are completed.</td>
<td>Pre-construction</td>
</tr>
<tr>
<td>Access roads through cultural resource sites would be prohibited.</td>
<td>Cultural resource site protection.</td>
<td>To be identified once cultural resources inventory and study are completed.</td>
<td>Pre-construction</td>
</tr>
<tr>
<td>If any buried antiquities or remains are discovered, the contractor would notify DEQ and SHPO prior to continuing work.</td>
<td>Would allow for proper treatment of any undiscovered sites.</td>
<td>Unknown</td>
<td>During construction</td>
</tr>
<tr>
<td>Visual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures would be placed to avoid or span visually sensitive features whenever possible.</td>
<td>Reduce potential visual quality impacts.</td>
<td>To be identified once visual resources analysis is completed during the EIS.</td>
<td>Pre-/during construction</td>
</tr>
</tbody>
</table>
TABLE 2.3-4
MATL PROPOSED ENVIRONMENTAL PROTECTION MEASURES

<table>
<thead>
<tr>
<th>Environmental Protection Measures and Monitoring</th>
<th>Intended Effectiveness</th>
<th>Locations (if known)</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No paint or permanent discoloring agents would be applied to rocks or vegetation. All flagging would be removed upon completion of the project.</td>
<td>Reduce potential visual quality impacts.</td>
<td>Throughout Project area.</td>
<td>Pre-/during construction</td>
</tr>
<tr>
<td>Wildlife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raptor safe power line construction practices (Edison Electric Institute, Avian Power Line Interaction Committee) would be employed during transmission line construction.</td>
<td>To reduce risk of electrocution to perching raptors.</td>
<td>Throughout Project area, as needed (Benton Lake NWR, and others).</td>
<td>Pre-/during construction</td>
</tr>
<tr>
<td>Approved line marking devices would be installed at appropriate intervals and appropriately staggered on each overhead ground wire across stream crossing and migratory bird flyways (for example, wetland crossings) within the right-of-way.</td>
<td>Minimization of potential bird strikes at stream crossings and other high use areas.</td>
<td>Installed at water body and drainage crossings and at wetland areas identified in Appendix E of the March 2007 document. This would be finalized during final design.</td>
<td>Pre-/during construction</td>
</tr>
<tr>
<td>MATL would consult with FWP concerning construction activities (for example, timing) near sharp-tailed grouse leks.</td>
<td>Timing restrictions on construction near sharp-tailed grouse leks would reduce potential disturbance to grouse.</td>
<td>Leks were identified within 1 mile of the Marias River crossing and would be addressed.</td>
<td>Pre-/during construction</td>
</tr>
<tr>
<td>Air Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water would be sprayed on areas that are producing excessive airborne dust in proximity of residences and communities and as needed to ensure safety during construction.</td>
<td>Dust suppression during dry periods or near populated areas.</td>
<td>Throughout Project area, as required to address dry conditions during construction.</td>
<td>During construction</td>
</tr>
</tbody>
</table>

Notes:
- DNRC: Department of Natural Resources and Conservation
- EMF: Electric and magnetic field
- EIS: Environmental Impact Statement
- FWP: Montana Fish, Wildlife, and Parks
- MATL: Montana Alberta Tie Line
- MDT: Montana Department of Transportation
- MPDES: Montana Pollutant Discharge Elimination System
- NWR: National Wildlife Refuge
- SHPO: State Historic Preservation Office
- SWPPP: Storm Water Pollution Prevention Plan

Source: This table is from the MATL MFSA application, Revised submittal, August 2006.
Chapter 2

Description of Alternatives

Site-specific locations where these measures would be used would be finalized during the final design phase and would be identified by project milepost location when that information becomes available. Final mitigation measures required to address those site-specific measures (and all other finalized plans) would be submitted to the agencies before construction begins. In addition, MATL would work with the agencies to identify the extent of environmental monitoring that would be needed during and after construction.

The agencies would apply environmental specifications to the proposed Project. DEQ’s draft Environmental Specifications (Appendix F) identify general environmental protection measures and sensitive areas for site-specific specifications; DOE and BLM might also provide some additional measures.

2.4 Alternative 3 — MATL B

Alternative 3 generally parallels the NWE 115-kV line along its entire distance from the line’s tie-in to NWE’s 230-kV switch yard north of Great Falls to a substation near Cut Bank.

This alternative is described in the MATL MFSA application as Alternative MATL B (MATL 2006b). Alternative 3 was designed based on a single application criterion listed in Circular MFSA-2, with specific intent to utilize or parallel the existing NWE 115-kV transmission line corridor. This alternative alignment was initially considered by MATL as its preferred option, but MATL has since changed its preference. This alternative is not intended to address potential land use issues or maintenance issues but is the shortest and potentially the least costly alternative under consideration.

Description of Alignment

The alignment for Alternative 3 would be 121.6 miles long (Figure 2.4-1) and would use H-frame design structures for its entire length. The south part of the alignment is shown in detail on Figure 2.4-2. The middle part is shown on Figure 2.4-3, and the north part is shown on Figure 2.4-4. The alignment would leave the Great Falls switch yard in a northwesterly path then turning west for about ½ mile on private property north of existing lines. The alignment would turn north along a field boundary and travel on the west side of the Great Falls Shooting Sports Complex (Complex). The Alternative 3 alignment would rejoin and closely parallel the Alternative 2 alignment north of the Complex at approximately milepost 2.3, generally following the NWE 115-kV power line. Alternative 3 would diverge from Alternative 2 again around milepost 13. Alternative 3 would continue in a northwesterly direction, following the 115-kV power line, on the east end of Teton Ridge, while Alternative 2 would turn west then north.
FIGURE 2.4-1
ALTERNATIVE 3 ALIGNMENT (MATL B)

LEGEND

ALT3 - ALIGNMENT
MILE MARKERS
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS
STUDY AREA BOUNDARY

MAJOR HIGHWAYS
SECONDARY ROADS

NOTE:
ALT = ALTERNATIVE

GIS map by Ed Madej - TT3694E_Fig2_4-1_MATL_ALT3_Alignment_Al_111607.mxd
FIGURE 2.4-2
ALTERNATIVE 3 ALIGNMENT
SOUTH

LEGEND

STUDY AREA BOUNDARY
MAJOR HIGHWAYS
SECONDARY ROADS
NOTE: ALT = ALTERNATIVE

ALT 3 - ALIGNMENT
ALT 3 MILE Markers
ALT 2 - ALIGNMENT
ALT 2 MILE Markers
ALT 4 - ALIGNMENT
ALT 4 MILE Markers
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS

GIS map by Ed Madej - TTEMI-HE Fig2_4-2_MAT3_Alignment_South_111607.mxd
FIGURE 2.4-3
ALTERNATIVE 3 ALIGNMENT
MIDDLE

LEGEND

ALT 3 - ALIGNMENT
ALT 3 MILE MARKERS
ALT 2 - ALIGNMENT
ALT 2 MILE MARKERS
ALT 4 - ALIGNMENT
ALT 4 MILE MARKERS
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS

NOTE:
ALT = ALTERNATIVE

STUDY AREA BOUNDARY
MAJOR HIGHWAYS
SECONDARY ROADS

GIS map by Ed Madej - TTEMI-HE Fig2_4-3_MATL_ALT3_Alignment_Middle_111607.mxd
FIGURE 2.4-4
ALTERNATIVE 3 ALIGNMENT
NORTH

NOTE:
ALT = ALTERNATIVE

LEGEND

ALT 3 - ALIGNMENT
ALT 3 MILE MARKERS
ALT 2 - ALIGNMENT
ALT 2 MILE MARKERS
ALT 4 - ALIGNMENT
ALT 4 MILE MARKERS
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS

STUDY AREA BOUNDARY
MAJOR HIGHWAYS
SECONDARY ROADS
MARIAS SUBSTATION

NOTE:
ALT = ALTERNATIVE

GIS map by Ed Madej: T-TEM-HE Fig2_4-4_MATL_ALT3_Alignment_North_111907.mxd
Alternative 3 and Alternative 2 would come within about ¾ mile of each other and parallel each other (but not join) at approximately milepost 32 of Alternative 2 within the Diamond Valley area. Alternative 3 generally would continue paralleling the NWE 115 kV line while Alternative 2 would be located further west from about milepost 32 to approximately milepost 70 north of Conrad.

The Teton River crossing would be approximately 1 mile west of Kerr Bridge (20th lane) in an area east of a mature riparian cottonwood stand. Alternative 3 would cross South Pondera Coulee east of Alternative 2 then generally continue northwest across the tip of the Teton bench while Alternative 2 would head north to its crossing of the Dry Fork of the Marias River. Alternative 3 would cross the Dry Fork of the Marias River west of the Alternative 2 crossing to rejoin Alternative 2 at approximately milepost 76 by Bullhead Creek. Alternative 3 diverges from the NWE 115-kV line about 1½ miles south of Bullhead Creek, going north to cross Bullhead Creek at the same location as Alternative 2. Alternative 3 then rejoins the NWE 115-kV line to continue northwest with some minor differences.

In Alternative 3, the crossing of the Marias River would be just to the east of the Alternative 2 crossing. From here to Cut Bank, the alignment for Alternative 3 would either parallel or overlie Alternative 2. Alternative 3 would diverge notably from Alternative 2 north of Santa Rita, at approximately milepost 102. From this location, Alternative 3 would continue in a northerly direction, while Alternative 2 would turn east before heading north. The border crossing for Alternative 3 would be approximately 4 miles west of the border crossing for Alternative 2. Table 2.3-2 describes additional design characteristics for Alternative 3.

Except as specified in this section, the following aspects of Alternative 3 would be the same as described under Alternative 2: rights of way width, implementation, conductors, markers, substations, access roads, construction, operations, maintenance, and potential environmental protection measures listed in Table 2.3-4. Only H-frame structures would be used for Alternative 3.

The agencies would apply environmental specifications to this alternative. DEQ’s draft Environmental Specifications (Appendix F) identify general environmental protection measures and sensitive areas for site-specific specifications; DOE or BLM might require some additional environmental protection measures.

2.5 Alternative 4 – Agencies’ Alternative

Alternative 4 was developed by DEQ in response to public comments and concerns. This alternative is acceptable to the other agencies and will be referred to as the agencies’ alternative throughout this document. Alternative 4 was developed to address public concerns regarding line interference with farming activities and close
proximity to residences. It would use portions of Alternative 2 from north of Conrad to the Montana-Alberta border. When developing Alternative 4, the agencies located the alignment to maximize the use of range and pasture land, where available. Where cultivated land would be crossed, the alignment was generally located along north-south and east-west field or strip boundaries, as suggested by public comment. Where the alternative does not run north-south or east-west, it would be mostly located on range and pasture land, where interference with farming would be reduced. Public land would be used when it would be reasonably available, but most land in the study area is privately owned.

The agencies also attempted to maintain a buffer around residences to reduce visual impacts and help alleviate concerns about potential health effects; however, in order to maximize the use of field and strip boundaries, the alternative would be located within ¼ mile of several residences.

Specific line location suggestions by individual landowners were incorporated into Alternative 4 south of Highway 2, south of Highway 44, south of the Teton River in the Diamond Valley area (see Appendix A in the March 2007 document for a description of other potential alignments in the Diamond Valley area), and north of the Great Falls 230-kV switch yard. Alternative 4 would parallel WAPA’s 230-kV single pole Great Falls to Conrad line where that line is located mostly on range and pasture land. In response to extensive public comment, this alternative would incorporate a single pole design where cropland and land enrolled in CRP would be crossed.

The agencies identified other possible local realignments to address the specific issues raised during initial scoping. After initial analysis, only five of the local realignments were assembled into this alternative. The initial analysis of the local realignments is in Appendix A of the March 2007 document. In response to public comments on the March 2007 document, three local routing options were identified through the Diamond Valley area that could substitute for that portion of Alternative 4 (Section 2.6.1). Although Alternative 4 is analyzed as a whole, the agencies could select some or all of the local realignments or other realignments that have been reviewed for other alternatives but not included in this alternative.

Except as specified in this section, the following aspects of Alternative 4 would be the same as described under Alternative 2: rights of way width, design, implementation, combination of H-frame and monopole structures, conductors, markers, substations, access roads, construction, operations, maintenance, and environmental protection measures listed in Table 2.3-4. Alternative 4 would require the use of monopole structures on all cropland and CRP land, not just where cropland and CRP land would be crossed on the diagonal. Table 2.3-2 describes additional design characteristics for Alternative 4.
Alternative 4 would be 139.6 miles long in Montana and is shown on Figure 2.5-1. Figures 2.5-2, 2.5-3, and 2.5-4 show the alignment in more detail. MATL has indicated that because Alternative 4 is longer than the other alternatives this alternative would be more expensive than alternatives 2 and 3. MATL estimates that Alternative 4 would result in a 12-month delay and a $7 million increase in direct costs (Tonbridge Power, Inc. 2007).

MATL has stated that if Alternative 4 is selected, the project would be unlikely to be built. MATL has indicated to the agencies that MATL would have difficulties obtaining adequate financing for the project due to additional costs and delays. Comments received from landowners indicate that Alternative 4 would minimize impacts to farmland. Although MATL has indicated a reluctance to implement this alternative, it is possible that MATL could reconsider this position if this alternative were selected by the agencies.

The alignment would diverge from the southern 23 miles of Alternative 2, to avoid diagonal crossing of cultivated land, where possible (Figure 2.5-2). Where Alternative 2 would go directly north out of the Great Falls switch yard, Alternative 4 would take a west-northwesterly path out of Great Falls paralleling the WAPA 230-kV Great Falls to Conrad transmission line (on its northside), making use of an existing transportation corridor. This alignment would traverse to the south and west of Benton Lake National Wildlife Refuge and rejoin the Alternative 2 alignment around milepost 27. In the Diamond Valley area, just south of the Teton River, the alignment would run directly north at milepost 32 where Alternative 2 turns northwest. Where the Alternative 4 alignment intersects the NWE 115-kV transmission line, it would parallel the line for approximately 3 miles until it would turn west to join the Alternative 2 alignment at approximately milepost 37 just south of the Teton River. The Alternative 4 alignment would then cross the Teton River just east of the location described in Alternative 2. The alignment would rejoin the Alternative 2 alignment after crossing the Teton River.

After paralleling Alternative 2 for about 2 miles, the Alternative 4 alignment would diverge from the Alternative 2 alignment approximately 8 miles southeast of Brady. After running directly west for approximately 3 miles, Alternative 4 would turn northwest for approximately 1½ miles, then turn directly north for approximately 18 miles, then turn directly west, heading for the Dry Fork of the Marias River. After the alignment crosses the existing WAPA 230-kV transmission line, approximately 2 miles south of Ledger, it would intersect the Dry Fork of the Marias River. The alignment would generally parallel the Dry Fork of the Marias River until it crossed Interstate 15, then head northwest along Big Flat Coulee for approximately 8 miles.
FIGURE 2.5-2
ALTERNATIVE 4 ALIGNMENT
SOUTH

NOTE:
ALT = ALTERNATIVE

LEGEND

STUDY AREA BOUNDARY
MAJOR HIGHWAYS
SECONDARY ROADS

ALT 4 - ALIGNMENT
ALT 4 MILE MARKERS
ALT 2 - ALIGNMENT
ALT 2 MILE MARKERS
ALT 3 - ALIGNMENT
ALT 3 MILE MARKERS
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS
FIGURE 2.5-3
ALTERNATIVE 4 ALIGNMENT MIDDLE

LEGEND

ALT 4 - ALIGNMENT
ALT 1 MILE MARKERS
ALT 2 - ALIGNMENT
ALT 2 MILE MARKERS
ALT 3 - ALIGNMENT
ALT 3 MILE MARKERS
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS

NOTE:
ALT = ALTERNATIVE

STUDY AREA BOUNDARY
MAJOR HIGHWAYS
SECONDARY ROADS

GIS map by Ed Madej - TTEM HE Fig2_5-3_MATL_ALT4_Alignment_Middle_111907.mxd
FIGURE 2.5-4
ALTERNATIVE 4 ALIGNMENT
NORTH

NOTE:
ALT = ALTERNATIVE

LEGEND
ALT 4 - ALIGNMENT
ALT 4 MILE MARKERS
ALT 2 - ALIGNMENT
ALT 2 MILE MARKERS
ALT 3 - ALIGNMENT
ALT 3 MILE MARKERS
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS

STUDY AREA BOUNDARY
MAJOR HIGHWAYS
SECONDARY ROADS
MARIAS SUBSTATION

NOTE:
ALT = ALTERNATIVE

GS map by Ed Madej, TTEMI-HE Fig2_5-4_MATL_ALT4_Alignment_North_111907.mxd
The alignment would turn west for approximately 1 mile before crossing Alternative 2, approximately 4 miles north of the Dry Fork of the Marias River crossing. The portion of the alignment along Dry Fork of the Marias and Big Flat Coulee would minimize diagonal crossing of crop land, avoid crossing crop land by traversing uncultivated land, and avoid residences and paralleling of pipelines.

After crossing Alternative 2 near milepost 81, the Alternative 4 alignment would run slightly west of the Alternative 2 alignment for about 1 mile, just north of Belgian Hill, and would be located farther away from residences. The Alternative 4 alignment in this area would reduce visual impacts, although some diagonal crossing of farmland would be required. The alignment then rejoins the Alternative 2 alignment around milepost 83.

Just south of Highway 2 near milepost 107, the Alternative 4 alignment would be located approximately ¼ mile west of Alternative 2 for a 2-mile stretch. This location would better follow property boundaries and be located farther away from residences. The Alternative 4 alignment would rejoin the Alternative 2 alignment near milepost 109 and would follow the Alternative 2 alignment north for approximately 30 miles to the border crossing.

Design Features of Alternative 4

In order to minimize impacts, the transmission line would use monopole construction design in areas used for croplands and CRP. Monopole construction design is shown in Figure 2.3-5. The design characteristics are summarized in Tables 2.3-1 and 2.3-2. The Alternative 4 alignment would cross 88.9 miles of cropland and CRP.

If Alternative 4 were selected, the agencies would apply additional environmental specifications to it that would not be required for Alternatives 2 or 3. DEQ’s draft Environmental Specifications (Appendix F) identify general environmental protection measures and sensitive areas for site-specific specifications; DOE or BLM may also require some additional environmental protection measures. Bird markers would also be used where recommended within ¼ mile of wetlands. To implement this measure, FWP and FWS biologists would be invited to field verify sites identified for markings. To decrease the line’s contrast and visibility, non-shiny conductors would be used. Steel monopoles would be self-weathering to decrease contrast. In order to make the transmission line more visible to low flying aircraft navigating by the roads, ball markers would be used where the line crosses Interstate 15 and U.S. Highways 87 and 2. Marker balls would also be placed at all river crossings.
FIGURE 2.6-1
LOCAL ROUTING OPTIONS

GIS map by Ed Madej - TTEMI-HE Fig2_6-1_MATL_Local_Routing_Options_A4_010908.mxd
2.6 Development of Local Routing Options for Alternatives 2 and 4

Based on public comments received on the March 2007 document, the agencies worked with landowners to refine Alternatives 2 and 4 to address landowner concerns related to costs, impacts to farming, impacts to other land uses, and impacts to visuals resources. They developed 11 local routing options for Alternative 2, a subset of which could also be applied to Alternative 4. Figure 2.6-1 provides the general locations for the local routing options. The public comments, meetings with landowners, and cost information were used to further refine and compare the local routing options based on the costs to landowners to farm around structures on diagonal field crossings, costs to landowners to farm around structures on field edges, and the cost to MATL of additional line construction (Section 3.16). Other land use issues were considered, including one landowner’s concern over the potential loss of income if the line is too close to allow the construction of a wind turbine on his land. The agencies also considered the potential for visual and human health impacts associated with the local routing options and their proximity to residences. Potential impacts for other resources were considered but are not discussed in detail since the potential effects would differ little between the Alternative 2 alignment and the local routing options. The sections below describe the local routing options in more detail and give the primary reasons for their development.

2.6.1 Diamond Valley Area

Landowner concerns with Alternative 2 in the Diamond Valley area east of Dutton focused on the amount of farmland crossed on the diagonal by Alternative 2 and the close proximity of residences. The Alternative 4 location in the Diamond Valley area was developed to avoid proximity to residences and reduce diagonal crossing of farmland (March 2007 document). However, Alternative 4 would still diagonally cross about 3.5 miles of farmland where it would parallel NWE’s existing 115-kV line and could create even more obstacles for farm equipment. The Alternative 4 portion through the Diamond Valley did not meet with local acceptance and is no longer being carried forward as a mitigating measure for Alternative 2 in this area. Three local routing options were identified for the Diamond Valley area (Figure 2.6-2). In addition to the Diamond Valley South and Diamond Valley North options that were suggested by the local landowners, MATL identified the Diamond Valley Middle option.
FIGURE 2.6-2
LOCAL ROUTING OPTIONS IN
DIAMOND VALLEY AREA
Chapter 2

The Diamond Valley South routing, although longer than other options, would be located almost entirely along section lines to minimize diagonal crossing of cultivated fields. It also would avoid residences by at least \(\frac{1}{4} \) mile. In Section 7, T24N, R2E where this routing does cross a field diagonally, it is situated such that the guyed angle structures would be in range and pasture lands. This option would be approximately 1.7 miles longer than Alternative 2 and more costly to construct.

The Diamond Valley North option is similar to the Diamond Valley South option in that it would be located primarily on section and half section lines and would avoid diagonal crossing of most cultivated land. It also would avoid close proximity to residences.

This routing would cross the existing NWE 115-kV line twice, potentially creating areas in fields not sprayable by cropdusters where the two lines are in close proximity and create an acute angle. This routing would be located near a single grain bin that might have to be moved if too close to the transmission line. It would be approximately 1.6 miles longer than Alternative 2 and more costly to construct.

The Diamond Valley Middle option is being considered as an applicant-initiated option. It would be approximately 1.3 miles longer and more costly to construct compared to Alternative 2. This option would be located within \(\frac{1}{2} \) mile of three residences. The Diamond Valley Middle option would create several angular approaches to the existing NWE 115-kV line (primarily Section 25 T25N, R1E) resulting in some potentially unsprayable fields if cropdusters were used.

2.6.2 Teton River Crossing Area

The Teton River Crossing local routing option (Figure 2.6-3) was developed based on a landowner’s concern that a structure would be located on a low terrace that is reported to have flooded in 1964 and DNRC’s recommendation that the line be located at the edge of fields. The general alignment of this option is similar to Alternative 4 through this specific area. The Teton River has a meandering channel through a much broader river floodplain. The rerouting of Alternative 2 through this location would put the structure on a slightly higher elevation. The proximity to residences would be the same for this option as Alternative 2 with no occupied residences nearby. Because the Teton River Crossing routing would require more angled structures, it would be more costly to construct compared to Alternative 2.
Chapter 2 Description of Alternatives

2.6.3 Southeast of Conrad

The Southeast of Conrad local routing option (Figure 2.6-4) was proposed to decrease diagonal crossing of cultivated farmland. Most of this routing would be on range and pasture land. This option would result in less farming impacts than Alternative 2. The construction costs would be slightly greater than the costs for Alternative 2.

2.6.4 West of Conrad

The suggested local routing option west of Conrad would reduce the amount of cultivated land crossed diagonally (Figure 2.6-5). This option would decrease potential mid-field interference with aerial crop dusting compared to Alternative 2, but would increase edge-of-field and some mid-field interference along the southern east-west segment. This routing would result in reduced farming costs to farmers due to structure locations along the edges of fields.

However, it would still have some structures in mid-field locations. Cost of construction would be greater than Alternative 2. MATL has indicated a willingness to implement this small, local routing option.

2.6.5 Northwest of Conrad

Northwest of Conrad a local routing option would reduce diagonal crossing of farmland and increase placement of structures along field boundaries on both private and state land (Figure 2.6-6). The routing would decrease the amount of cultivated land crossed, thereby decreasing costs to farm around structures. The line length would increase 0.1 mile.

2.6.6 Belgian Hill Area

The Belgian Hill Area local routing option (Figure 2.6-7) would increase the distance from four residences in this area compared to Alternative 2. Alternative 4 through this area was also developed to increase the distance from residences by moving the line approximately ½ mile to the west. According to comments received on the March 2007 document and subsequent field verification, Alternative 4 would cross approximately ½ mile of cultivation diagonally and would also traverse a side-roll irrigated field. This local routing option would reduce farming costs by reducing the length of diagonal crossing of cultivated fields by about ¼ mile when compared to Alternative 4. This option would be within ¼ to ½ mile of the two residences on Alternative 2 and within ¼ to ½ mile of one residence on Alternative 4. As with Alternative 2, this option would still cross a field with a side roll irrigation system.
FIGURE 2.6-4
LOCAL ROUTING OPTIONS
SOUTHEAST OF CONRAD

LEGEND
- ALTERNATIVE 2 - ALIGNMENT
- ALTERNATIVE 3 - ALIGNMENT
- SOUTHEAST OF CONRAD
- MAJOR HIGHWAYS
- SECONDARY ROADS
- SECTION LINE
- STUDY AREA BOUNDARY
- HOUSE
- GRAIN SILOS

GIS map by Ed Madej; TTEMI-H&E Fig2_6-4_MATL_Southeast_Conrad_Routing_Option_121007.mxd
FIGURE 2.6-5
LOCAL ROUTING OPTION
WEST OF CONRAD

LEGEND

- ALT 2 - PROPOSED ALIGNMENT
- ALT 3 - ALIGNMENT
- WEST OF CONRAD
- MAJOR HIGHWAYS
- SECONDARY ROADS
- SECTION LINE
- STUDY AREA BOUNDARY
- HOUSE
- GRAIN SILOS

GIS map by Ed Madej: TEDM HE Fig2_6-5_MATL_West_Conrad_Routing_Option_121007.mxd
FIGURE 2.6-6
LOCAL ROUTING OPTION
NORTHWEST OF CONRAD

Legend:
- Alt 2 - Proposed Alignment
- Alt 3 - Alignment
- Northwest of Conrad

GIS map by Ed Madej; TTE/M&E Fig 2.6, MATL_Northwest_Conrad_Routing_Option_121007.mxd
FIGURE 2.6-7
LOCAL ROUTING OPTIONS
IN THE BELGIAN HILL AREA
Chapter 2

Description of Alternatives

2.6.7 Bullhead Coulee Area

Two local routing options were suggested by landowners in the Bullhead Coulee area (Figure 2.6-8). One, the Bullhead Coulee South, approximately 4 to 7 miles north of the Valier Highway (State Highway 44), would avoid diagonal crossing of cropland and place the transmission line within a proposed wind farm. The landowner indicated turbines cannot be placed within 500 feet of the line. In Alternative 2 as proposed, a landowner could lose the opportunity of receiving annual payments from having a turbine located on his land. This routing option would allow placement of a wind turbine south of the line. Expected annual revenue from the turbine over the life of the line is estimated to exceed the additional cost of line construction. The turbine is part of a wind farm that has not signed agreements with MATL but plans to interconnect with another transmission line in the area.

The Bullhead Coulee North routing option would reduce farming costs by placing more structures on field edges. Anticipated increased construction costs would be minimal.

2.6.8 South of Cut Bank

The South of Cut Bank option has been carried forward from the March 2007 document as a local routing option (Figure A1 in the March 2007 document). This segment coincides with Alternative 4.

2.7 Alternatives Considered But Dismissed

Several alignment and construction-detail alternatives were considered but eliminated from detailed study. A table listing these alignment alternatives is in Appendix G of the March 2007 document. Several additional alignment alternatives were provided in the MATL MFSA application (MATL 2006b). Alternatives considered but dismissed from further study, are discussed below, along with the rationale for dismissing them from further study. Other local routing alternatives that were evaluated by the agencies are discussed in Appendix A of the March 2007 document.

Possible Local Realignments Not Incorporated into Alternative 4 in the March 2007 Document

Alternative 4 was developed by DEQ to address public concerns regarding line interference with farming activities and close proximity to residences. It was developed by making changes to Alternative 2. During the development of Alternative 4, the agencies considered eight possible local realignments to Alternative 2 to address specific scoping issues.
FIGURE 2.6-8
LOCAL ROUTING OPTIONS
BULLHEAD COULEE AREA
Chapter 2

Description of Alternatives

The eight local realignments are described below as segments A1, A2, B1, B2, C1, C2, D, and E. They were developed to address issues raised in the following areas: just north of the Great Falls switch yard (A1, A2), Diamond Valley area south of the Teton River (B1, B2), north of the Brady Frontage Road area (C1, C2), Belgian Hill (D), and south of Cut Bank (E). Only one segment from the “A”, “B”, and “C” realignments could be selected because they were developed to realign the same section of Alternative 2. For Alternative 4, the agencies included only segments A1, B2, C1, the north half of D, and E. The other realignments not incorporated into Alternative 4 were dismissed (A2, B1, C2, and the south half of D) because their ability to reduce impacts to farming and visuals were less than the retained segments.

Alternative 4 is described in Section 2.5. As discussed in Section 2.5, the agencies could select some or all of the segments included in Alternative 4 as mitigations to address land use and visual resource issues. All of the segment descriptions are included here for information. The agencies’ analysis of these segments and the information that helped in the selection of segments for Alternative 4 are included in Appendix A of the March 2007 document.

West Great Falls Realignment Segment A1 (Retained as part of Alternative 4)

Alternative segment A1 is an alignment that would diverge from the southern 23 miles of Alternative 2, to avoid diagonal crossing of farm land, where possible. Where Alternative 2 would go directly north out of the Great Falls switch yard, segment A1 would take a west-northwesterly path out of Great Falls paralleling the railroad and WAPA 230-kV transmission line, making use of an existing transportation corridor. The segment A1 alignment would head west and then north along the railroad and rejoin Alternative 2 where it leaves 8th Road. Segment A1 is the only segment that would run south and west of Benton Lake National Wildlife Refuge.

Shooting Sports Complex Realignment Segment A2 (Eliminated from further consideration)

Approximately 1½ miles north of Great Falls, Alternative 2 would turn directly west for a mile and then run directly north along the west side of the Great Falls Shooting Sports Complex. Segment A2 is a 4.2-mile-long alignment that would continue directly north from Great Falls along the edge of cropland and parallel to the access road through the east side of the Great Falls Shooting Sports Complex. The alignment would parallel the existing 161-kV NWE transmission line between Great Falls and Havre. Segment A2 would rejoin Alternative 2 where it crosses Highway 87. This alignment would minimize crossing of farmland but would interfere with future building plans at the Shooting Sports complex.
Diamond Valley Right Angle Realignment Segment B1 (Eliminated from further consideration)
Segment B1 is a 5.9-mile-long alignment addressing the area in Teton County 2 to 5 miles south of the Teton River. In the headwaters of Kinnerly Coulee, segment B1 would run directly north where Alternative 2 turns northwest. After running directly north for approximately 2½ miles, segment B1 would turn directly west running approximately 3 miles until it would rejoin Alternative 2 in the vicinity of Hunt Coulee. This alignment did not adequately address local landowner concerns and was dismissed. The general intent this realignment to avoid diagonal crossing of farm land was incorporated into the new Diamond Valley local routing option.

Diamond Valley and Teton River Realignment Segment B2 (Retained as part of Alternative 4)
Segment B2 is a 6.5-mile-long alignment that would diverge from Alternative 2 at the same location as segment B1. Where the segment B2 alignment intersects the Alternative 3 alignment and existing NWE 115-kV transmission line, it would parallel the line for approximately 3 miles until it would turn west to join Alternative 2 just south of the Teton River. Segment B2 would cross Hunt Coulee approximately ¾ mile north of the Alternative 2 crossing and ¼ mile north of the segment B1 crossing. Segment B2 would then cross the Teton River just east of the location described in Alternative 2. Segment B2 would address a landowner concern over opening a new corridor rather than paralleling an existing line which already has disrupted farming practices in some fields.

Diamond Valley Area
During initial scoping, landowner concerns in the Diamond Valley east of Dutton focused primarily on the amount of farmland crossed on the diagonal and the close proximity of residences. Following the March 2007 document, the agencies identified eight potential local realignments through this part of the Diamond Valley area based on comments and suggestions made by the landowners (Figure 2.7-1). Three of the realignments were retained for detailed consideration and are discussed in Section 2.6-1 as Local Routing Options Diamond Valley South, Diamond Valley Middle, and Diamond Valley North. Five potential local realignments were considered but dismissed for the reasons provided below.

The proposed realignments C, D, F, and G were not carried forward as potential subalternative realignments because they would not adequately address the landowner concerns about proximity of the line to residences, crossing farmland diagonally, and closely paralleling NWE’s existing 115-kV transmission line. The east-west portions of potential local realignments F and G would be inadequate because they would result in structures being located mid-field. Local realignment J was not considered in detail because that realignment would be in close proximity to one residence and two sets of grain bins. The close proximity of a transmission line to grain bins can create safety hazards, especially during use of grain augers near the line. All five potential local realignments (C, D, F, G, and J) would have greater lengths compared to Alternative 2.
FIGURE 2.7-1
DISMISSED ALIGNMENTS IN
DIAMOND VALLEY AREA

LEGEND

ALT 2 - PROPOSED ALIGNMENT
ALT 3 - ALIGNMENT
DIAMOND VALLEY AREA
DIAMOND VALLEY SOUTH
DIAMOND VALLEY MIDDLE
DIAMOND VALLEY NORTH
DISMISSED ALIGNMENTS

GIS map by Ed Madej; TTEM-HE Fig2_7-1_MATL_Diamond_Valley_Dismissed_Alignments_121007.mxd
Alternative Teton River Crossing (Eliminated from further consideration)
The agencies examined a suggested alignment to cross the Teton River in the Northwest corner of Section 16. This alignment was eliminated from further consideration because it would cross a landslide feature where long-term slope stability is uncertain and would cross the Teton River at a low elevation bend that would be more prone to flooding compared to Alternative 2.

Brady Frontage Road Realignment Segment C1 (Eliminated from further consideration)
Segment C1 is a 15-mile-long realignment that would diverge from Alternative 2 approximately 8 miles southeast of Brady. Segment C1 would run directly west from the Alternative 2 along the northern edge of the Teton River valley and county road to the Interstate 15 frontage road, and follow the frontage road for about 11 miles, past the town of Brady to rejoin Alternative 2 about 2 miles north of Brady. Segment C1 would closely parallel the existing transportation corridor of Interstate 15 and the frontage road. Segment C1 could decrease crossing of farmland and avoid paralleling one pipeline, but still would roughly parallel a second pipeline.

Conrad Realignment Segment C2 (Retained as part of Alternative 4)
Segment C2 is a 41-mile-long realignment that would diverge from Alternative 2 at the same location as segment C1. After approximately 3 miles running directly west, segment C2 would turn northwest for approximately 1½ miles, then turn directly north for approximately 18 miles, then turn directly west, heading for the Dry Fork of the Marias River. After the alignment crosses the existing WAPA 230-kV transmission line, approximately 2 miles south of Ledger, it intersects the river.

The alignment generally parallels the Dry Fork of the Marias until it would cross Interstate 15, then head northwest along Big Flat Coulee for approximately 8 miles. The alignment would turn due west for approximately 1 mile before rejoining Alternative 2, approximately 4 miles north of the Dry Fork of the Marias River crossing. This segment would minimize diagonal crossing of farm land, avoid crossing farm land by traversing uncultivated land, and avoid residences and paralleling of pipelines.

West of Conrad (Not carried forward for further consideration)
One suggested realignment southwest of Conrad (labeled SWC Realignment on Figure 2.7-2) would diverge from Alternative 2 near milepost 60 and would run west for about ½ mile and turn north for 2 miles. This realignment would reduce the amount of cultivated land crossed on the diagonal. The SWC realignment would decrease potential mid-field interference with aerial crop dusting compared to Alternative 2 through this area, but would increase edge-of-field and some mid-field interference along the southern leg of this segment. The SWC realignment would result in reduced farming costs to farmers due to structure locations along the edges of fields.
FIGURE 2.7-2
DISMISSED ALIGNMENTS
WEST OF CONRAD
FIGURE 2.7-3
DISMISSED ALIGNMENTS IN BULLHEAD COULEE AREA

GIS map by Ed Madej, TETMCHE Fig2_7-3_Bullhead_Coulee_Dismissed_Realignments_121007.mxd
Chapter 2

Description of Alternatives

However, the cost of construction for the SWC realignment would be greater than for Alternative 2. The additional construction cost would be greater than the cost savings to the farmers for this realignment. In addition, some local landowners expressed concerns about interference with crop dusters along the SWC realignment.

Belgian Hill Realignment Segment D (North half retained as part of Alternative 4)

Belgian Hill Segment D was considered as mitigation for Alternative 2 and the north half was retained as part of Alternative 4 (March 2007 document). Segment D is a 2.8-mile-long realignment that would move the alignment slightly west from the Alternative 2 alignment for 2 miles, just north of Belgian Hill, farther away from four residences. The alignment would generally parallel Alternative 2. Segment D would result in greater potential for general local acceptance. This segment would reduce visual impacts. Some diagonal crossing of farmland would be required. This realignment has been replaced by the Belgian Hill local routing option in this document.

Bullhead Coulee Area

Three local realignments (designated Bullhead Coulee B, D, and E on Figure 2.7-3) were suggested in the Bullhead Coulee area, approximately 4 to 7 miles north of the Valier Highway (State Highway 44). They would avoid crossing saturated soils at the Bullhead Coulee crossing and help minimize diagonal crossing of cropland. These Bullhead Coulee Area realignments B, D, and E were dismissed from further consideration because the estimated cost of line construction along these realignments would be five to six times greater than the estimated cost savings to farmers from locating the structures along field edges compared to within the field boundaries. In addition, realignment B would be located within ¼ mile of four residences.

South of Cut Bank Realignment Segment E (Retained as part of Alternative 4 and as mitigation for Alternative 2)

Segment E is a 2.5-mile-long realignment that would move the alignment approximately ¼ mile west for a 2-mile stretch, just south of the Alternative 2 intersection with Highway 2. Segment E would move the alignment to follow property boundaries better and results in greater potential for general local acceptance. It is 0.1 mile longer than Alternative 2. Segment E would generally parallel Alternative 2.

MATL C Alignment

MATL C was in the MFSA application (MATL 2006b). The alignment would be 136 miles long. The MATL C alignment would diverge more from the Alternative 2 proposed Project alignment than the Alternative 3 alignment and is the longest of the alignments MATL presented. The MATL C alignment would diverge from Alternative 2 at mile 7 to follow existing north-south and east-west state highway and county road rights of way. The MATL C alignment would continue north, change direction around
the eastern side of Woods Crossing, and then go north for about 16 more miles. The MATL C alignment would then go west towards the town of Brady, south of which it would parallel Alternative 2, remaining about 2 to 4 miles east of Alternative 2. North of Conrad, MATL C would gradually move closer to Alternative 2 until joining it at Cut Bank. North of Santa Rita, the MATL C alignment would diverge from Alternative 2, heading northwest where Alternative 2 heads north, and cutting across Alternative 2 to head north where Alternative 2 heads east. The border crossing for MATL C is about 1 mile west of the Alternative 2 border crossing.

This alternative was dropped from further consideration because it did not fully address issues raised during scoping. Although it would reduce the total miles of diagonal crossing of farm land, compared to MATL’s proposed alignment, MATL C would have crossed more farm land diagonally along the portion beginning south of Brady and continuing to approximately 10 miles north of Conrad. Use of the MATL C alignment would have impacts to visual resources from its alignment located very close to several residences. The MATL C alignment would not use as much range and pasture land, or parallel existing transmission lines as much as similar alignments developed by MATL and the agencies west of Great Falls. The Alternative 2 segment west of Great Falls would more closely parallel an existing transmission line than would the MATL C alignment.

Building the Line Underground

As discussed in Chapter 3, overhead transmission lines and associated support structures interfere with some land uses. Burying the line underground would reduce long-term visual impacts and may reduce long-term impacts for some land uses such as farming. Underground lines would still require ground disturbance. An underground line would be less susceptible to weather related outages.

Underground 230-kV lines would cost between 2 and 15 times the amount required to build an overhead line (Georgia Transmission Corporation 2006; Verbund 2006). Cost to build underground may be slightly more than $1 million per mile (Energy Central News 2007), compared with MATL’s estimate of about $293,500 per mile using H-frame structures.

Digging trenches to bury the lines would result in greater construction disturbance to the land and would require greater time to install. Above ground access vaults would need to be constructed as well as above ground structures at line termination points. Buildings on the alignment would be restricted. Vegetation would likely have to be restricted to avoid reducing soil moisture that is needed to cool the transmission line. Problems with underground systems would also be more difficult to locate and repair. Studies indicate that magnetic strengths from power lines buried underground are similar to magnetic strengths for power lines above ground (NIEHS 1999).
Chapter 2

Description of Alternatives

Un-guyed, Self-Supporting Angle and Dead-End Structures

Changes in direction and dead-ends on a transmission line require additional support in the form of guy lines or bulkier self-supporting structures. Guy wires can increase interference with farm equipment and take additional land out of cultivation compared to non-guyed structures, resulting in increased land use impacts. Eliminating the use of guy lines would reduce some of the impacts on land uses. However, this alternative was dismissed because of the higher costs for these self-supporting structures compared to guy wires.

Requiring the Use of Helicopters to String the Line

The use of helicopters could avoid construction of some access roads. Helicopters are most frequently used in extremely hilly terrain or large marshy areas where access is difficult. Using helicopters to string the conductors would create an additional expense. Using helicopters would not eliminate any of the work for the stringing crew, and it would not eliminate the installation of sheaves (pulleys used to string the line). Special sheaves would need to be purchased or rented so that the conductor and ground wires could be installed from the air. Access roads would still be needed for maintenance over the life of the line. This alternative was dismissed because most of the study area is accessible from the ground.

Requiring Monopole Structures in all Areas

A monopole design would reduce some interference with land uses that the H-frame design would have. The use of monopole support structures instead of H-frame structures for the entire length of the line was dismissed because of added costs with little additional land use benefits on rangeland. However, the use of monopoles is now proposed for 53 miles of cropland and CRP (89 miles) crossed diagonally under Alternative 2 and is also analyzed for all cropland and CRP crossings under Alternative 4.

Northwest Alternatives

Alignment selection from the U.S./Canada border to Cut Bank, approximately 25 miles south, required MATL to consider several alternatives. Alternative border crossing locations were dismissed based on routing conditions in Alberta. Alternative alignments between the border and Cut Bank were dismissed based on land use criteria such as: avoidance of occupied residences, an abundance of prairie pothole wetlands, and avoidance of Blackfeet Reservation land.
Eastern Alternative

MATL conceptually considered a Canada/U.S. border crossing near the Coutts/Sweet Grass Port-of-Entry along U.S. Interstate 15. Alignment alternatives considered in this vicinity would parallel Highway 4 from Lethbridge to Coutts/Sweet Grass, and roughly follow Interstate 15 from the border south to Shelby. This alignment would have afforded an opportunity to maintain infrastructure development in a common corridor, as well as avoiding protected lands in the Milk River Hills of southern Alberta.

South of Shelby, the eastern alternative would have traveled diagonally cross-country to the southeast for a distance of approximately 12 miles before heading directly south for almost the entire remaining distance to its tie-in at NWE’s 230-kV switch yard north of Great Falls. Several factors contributed to MATL’s dismissal of the eastern alternative including:

- In southern Alberta, the Eastern Alternative would potentially compromise the safety control system on the rail line that parallels Highway 4.
- Land development patterns in southern Alberta and in the Shelby area would necessitate the use of a stair step-like centerline resulting in increased distances and numerous angle structures requiring guy wires.
- The topographically rugged “breaks” of the Marias River are approximately 6 miles south of Shelby. The steep and highly eroded topography at this crossing location is relatively wide (approximately 6 to 7 miles) and would result in additional project costs to meet engineering challenges.
- The Marias River breaks area is relatively undisturbed, which has the potential for a greater number of archaeological sites.

Cut Bank to Shelby Alternatives

MATL would build the line to Cut Bank and then to Shelby and tie into WAPA’s system there in order to complete a transmission path to Great Falls. In that way, energy producers or other subscribers that would need to move power south on the line would pay MATL a transmission tariff to get the power to Shelby and then would have to pay WAPA’s tariff to move power from Shelby to Great Falls. WAPA’s tariff of $2.69 per kW-month (kW/Mo.) would represent a substantial increase in the cost of transmission for users of the proposed line over paying the MATL tariff alone. MATL’s varying tariffs on its line, which were bid by successful shippers in two open seasons, range from $3.01 kW/Mo. to $4.04 kW/Mo.5. These two rates together would almost double the total tariff in certain cases and would likely price most subscribers out of using the line. In addition, WAPA lines already have firm commitments for available capacity.

Chapter 2

Description of Alternatives

and can sometimes run at capacity due to system characteristics. Thus, the WAPA system does not provide the additional firm capacity offered by a separate MATL transmission line.

In a variation of this alternative, MATL and WAPA would cooperatively rebuild portions of the current WAPA Shelby-Great Falls 230-kV line, thereby creating a double circuit transmission line in certain parts of the path. WAPA cannot agree to this. A double circuit line would lower reliability for the operating system. The loss of one structure would affect both circuits. The loss of a structure on one of two parallel single circuit lines would affect just one circuit. WAPA also has reservations about building a parallel line in the same right-of-way as its Shelby-Great Falls route due to the potential for induced current between two lines located close to one another.

Besides the increased tariffs and decreased line reliability, these alternatives were dismissed because of operating limitations of WAPA’s “West Control Area.” These limitations are due to WAPA’s lack of additional generation capacity reserves on its system that would be needed (as backup power sources) to support the wind projects proposed for the MATL project. The hydroelectric generators at Fort Peck Dam are the primary sources of these “regulating reserves” on the west system, and generation capacity is severely limited by the current drought conditions and resultant stream flow limitations.

NWE 115-kV Transmission Line Rebuild Alternative

Combining MATL’s transmission line with NWE’s existing 115-kV line would minimize potential environmental impacts. With that impetus, MATL considered rebuilding and updating, as necessary, NWE’s existing 115-kV transmission line between Cut Bank and Great Falls and engaged in discussions with NWE regarding its feasibility. This rebuild alternative proved prohibitive based on the logistics of maintaining service while the line was being rebuilt and upgraded and the economics associated with a partnership and existing line rebuild.
Chapter 3
Affected Environment and Environmental Impacts

3.0 Affected Environment and Environmental Impacts

Information in this chapter describes the relevant resource components of the affected environment. Only resources that could be affected by the alternatives, or that could affect the alternatives if implemented, are described. Data and analyses in these sections correspond with the importance of the impact and with concerns raised during the scoping process. The following resource areas are in this chapter: land use and infrastructure, geology and soils, engineering and hazardous materials, electric and magnetic fields, water, wetlands, vegetation, wildlife, fish, threatened and endangered species, air quality, noise, socioeconomics, cultural resources, visuals, and the transmission grid. Section 3.18 summarizes the findings DEQ would make in determining whether to certify the project under MFSA.

The location and extent of the affected environment for the alternatives depend on the resource under evaluation. If approved, the transmission line would be constructed within a 500-foot wide zone, 250 feet on each side of a center line specified in the Certificate of Compliance. For most resources, the affected environment analysis area for the transmission line is the 500-foot-wide zone for each alternative. Where affected environment resource analysis areas extend beyond the zone, the extended area is described at the beginning of the resource area section, and in many cases corresponds to MATL’s study area (MATL 2006b) shown in Figure 1.1-1.

After the affected environment for each resource has been described, the impacts of the Project and alternatives are discussed, including the direct and indirect impacts, and short-term and long-term impacts. Short-term impacts are defined for this project as those that would take place during the construction phase. The construction phase is expected to last six months. Long-term impacts are defined for this project as those that would take place during the operation and maintenance of the line. The cumulative impacts for each resource are discussed in Chapter 4. Chapter 4 also includes a discussion of unavoidable adverse impacts and irreversible and irretreivable commitments of resources. The text includes descriptions for impacts and resources relevant to identified issues of concern (Section 1.5.2).
3.1 Land Use and Infrastructure

This section describes the human use of the land for economic production, and for residential, recreational, or other purposes.

3.1.1 Analysis Methods

Quantitative analysis of the number of miles included in a transmission line alignment and the associated number of acres and land use is based on Geographic Information System (GIS) analysis of the action alternatives. Assumptions needed for GIS analysis include:

- Existing land uses were developed from interpretation of orthophotographs (aerial photographs with distortion removed) taken in 2005 (USDA National Agriculture Imagery Program [NAIP] 2005). Some land uses may have changed since the photographs were taken. Appendix H lists land use by milepost for each alternative.

- Existing ownership information was developed from county plats and other sources. Information is believed to be accurate and up to date. However, some recording errors may have occurred, or lands may have been sold since the GIS information was developed.

Analysis Area

The analysis area for land use and infrastructure is the study area defined in MATL’s permit application (MATL 2006b). Detailed analysis was conducted along the proposed centerline and alternatives.

Information Sources

Data and information for this section were compiled and refined from several sources including, but not limited to, computer assisted mass appraisal (CAMA), GAP Analysis data, and photographic interpretation and other sources. MATL verified this information by ground reconnaissance during July and August 2005. In addition, MATL contacted Federal, state, and local regulatory personnel by telephone and in person to validate existing information and to solicit additional information. This information was included in the MFSA application (MATL 2006b).

DEQ also verified land use information in the summers of 2006 and 2007 by:

- conducting a field reviews of the alignments from Great Falls to the U.S.-Canada border;
verifying physical features and land uses along portions of the alternatives by driving along the alignments, recording observations, and taking periodic Global Positioning System (GPS) readings; and

overlaying the alignments on 2005 orthophotographs (USDA NAIP 2005) and documenting visible land uses by milepost (Appendix H).

The land uses documented included: mechanically irrigated cropland, non-irrigated cropland, rangeland/pasture land, forest, residential, existing rights of way, riparian habitat, and water. Information was generally mapped at a scale of 1:24,000.

Information describing the existing transportation and utility networks was obtained from the MFSA application (MATL 2006b) or from Mr. Jim McDonald, Teton County road foreman. Details regarding farm tractors and tillage equipment were obtained from an interview with Mr. Bruce Broesder, service warranty writer for Torgersons, Inc. in Great Falls, and timelines for planting and harvesting were obtained from Mr. Sherwin K. Smith, Executive Director of the Teton County Farm Service Agency in Choteau. Mileages were measured using GIS.

3.1.2 Affected Environment

The following land uses and ownership categories are described in this section:

- Cities, towns, unincorporated communities,
- Developed residential, industrial, and commercial areas adjoining cities and towns,
- Federal and state highways and county roads,
- Railroads and railroad rights of way,
- Existing electric transmission lines,
- Communication facilities,
- Military installations,
- Conservation easements,
- Public and private airports,
- National trails,
- Farmland differentiated by irrigated cropland, mechanically irrigated cropland, non-irrigated cropland, rangeland/pasture land, and conservation reserve program (CRP),
- Mines, and
- Land ownership categories (Federal, state, tribal, private).
Chapter 3

Land Use

Land Ownership

Figures 3.1-1, 3.1-2, and 3.1-3 show land ownership in the south, middle, and north parts of the analysis area. Table 3.1-1 summarizes the proportion of land ownership and jurisdiction within the analysis area (Montana Natural Resource Information System [Montana NRIS] 2006a). The majority (89.7 percent) is privately owned, with the remainder owned or managed by state, Federal, and local government agencies. A discussion of public land management, relative to facility siting, is provided below.

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Percent of Analysis Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Government</td>
<td>0.3</td>
</tr>
<tr>
<td>Private</td>
<td>89.7</td>
</tr>
<tr>
<td>Right-of-way</td>
<td>0.6</td>
</tr>
<tr>
<td>State Government</td>
<td>6.7</td>
</tr>
<tr>
<td>Tribal</td>
<td>0.0</td>
</tr>
<tr>
<td>Undetermined</td>
<td>0.0</td>
</tr>
<tr>
<td>U.S. Department of Agriculture</td>
<td>0.0</td>
</tr>
<tr>
<td>U.S. Department of Defense</td>
<td>0.1</td>
</tr>
<tr>
<td>U.S. Government</td>
<td>0.0</td>
</tr>
<tr>
<td>U.S. Department of Agriculture Forest Service</td>
<td>0.0</td>
</tr>
<tr>
<td>U.S. Department of the Interior Bureau of Land Management</td>
<td>1.5</td>
</tr>
<tr>
<td>U.S. Department of the Interior Fish and Wildlife Service</td>
<td>0.5</td>
</tr>
<tr>
<td>Water</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Montana NRIS 2006a

Land Use Categories

Land use categories described in this section are: residential, commercial and industrial, agricultural, publicly managed, and conservation easements.
FIGURE 3.1-1
PROPOSED MATL POWERLINE
LAND USE ANALYSIS AREA
SOUTH

LEGEND

Ownership:
- Conservation Reserve Program
- Tribal
- State Government
- US Department of Agriculture
- US Department of Defense
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Reclamation
- USDI Bureau of Land Management
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Forest Service
- USDI Fish and Wildlife Service
- USDI Bureau of Land Management
- US
FIGURE 3.1-2
PROPOSED MATL POWERLINE
LAND USE ANALYSIS AREA
MIDDLE

LEGEND

Ownership
- Tribal
- State Government
- US Department of Agriculture
- US Department of Defense
- USDA Forest Service
- USDI Bureau of Land Management
- USDI Bureau of Reclamation
- USDI Fish and Wildlife Service
- USDI Bureau of Reclamation
- US Government - Other

ALT2 - ALIGNMENT MILE MARKERS
ALT3 - ALIGNMENT MILE MARKERS
ALT4 - ALIGNMENT MILE MARKERS

CITIES AND TOWNS

ALIGNMENT END AND EXIT POINTS

STUDY AREA

MAJOR HIGHWAYS
SECONDARY ROADS
RIVERS AND STREAMS

FIGURE 3.1-2
PROPOSED MATL POWERLINE LAND USE ANALYSIS AREA MIDDLE

GIS map by Patricia Williams - TTMTI 3-1-2-LandUseAnalysisArea-Middle.mxd
Chapter 3

Residential
Residential land use in the analysis area includes cities, towns, colonies, residential clusters (for example, unincorporated subdivisions), and dwellings (for example, farm or ranch houses). In addition, several Hutterite colonies are located in the analysis area. Cities and towns in the analysis area are:

- Great Falls and Black Eagle, in Cascade County,
- Power and Dutton, in Teton County,
- Conrad and Brady, in Pondera County,
- Shelby, Sunburst, and Sweetgrass, in Toole County, and
- Cut Bank, in Glacier County.

With the exception of Cascade County, no land use zoning rules currently apply in the analysis area and no planned subdivisions are currently proposed for future construction in analysis area portions of Glacier, Toole, or Pondera counties (Yeagley 2006). In the Cascade County portion of the analysis area, there are no planned subdivisions (MATL 2006b). In Teton and Chouteau counties, there is no zoning and there are no planned residential developments in the analysis area (MATL 2006b).

Commercial and Industrial
Commercial and light industrial activities (linear/point facilities) in the analysis area include communication facilities (cellular telephone and microwave), oil and gas production, surface mining (gravel pits), airstrips (public and private), railroads, pipelines and transmission lines, roadways, and military installations (MATL 2006b, Connel 2007). Primary concentrations of communication sites occur in the vicinity of Great Falls, Shelby, and Cut Bank, although individual facilities are distributed throughout the area. Existing commercial and industrial businesses within the study area were identified based on parcel information in the CAMA database.

Oil and gas production facilities occur primarily in the northern half of the analysis area and consist of wells, pump and compressor stations, collector and transmission pipelines, meter stations, industrial or processing plants, and product storage tanks, both above and below ground (MATL 2006b). Most oil and gas facilities are associated with production and processing of natural gas or propane, though approximately one-third are associated with crude oil (MATL 2006b).

There are several public and private airports or airstrips in the analysis area. Public airports include those associated with the towns of Sunburst, Shelby, Conrad, and Dutton (MATL 2006b).
Agricultural
Of the 1,444,790 acres in the analysis area, approximately 1,277,000 acres (88 percent of the analysis area) are considered agricultural lands, including irrigated and non-irrigated cropland and rangeland. Table 3.1-2 summarizes the proportion of different agricultural land uses in the analysis area. Agricultural lands are almost entirely on privately owned land; however, some dry land crops and grazing occur on public lands in the analysis area.

Irrigated croplands include those using flood, pivot, wheel and hand line irrigation systems. Crops grown on irrigated fields in the region are typically hay and alfalfa. Non-irrigated crops are predominately drought resistant cereal grains (MATL 2006b).

<table>
<thead>
<tr>
<th>TABLE 3.1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRICULTURAL LANDS IN THE ANALYSIS AREA</td>
</tr>
<tr>
<td>Farmland Use</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Irrigated Cropland</td>
</tr>
<tr>
<td>Dry Land Crops</td>
</tr>
<tr>
<td>Grazing</td>
</tr>
<tr>
<td>Wild Hay or Alfalfa</td>
</tr>
</tbody>
</table>

Notes:
* Percentage is based on the percent of parcels where all or a portion of the parcel is in the analysis area. Some parcels may indicate irrigated acres, but those acres may occur outside the analysis area. The “farmland use” category is associated with the parcel, but the location of the type is not mapped within the parcel.

Source: USDA NAIP 2005

Management of agricultural lands can involve the use of DGPS-guided farming equipment and vehicles and other equipment used for irrigation, aerial and ground based spraying, plowing, seeding, fertilizing, and harvesting. Some ground based spraying equipment has “booms” extending 45-75 feet on either side. These activities occur on 73 percent of the farmland in the analysis area.

Publicly Managed Land
The overall Project area contains about 10 percent public lands (Table 3.1-1). Of these public lands, most are managed by the DNRC, FWP, BLM, and FWS (Figures 3.1-1, 3.1-2, and 3.1-3).

The State of Montana has jurisdiction over 97,318 acres within the analysis area, the majority of which is under jurisdiction of DNRC as school trust parcels. These Montana state trust lands are administered and managed for the benefit of the public schools and the other endowed institutions under the direction of the Montana State Board of Land Commissioners. The Real Estate Management Bureau of DNRC’s Trust Land
Chapter 3

Management Division is responsible for processing applications for rights of way and easements across surface lands and navigable waterways administered by the state.

FWP manages several wildlife management areas, fishing access sites, and other wildlife and recreation areas.

The primary Federal agencies with lands within the analysis area are the BLM and FWS. BLM managed land is located in scattered parcels throughout the northern half of the analysis area (Figures 3.1-1, 3.1-2, and 3.1-3). Right-of-way permits for crossing U.S. BLM managed land are managed by the BLM Lands and Realty office and approved following the appropriate Resource Management Plan compatibility assessment and NEPA review process.

The FWS has management authority of the Benton Lake National Wildlife Refuge, located approximately 10 miles north of Great Falls. FWS also manages three waterfowl production areas (WPA) in the analysis area, one located approximately 6 miles west of Benton Lake, one located approximately 12 miles northwest of Benton Lake, and one located approximately 15 miles northeast of Cut Bank (Figures 3.1-1, 3.1-2, and 3.1-3).

The analysis area also contains several properties owned by the U.S. Department of Defense (Figures 3.1-1, 3.1-2, and 3.1-3). The use of such properties is managed by Malmstrom Air Force Base (CAMA 2006).

Final siting of the transmission line on public lands would require MATL to obtain permits from state or Federal agencies for rights of way or easements, and would likely require compatibility assessments with these agencies to ensure that localized alignment decisions are made in accordance with the relevant management plans.

Conservation Easements

Within the analysis area are private lands managed under conditions detailed in conservation easements held by both FWS and the USDA Farm Service Agency. FWS holds 37.545 acres of wetland easements on some private land in the northern portion of the analysis area. Approval to locate facilities within areas managed under wetland easement by FWS is determined by a compatibility review process that takes into account proposed facility location and access relative to wetland avoidance on the parcel under easement.

FWP currently holds the Lewis and Clark Heritage Greenway Conservation Easement on about 2,400 acres owned by PPL Montana adjacent to the southern boundary of the analysis area. The purpose of the easement is to protect and enhance the open space, natural, and visual resources, when consistent with hydropower production and power
transmission activities. The switch yard in which all alternatives would terminate is located on the northern edge of the easement.

The Farm Service Agency holds CRP easements on several thousand acres in the analysis area (Figures 3.1-1, 3.1-2, and 3.1-3). CRP contracts between the Farm Service Agency and private landowners typically preclude agricultural activities on land managed under the program. Facility siting on CRP contracted land requires a compatibility review by the Farm Service Agency to determine a facility’s potential impact to the CRP status of the affected property. Haying and grazing of CRP acreage are authorized under limited conditions (USDA Farm Service Agency 2006):

- Managed haying and grazing are authorized no more frequently than 1 out of every 3 years after the CRP cover is fully established. CRP participants requesting managed haying and grazing are assessed a 25 percent payment reduction except when conducted in an “emergency” area.
- Emergency haying and grazing of CRP acreage may be authorized to provide relief to livestock producers in areas affected by a severe drought or similar natural disaster.

Existing Roadway Network
Highways and roads in the analysis area are listed in Table 3.1-6 and include:

- Federal and state highways
- Paved secondary state highways and county roads
- Improved county roads
- Unimproved roadways

Interstate 15 runs west from Great Falls to Vaughn and then north to the farming communities of Power, Dutton, Brady, and Conrad, and then to Shelby and the border crossing at Sweet Grass. At Cut Bank the proposed power line would cross U.S. Highway 2, the primary east-west highway along the Hi-Line. North of Great Falls, the proposed power line would cross U.S. Highway 87. The analysis area includes 124 miles of Interstate 15.

There are numerous secondary roads in the analysis area including paved Federal and state highways and improved (paved) county roads. These roadways run east-west (for example, MT 219 from Conrad to Pendroy) and north-south (for example MT 214 from Cut Bank north to Santa Rita and beyond). There are 86 miles of Federal and state highways in the analysis area.
Improved county roads are primarily gravel roadways that serve rural residents. These roadways, in conjunction with improved secondary roads, provide the transportation infrastructure for ranchers and farmers in the Project area. These roads are vital to rural residents for uses such as hauling grain and cattle and moving large tractors and farming implements. Unimproved roadways are those two-track roads that provide the farmer or rancher with access to and within their owned or leased land. There are approximately 2,346 miles of improved and unimproved county, city, and local roads in the study area.

With the exception of Interstate 15, U.S. Highways 2 and 87, and some sections of the secondary road system, the basic road infrastructure in the study area has changed little in the last 40 to 50 years. Federal and state highways have load restrictions specific to length, width, height, and weight of the transported load. Any exceedance of these criteria requires a single trip permit from MDT.

Most of the county roads have 24-foot-wide graveled driving surfaces (McDonald 2006). Some road shoulders and county bridges may not be suitable for heavy loads (McDonald 2006).

Railroad Facilities
The Burlington Northern and Santa Fe Railway northern tier mainline generally parallels U.S. Highway 2 through the project area from Shelby to Cut Bank. A north-south line runs from Great Falls through Power and on to the border at Sweet Grass (MATL 2006b). Two branch lines, one to Choteau and another to Valier serve the agricultural producers in those areas. There are 171 miles of railroad in the analysis area.

Pipeline Facilities
Many existing pipelines serve the oil and gas producers traversing the project area. These include large natural gas pipelines up to 20 inches in diameter (Cut Bank to Warm Springs pipeline) and many small pipelines serve the oil fields around Conrad, Cut Bank, and Shelby. Many small (4- to 6-inch-diameter) lines from the oil fields near Cut Bank converge at “tank hill” where crude oil is collected for subsequent delivery to refinery facilities such as Montana Refining in Great Falls. Most of these lines run north-south on the western edge of the project study area with one pipeline running east-west (MATL 2006b).

Aircraft Facilities
Small unmanned airports are located near the towns of Conrad, Shelby, and Cut Bank. Private airstrips are located throughout the study area serving owners and aerial applicators that serve the agricultural producers.
Other Utilities
When MATL identified its proposed Project alignment in the MFSA application, all pipelines and transmission lines were located so that MATL could avoid placing structures on them. Telephone companies do not have detailed comprehensive databases or maps of buried telephone lines that can be accessed for this application process. MATL would finalize structure and location with owners of these facilities.

Future Land Use
During scoping, several landowners provided information of planned uses within the analysis area. These include:

- Wind farms
- Additional ranges and a first responder training center at the Great Falls Shooting Sports Complex
- Future conversion to cropland of some lands enrolled in the CRP.

No specific time lines were provided for these activities.

3.1.3 Environmental Impacts

3.1.3.1 Alternative 1 — No Action

Under the No Action alternative, the transmission line would not be constructed. There would be no additional impacts on land uses, including farming, DGPS, irrigation, crop dusting, production costs, livestock control, or other activities, from transmission lines. Land uses in the area would remain similar to what they are now. Some wind farms that subscribed to the MATL facilities during the transmission open season may not be built.

No impacts would occur to transportation and utilities if the No Action alternative were selected. Current levels of infrastructure use would be maintained.

3.1.3.2 Alternatives 2, 3, and 4 — Action Alternatives

Interference with Farming

Considerable concern has been expressed by farmers whose land would be crossed by the transmission line. They have identified concerns related to a loss of production, more effort and expense required to farm around transmission line structures, interference with a few mechanical irrigation systems, acreage that cannot be farmed
due to the structures, guy wires, and access roads, and the introduction of weeds. Appendix H contains land uses by milepost for each alternative.

Mechanical irrigation, automated farming methods, farming equipment with large spans (up to 144 feet) for fertilizer, pesticide, and herbicide application, cultivation, harvesting, and crop dusting would all be affected by support structures. These effects could be substantial for an individual operator. Farming equipment continues to become larger and more automated while crops become more “high tech” requiring more precise application and timing of pesticides and fertilization. Farmers run the risk of costly damage to their equipment if it strikes a structure. Depending on the location, farming method, and type of structure, areas would be taken out of production around the base of support structures, and the support structures would be in the way of all equipment (see aerial/orthophotographs below). MATL would compensate farmers for increased production costs and is in the process of revising a method for calculating production costs. Section 3.13 contains information on the additional cost of farming and estimated compensation.

Structures located near the edge of a field may prevent equipment from reaching the edge of the field (see photographs below).
When crossing a cultivated field is necessary, effects may be minimized by placement of H-frame structures in a north-south or east-west orientation, where the poles are parallel to the rows, avoidance of diagonal field crossings, use of monopole structures in the place of H-frames, and placing structures on the edges of fields.

The worst case scenario for loss of production area is siting H-frame structures diagonally or perpendicularly to rows and structures set close enough to the edge of a field so that farm equipment cannot fit between the structure and the edge of the field (see photograph).

Production costs would increase as farmers have to divert their equipment around structures; make additional passes; take additional time to maneuver equipment; skip areas; or reseed, retreat, or refertilize areas. The efficiency of some large, DGPS-guided equipment would be adversely affected.
In conducting the analysis summarized in Table 3.1-3, the proposed and alternative alignments were overlaid onto the 2005 orthophotographs (USDA NAIP 2005) and photographic interpretation was used to document the land use on the alignments. Appendix H provides a milepost by milepost interpretation of land uses along each alignment, organized into eight land use types: (1) irrigated cropland, (2) non-irrigated cropland, (3) rangeland/pastureland, (4) road and railroad, rights-of-way, (5) residential, (6) forest, (7) riparian, and (8) water. Table 3.1-3 shows the miles of crossings parallel, perpendicular, and diagonal to irrigated, non-irrigated, and range fields along the alternative alignments.

Based on the miles of transmission line that would cross irrigated and non-irrigated cropland at a diagonal, Alternative 2, with 54.9 miles of diagonal crossings would interfere with farming less than the Alternative 3 which has 67.7 miles of diagonal crossing. In total, irrigated cropland would be crossed in any direction by 1.1 percent of Alternative 2 (1.4 miles) and 2.8 percent of Alternative 3 (3.3 miles). Twenty-five percent of Alternative 2 (32.8 miles) crosses rangeland, compared to almost 19 percent of Alternative 3 (22.5 miles).

Alternative 4 was developed by DEQ, in part, to reduce the impacts on farming from the proposed transmission line. Alternative 4 has fewer miles of the alignment crossing non-irrigated cropland at a diagonal (27.9 miles versus 54.8 miles in Alternative 2 and 64.7 miles in Alternative 3). Alternative 4 crosses 0.1 mile of irrigated cropland at a diagonal, Alternative 2 also crosses 0.1 mile of irrigated cropland at a diagonal, and Alternative 3 crosses 3.0 miles.

Following the development of the alternatives, several agency-proposed local realignment segments were identified to reduce the number of miles of farmland crossed diagonally, to reduce the total number of miles of farmland crossed, and to reduce the acres removed from farm production by structures. These segments and the quantitative effects on these factors are displayed in Appendix A of the March 2007 document. Others identified on the March 2007 document are described in Section 3.16.
<table>
<thead>
<tr>
<th></th>
<th>Alternative 2</th>
<th></th>
<th>Alternative 3</th>
<th></th>
<th>Alternative 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parallel<sup>a</sup></td>
<td>Perpendicular<sup>b</sup></td>
<td>Diagonal<sup>c</sup></td>
<td>Total</td>
<td>Parallel<sup>a</sup></td>
<td>Perpendicular<sup>b</sup></td>
</tr>
<tr>
<td>Irrigated cropland</td>
<td>1.3</td>
<td>0.0</td>
<td>0.1</td>
<td>1.4</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Non-irrigated cropland</td>
<td>33.7</td>
<td>3.4</td>
<td>54.8</td>
<td>91.9</td>
<td>26.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Rangeland</td>
<td>7.0</td>
<td>1.7</td>
<td>24.0</td>
<td>32.7</td>
<td>7.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Road/Right-of-way/Railroad</td>
<td>0.5</td>
<td>1.0</td>
<td>0.9</td>
<td>2.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Residential</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Forest</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Riparian</td>
<td>0.6</td>
<td>0.0</td>
<td>0.8</td>
<td>1.4</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Water</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Miles</td>
<td>43.2</td>
<td>6.2</td>
<td>80.6</td>
<td>129.9</td>
<td>35.4</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Notes:

^a parallel to north and south (+5° due north or south).
^b perpendicular to north and south (+5° due east or west).
^c diagonal to due north, south, east, or west.

Sources: Orthophotographs 2005 (USDA NAIP 2005); NRIS 2000; MATL 2006b; field verification; photographic interpretation (Appendix H).

Subtotals and totals may differ in tenths of a mile from actual sums due to Microsoft Excel rounding procedures for different functions.
Land Removed from Production

Table 3.1-4 compares how many miles of transmission line cross CRP land or cropland under each alternative. For the purposes of this analysis, the area removed from cropland production or CRP was assumed to be 5 feet from the structure in any direction. Actual losses could be greater, for example, if a structure is located so close to the edge of a field that equipment could not maneuver between the structure and the edge of the field. Likewise, if structures are located at the edge of a field and parallel to the cropping pattern, actual losses could be minimal. For double-pole H-frame support, the base area (1.5 feet by 23.5 feet) with 5 feet added to all sides would remove 0.0088 acre (385.25 square feet) from production per structure.

Alternative 4 would require the use of monopole structures in all areas where the transmission line would cross CRP land or cropland. Monopole structures require less of a footprint for each structure. Monopoles would remove .0049 acre from production because of their 6.5-foot-wide concrete foundations (plus 5 feet on either side).

<table>
<thead>
<tr>
<th>TABLE 3.1-4</th>
<th>ACRES OF PRODUCTION IN CRP OR CROPLAND AFFECTED BY H-FRAME OR MONOPOLE STRUCTURES IN ALTERNATIVES 2, 3, AND 4a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternative 2</td>
</tr>
<tr>
<td>Miles of Monopole Crossing CRP or Cropland</td>
<td>53</td>
</tr>
<tr>
<td>Number of Monopole Structuresb</td>
<td>350</td>
</tr>
<tr>
<td>Acres CRP or Cropland Removed from Production by Monopole</td>
<td>1.72</td>
</tr>
<tr>
<td>Miles of H-Frame Crossing CRP or Cropland</td>
<td>40.3</td>
</tr>
<tr>
<td>Number of H-frame Structures on CRP or Croplandc</td>
<td>266</td>
</tr>
<tr>
<td>Acres CRP or Cropland Removed from Production by H-frameb</td>
<td>2.34</td>
</tr>
<tr>
<td>Total Acres of Cropland and CRP Removed from Productionc</td>
<td>4.06</td>
</tr>
</tbody>
</table>

Notes:

a MATL has provided a range of estimated disturbance for various structures and construction details as plans for the transmission line have progressed (MATL 2006b). Analysis was based on conservative estimates of area disturbed by the transmission line construction and structures.

b Monopoles would be set on average 800 feet apart (6.6 structures per mile).

c H-frames would be set on average 800 feet apart (6.6 structures per mile).

Sources: Orthophotographs 2005 (USDA NAIP 2005), NRIS 2000, MATL 2006b; field verification; photographic interpretation (Appendix H)
During construction and line maintenance, short-term disruption of farming activities along the alignment could occur. Locating structures and access roads in previously disturbed areas, or in areas where agricultural practices have already been modified, would minimize long-term impacts along the alignments. Environmental protection measures listed in Table 2.3-4 would be implemented to reduce potential impacts on land use due to erosion, soil compaction, and noxious weeds.

Interference with Crop Dusters

Experienced crop duster pilots are capable of avoiding conductors and structures by flying over, under, or around them, although additional passes may be required and coverage near power lines may be spotty. Nationwide in 2005, there were 90 agricultural aircraft accidents investigated by the National Transportation Safety Board (2006). Of those, 14 included a power line, guy wire, or static wire as a contributing factor (two were fatal). Five of the accidents involved helicopters and the remainder involved airplanes. One was a helicopter that started to crash and hit a power line on the way down. None were in the Project area or in Montana.

Alternatives 2 and 3 are similar in the number of miles of transmission line that cross CRP and cropland (93.3 and 95.2 miles, respectively). Alternative 4 would cross the least amount of CRP and cropland (88.9 miles). Potential impacts would be mitigated as crop dusters would be informed of the transmission line, and maps would be provided prior to and upon completion of the MATL line.

Interference with DGPS-Guided Farming Equipment

Under Alternatives 2, 3, and 4, potential interference could occur to certain types of DGPS systems installed in farm equipment (EPRI 2000). MATL proposes the following measures to address problems with DGPS interference:

- MATL would support upgrades to improve the DGPS system’s resistance to interference. Specifically, physically shielding the DGPS antennae from electromagnetic interference, where practicable, would alleviate interference. Another potential solution would be to upgrade the unit to be compatible with the Wide Area Augmentation System (WAAS). WAAS provides a more extensive coverage area and is less susceptible to signal interference. WAAS augments DGPS with additional signals for increasing the reliability, integrity, accuracy, and availability of DGPS (MATL 2006b).

WAAS has an accuracy specification that results in a horizontal accuracy of better than 5 meters. This accuracy would be helpful for DGPS-guided equipment.
Livestock Control and Gates

Issues related to controlling livestock and gate closure were raised during scoping. In response, all action alternatives include environmental protection measures to ensure gates are installed, closed, and maintained as needed to control livestock and public access in coordination with affected landowners. Although not 100 percent effective, these measures would reduce problems caused by unauthorized access or gates being left open.

Conservation Easements and Special Management Areas

Linear miles of lands under Federal and State special management and those lands currently under Federal or State conservation easements (wetland easements, CRP, and FWP easements) that would be crossed by the 3 alternatives are summarized in Table 3.1-5. Alternatives 2 and 3 would cross state-owned lands on the edge of the Great Falls Shooting Sports Complex, while Alternative 4 would avoid the complex completely.

<table>
<thead>
<tr>
<th>TABLE 3.1-5</th>
<th>MILES OF FEDERAL/STATE LAND AND SPECIAL MANAGEMENT AREAS AND CONSERVATION EASEMENTS CROSSED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternative 2</td>
</tr>
<tr>
<td>Montana FWP-owned Land (Great Falls Shooting Sports Complex)</td>
<td>0.73</td>
</tr>
<tr>
<td>Montana FWP Easement (north side of Great Falls Switch Yard)</td>
<td>0.12</td>
</tr>
<tr>
<td>Montana State Trust Land (DNRC)</td>
<td>10.62</td>
</tr>
<tr>
<td>Conservation Reserve Program (CRP)</td>
<td>23.61</td>
</tr>
<tr>
<td>BLM-owned Land</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Sources:
\(^a \) Montana State Library, Montana Natural Heritage Program, January 17, 2007.
\(^b \) Montana Cadastral/CAMA data, November 2007.

Residential Developments

Alternatives 2 and 4 each have one residence within 100 feet of the edge of the alignment and Alternative 3 has four. The safety zone for the transmission line is 105 feet wide. Impacts on residences are primarily noise and visual quality and are discussed in those sections.
Planned Land Use

Alternatives 2, 3 and 4 cross through Glacier, Pondera, Teton, Toole, and Cascade counties. All of these counties have adopted a comprehensive land use plan. Cascade County is the only county in the Project analysis area with zoning regulations.

According to the November 15, 2006, version of the Cadastral GIS coverage for Cascade County, there do not appear to be any subdivisions planned or existing in the path of Alternative 2 or 3 alignments. Alternative 4 would cross the planned Kyles Addition subdivision just north of Great Falls from mileposts 2.12 to 2.26. No residences have been constructed in this subdivision but the land is subdivided and platted.

Right-of-way Restrictions

Farming and other activities are permitted on transmission line rights-of-way provided that they do not interfere with line operation and maintenance or create safety problems for workers or others. Landowners may be restricted from constructing buildings or conducting other activities that would interfere with line operation.

Pipelines

Pipelines are discussed in Section 3.3 and Section 3.4.

Transportation

Highways and Roads

The Federal, state, and county roads that would be crossed by each alternative are listed in Table 3.1-6, along with the milepost reference. MATL would follow environmental protection measures, described in Chapter 2 and Appendix F, to minimize impacts when crossing local access roads and highways. Some minor additional use of roads and highways would occur during construction of the transmission line. Effects would be short term.

Traffic Levels

Agriculture dominates all other land uses in the Project area. The principal activity that would increase traffic on all improved roads is traffic associated with power line construction. Several issues would need to be addressed during the construction period.
TABLE 3.1-6
HIGHWAYS CROSSED BY ALTERNATIVE

<table>
<thead>
<tr>
<th>Highway Name</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate 15</td>
<td>52.9 a</td>
<td>50.1</td>
<td>72.6</td>
</tr>
<tr>
<td>US 2</td>
<td>99.9</td>
<td>94.8</td>
<td>109.6</td>
</tr>
<tr>
<td>US 87</td>
<td>5.0</td>
<td>4.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Route 225</td>
<td>11.3</td>
<td>10.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Route 379</td>
<td>29.8</td>
<td>24.5</td>
<td>30.3</td>
</tr>
<tr>
<td>Route 365</td>
<td>48.5</td>
<td>45.0</td>
<td>50.7</td>
</tr>
<tr>
<td>Route 218</td>
<td>NC</td>
<td>NC</td>
<td>60.3</td>
</tr>
<tr>
<td>Route 219</td>
<td>60.6</td>
<td>57.3</td>
<td>NC</td>
</tr>
<tr>
<td>Route 534</td>
<td>66.0</td>
<td>59.9, 60.0, 62.2</td>
<td>NC</td>
</tr>
<tr>
<td>Route 44</td>
<td>73.7</td>
<td>70.9</td>
<td>83.3</td>
</tr>
<tr>
<td>Route 215</td>
<td>108.2</td>
<td>103.0</td>
<td>118.0</td>
</tr>
<tr>
<td>Route 214</td>
<td>128.0</td>
<td>119.8</td>
<td>137.8</td>
</tr>
</tbody>
</table>

Notes:
- a = Milepost distance rounded to nearest 1/10 mile
- NC = Alternative would not be crossed by highway

A critical element would be timing power line construction and maintenance activities to avoid conflicts with farm machinery. According to Sherwin K. Smith, Executive Director of the Teton County Farm Service Agency, the farm schedule is as follows:

- Fall seeding of winter wheat, September to Mid-October
- Spring seeding of spring wheat, Mid-March to May
- Harvest, July to September or later depending on early snows.

When the existing Great Falls to Cut Bank 115-kV line was constructed in the mid-1960s, a large combine had a 20- to 24-foot header, a big drill was 32 feet, and few, if any, 4-wheel drive tractors were available. Present day equipment has grown substantially (Broesder 2006). Some of the widths are listed below:

- Combine tread width—large unit 13.1 feet is standard, up to 15.1 feet with axle extenders.
- Four wheel drive tractor dual wheels up to 18 feet wide; triples up to 22 to 24 feet wide.
- Air drills (both Case IH and New Holland) - 57-foot drill when folded for transport is 20 feet 6 inches wide by 17 feet high.
With equipment this large, conflicts with farm machinery on local roads are unavoidable especially during seeding and harvest. Timing and open, frequent communication between the landowners and the contractor(s) would help to reduce impacts. The use of pilot vehicles during equipment mobilization and delivery of large, long loads on secondary roads would minimize conflict with ongoing farming activities especially during seeding and harvest.

Airports and Private Airstrips

Alternatives 2, 3, and 4 each pass close to two airports, Conrad and Horner Field. The Conrad Airport is a public airport with two runways (one paved and one turf) and serves an average of 74 aircraft per week. Alternative 3 is 0.75 mile southwest of the Conrad airport, Alternative 2 is 2 miles southwest, and Alternative 4 is 3.7 miles to the northeast. Horner Field is a private, gravel airstrip (Airnav.com 2006). Alternatives 2 and 3 are 1.55 miles east of Horner Field, and Alternative 4 is 1.8 miles to the southwest. Usage information for these facilities is not available. Alternatives 2 and 4 pass about ¼ mile north of a private airstrip near milepost 115 and 125, respectively.

Adherence to FAA regulations and coordination of construction activities would minimize conflict with the MATL project. Construction of the power line, whether parallel to the existing 115-kV NorthWestern line or not, would add to the existing transmission and distribution lines in the project area. Local pilots, those with private airstrips, and aerial spray pilots would be adversely impacted.

Roads and Railroad Crossing and Paralleling

Comments were raised regarding the number of crossings the proposed transmission line would make of roads and railroads.

Support structures adjacent to roads may pose a hazard to motorists, in some cases, if the vehicle leaves the roadway. Because of this, transmission line structures are normally located outside of the road right-of-way. Additionally, roads are commonly used by aircraft for navigation because they are located on a map and transmission lines parallel to a road could create a hazard for a few aircraft that fly less than 80 to 100 feet above the ground.

Transmission line construction and maintenance could increase conflicts with train traffic in the project area, especially at uncontrolled crossings. The power line would have to cross a railroad right-of-way or would run parallel to it at some point along its alignment (MATL 2006b).
The primary impacts to infrastructure would result from power line construction. Follow-up power line maintenance using standard equipment would be an infrequent occurrence and not add greatly to the existing traffic loads on the roadway network.

Direct impacts include increased traffic on major highways and secondary roads, minor delays along these alignments to allow equipment and material to be delivered to specific locations along the alignment, and a traffic stoppage during the conductor stringing phase.

3.1.3.3 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
3.2 Geology and Soils

Issues of concern associated with geologic resources are: the potential for seismic activity, mass movement, subsidence, and mineral resources. Issues associated with soil resources are soil stability, potential for erosion, compaction, salinity, construction requirements for roads and access, and revegetation.

3.2.1 Analysis Methods

The agencies used GIS to display maps depicting the geologic and soil properties that could be affected by the Proposed Project or alternatives. Geologic information was collected from U.S. Geological Survey (USGS) topographic maps, USGS seismic risk data, geologic maps and data primarily from the Montana Bureau of Mines and Geology (MBMG), and from baseline geology data provided in the MATL application (MATL 2006b). Data for important soil properties, including soil type, soil depth, soil stability, potential for erosion, compaction, salinity, limitations for roads and access, and revegetation, were acquired from the NRCS database (NRCS 2006a), the MATL application (MATL 2006b), and aerial photo interpretation. Geologic and soil resources (slope stability and erosion potential) that could be affected differently by different alternatives were evaluated and compared for each alternative alignment.

Analysis Area

The analysis area for geologic and soil resources is the same as the Project study area. The study area is generally located on relatively flat-lying plains on the eastern slope of the Northern Rocky Mountains (Northern Great Plains physiographic province).

3.2.2 Affected Environment

Geology and soils in the analysis area are described below in terms of characteristics relevant to the issues of concern stated under Section 3.2 above.

Geology

The bedrock geologic units present in the analysis area are primarily Cretaceous shales and sandstones deposited during repeated advances and regressions of the inland sea present from 65 to 135 million years before the present (MATL 2006b). The surface expressions of geologic formations crossed by each alignment extend across the entire analysis area and are nearly flat-lying. At the southern end of the analysis area, the dominant structural feature is the northeast trending Great Falls Tectonic Zone, which thins the Cretaceous shales and sandstones (MBMG 2002a).
The north end of the analysis area is on the west flank of the Kevin-Sunburst dome, which produces a slight westerly dip in the Cretaceous sedimentary rock of approximately 100 feet per mile (MBMG 2002b).

The sedimentary formations that underlie the analysis area include the Kootenai Formation, Blackleaf Formation, Marias River Formation, Telegraph Creek Formation, Virgelle Formation, Eagle Formation, and the Two Medicine Formation. The Marias River, Telegraph Creek, and Two Medicine formations underlie most of the analysis area. The Marias River Formation is the uppermost member and is comprised primarily of dark-gray shale with some limestone and sandstone beds; the Telegraph Creek Formation is a yellowish-gray, fine-grained sandstone with interbedded gray shale; and the Two Medicine Formation is comprised of a non-marine mudstone with thin beds of fine-grained sandstone (MBMG 2002c).

Overlying these sedimentary bedrock formations throughout most of the analysis area are deposits of glacial till, glacial lake sediments, and alluvial materials. The glacial till is composed of grayish-brown unsorted clay-size to boulder-size sediments and rock fragments (MBMG 2002c and 2002d). The thickness of the till typically ranges from 1 to 15 feet, with occasional thicknesses greater than 200 feet (MBMG 2002b and 2002c). Alluvial deposits are present in the analysis area along river and stream channels and are typically poorly sorted to well sorted sand and gravel materials that are locally derived or reworked glacial till (MBMG 2002a).

Potential for Seismic Activity

The potential for seismic activity within the analysis area is low. There are no mapped active faults in the analysis area (USGS 2006b). The nearest faults are the South Fork Flathead Fault and two small unnamed faults near the Sweet Grass Hills (MATL 2006b). The USGS has created models to estimate the peak acceleration for any area within the country. Peak acceleration is used to assess the potential impact of earthquakes on structures. The peak acceleration for the analysis area (with a 10 percent probability of exceedance within the next 50 years) is 4.5 to 6.5 percent of the force of gravity, relatively low compared to elsewhere in the U.S. (USGS 2006b).

Mass Movement

Mass movement is the relatively rapid movement of geologic materials (commonly known as a slump or slide). The potential for mass movement of soil or rock primarily depends on topography and the dip of the bedding planes of the bedrock. The general topography and bedding plane dip slopes of the analysis area are flat with small potential for mass movement. The potential for mass movement is also based on the overall shear strength of the geologic materials. Glacial till is unconsolidated and thus prone to mass movement if located on a slope of 15 percent or greater. Shale is also
prone to mass movement on slopes. Areas within the analysis area having the greatest potential for mass movement are found where glacial till materials are positioned on terraces and the incised banks of the Teton River, Marias River, Dry Fork Marias, and Buckley Coulee. Figure 3.2-1 shows areas in the study area with surficial expressions of shale and glacial till on slopes greater than 20 percent. Field review and examination of aerial photographs of the Teton River crossings indicate there are numerous slumps on the steep slopes.

Subsidence

Subsidence can occur when voids are created in subsurface materials (sinkholes in limestone or subsurface mining) causing collapse of overlying material, or when the withdrawal of groundwater or petroleum causes geologic material to settle. The potential for the creation of voids and subsequent sinkholes within the geologic materials in the analysis area is low to nil due to the absence of limestone. No active or abandoned subsurface mines are located within the alignments of the action alternatives. Subsidence related to the withdrawal of groundwater or petroleum is also unlikely within the analysis area since petroleum is extracted at low to moderate rates and from consolidated bedrock formations. Groundwater pumping in the analysis area does not occur at rates and volumes large enough to cause subsidence.

Mineral Resources

Mineral resources include oil, gas, coal, sand and gravel, and precious metals. Petroleum deposits are found within the Cretaceous rock formations that are mapped from south of Cut Bank to the Canadian border. There are numerous producing and abandoned oil wells present across this portion of the analysis area. South of the Marias River to Great Falls, there are fewer oil wells and fewer known oil and gas deposits. The Cretaceous rock formations also contain deposits of coal. There are no known precious metal deposits in the study area. A few gravel pits are scattered throughout the study area, but none of the alternatives crosses an active gravel pit.
FIGURE 3.2-1
SOIL EROSION POTENTIAL

LEGEND

- CITIES AND TOWNS
- ALTERNATIVE END AND EXIT POINTS
- STUDY AREA BOUNDARY
- MAJOR HIGHWAYS
- SECONDARY ROADS
- RIVERS AND STREAMS

GLACIAL TILL WITH HIGH MASS WASTING POTENTIAL ON SLOPES > 20%
SOILS WITH HIGH MASS WASTING POTENTIAL ON SLOPES > 20%

ALT 2 - ALIGNMENT
MILE MARKERS

ALT 3 - ALIGNMENT
MILE MARKERS

ALT 4 - ALIGNMENT
MILE MARKERS

NOTE:
ALT = ALTERNATIVE

GIS map by Ed Madej - TTEMI-HE Fig3_2-1_MATL_erosion_potential_110707.mxd
Soils

The kinds of soils that have developed in the analysis area are determined by five major factors: (1) climate; (2) living organisms; (3) parent material; (4) topography; and (5) time. Three of the five factors have had a major influence on soil development in the analysis area; they are climate, parent material, and topography. The colder, semi-arid climate has caused soil profiles to be shallow compared to soils from warmer and wetter locales. As discussed in the Geology section, soils that develop on shale and sandstone bedrock have considerably different parent materials than soils that develop from glacial till and glacial outwash sediments. In addition, topography has local influences due to the erosional downcutting and steeper slopes associated with the major Marias and Teton stream drainages and their associated tributaries.

Soils that form on relatively flat deposits of glacial till are mostly well-drained and fine-textured soils. These soils are suitable for agriculture and rangeland and are rated fair to good for growing grasses, low to moderate for frost action, and high for corrosion of steel (NRCS 2006a). Most of the soils within the MATL analysis area that have developed from the glacial till deposits are classified in the Mollisol soil order (NRCS 2006a). Other soil types, with lesser areal coverage than Mollisol soils, are classified in the Entisol, Inceptisol, and Vertisol soil orders. Only very small areal amounts of Alfisols and Aridisols soils are found within the analysis area.

Soils in the Mollisol soil order characteristically have a dark-colored, relatively thick, and organically rich surface horizon that developed under thousands of years of grassland vegetation (Soil Science Society of America [SSSA] 1997). Within the analysis area, the Mollisol soils typically have a fine- to fine-loamy-grained texture, are well drained, and have formed on stream terraces, alluvial fans, and glacial till plains with slopes less than 10 percent.

Soils in the Entisol soil order are younger and weakly developed soils, compared to Mollisols, with little, if any, profile development (SSSA 1997). Entisol soils are found on very recent geomorphic surfaces (Brady 1990). Within the analysis area, Entisol soils typically are well-drained soils with a fine-loamy to loamy-grained texture. Entisol soils are mapped on flood plains, glacial till plains, and hills with slopes up to 60 percent within the MATL analysis area.

Soils in the Inceptisol soil order are also weakly developed soils with few diagnostic features but are considered to be more developed than the Entisol soils. These soils typically have a subsurface mineral horizon with some weatherable minerals that have been slightly altered or leached (SSSA 1997). Within the analysis area, the Inceptisol soils typically have a fine- to fine-loamy-grained soil texture. These soils are well drained and can produce good agricultural crops under proper management (Brady
In the MATL analysis area, Inceptisol soils have formed on alluvial fans, glacial till plains, and hills with slopes less than 45 percent (NRCS 2006a).

Soils in the Vertisol soil order are mineral soils with greater than 30 percent clay. Within the analysis area, the Vertisol soils have formed from finer-grained glacial sediments that were deposited by glacial outwash. These soils can be well drained under proper management, but will form deep wide cracks when dry (SSSA 1997). Vertisol soils in the analysis area typically have a very fine- to fine-grained texture and are found on alluvial fans, glacial till plains, and lake plains with slopes less than 10 percent.

Soil Stability and Erodibility

The stability and potential for erosion of these soils are primarily dependent on the particle size, slope, and potential for mass movement. Fine-grained soils are more susceptible to wind and water erosion than coarser soils, and soils on steep slopes are more prone to erosion than soils located on relatively flat terrain. Steep slopes are also required for the mass movement of soils.

The majority of the MATL analysis area contains relatively flat terrain. Exceptions are the steep slopes associated with the bluffs north of Great Falls and stream banks along the Teton River, Dry Fork of the Marias River, and Marias River. Mass movement of soils is occurring within the analysis area along the Teton River. Areas of highly erodible or unstable soils (soils with shale and glacial till materials on slopes greater than 20 percent) within alternative alignments are shown in Figure 3.2-1.

Compaction

The degree to which soils may become compacted from farming or construction operations is primarily dependent on the surface soil grain size, the mineral composition of the soil, and the moisture content. Soils with high silt and clay content are more susceptible to becoming compacted than sandy soils under the same moisture conditions. Moist soils are more prone to compaction for all soil texture and mineral types. Dry soils are less susceptible to compaction than wet soils, but dry soils produce more dust that is eroded by wind. Many of the soils within the MATL analysis area have fine-grained surface soil textures and will be prone to compaction by construction equipment, if adequate soil moisture is present. This may be especially true with cement trucks delivering concrete for monopole foundations.
Chapter 3

Salinity

Salinity is a measure of the salt content of the soil. Highly saline soils inhibit the growth of vegetation due to the increased osmotic potential exerted by the salts in the soil solution. Revegetation of disturbed areas with highly saline soils may be problematic. Most of the soils within the analysis area have low to moderate salinity and small areas of saline soils could be avoided. Revegetation success should not be influenced by saline soils in the analysis area with the exception of saline seep areas.

Roads and Access

Roads are best constructed on soils with coarse-grained surface soil textures, compared to soils with surface soils with fine-grained textures. Many soils in the MATL analysis area have fine-grained surface soil textures and may not be suitable for building temporary or permanent roads.

Revegetation

The soils within the MATL analysis area are mostly rated fair to good for growing grasses. The reestablishment of range or cropland vegetation on the disturbed lands should be successful if standard fertilization and seeding methods are implemented.

3.2.3 Environmental Impacts

Potential impacts to geologic and soil resources from the four alternatives are described in this section. The difference among action alternatives depends on the competency of the bedrock, soil type, slope, and disturbance activities that would take place at a given location. Resource characteristics that could be affected differently by each action alternative are slope stability (due to mass movement) and soil stability (due to erosion). Increasing the risk of mass movement could not only result in slope instability, but also compromise the integrity of transmission line support poles. Increasing soil erosion could result in the loss of topsoil, reduced effectiveness of revegetation efforts during reclamation, and increased sedimentation to surface water. Increased soil compaction would also reduce the effectiveness of reclamation efforts in the selected alignment.

Other geologic and soil characteristics (seismicity, subsidence, mineral resources, salinity, road substrate material, and compaction) are similar throughout the analysis area. Impacts to (and from) these resources would be the same for all alternatives and are described below.
3.2.3.1 Alternative 1 — No Action

The No Action alternative would not affect geology or soil resources beyond current impacts from farming, road building, and construction activities.

3.2.3.2 Alternative 2 - Proposed Project

Areas within the Alternative 2 alignment that are prone to impacts, including slope stability (due to landslide in areas underlain by glacial till and shale on a slope), soil stability (due to erosion on slopes), and soil compaction, are shown on Figure 3.2-1. Overall, with successful implementation of the MATL proposed environmental protection measures and the required DEQ environmental specifications, impacts to soils and geology under Alternative 2 would be minor and primarily of short duration.

MATL proposes to use laminated wood or steel poles, which are usually treated with chemicals to extend the life of the wood. Some of the chemicals typically used include pentachlorophenol, creosote, arsenic, and chromium. Some of these chemicals may affect the soil immediately adjacent to the pole. Pentachlorophenol is approved for use by EPA, but is considered a probable human carcinogen. Pentachlorophenol, when released to soil or water, would be slowly broken down by sunlight, other chemicals, and microorganisms to other chemicals within a couple of days to months.

Potential for Landslide

Landslides are the downslope movement of earth or surface materials due to gravity, and include rock falls, rotational or translational slides, and earth or debris flows. Slides are the most common and most destructive type of landslide and of most concern for the MATL project. Slides are likely to occur on incised banks and steep slopes primarily where the alignment would cross streams and rivers. Landslides could result in the shifting or collapse of transmission line poles and would likely contribute to the sediment load of nearby surface water. Landslides occur naturally and can be exacerbated by ground disturbance and heavy equipment associated with the construction of the transmission line. The risk for landslide is greatest in the hills near Black Horse Lake (milepost 5), and at the north side of the Teton River (milepost 35 to 40). Areas within the Project study area with high potential for landslide are shown on Figure 3.2-1. MATL would implement erosion and sediment control practices as provided in its application (Table 2.3-4) (MATL 2006b) and required by the State of Montana. DEQ Environmental Specifications in Appendix F include precision mapping of unstable soils along these segments of the Alternative 2 alignment and providing an alignment wider than 500 feet to allow flexibility in pole placement near the Teton River, so future landslides do not adversely affect the proposed line.
Soil Stability and Erodibility

Areas prone to soil instability, mass movement, and associated soil erosion are shown on Figure 3.2-1. Areas with glacial till on slopes greater than 20 percent and fine-textured soils on slopes greater than 20 percent have the highest potential for mass movement and soil erosion. Approximately 16.4 miles of Alternative 2 are located on unstable soils on slopes greater than 15 percent. Soil stability and erodibility are primarily dependent on soil texture, slope, and degree of disturbance. Soils along much of Alternative 2 are fine-grained and are prone to erosion when the vegetative cover is disturbed, which would be primarily during construction activities. The greatest potential for soil erosion for Alternative 2 would be from the construction of access roads along the valley walls of the Teton and Marias rivers. Implementing soil and erosion control measures would help minimize the formation of gullies.

Compaction

Soils may become compacted under all action alternatives, especially during the construction phase. MATL has committed to stripping topsoil, by sidecast methods, for new access roads and replacing the sidecast soils following construction. MATL has also developed specific mitigation measures for soils, including providing an erosion control plan and implementing best management practices (water bars, drainage contours, straw bales, filter cloth, or similar) for areas with susceptible soils to minimize impacts to soils.

3.2.3.3 Alternative 3 – MATL B

Alternative 3 is 8.3 miles shorter than the Alternative 2 (121.6 miles vs. 129.9 miles) due to more diagonal segments along the entire alignment. The potentials for mass movement and unstable soils are similar to those under Alternative 2, but the lengths of the alignment with the potential for mass movement and the occurrence of unstable soils are less under Alternative 3.

Potential for Landslide

Mass movement impacts and mitigations would be similar to Alternative 2. The risk for mass movement is greatest near the historic channel of the Teton River (milepost 32 to 34) and at the Marias River crossing (milepost 84 to 85). Areas within the Project study area with high potential for landslide are shown on Figure 3.2-1. MATL would implement erosion and sediment control practices as provided in its application (Table 2.3-4) (MATL 2006b) and required by the State of Montana draft Environmental Specifications (Appendix F) and a required stormwater pollution prevention plan under Montana’s Water Quality Act.
Soil Stability and Erodibility

Areas prone to soil instability, mass movement, and associated soil erosion problems are shown on Figure 3.2-1. About 12 miles of Alternative 3 are located on unstable soils on slopes greater than 15 percent. Soil stability and erodibility are primarily dependent on soil texture, slope, and degree of disturbance. Soils along much of Alternative 3 are fine-grained and are prone to erosion when the vegetative cover is disturbed, which would be primarily during construction activities. The greatest potential for soil erosion for Alternative 3 would be from the construction of access roads along the banks of the Teton and Marias rivers. Implementing soil and erosion control measures would help minimize the formation of gullies.

3.2.3.4 Alternative 4 – Agency Alternative

Alternative 4 is 139.9 miles in length, which is about 10 miles longer than the proposed Project (129.9 miles). This alternative is composed of 60.9 miles of the Alternative 2 alignment and 78.7 miles of agency-developed alignments that branch off the Alternative 2 alignment. The 78.7 miles of agency alignments were developed to address identified local scoping issues and concerns. The potentials for mass movement and unstable soils are similar to those under Alternatives 2 and 3, but the lengths of the alignment with the potential for mass movement and the occurrence of unstable soils are greater under Alternative 4 primarily due to the alignment of the alternative along the Dry Fork of the Marias River.

Potential for Landslide

Mass movement impacts and mitigations would be similar to Alternative 2. The risk for landslide is greatest within the historic channel of the Teton River (milepost 36 to 42), along the Dry Fork of the Marias River (milepost 70 to 82), and at the Marias River crossing (milepost 98.5 to 100.5). Areas within the Project study area with high potential for landslide are shown on Figure 3.2-1. MATL would implement erosion and sediment control practices as provided in its application (Table 2.3-4) (MATL 2006b) and required by the State of Montana (Appendix F) and a required stormwater pollution prevention plan under Montana’s Water Quality Act.

Soil Stability and Erodibility

Areas prone to soil instability, mass movement, and associated soil erosion problems are shown on Figure 3.2-1. About 24 miles of Alternative 4 are located on unstable soils on slopes greater than 15 percent. Soil stability and erodibility are primarily dependent on soil texture, slope, and degree of disturbance. Soils along much of Alternative 4 are fine-grained and are prone to erosion when the vegetative cover is disturbed, which would be primarily during construction activities. The greatest potential for soil
erosion for Alternative 4 would be from the construction of access roads along the banks of the Teton, Dry Fork of the Marias, and Marias rivers. Implementing soil and erosion control measures would help minimize the formation of gullies.

3.2.3.5 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
3.3 Engineering and Hazardous Materials

3.3.1 Analysis Methods

Engineering concerns pertain to transmission line support structures and the impacts of these structures associated with crossing contaminated sites, pipelines, other transmission lines, major highways, streams, and rivers.

Analysis Area

The analysis area for engineering and hazardous materials includes the proposed power line alignments, staging locations, and a 1-mile buffer zone on each side of the proposed alignments.

Information Sources

Information for the analysis of engineering resources was obtained from the MATL MFSA application (MATL 2006b). Information sources for hazardous materials in the affected environment included the online U.S. Environmental Protection Agency (EPA) Region 8 Superfund Site Locator (EPA 2006c), the online Montana NRIS (2006b), and field observation of oil and gas extraction operations within the analysis area.

Methods used to analyze the potential impacts of alternatives 2, 3, and 4 included evaluation of proposed alignments with respect to mapped hazardous materials in the analysis area and evaluation of proposed activities with respect to potential use and generation of hazardous materials.

3.3.2 Affected Environment

Proposed Transmission Line Design

The transmission line would be designed, constructed, operated, and maintained in accordance with the NESC, U.S. Department of Labor OSHA Standards, and other guidance as appropriate for safety and protection of human life and the environment.

Federal Superfund Sites

A review of the online EPA Region 8 Superfund Site Locator found that there are no Federal Superfund (Comprehensive Environmental Response, Compensation, and Liability Act, or CERCLA) sites in the Project area. The closest Federal Superfund sites to the project area are the Barker Hughesville historic mining district and the Carpenter-Snow Creek mining district, both of which are on the Federal National Priorities List.
Chapter 3

Engineering and Hazardous Materials

Barker Hughesville mining district is 36.2 miles southeast of Great Falls. Carpenter-Snow Creek mining district is 46 miles southeast of Great Falls.

State Superfund Sites

There are four state Superfund sites in the Project area. Three of the sites are not affected by any transmission line alignments. The Conrad Refining Company site, 1 mile south of Conrad, is an inactive, 9-acre oil refinery operated from 1929 to 1941 where operators disposed of sludge in on-site pits. The Midwest Refining Company site, in Conrad near Front Street and Second Street South, is an inactive, 0.9-acre former oil refinery in operation around 1929. Little historic or other information is available about the facility. The Union Oil-Cut Bank Refinery site (also known as the Flying J Refinery), 3 miles southeast of Cut Bank, is an inactive crude oil refinery and natural gas processing plant operated from 1937 to 1983. One site, The Carter Oil Company Cut Bank Refinery, 1 mile east of Cut Bank is within 1,000 feet of the Alternative 2 alignment.

Oil and Gas Operations and Pipelines

Numerous oil and gas fields are located in the northern portion of the analysis area. All action alternatives would traverse areas with operating oil and gas extraction wells, well waste pits, oil and gas storage systems, and pipelines. A variety of pipelines, including gathering system main lines and transmission or trunk lines between 8 and 20 inches in diameter, are within or traverse the Project study area. These pipelines are used to transport either crude oil or natural gas. Four major pipelines are in a broad corridor between the Canadian border and Cut Bank; six major pipelines are between Cut Bank and Great Falls.

Crude oil pipelines in the analysis area were located based on information provided by several sources including Front Range Pipeline Company, USGS topographic maps, agency field notes from the fall of 2006, review of 2005 aerial photographs, NRIS mapping, and the Montana Board of Oil and Gas Conservation. Crude oil pipelines in the NRIS database (Corridor Oversight Review Committee, Montana State Library 1999), or provided by the above referenced sources include:

- Two Continental crude oil pipelines located east of Great Falls running northwest approximately parallel to the Proposed Project and alternatives. The pipelines are 12 inches and 18 inches in diameter. These pipelines run from east of Great Falls through Portage, Cascade County, to Cut Bank and beyond. These pipelines are crossed in the vicinity of Cut Bank by alternatives 2, 3, and 4.

- Two Front Range Pipeline Company 10-inch mainlines, one 6-inch mainline, and one 16-inch mainline start at the U.S.-Canada border and end at the Santa Rita pump station.
• One Front Range Pipeline Company 16-inch mainline starts at Santa Rita station and ends in Laurel, Montana.

• One Front Range Pipeline Company 8-inch mainline starts at the Santa Rita station and ends at the Cut Bank station.

Additional smaller natural gas pipelines are likely located within the analysis area and may be crossed by alignments associated with alternatives 2, 3, and 4.

3.3.3 Environmental Impacts

3.3.3.1 Alternative 1 — No Action

The MATL transmission line would not be built. There would be no engineering or hazardous materials concerns if the No Action alternative is selected.

3.3.3.2 Alternatives 2, 3, and 4 - Action Alternatives

Proposed Construction

The 500-foot-wide Alternative 2 alignment would come within 100 feet of an existing pipeline for a total length of 7.0 miles. The Alternative 3 alignment would come within 100 feet of an existing pipeline for a total of 23.7 miles, and the Alternative 4 alignment would come within 100 feet of an existing pipeline for a total of 5.7 miles. A study, requested by DEQ and prepared by SNC LAVALIN for MATL (SNC LAVALIN 2006b) helped quantify the relationship between the maximum induced voltage on a theoretical pipeline caused by the operation of the MATL 230-kV transmission line for different lengths of parallel and separation distances. Assuming the transmission line was constructed near the center of the 500-foot wide alignment, the separation distance between the pipeline and the transmission line would be a minimum of 250 feet. The SNC LAVALIN study estimated that the steady state induced voltages on the pipeline should be below the safety threshold of 15 volts (voltage that a human with an average body weight can withstand) (Canadian Standard Association 2007; .NACE Standard 2000) under most conditions. However, the study recommends that MATL contact the pipeline companies when the length of parallel and separation distance could induce voltages that exceed the 15 volt safety threshold. Common grounding mitigation measures were recommended in the study to reduce risks of induced voltages from human contact with an affected pipeline (SNC LAVALIN 2006b). Mitigation measures included grounding mats, gradient wire controls, and gradient control mats and grids. The risk for potential pipeline damage (accelerated corrosion) would also increase with an increase in length of alignment proximal to a pipeline. With the implementation of safe work and sound construction practices, no short-term adverse impacts would be associated with transmission line construction tasks.
Proposed Operations and Maintenance

No long-term adverse impacts would be associated with operation and maintenance of the transmission line. Wood H-frame structures generally require more maintenance than steel structures and have a shorter useful life. Wood H-frame structures should meet the operational life of the proposed transmission line. Pentachlorophenol would be used as a wood preservative for the wood pole structures and is an EPA registered restricted use pesticide for this use. When poles are no longer sound or useful, structure components that have been treated would have to be disposed of as a hazardous waste (estimated 11,000 cubic yards of treated wooden poles).

Impacts to buried utilities, such as pipelines, and the minimum separation distances and length of parallel were evaluated and modeled for MATL by SNC LAVALIN (SNC LAVALIN 2006b). Many factors and assumptions were used to model the steady state line operation and single line to ground fault conditions. In addition to the variables for the transmission line, the amount to induced voltages on a pipeline would also depend on the pipeline coatings, other physical properties of the pipeline, and soil conditions. Some reference lengths of separation distances and lengths of parallel that would result in induced voltages of 15 volts are provided in Table 3.3-1.

<table>
<thead>
<tr>
<th>Horizontal Separation between Transmission Line and Pipeline (feet)</th>
<th>Length of Parallel (miles)</th>
<th>Maximum Induced Voltage (Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td><66 feet (min. modeled)</td>
<td>About ½ mile</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>About 1 mile</td>
<td>15</td>
</tr>
<tr>
<td>150</td>
<td>About 2 miles</td>
<td>15</td>
</tr>
<tr>
<td>240</td>
<td>About 4 miles</td>
<td>15</td>
</tr>
<tr>
<td>330</td>
<td>About 6 miles</td>
<td>15</td>
</tr>
<tr>
<td>1640</td>
<td>About 9 miles</td>
<td>15</td>
</tr>
</tbody>
</table>
The length of the parallel and separation distances would vary for each alternative. Table 3.3-2 provides the lengths of parallels by alternatives for horizontal separations that may have induced voltages above the 15 volt threshold. After a selected alternative alignment has been certified by DEQ and DOE, the locations of any potentially high induced voltages could be provided to all impacted pipeline companies. MATL would consult with pipeline owners about the best methods to implement the appropriate mitigation measures to reduce discharges and interference with cathodic protection systems (MATL 2006, SNC LAVALIN 2006). Agencies would require MATL to consult with owners of pipelines crossed and paralleled (within 2,000 feet) and implement any measures requested by the pipeline owner or operator to prevent interference with the cathodic protection system. Common grounding mitigation measures, such as grounding mats, gradient wire controls, and gradient control mats and grids, would likely be required. In addition, the transmission line would comply with all Federal and State regulations concerning co-locating a transmission line near a buried gas pipeline (Dawalibi 2004). Additional discussion on the mitigating measures that could be used and the safety of co-locating a transmission line with a pipeline is provided in Section 3.4.3.

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Total Length of Parallel (<100 feet separation)</th>
<th>No. of Parallels (<100 feet separation) that are minimum of 1 mile long</th>
<th>No. of Parallels (<150 feet separation) that are minimum of 2 miles long</th>
<th>No. of Parallels (<240 feet separation) that are minimum of 4 miles long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt. 2</td>
<td>7.0 miles</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alt. 3</td>
<td>9.8 miles</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alt. 4</td>
<td>5.7 miles</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 A horizontal separation and length of parallel that may create induced voltages above 15 volts.

Federal and State Superfund Sites

No Federal or state Superfund sites would be affected by any of the proposed alignments.

3.3.3.3 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
3.4 Electric and Magnetic Fields

This section describes background information regarding impacts from electric and magnetic fields (EMF) and corona effects, and evaluates the action alternatives for impacts on human health and safety.

Both current and voltage are required to transmit electrical energy over a transmission line. The current, a flow of electrical charge, measured in amperes (A), creates a magnetic field. The magnetic field is expressed in units of milligauss (mG). The voltage, the force or pressure that causes the current to flow, measured in units of volts (V) or thousand volts (kV), creates an electric field. Both fields occur together whenever electricity flows, hence the general practice of considering both as EMF exposure. Any device connected to an electrical outlet, even if the device is not turned on and current is not flowing, would have an associated electric field that is proportional to the voltage of the source to which it is connected. Magnetic fields occur only when current is flowing. Common materials such as wood and metal usually do not shield against magnetic fields.

This section also addresses safety considerations in the immediate vicinity of transmission lines. Additionally, the potential for corona effects on the human environment from transmission lines is discussed. Corona is the electrical breakdown of air into charged particles caused by the electrical field at the surface of conductors, the wires that carry electricity. Corona effects are of concern for potential audible noise, interference with radio, television, and other electrical devices, such as differential Global Positioning System (DGPS) equipment, production of visible light, and photochemical reactions.

3.4.1 Analysis Methods

The EMF effects of the transmission lines were calculated for a range of distances from the transmission line. In general, the farther removed a person is from the transmission line, the lower the EMF strength. Different scenarios were tested in the calculations. Because the magnetic field varies with the current carried on the transmission line, magnetic field strength was calculated for the normal anticipated voltage of 230 kV (under normal operating conditions) per circuit. In the optimized phasing orientation, the phases of the single circuit are offset to minimize the EMF strength. As described in Section 3.4.2, the focus of EMF health studies and the focus of the following impacts analysis are on magnetic fields, although electric fields are included for completeness.

Since MATL’s policy is to minimize EMF exposure levels to the extent practicable, MATL would use the vertical optimized phasing orientation for the single-circuit line. Results from the non-optimized phasing orientation are included for comparison.
purposes only. The calculations evaluate EMF strength at a range of distances from the centerline of the transmission line, both within and outside the approximate 105 feet safety zone, and for the portion of each span where the conductors are closest to the ground. The magnetic field is expressed in units of mG; the electric field is expressed in units of kV/m.

The potentials for corona effects and effects on safety are also evaluated. The nearest potential stationary receptors to the transmission line were determined for the proposed alternative reference centerline alignment and included residences, schools, and commercial establishments.

Analysis Area

Based on the use of the single circuit, H-frame structure transmission line, the analysis area for human health effects from electric and magnetic fields would include the right-of-way plus 30 feet to either side of the edge of the right-of-way as a safety zone. This totals 105 feet along each alignment. According to the MFSA application, the safety zone can be adjusted if necessary to meet the electric field requirements set forth by the State of Montana of 1 kV/m at the edge of the right-of-way (safety zone) in residential and subdivision areas.

Information Sources

General EMF data were researched from the American Conference of Governmental Industrial Hygienists, the Institute of Electrical Engineers, the California Department of Health Services, the National Institutes of Health, World Health Organization, journal articles, and the National Institute of Environmental Health Sciences (NIEHS).

3.4.2 Affected Environment

The affected environment is described in terms of both magnetic and electric health concerns.

Magnetic Field Health Concerns

In recent years, the focus of the EMF health studies for power lines has been on the magnetic fields created by the power lines. These studies investigated the potential that exposure to magnetic fields would increase the risk of cancer, leukemia, miscarriages, and other diseases. A recent report by the BioInitiative Working Group (2007) documents key studies and reviews for low-intensity effects of electromagnetic fields. This report attempts to document deficiencies in current exposure standards which are primarily safety limits, and the need for biologically-based exposure standards. The
BioInitiative report concludes that a reasonable approach would be 1mG planning limit for habitable space adjacent to new or upgraded power lines and a 2mG limit for all other new construction. Other groups have adopted far less stringent standards.

A 60-Hertz (Hz; cycles per second) magnetic field is created in the space around transmission line conductors by the electric current flowing in the conductors. This is the frequency of ordinary household current, usually referred to as 60 cycle. The strength of the magnetic field produced by an electric transmission line depends on the amount of current flowing through the conductor (the higher the electrical load, the higher the current), the configuration of the conductors (spacing and orientation), the height of the conductors, the distance from the line, and the proximity of other electrical lines. As the electric load (and the resulting current) on a transmission line varies continually on a daily and seasonal basis, the magnetic fields likewise vary throughout the day and year. Magnetic fields are highest closer to the line and diminish with distance. Physical structures, such as buildings, are transparent to magnetic fields in that they do not provide any shielding, thus fueling the interest in potential health effects.

Existing magnetic field levels in the project vicinity are primarily produced by common household appliances. Magnetic field strengths of some common household appliances are listed in Table 3.4-1. This table shows that the magnetic fields at a distance of 3 feet range from less than 0.1 mG to 18 mG.

<table>
<thead>
<tr>
<th>Appliance</th>
<th>Magnetic Field at 3 feet (mG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clothes dryers</td>
<td>0.0 to 1</td>
</tr>
<tr>
<td>Clothes washers</td>
<td>0.2 to 0.48</td>
</tr>
<tr>
<td>Electric shavers</td>
<td>Less than 0.1 to 3.3</td>
</tr>
<tr>
<td>Fluorescent desk lamp</td>
<td>0.2 to 2.1</td>
</tr>
<tr>
<td>Hair dryers</td>
<td>Less than 0.1 to 2.8</td>
</tr>
<tr>
<td>Irons</td>
<td>0.1 to 0.2</td>
</tr>
<tr>
<td>Portable heaters</td>
<td>0.1 to 2.5</td>
</tr>
<tr>
<td>Television</td>
<td>Less than 0.1 to 1.5</td>
</tr>
<tr>
<td>Toasters</td>
<td>Less than 0.1 to 0.11</td>
</tr>
<tr>
<td>Vacuum cleaners</td>
<td>1.2 to 18.0</td>
</tr>
</tbody>
</table>

Notes:
EMF = electric and magnetic field
mG = milligauss
Source: Waveguide 2003
Existing transmission and distribution lines also contribute to EMF levels. Figure 3.4-1 shows the existing transmission lines in the project vicinity. As an example of maximum existing EMF, MATL has modeled EMF levels from the existing 115-kV transmission lines that run through the proposed Project area. At a distance of 49 feet from the existing 115-kV transmission line (which coincides with the proposed location of MATL’s new transmission line), the magnetic field is 6.5 mG and the existing electric field is 1.75 kV/m. At a distance of 200 feet from the existing 115-kV transmission line the magnetic field is 0.4 mG and the electric field is 1.06 kV/m under normal operating conditions.

No Federal or state regulations are in effect specifying environmental limits on the strengths of magnetic fields from power lines. However, the state of Montana has adopted an electric field exposures of 1 kV/m edge of right-of-way standard in residential and subdivided areas unless waived by the landowner and a 7 kV/m standard for road crossings.

Electric Field Health Concerns

Safety considerations in the immediate vicinity of electric power lines include the potential for electric shock, the clearance of the power lines above ground, measures to prevent unauthorized climbing of the poles, and the proximity of the transmission lines to other utilities such as oil wells and pipelines.

The electric field created by a high-voltage transmission line extends from the energized conductors to other conducting objects such as the ground, towers, vegetation, buildings, vehicles, and persons. Potential field effects can include induced currents, steady-state current shocks, spark discharge shocks, and in some cases field perception and neurobehavioral responses.

Sparking and Shocks

In a high electric field, it is theoretically possible for a spark discharge from the induced voltage on a large vehicle to ignite gasoline vapor during refueling. However, the probability for the precise conditions to occur for ignition is extremely remote. According to the Conrad-Shelby EIS (DOE 1986), the ignition of fuel under a transmission line would require that an individual be standing on damp earth or vegetation and that the vehicle to be refueled will be exposed to the maximum intensity of the electric field. Also, the vehicle must not be grounded.
FIGURE 3.4-1
EXISTING TRANSMISSION LINES LARGER THAN 69kV IN PROJECT VICINITY

LEGEND
- 230kV POWERLINE
- 161kV POWERLINE
- 115kV POWERLINE
- 100kV POWERLINE
- CITIES AND TOWNS
- ALIGNMENT END AND EXIT POINTS
- STUDY AREA

NOTE:
ALT = ALTERNATIVE

ALT2 - ALIGNMENT
ALT3 - ALIGNMENT
ALT4 - ALIGNMENT

WAPA = WESTERN AREA POWER ADMINISTRATION
NWE = NORTHWESTERN ENERGY

GIS map by Ed Madej - TEMI-HE Fig3_4-1_MATL_Transmission_Lines_letter_012207.mxd
Finally, the air-fuel mixture must approach optimal flash-point conditions. Therefore, the number of precise conditions to be met to achieve fuel ignition reduces the likelihood of the occurrence. In the event fueling is to be done under a power line, grounding is recommended.

Short Circuit Currents

When a conducting object, such as a vehicle or person, is placed in an electric field, currents and voltages are induced. Some representative short-circuit currents in undisturbed electric fields of 1 kV/m and 3.5 kV/m are provided in Table 3.4-2.

<table>
<thead>
<tr>
<th>Object</th>
<th>Electric Field</th>
<th>Electric Field</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 kV/m</td>
<td>3.5 kV/m</td>
</tr>
<tr>
<td>Person (5’8” tall)</td>
<td>0.016</td>
<td>0.06</td>
</tr>
<tr>
<td>Cow</td>
<td>0.024</td>
<td>0.08</td>
</tr>
<tr>
<td>Sedan</td>
<td>0.11</td>
<td>0.40</td>
</tr>
<tr>
<td>Camper truck (28’ long)</td>
<td>0.28</td>
<td>1.00</td>
</tr>
<tr>
<td>Large trailer-truck (65’x8.5’x13.5’)</td>
<td>0.93</td>
<td>3.30</td>
</tr>
<tr>
<td>Large haystacker and 4wd tractor</td>
<td>0.89</td>
<td>3.10</td>
</tr>
<tr>
<td>3-strand fence (200’ long)</td>
<td>0.30</td>
<td>1.10</td>
</tr>
<tr>
<td>Source: Conrad –Shelby Transmission Line EIS (DOE 1986)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on the length requirements set forth by the U.S. Department of Transportation, the longest permitted truck in Montana is 65 feet. This is also the longest anticipated vehicle under the proposed transmission line with a short-circuit current of 0.93 milliampere (mA)/kV/m. Large farm equipment, such as hay wagons, sprayers, and combines, would also have large short-circuit currents but would not exceed the NESC criterion of 5 mA. For example, a 130 foot sprayer would have an estimated worst case induced current at midspan of .79 mA. Under a worst case scenario, the short circuit current to the largest anticipated vehicle (a semi truck and trailer) is 3.3 mA, which is less than the NESC criterion of 5 mA. The transmission line will be designed to accommodate the maximum height of a vehicle or piece of equipment passing under the line. If a person provides the only conducting path from the object to the ground, then the currents listed in Table 3.4-2 flow through the person, when the person touches the object and the object is below the line. Based on the action alternative descriptions, all equipment being operated around the transmission line should be properly grounded. In summary, electric field health concerns are:

- **Steady-State Current Shock** – Steady-state currents are those that flow continuously after a person contacts an object, such as a vehicle, and provides a path to ground for the induced current. The effects of these shocks range from involuntary movement in a
person to direct physiological harm. Steady-state current shocks occur in instances of direct or indirect human contact with an energized transmission line. An example of direct steady-state current shock would be similar to the incident that occurred when a young farm worker touched a grain auger to a transmission line while in contact with the auger. Based on the investigations by NIOSH following the incident, the current entered the worker through his hands and exited through his left foot. The worker therefore became the exit point for the steady state current.

- **Spark-Discharge Shocks** – Induced voltages appear on objects such as vehicles when there is an inadequate ground. If the voltage is sufficiently high, a spark-discharge shock would occur as contact is made with the ground. Spark-discharge shocks that create a nuisance occur in instances of carrying or handling conducting objects, such as irrigation pipe, near (not touching) transmission lines (EPRI 2001).

- **Field Perception and Neurobehavioral Responses** – When the electric field under a transmission line is sufficiently strong, it can be perceived by hair raising on an upraised hand. This is the effect of harmless levels of static electricity, similar to the effect of rubbing feet with socks on a carpet.

Other Health Concerns

An additional safety concern in the immediate vicinity of electric power lines is the potential for people to climb support structures and either fall or receive a serious shock. Support structures can be designed in a manner to reduce unauthorized climbing of the structures by members of the public.

With the increasing trend of large farm equipment, sufficient clearance height should be considered to avoid contact with the lines either directly or indirectly, as provided by the National Electric Safety Code.

Smoke can also be a conductor of electrical current. When a fire is in the vicinity of a 230-kV transmission line, current could potentially arc through the smoke. Downed or damaged power lines sometimes ignite fires.

Corona Effects

Corona is the electrical breakdown of air into charged particles caused by the electrical field at the surface of conductors. Corona is of concern for potential audible noise (60-cycle hum), radio, television, and GPS interference, visible light, and photochemical reactions. Corona can occur on the conductors, insulators, and hardware of an energized high-voltage transmission line. Corona on conductors occurs at locations where the field has been enhanced by protrusions, such as nicks, insects, or drops of water. During fair weather, the number of these sources is small and the corona effect is insignificant. However, during wet weather, the number of these sources increases...
and corona effects are much greater (DOE 2001). Corona effects of concern are listed below.

- **Audible Noise** – Corona-generated audible noise from transmission lines is generally characterized as a cracking/hissing noise. The noise is most noticeable during wet weather conditions. Audible noise from transmission lines is often lost in the background noise at locations beyond the edge of the right-of-way. Refer to Section 3.12 for a description of existing noise in proposed Project area.

- **Radio, Television, and GPS Interference** – Corona-generated radio interference is most likely to affect the amplitude modulation (AM) broadcast band (535 to 1,605 kilohertz); frequency modulation (FM) radio is rarely affected. GPS units are operated at frequencies of 1575.42 megahertz (MHz) and 1227.6 MHz (Enge and Hatch 1996) and no interference is expected with the 60 Hz frequency associated with transmission lines. Only AM receivers located very near to transmission lines have the potential to be affected by radio interference. The potential for interference from corona effects is more severe during damp or rainy weather.

- **DGPS** – Some precision farm equipment in the analysis area is believed to use DGPS. DGPS receivers with differential correction receive a radio signal at frequencies between 285 to 325 kilohertz. Transmission line generated radio noise can occasionally exceed DGPS broadcast radio strengths, especially in bad weather (EPRI 2000). Likewise, gap generated discharge radio frequency noise that is broadband may occasionally exceed DGPS broadcast band signal strengths and can extend above 1 GHz into the GPS satellite signal band (EPRI 2000). Transmission lines may sometimes reradiate AM radio signals and may also degrade DGPS signal reception (EPRI 2000). Lastly, it is possible, but not very likely, that presence of a power line or support structure may scatter GPS signals and cause a temporary loss of lock on a satellite signal.

- **Visible Light** – Corona may be visible at night as a bluish glow or as bluish plumes. On the transmission lines in the area, the corona levels are so low that the corona on the conductors usually is observable only under the darkest conditions with the aid of binoculars.

- **Photochemical Reactions** – When coronal discharge is present, the air surrounding the conductors is ionized and many chemical reactions take place producing small amounts of ozone and other oxidants. Approximately 90 percent of the oxidants is ozone, while the remaining 10 percent is composed principally of nitrogen oxides. Refer to Section 3.11 for a description of existing air quality.

3.4.3 Environmental Impacts

This section discusses the potential human health and environment effects of the proposed Project. Potential impacts on human hearing are addressed in Section 3.12.
Chapter 3 Electric and Magnetic Fields

3.4.3.1 Alternative 1 - No Action

Under the No Action alternative, MATL would not build the proposed transmission line and associated facilities as proposed. There would be no incremental EMF exposure associated with the project. EMF exposure from existing transmission lines and household appliances would be expected to continue. There would be no corona effects associated with the project. There would be no associated safety issues regarding co-location with a natural gas or oil pipeline.

3.4.3.2 Alternative 2 - Proposed Project

Electric and Magnetic Field Effects. Alternative 2 would use single-circuit, H-frame structures, with two overhead shield wires. Three-pole structures would be used at medium and heavy angles, and dead ends, strung with 230-kV conductors. The spacing of the structures would be in the range of 500 to 1,600 feet apart, and the conductors would be 21.2 feet above the ground. The minimum ground clearance of the conductors set forth in the National Electric Safety Code is 19.72 feet; therefore some additional ground clearance would help diminish the potential for induced current exposure.

Table 3.4-3 lists the EMF strength under normal anticipated load conditions for the 230-kV single-circuit transmission line using H-frame structures. For comparison, the EMF field strengths are also provided for monopole structures. These calculations are based on a maximum thermal capacity of 420 megavolt amperes. EMF strength is given for normal operating configurations that would be used by MATL. The electric field strengths and magnetic field strengths under normal operating conditions and optimized phasing configuration for transmission lines (H-frame structures) are shown in Figure 3.4-2 and Figure 3.4-3, respectively (SNC-LAVALIN 2006). The distances given represent the distance of a receptor from the centerline of the transmission line and one meter above the ground. At a given distance, the electric and magnetic field strength would be nearly identical on both sides of the transmission line.

EMF effects are in Table 3.4-3. Long-term electric field exposure at the nearest residence to Alternative 2 (located within approximately 270 feet of the centerline) would be below the state of Montana standard of 1 kV/m at the edge of the right-of-way. The EMF strengths conform to those normally found in comparable lines. Most current exposure to EMF in the area is from household appliances. Average daily exposure to magnetic fields from some common household appliances is 0.08 (NIEHS 1999). The recommended biologically-based public exposure standard is 2 to 4 mG (BioInitiative Working Group 2007). Schools and commercial establishments would be located farther than 300 feet from the transmission line. The closest school to the transmission line would be Glacier Elementary at 0.86 mile to the west of Alternative 2. There are no known daycare centers, hospitals, or other areas of concentrated human
occupancies near this alternative. Alternative 2 would produce EMF levels below the standard and within the biologically-based recommendation. Short-term exposures would still occur while driving under the transmission line.

TABLE 3.4-3

EMF EFFECTS

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Location</th>
<th>Distance from Center Line (feet)</th>
<th>Electric Field (kV/m) (1 conductor side/2 conductor side)</th>
<th>Magnetic Field (mG) (1 conductor side/2 conductor side)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-frame NESC</td>
<td>Below Conductor</td>
<td>21.65</td>
<td>5.36</td>
<td>232.42</td>
</tr>
<tr>
<td>Ground Clearance:</td>
<td>Right-of-way Edge</td>
<td>22.5</td>
<td>5.39</td>
<td>228.13</td>
</tr>
<tr>
<td>21.2 feet</td>
<td>Safety Zone Edge</td>
<td>52.5</td>
<td>1.67</td>
<td>70.57</td>
</tr>
<tr>
<td></td>
<td>Alignment Edge</td>
<td>250</td>
<td>0.01</td>
<td>3.8</td>
</tr>
<tr>
<td>Monopole NESC</td>
<td>Below Top Conductor</td>
<td>10.83</td>
<td>NA/ 4.44</td>
<td>NA/ 215.41</td>
</tr>
<tr>
<td>Ground Clearance:</td>
<td>Below Bottom</td>
<td>14.11</td>
<td>5.30/4.84</td>
<td>225.34/201.67</td>
</tr>
<tr>
<td>21.2 feet</td>
<td>Conductor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right-of-Way Edge</td>
<td>22.5</td>
<td>4.78/4.29</td>
<td>164.83/152.32</td>
</tr>
<tr>
<td></td>
<td>Safety Zone Edge</td>
<td>52.5</td>
<td>1.02/0.99</td>
<td>48.47/42.25</td>
</tr>
<tr>
<td></td>
<td>Alignment Edge</td>
<td>250</td>
<td><0.01</td>
<td><3.8</td>
</tr>
</tbody>
</table>

Note: Estimates calculated using Corona and Field Effects Program (Kingery 1991), and based on conductor ground clearance of 21.2 feet (NESC specification).

kV/m = kilovolts per meter
mG = milligauss
NA = not applicable

Safety. As described in Section 3.4.2, the electric field created by a high-voltage transmission line extends from the energized conductors to other conducting objects such as the ground, towers, vegetation, buildings, vehicles, and people. Potential field effects can include induced currents, steady-state current shocks, spark discharge shocks, field perception and neurobehavioral responses and smoke and fire. The following describes the potential for effects on safety, and design measures that would be incorporated. The monopole steel structures are designed to deter climbing.

Induced Currents. The 230-kV transmission line would have a minimum ground clearance of 21.2 feet to reduce the potential for induced current shocks. In addition, permanent structures in the safety zone, such as fences, gates, and metal buildings would be grounded.

Steady-State Current Shocks. Features reducing the level of potential for induced current in objects near the transmission line also reduce the level of a possible induced current shock. The proposed lines would be constructed in accordance with industry and MATL standards to minimize hazardous shocks from direct or indirect human contact with an overhead, energized line. The proposed line is expected to pose minimal hazards to humans.
FIGURE 3.4-2
PROPOSED MATL POWERLINE
ELECTRIC FIELD STRENGTH FOR
NORMAL OPERATING CONDITIONS,
OPTIMIZED PHASING
FIGURE 3.4-3
PROPOSED MATL POWERLINE
MAGNETIC FIELD STRENGTH FOR
NORMAL OPERATING CONDITIONS,
OPTIMIZED PHASING

B-Field - Magnetic Field
mGAUSS - Milligauss
Spark Discharge Shocks. The magnitude of the electric field would be low enough that spark discharge shocks would occur rarely, if at all. The potential for nuisance shocks would be minimized through standard grounding procedures. Carrying or handling conducting objects, such as irrigation pipe, under transmission lines can result in spark discharges that are a nuisance. The primary hazard with irrigation pipes or any other long objects, however, is electrical flashover from the conductors if the section of pipe is inadvertently tipped up near the conductors. In order to minimize these effects, the transmission line would be constructed using the NESC minimum ground clearance. The use of farm augers under power lines should be consistent with the guidelines presented by the Occupational Health and Safety Administration (OSHA).

Field Perception and Neurobehavioral Responses. Perception of the field associated with the transmission lines would not be felt beyond the edge of the safety zone. Persons working in the right-of-way might feel the field. Studies of short-term exposure to electric fields have shown that fields may be perceived (for example, felt as movement of arm hair) by some people at levels of about 2 to 10 kV/m, but studies of controlled, short-term exposures to even higher levels in laboratory studies have shown no adverse effects on normal physiology, mood, or ability to perform tasks (DOE 2001a). The International Commission on Non-Ionizing Radiation Protection Guidelines recommend that short-term exposures be limited to 4.2 kV/m for the general public (International Commission on Non-Ionizing Radiation Protection 2003). The maximum exposures associated with the proposed Project are less than 1.67 kV/m at the edge of the safety zone for an H-frame and 1.2 kV/m for a monopole (Figure 3.4-2)

The ground clearance of the conductors would be a minimum of 21.2 feet, adequate clearance for safety considerations as related to most recreational activities.

Smoke and Fire. When a fire is in the vicinity of a 230-kV transmission line, firefighters should monitor smoke near the transmission line. Firefighters should remain at a distance that would not leave them vulnerable to the electric current or shock.

Corona Effects. Corona is the electrical breakdown of air into charged particles caused by the electrical field at the surface of conductors. As described in Section 3.4.2, corona is of concern for potential audible noise, radio, television, and DGPS interference, visible light, and photochemical reactions.

Audible Noise. Noise levels generated by the transmission lines would be greatest during damp or rainy weather. For the proposed lines, low-corona design established through industry research and experience would minimize the potential for corona-related audible noise. The proposed lines would not add substantially to existing background noise levels in the area. Research by the Electric Power Research Institute (1982) has validated this by showing the fair-weather audible noise from modern
transmission lines to be generally indistinguishable from background noise at the edge of a 100-foot safety zone. During rainy or damp weather, an increase in corona-generated audible noise would be balanced by an increase in weather-generated noise. For additional assessment of the noise from the proposed Project and alternatives, refer to Section 3.12.

Radio, Television, DGPS Interference. Transmission line-related radio-frequency interference is one of the indirect effects of line operation produced by the physical interactions of transmission line electric fields. The level of such interference usually depends on the magnitude of the electric fields involved. The line would be constructed according to industry standards, which minimize the potential for surface irregularities (such as nicks and scrapes on the conductor surface), sharp edges on suspension hardware, and other irregularities around the conductor surface that would increase corona effects. However, if such corona interference were to be generated, no interference-related complaints would be expected given the distance of residents from the transmission lines. Federal Communications Commission regulations require each project owner to ensure mitigation of stationary radio and television interference to the satisfaction of the affected individual. Typical mitigation measures include: cleaning insulators, tightening line hardware, inspecting conductor surface for irregularities, relocating antennas, installing high-gain or directional antennas, connecting to a cable system or installing a translator station.

Transmission lines generated radio noise may degrade DGPS signal reception (EPRI 2000) which could possibly affect precision farm equipment. Manufacturers have different methods of shielding DGPS signals; therefore, each receiver would react differently in the environment surrounding power lines. Damaged power lines may cause interference with DGPS signals.

Visible Light. The corona levels associated with the proposed transmission line would be similar to those of existing transmission lines. The visible corona on the conductors would be observable only under the darkest conditions with the aid of binoculars.

Photochemical Reactions. The maximum incremental ozone levels at ground level produced by corona activity on the proposed transmission line would be similar to those produced by the existing lines in the area. During damp or rainy weather the ozone produced would be less than 1 part per billion. This level is low when compared to natural levels and their fluctuations (DOE 2001a).

Corona would be mitigated by using proper line design and by incorporating line hardware shielding. The design of electrical hardware and equipment considers the potential for corona effects.
Safety of Co-locating a Transmission Line and a Pipeline. There are a number of potential safety issues associated with constructing a transmission line near a buried natural gas or crude oil pipeline, related to electrical shock hazard and natural gas pipeline leaks and fire or explosion hazards should a natural gas leak occur.

A buried pipeline that shares an alignment with an alternating current transmission line, such as the one proposed for the project, could become energized by the EMF surrounding the power system in the air and soil. This alternating current interference may result in an electrical shock hazard for people touching the pipeline or metallic structures connected to the pipeline, and may cause damage to the pipeline coating, insulating flanges, or even damage to the pipeline’s wall itself (Dawalibi 2004). However, the natural gas or oil pipelines would not carry electricity or otherwise present a shock hazard to residential gas users.

The transmission line would cross over several pipelines. Therefore, where feasible, a minimum distance of 132 feet from any above ground structures such as wellheads, would be maintained between the proposed transmission line and the edge of an existing pipeline right-of-way or the pipe itself. Additional mitigation measures that could be implemented by the pipeline companies or MATL include grounding mats, gradient wire controls, gradient control mats or grids and/or the installation of a cathodic protection system to the pipelines to minimize shock hazard and damage to the pipelines. MATL would consult with pipeline owners about the proposed Project and once an exact location for the structures is determined, MATL would help to implement the appropriate mitigation measure (MATL 2006b). In addition, the transmission line would comply with all Federal and State regulations concerning co-locating a transmission line near a buried gas pipeline (Dawalibi 2004).

There are potential safety issues associated with construction and maintenance vehicles driving over any gas or oil pipelines. MATL would consult with any pipeline owner after final siting of the transmission line structures regarding this issue (MATL 2006b).

3.4.3.3 Alternatives 3 and 4 – MATL B and Agency Alternative

Alternatives 3 and 4 would also involve the construction of 230-kV single-circuit transmission lines. Table 3.4-3 lists the EMF strength under normal anticipated load conditions for the 230-kV single-circuit transmission line. Figures 3.4-2 and 3.4-3 graphically illustrate the maximum electric and magnetic field strengths, respectively, for the optimized phasing configuration of the transmission lines. Field strengths under normal operating conditions are expected to be lower. The distances given represent the distance of a stationary receptor from the centerline of the transmission line. The Conrad Christian School is the closest school to any of the alternatives and is 0.4 mile to the northeast of Alternative 3. At a given distance, the EMF strength would be nearly identical on both sides of the transmission line safety zone. Impacts described in
Alternative 2 would be similar to those under Alternatives 3 and 4; however, the number of residences and the distances from the transmission line would be slightly different.
3.5 Water Resources

3.5.1 Analysis Methods

Surface water resources in the study area were evaluated using a GIS analysis for each alternative to identify locations where an alignment would cross a water body. For this evaluation it was assumed that:

- Disturbance for each alternative alignment could be within 250 feet to either side of the reference centerline.
- The probability for temporarily increasing sources of sediment to surface water is proportional to the number of water body crossings.

Since none of the action alternatives propose any beneficial use of groundwater and no project element has been identified that could possibly affect groundwater quality, groundwater resources are not considered for impact analysis.

Information Sources

Data on water resources in the analysis area were obtained from a variety of sources including literature review, reports from the Montana Natural Heritage Program (NHP), the DEQ 2006 Integrated 303(d)/305(b) Water Quality Report, Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps, the Montana NRIS, and the MFSA application (MATL 2006b). Surface water flow and quality information was obtained from the USGS, the MBMG, and DEQ. To the degree possible, information was verified by ground reconnaissance during a team field trip May 17-18, 2006.

Analysis Area

The water resources analysis area is the same as the study area and encompasses about 2,260 square miles in northcentral Montana from the Montana-Alberta border to the Great Falls area (Figure 1.1-1). This region includes portions of eight hydrologic subbasins in Montana, all of which contribute to the lower Missouri River Basin (Figure 3.5-1).

The primary surface waters in the analysis area are Cut Bank Creek, the Marias River and the Dry Fork Marias River, Pondera Coulee, the Teton River, Benton Lake, Hay Lake, and the Missouri River. Isolated prairie potholes, lakes, and stock reservoirs are scattered throughout the analysis area.
FIGURE 3.5-1
WATERSHEDS INTERSECTING
THE STUDY AREA

LEGEND

MAJOR WATERSHEDS

CITIES AND TOWNS

ALIGNMENT END AND EXIT POINTS

STUDY AREA BOUNDARY

NOTE:
ALT = ALTERNATIVE

GIS map by Ed Madej - TTEMI-HE Fig3_5-1_MATL_Water_Study_Area_letter_012207.mxd
3.5.2 Affected Environment

The water resources analysis area is generally one of low topographic relief, low precipitation, and agricultural vegetation types. Elevations range from about 4,372 feet above sea level in the northwest corner of the analysis area to about 3,016 feet above sea level on the Missouri River in the southeast corner of the analysis area.

Precipitation and Recharge

The region is semi-arid and precipitation patterns do not vary widely throughout the analysis area. Average annual precipitation varies from 11.6 inches per year near Cut Bank to 15.2 inches per year near Great Falls (Western Regional Climate Center [WRCC] 2006). Winters can be extremely cold with desiccating winds and snow. May and June are the wettest months. Perennial streams and rivers are sustained primarily with moisture from mountain snowpack.

Activities that Affect Resource Conditions

Water resources of the analysis area, including both surface water and groundwater, are affected directly or indirectly by human activities such as irrigation, livestock use, industry, oil and gas development, domestic consumption, and to a lesser extent by recreation and transportation. These interdependencies can affect human health, wildlife, engineered structures, and economics of the region. The primary beneficial uses of water in the analysis area include agriculture, support of domestic activities, and fish and aquatic life.

Water Quality

No specific areas of water quality problems have been recorded in the analysis area other than impaired water bodies identified by DEQ. The Federal Clean Water Act, Section 303(d) requires that each state submit a biennial report to the EPA that identifies water bodies that are water quality limited. The resulting 303(d) list provides the basis for systematically tracking state waters that do not meet water quality standards. Streams and rivers designated as 303(d) or impaired streams in the analysis area are: Old Maids Coulee (an intermittent stream), Pondera Coulee, Cut Bank Creek, Marias River, Teton River, Lake Creek, and the Missouri River. The 303(d) streams are shown on Figure 3.5-2. Benton Lake is listed as “impaired.” Summary sheets describing the impaired river segments, the type of impairment, and the cause of the impairment are provided in Appendix I of the March 2007 document.
FIGURE 3.5-2
HYDROLOGIC FEATURES AND WATER QUALITY
Water Rights

Existing water rights would not be affected by the proposed Project.

Surface Water

The analysis area is located within the Missouri-Marias watershed subregion in west central Montana. Portions of the analysis area fall within one or more of the following 4th level hydrologic unit codes (HUC): Upper Milk River, Cut Bank Creek, Marias River, Two Medicine River, Willow Creek, Teton River, Sun River and Upper Missouri-Dearborn rivers (USGS 2006a). Surface water flow data used in the analysis were retrieved from the USGS website (USGS 2006c).

One water body within the analysis area has been identified by the FWP as a blue ribbon or red ribbon fishery river depending on the stream reach (Missouri River). The locations at which all three alternatives cross the Marias and Teton rivers are considered habitat class 3 and sport class 4 fisheries. Some streams in the analysis area are perennial (typically have surface flow throughout the year). These streams are shown on Figure 3.5-2. However, most other streams in the analysis area are either ephemeral (flow only in response to snowmelt or rainfall) or intermittent (flow only in response to groundwater discharge and precipitation). There are numerous intermittent streams, lakes, reservoirs, and prairie potholes in the analysis area. A summary of surface water resources and water quality in the analysis area organized by HUC is provided in Appendix J of the March 2007 document. Surface water quality is also summarized in Figure 3.5-2.

Lakes and Reservoirs

The analysis area contains a number of lakes and reservoirs; however, there are some portions of the analysis area that are nearly devoid of lakes, such as the area between Benton Lake and the Teton River.

All surface water bodies of at least 5 acres crossed by an alternative alignment are in Figure 3.5-2. The largest of these water bodies is Benton Lake, in the southeastern portion of the analysis area. Benton Lake is a glacially formed 5,000-acre shallow wetland. Other large lakes include Aloe Lake and Hay Lake, both of which are located north of the Marias River. Numerous smaller lakes are found throughout the area. Appendix J of the March 2007 document lists the lakes in the analysis area that are at least 20 acres in size and all lakes greater than 5 acres that are crossed by one of the action alternatives.
Municipal Water in the Analysis Area

Most of the municipal water systems in the study area are supplied by groundwater sources, while a smaller number are supplied by surface water sources. Municipal watersheds with potable surface water bodies include the Cut Bank Watershed (Cut Bank Creek) and the Marias Watershed.

There are six water districts within the analysis area that rely on surface water for potable water. These include Cut Bank, Devon Water, Inc., Tiber County Water District (Conrad Water Department), Brady County Water District, Power Teton County Water District, and the City of Great Falls.

3.5.3 Environmental Impacts

Water resources and associated infrastructure that potentially could be affected by the proposed Project include perennial streams and rivers, ephemeral and intermittent drainages, floodplains, irrigation ditches, and canals. Temporary impacts to water are categorized as lasting less than 30 days, short-term impacts are less than 1 year, and long-term impacts are greater than 1 year. Adverse impacts to water (if they occur) would be considered major if they meet one or more of the following criteria:

- If the expected water use would exceed the capacity of the potable water system for a community or individual,
- If the quantities of stream flow affecting downstream beneficial uses would be altered,
- If groundwater withdrawals would affect either the quantity or quality of existing water supply wells within a 1-mile radius of the proposed withdrawal location,
- If stream bank disturbance would result in pronounced sedimentation or if disturbance would cause streambed erosion or sedimentation,
- If wastewater discharge would result in erosion contributing to sedimentation in surface water,
- If an alternative would result in a reduction in the quantity or quality of water resources to below Montana water quality standards or in violation of a TMDL plan for existing or potential future uses, and,
- If the proposed Project or alternatives would cause substantial flooding or erosion, or subject people or property to flooding or erosion.

All project alternatives were evaluated to identify adverse impacts to water resources using these criteria. No major impacts to water resources are predicted for any of the action alternatives. The only minor issue is the potential for soil erosion that could contribute to higher levels of suspended sediment at water body crossings. A comparison of alternatives showing the number of crossings is provided in Table 3.5-1.
Chapter 3 Water Resources

Table 3.5-1 Hydrology – Comparison of Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Linear Miles</th>
<th>Mileage Difference Compared to Alternative 2</th>
<th>Stream or River Crossings<sup>a</sup></th>
<th>Lake Crossings<sup>a</sup></th>
<th>Total Crossings<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Not Applicable</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>129.9</td>
<td>Not Applicable</td>
<td>10</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>121.6</td>
<td>8 miles shorter</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>139.6</td>
<td>10 miles longer</td>
<td>17</td>
<td>2</td>
<td>19</td>
</tr>
</tbody>
</table>

Note: ^a A crossing is assumed if a water body is within 250 feet of the reference centerline, the width of the alignment that DEQ would approve. Actual disturbance from construction would typically be less than 100 feet wide as indicated in Table 2.3-1.

Figure 3.5-2 shows the locations of crossings for each alternative. The suspended sediment issue is further discussed below.

3.5.3.1 Alternative 1 — No Action

Under the No Action alternative, the existing water use and land use activities near surface water would continue. Activities described under the action alternatives would not take place. Since there would not be an alteration to area water resources due to transmission line installation and maintenance there would be no impacts to water resources.

3.5.3.2 Alternative 2 — Proposed Project

Impacts to Surface Water and Floodplains

Despite implementation of a storm water pollution prevention plan (SWEP), Alternative 2 would likely result in minor, short-term, adverse impacts to surface water quality by temporarily increasing sources of sediment during the construction phase of the proposed Project. Stream crossing construction activities (such as pole placement, road construction, and staging areas for construction) could potentially take place in either a localized area, or parallel and adjacent to a stream. Construction activities in flowing or standing water would result in the greatest impact, and would be avoided. Minor short-term sediment impacts would continue until reclamation was complete and the surface was revegetated. Minor long-term adverse impacts to surface water quality could occur if temporary roads near water crossings were constructed and remained in use after project construction activities were complete.

The Alternative 2 alignment would cross up to 14 bodies of water, including eight perennial streams (Teton River, Pondera Coulee, Spring Coulee, Dry Fork Marias, Schultz Coulee, Bullhead Creek, Marias River, and Red River [three crossings]; and four...
lakes ranging in size from 7 acres to 121 acres (Black Horse Lake [west finger], an unnamed lake in the Marias River Basin, Hay Lake, and Grassy Lake).

Alternative 2 includes measures to mitigate or prevent adverse impacts to surface water. Structures would not be installed below the normal high-water mark. MATL proposes to prepare and implement a SWPPP and comply with all requisite permit conditions. These measures would effectively reduce short-term and long-term risk of sedimentation to surface water to minor adverse impacts.

3.5.3.3 Alternatives 3 and 4

Alternative 3

Adverse, short-term impacts for Alternative 3 are similar to, but slightly less than, Alternative 2. Overall, there is less potential to generate suspended sediment for Alternative 3.

The Alternative 3 alignment would cross bodies of water only 12 times, including six perennial streams (Teton River, Pondera Coulee, Spring Coulee, Dry Fork Marias, Bullhead Creek, and Marias River) and six lakes ranging in size from 7 acres to 116 acres (Black Horse Lake [west finger], an unnamed lake in the Missouri Sun-Smith Basin, two unnamed lakes in the Marias River basin, and two unnamed lakes in the Upper Milk River Basin).

Alternative 4

Adverse, short-term impacts for Alternative 4 are similar to, but slightly more than Alternative 2 and Alternative 3. Overall, there is more potential to generate suspended sediment for Alternative 4.

The Alternative 4 alignment would cross bodies of water up to 19 times, including eight perennial streams (Lake Creek, Pondera Coulee, Spring Coulee, Dry Fork Marias, Schultz Coulee [two crossings], Bullhead Creek, the Marias River, and Red River [three crossings]; and two lakes ranging in size from 115 acres to 121 acres (Hay Lake and Grassy Lake). Additional mitigation measures would be needed to reduce impacts at the stream crossings.

3.5.3.4 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
3.6 Wetlands and Floodplains

3.6.1 Analysis Methods

Wetlands are lands transitional between terrestrial and aquatic systems and are among the most biologically productive ecosystems in the world. Wetlands are defined as areas that are inundated or saturated by surface or groundwater at frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, fens, marshes, bogs, and similar areas (COE 1987). Under Executive Order 11990 (May 24, 1977), Protection of Wetlands, Federal agencies are required to consider the impact of proposed actions on wetlands.

Floodplains are defined in 10 CFR 1022.4 as “those portions of riverine and coastal floodplains nearest the source of flooding that are frequently flooded and where the likelihood of flood losses and adverse impacts on the natural and beneficial values served by floodplains is greatest.” Under Executive Order 11988 (May 24, 1977), Floodplain Management, Federal agencies are required to consider the impact of proposed actions on floodplains. To the extent possible, DOE has established policy and procedures under 10 CFR 1022 and Executive Orders 19988 and 19990 through applicable NEPA procedures such as this document.

Wetlands and floodplains are of critical importance to the protection and maintenance of a large array of plants and animals, including threatened and endangered species, by providing essential seasonal habitats. Wetlands and floodplains help protect the quality of surface water by impeding the erosive forces of moving water and trapping waterborne sediment and associated pollutants, protecting water supplies by assisting the purification of surface water and groundwater resources, maintaining base flow to surface waters through the gradual release of stored floodwaters and groundwater, and providing a natural means of flood control and storm damage protection through the absorption and storage of water during high-runoff periods.

Activities that involve a disturbance or backfilling of material in a wetland are typically regulated by local, state, and Federal government agencies through the authorities granted by Sections 401 and 404 of the U.S. Clean Water Act. Section 401 of the Clean Water Act provides the means for Montana local and state agencies to regulate and control the degree of impact of discharges on state waters, including wetlands. Montana’s primary water quality protection is granted through the implementation of the Montana Water Quality Act. Section 404 of the Clean Water Act provides protection for wetlands that (1) meet three criteria (wetland hydrology, hydric soils, and hydrophytic vegetation) as defined in the Wetlands Delineation Manual (COE 1987), and (2) are connected through an inflow or outflow to a defined surface water drainage. Isolated wetlands, such as a prairie pothole or
small ponds, are no longer protected by Section 404 of the Clean Water Act (COE 2001). However, any discharge of pollutants to isolated wetlands that contain water is still subject to provisions of the Montana Water Quality Act.

Analysis Area

The analysis area for the wetland and floodplain resources includes all wetlands (jurisdictional or non-jurisdictional) within the Project study area and regulatory floodplains within the alternative alignments (Figure 1.1-1). MATL has stated its goal is to avoid all impacts to floodplains and would be able to meet this goal by avoiding placement of any structure (or related construction impact) within a regulatory floodplain or below the ordinary high water mark (MATL 2006b). Jurisdictional wetlands and floodplains are defined in the glossary.

Information Sources

Wetlands within the Project study area are available from a FWS website (FWS 2006) on a format known as National Wetland Inventory (NWI) maps; however, there are no wetland data available for portions in Teton County from approximately the town of Brady south to just north of Benton Lake NWR. Floodplains are delineated by the Federal Emergency Management Agency (FEMA) for the National Flood Insurance Program with the information provided on Flood Insurance Rate Maps (FIRM). Some Montana counties, or portions of counties, have FIRMs available to download from the Montana NRIS website. Not all unincorporated areas of the Project study area have been mapped or have floodplain maps on record. Cascade County has FIRMs available, but no specific floodplains are identified in Cascade County for the action alternatives. Teton County also has FIRMs available that identify the regulatory floodplains along the Teton River. FIRMs are not available for unincorporated parts of Pondera County, and the floodplain for the Marias River is not available for Pondera County. However, the Marias River floodplain in Glacier County has been delineated, and the flood hazard areas are shown on a FIRM for that area. Additional topographic information was noted during site visits to the Marias River crossing location on May 18, 2006 and the Teton River crossing location on April 27, 2007.

Other sources of data, including USGS 7.5-minute topographic maps, other FEMA maps, USGS Montana Flood-Frequency and Basin-Characteristic Data (http://mt.water.usgs.gov/freq?page_type=site+site_no+06108000) and the 2005 orthophotographs (Montana NRIS 2006a), were used for the Teton County area to determine potential wetlands and floodplains along the proposed and alternative alignments. In addition, the data provided in the MFSA application (MATL 2006b) were reviewed, and field investigations were conducted in July and August 2005 to ground-truth mapped wetlands and identify previously unmapped wetlands.
3.6.2 Affected Environment

The system used to classify the wetland types is based on the classification system developed by Cowardin and others (1979). Three basic types of wetlands, lacustrine (lakes), palustrine (ponds), and riverine (rivers and streams), were identified within the analysis area. Within these three types were 14 individual wetland classes (Table 3.6-1). The lacustrine wetlands include intermittent and permanently flooded lakes and reservoirs. The palustrine group includes all wetlands dominated by trees, shrubs, emergents, mosses, or lichens. Two main riverine wetlands (lower perennial and upper perennial) were identified within the analysis area. They typically contain natural or artificial channels that have either periodically or continuously flowing water. The mapped riverine wetland type generally corresponds with the same areas delineated as flood hazard areas on the FIRM for the Teton River crossing.

<table>
<thead>
<tr>
<th>No.</th>
<th>Wetland Types</th>
<th>Wetland Class</th>
<th>Wetland Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lacustrine/Limnetic</td>
<td>Unconsolidated Bottom</td>
<td>L1UB</td>
</tr>
<tr>
<td>2</td>
<td>Lacustrine/Littoral</td>
<td>Aquatic Bed</td>
<td>L2AB</td>
</tr>
<tr>
<td>3</td>
<td>Lacustrine/Littoral</td>
<td>Unconsolidated Shore</td>
<td>L2US</td>
</tr>
<tr>
<td>4</td>
<td>Palustrine</td>
<td>Aquatic Bed</td>
<td>PEM</td>
</tr>
<tr>
<td>5</td>
<td>Palustrine</td>
<td>Emergent</td>
<td>PFO</td>
</tr>
<tr>
<td>6</td>
<td>Palustrine</td>
<td>Forested</td>
<td>PSS</td>
</tr>
<tr>
<td>7</td>
<td>Palustrine</td>
<td>Scrub-Shrub</td>
<td>PUB</td>
</tr>
<tr>
<td>8</td>
<td>Palustrine</td>
<td>Unconsolidated Bottom</td>
<td>R2UB</td>
</tr>
<tr>
<td>9</td>
<td>Palustrine</td>
<td>Unconsolidated Shore</td>
<td>R2US</td>
</tr>
<tr>
<td>10</td>
<td>Riverine/Lower Perennial</td>
<td>Unconsolidated Bottom</td>
<td>R3RB</td>
</tr>
<tr>
<td>11</td>
<td>Riverine/Lower Perennial</td>
<td>Unconsolidated Shore</td>
<td>R3US</td>
</tr>
</tbody>
</table>

The following factors were considered when evaluating potential impacts to wetland and non-wetland waters of the U.S. from the transmission line alternatives:

- Net permanent loss of any wetland areas or functions,
- Net temporary loss of any wetland areas or functions,
- Effects on the condition and functional integrity of other wetlands that may be impacted but do not experience net loss,
- Potential for wetland filling from grading or construction activity or excavation and backfill,
• Potential for wetland flooding from construction activities, incorrect design or placement of culverts, or an increase in impervious areas adjoining wetlands that may raise water levels,

• Potential for wetland draining from grade changes that may divert surface flow that formerly fed wetlands in isolated depressions,

• Potential for wetland sedimentation resulting from surface soil disturbance adjacent to wetlands, and

• Wetland water quality degradation from contaminants in runoff.

Table 3.6-2 provides a percentage and area breakdown for all 14 wetland types that are sited in the analysis area. Because there are no wetland data available for portions of Teton County between approximately mileposts 23 and 45, the areas of wetlands in the table do not reflect the total amount of wetlands in the analysis area. Figures 3.6-1, 3.6-2, and 3.6-3 show the location of all mapped wetlands within the study area.

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Percent of Total Wetland Area</th>
<th>Area (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacustrine/Limnetic – L1UB</td>
<td>1.2</td>
<td>401</td>
</tr>
<tr>
<td>Lacustrine/Littoral – L2AB</td>
<td>4.2</td>
<td>1,429</td>
</tr>
<tr>
<td>Lacustrine/Littoral – L2US</td>
<td>11.4</td>
<td>3,909</td>
</tr>
<tr>
<td>Palustrine – PAB</td>
<td>4.9</td>
<td>1,694</td>
</tr>
<tr>
<td>Palustrine – PEM</td>
<td>69.0</td>
<td>23,635</td>
</tr>
<tr>
<td>Palustrine – PFO</td>
<td>0.02</td>
<td>7</td>
</tr>
<tr>
<td>Palustrine – PSS</td>
<td>0.4</td>
<td>146</td>
</tr>
<tr>
<td>Palustrine – PUB</td>
<td>0.3</td>
<td>106</td>
</tr>
<tr>
<td>Palustrine – PUS</td>
<td>3.6</td>
<td>1,240</td>
</tr>
<tr>
<td>Riverine/Lower Perennial – R2UB</td>
<td>2.5</td>
<td>865</td>
</tr>
<tr>
<td>Riverine/Lower Perennial – R2US</td>
<td>1.1</td>
<td>379</td>
</tr>
<tr>
<td>Riverine/Upper Perennial – R3RB</td>
<td>0.02</td>
<td>5</td>
</tr>
<tr>
<td>Riverine/Upper Perennial – R3UB</td>
<td>1.0</td>
<td>346</td>
</tr>
<tr>
<td>Riverine/Upper Perennial – R3US</td>
<td>0.3</td>
<td>100</td>
</tr>
<tr>
<td>Totals</td>
<td>100.0</td>
<td>34,262</td>
</tr>
</tbody>
</table>
FIGURE 3.6-1
WETLANDS IN STUDY AREA
SOUTH

LEGEND

WETLAND TYPE
- FRESHWATER EMERGENT WETLAND
- FRESHWATER FORESTED - SHRUB WETLAND
- FRESHWATER POND
- RIVERINE WETLAND
- OTHER WETLAND
- LAKE
- 24K TOPO MAPS WITH NO WETLANDS DATA

RIVERS AND STREAMS
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS
STUDY AREA

NOTE: WETLANDS DATA FROM NATIONAL WETLANDS INVENTORY, USFWS.
FIGURE 3.6-2
WETLANDS IN STUDY AREA MIDDLE

LEGEND

WETLAND TYPE
- FRESHWATER EMERGENT WETLAND
- FRESHWATER FORESTED - SHRUB WETLAND
- FRESHWATER POND
- RIVERINE WETLAND
- OTHER WETLAND
- LAKE

NOTE: WETLANDS DATA FROM NATIONAL WETLANDS INVENTORY, USFWS.

GIS map by Ed Madej - TTEMI-HE Fig3_6-2_MATL_Wetlands_middle_012007.mxd
FIGURE 3.6-3
WETLANDS IN STUDY AREA
NORTH

LEGEND
WETLAND TYPE
- FRESHWATER EMERGENT WETLAND
- FRESHWATER FORESTED - SHRUB WETLAND
- FRESHWATER POND
- RIVERINE WETLAND
- OTHER WETLAND
- LAKE
- 24K TOPO MAPS WITH NO WETLANDS DATA

NOTE: WETLANDS DATA FROM NATIONAL WETLANDS INVENTORY, USFWS.

NOTE: ALT = ALTERNATIVE

GIS map by Ed Madej - TTEMI - HE Fig3_6-3_MATL_Wetlands_North_012007.mxd
Palustrine wetlands are the most common wetland type in the analysis area and are primarily found along creek channels, coulees, and in association with prairie potholes formed by depressions left by glaciation. Coulees often have a flat-bottomed valley enclosed by somewhat steep hillsides with the wetland areas generally restricted to the narrow incised stream channel (MATL 2006b). Many of the prairie potholes are less than 1 acre in size and may have permanent, semipermanent, or seasonal to temporary inundation (Montana Partners in Flight 2000). Prairie potholes can either be landlocked or have a drainage outlet to an adjacent stream or other potholes.

The palustrine emergent wetlands account for approximately 69 percent of the total wetlands (Table 3.6-2). Palustrine emergent wetlands are characterized by erect, rooted, herbaceous hydrophytic vegetation and are often dominated by perennial plants (Cowardin and others 1979). Drainages in the MATL analysis area contain overstory vegetative communities comprised of trees and shrubs, such as boxelder (Acer negundo), silver sagebrush, chokecherry, Woods’ rose, willow, silver buffaloberry, and western snowberry (MATL 2006b). The palustrine emergent wetland areas are found primarily along the current channels and in older meander lobes within the drainage valley. Palustrine emergent vegetation may occur as an understory component in areas mapped as riparian or forested sections of the drainage. Where not previously cultivated, the vegetation types in the prairie pothole wetlands within the analysis area are dominated by herbaceous communities, including water sedge (Carex aquatilis), clustered field sedge (Carex praegracilis), narrow spike reedgrass (Calamagrostis stricta), Baltic rush (Juncus balticus), and tufted hairgrass (Deschampsia caespitosa), as well as shrubby cinquefoil (Dasiphora floribunda) (MATL 2006b).

Most of the prairie potholes in the analysis area have standing water for much of the growing season in years of normal or above normal precipitation. These depressional geomorphic features capture water from precipitation, snowmelt, and from groundwater (Hansen and others 1995). Typically the water is retained in the potholes due to a bottom soil layer with reduced permeability. Evaporation and transpiration are the major causes of water loss, although seepage and surface outflow can also be sizable for some potholes (Hanson and others 1995). However, during dryer periods, some portions of potholes often become incorporated into farming plans and are either planted to row crops (for example wheat) or are mowed as part of a haying operation. Prairie pothole wetland losses are estimated to be from 30 to 50 percent in Montana (Montana Partners in Flight 2000). Prairie pothole wetlands are often difficult to delineate and characterize because the wetland indicators and other parameters may be periodically lacking due to normal seasonal or annual variations in environmental conditions that result from causes other than human activities or catastrophic natural events (COE 1987). Prairie potholes occur throughout the analysis area; however, the potential to encounter prairie potholes declines in the southern portion of the analysis area due to changes in geomorphology and to agricultural practices that may have impacted or eliminated the smaller wetlands.
The most notable lacustrine wetland area in the analysis area is found in the southern portion. Benton Lake NWR is located about 10 miles north of Great Falls. It is at the western edge of the farmed Prairie Pothole region, a region characterized by millions of wetlands or potholes, which serve as the breeding ground for most of the nation’s waterfowl (MATL 2006b). The 19-square-mile Benton Lake NWR was established in 1929 as a refuge and breeding ground for birds. Despite its name, Benton Lake is actually a 5,000-acre shallow wetland created by the last continental glacier thousands of years ago. During the late 1950s and early 1960s, a pump house and pipeline were built to bring water to the refuge from Muddy Creek. Dikes were built to divide the wetland into manageable units, and refuge roads and facilities were constructed. Water still flows from the original pump station on Muddy Creek, but the refuge wetlands have been further divided for more efficient water management.

The wetland areas provide valuable tree and understory plant diversity, stable coulee bottoms that can attenuate and alter flood flows, and valuable breeding areas for duck species, eared, horned, and red-necked grebes, Franklin’s gull, Forster’s terns, black terns, yellow-headed blackbirds, and Wilson’s phalaropes. MATL project wetlands also provide important habitat for nesting and foraging for many birds and other wildlife species. In particular, the 5,000 acres of shallow wetlands associated with the Benton Lake NWR area are managed primarily to provide refuge and breeding ground for birds.

The riverine wetland types mapped within the analysis area are the seasonally and permanently flowing river channel bottoms associated with the Teton River, Pondera Coulee, Spring Coulee, Dry Fork Marias, Schultz Coulee, Bullhead Creek, Marias River, and Red River. The Marias, Dry Fork Marias, and Teton rivers support the most important forested riparian habitats in the analysis area (MATL 2006b). The riverine habitats typically have an understory of grasses and shrubs with an overstory of cottonwood trees (plains cottonwood and narrowleaf cottonwood) and other larger deciduous shrubs and trees (chokecherry, wild currant, Woods’ rose, and willows) that intermittently line the rivers.

3.6.3 Environmental Impacts to Wetlands

This section describes the types of impacts that could occur and effects of these impacts on wetland resources specifically. Table 2.3-4 addresses best management practices that MATL would implement to reduce potential impacts to wetlands and surface water resources.
Potential impacts to wetlands associated with the construction and operation of the MATL 230-kV transmission line project include:

- alterations to the wetland hydrology,
- alterations to the wetland plant communities, and
- loss of wetlands due to filling or sedimentation.

Alterations to the wetland hydrology would most likely occur during the construction phase when working in adjacent areas causes surface water flows to be changed or modified. Many of the wetlands in the analysis area are palustrine emergent wetlands. These wetlands are situated just below the high water line; thus, any small modification to the existing drainage pattern could potentially re-direct surface water flows away from these areas that depend on temporary flood waters to saturate the soils and create wetland conditions.

Alterations to the wetland plant community are also most likely to occur during the transmission line construction phase. A change in the composition of the wetland plant community may be associated with and result from an alteration to the wetland hydrology, or this impact may be unrelated. A wetland plant community may be physically altered by mechanical disturbance during the construction activities, or the vegetation could be only temporarily trampled from parking or driving across these areas.

No direct filling or covering of wetland areas is intended as a result of implementing any of the action alternatives. However, construction activities adjacent to wetlands may inadvertently result in a disturbance with sediment transport and deposition into wetlands as the result of exposed soils and concentrated runoff down vehicle tracks and roads. MATL would implement erosion and sediment control practices as required by the State of Montana (Appendix F). MATL would also reduce or avoid impacts to wetlands by implementing mitigation, avoidance, or other environmental protection measures (Table 2.3-4).

The areas of individual wetlands were determined based on the shape and size of the polygons in the existing NWI maps. MATL would avoid individual wetlands by working with the engineering designs to span across or align around all wetlands within the 500-foot-wide alignment (MATL 2006b). In addition, the Benton Lake NWR wetlands would not be directly affected by the action alternatives. Potential indirect impacts to the Benton Lake NWR wetlands would be associated with a potential reduction of habitat (Section 3.8).
In order to assess potential impacts of the MATL transmission line project to wetlands, typical construction and operational practices used in the utility industry were reviewed. Potential impacts were evaluated in association with the need to construct access roads and in relationship with the methods used and engineering constraints involved with spanning over and constructing around wetlands crossings. MATL may not require any Section 404 and 401 permits, if it avoids discharging sediment or fill materials into wetlands or Waters of the U.S. The wetland impact assessment assumes MATL would comply with all requisite permitting requirements.

Alternatives were evaluated to determine the potential number of wetlands, size of wetlands, and general location of wetland crossings. All of the alternatives considered would cross some wetlands and the Teton and Marias rivers. Surface water resources are described in Section 3.5.2.

3.6.3.1 Alternative 1 - No Action

The No Action alternative would produce no adverse impacts to wetland resources. However, negligible to minor, long-term adverse impacts would continue from existing land uses. Runoff and erosion, primarily from agricultural lands, would continue to carry sediments and possibly nutrients and other pollutants to wetlands and surface water resources causing potential impacts. Sedimentation is a major contributor to the impairment of streams and rivers and reduction of functions for wetlands in Montana and the U.S.

3.6.3.2 Alternative 2 - Proposed Project

Wetland types and amounts potentially impacted by Alternative 2 are provided in Table 3.6-3.

<table>
<thead>
<tr>
<th>NWI Wetland Class</th>
<th>Acres within 500-foot alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palustrine Emergent (PEM)</td>
<td>59.1</td>
</tr>
<tr>
<td>Palustrine Unconsolidated Shore/Bottom/Aquatic Bed (PUS, PUB, & PAB)</td>
<td>5.3</td>
</tr>
<tr>
<td>Lacustrine (L2)</td>
<td>0.8</td>
</tr>
<tr>
<td>Riverine/Floodplain</td>
<td>2.4</td>
</tr>
<tr>
<td>Total</td>
<td>67.6</td>
</tr>
</tbody>
</table>
In total, about 67.6 acres of wetlands have been mapped within the 500-foot Alternative 2 alignment. The largest wetland crossing within the Alternative 2 500-foot alignment would be approximately 510 feet. This wetland could be spanned assuming a typical span length of 800 feet. The wetland total acreage does not include any wetlands that were visually identified by MATL (MATL 2006b) in the approximately 22 miles of the Alternative 2 alignment through Teton County, where no official NWI data currently exist. Aerial photographs from 2005 of the Alternative 2 alignment through Teton County were reviewed. In concurrence with MATL, several small wetland areas were observed on the photographs, but acreage quantification was not possible. No single large wetland or concentration of wetlands covering more than approximately 500 feet was noted.

Most of the potentially impacted wetlands (approximately 87 percent) were palustrine emergent wetlands with only about 2.4 acres of riverine wetlands impacted at the Teton River, Dry Fork Marias River, and Marias River crossings. The 2.4 acres of riverine wetlands include areas that would be delineated as flood hazard areas (Zone A) on the FIRMs produced by FEMA. Approximately 75 percent of the potentially impacted wetlands are located in the area north of Cut Bank (Milk River Pothole area) and an area east and south of Conrad (Teton River area). The potential impacts to these wetlands would be alterations to the hydrology, alterations to the plant communities, and some minor filling from local sediment. The greatest potential impact to wetlands would be during construction.

The Alternative 2 alignment does cross approximately 0.8 acre of a delineated seasonally flooded lacustrine area near milepost 5 by Black Horse Lake. MATL would install bird warning devices on the transmission line, across all wetlands and streams including an additional ½ mile on either side. MATL has stated that it would conduct a soil investigation of this area and use either self-supporting steel poles with concrete caisson foundations or 3-pole wood structures with poles installed inside pipe piles. Guy wire screw anchors would be installed to an adequate holding capacity depth for this specific location (Williams 2007). The remaining wetlands are scattered along the alignment, including near the Benton Lake NWR area. Overall with successful implementation of the MATL proposed environmental protection measures (Table 2.3-4) and the required DEQ environmental specifications (Appendix F), impacts to wetlands under Alternative 2 would be minor and primarily of short duration.

3.6.3.3 Alternative 3 - MATL B

Alternative 3 is 8.3 miles shorter than Alternative 2 (121.6 miles vs. 129.9 miles) due to more diagonal segments along the entire alignment. The wetland types impacted by this alternative are of a similar class as those under Alternative 2, but the area of potentially impacted wetlands is about 5.3 fewer acres under Alternative 3 (Table 3.6-4).
A total of about 62.3 acres of wetlands within the 500-foot alignment has been mapped along the Alternative 3 alignment, compared to 67.6 acres along the Alternative 2 alignment. The total wetland area does not include any wetlands visually identified by MATL (MATL 2006b) during the baseline field work in the 25 miles of this alternative alignment where no official NWI data currently exist. Aerial photographs from 2005 of the 25-mile section where no wetland data exist were reviewed. In concurrence with MATL, several small wetland areas were observed on the photographs, but exact acreage quantification was not possible. All single large wetlands or groups of wetlands can be spanned by the typical 800-foot ruling span length.

Most of the impacted wetland acres (58 acres or 93 percent) are palustrine emergent or palustrine unconsolidated wetlands. Approximately 3.5 acres of riverine wetlands (which generally corresponds to the flood hazard areas shown on FIRMs) would be impacted at the Teton, Dry Fork of the Marias, and the Marias river crossings. This Alternative 3 alignment is similar to Alternative 2 with approximately 75 percent of the potentially impacted wetlands located north of Cut Bank (Milk River Pothole area) and east and south of Conrad (Teton River area). The Alternative 3 alignment would also cross approximately 0.8 acre of the seasonally flooded lacustrine area near milepost 5 by Black Horse Lake. MATL would enact the same procedures for any structures placed in this area, as described for Alternative 2 above. The remaining wetlands are scattered along the alignment, including near the Benton Lake NWR area.

3.6.3.4 Alternative 4 – Agency Alternative

Alternative 4 is 139.6 miles in length, which is about 9.7 miles longer than the proposed Project (139.6 miles compared to 129.9 miles). This alternative is composed of 60.9 miles of the Alternative 2 alignment and 78.7 miles of agency-developed alignments that branch off the Alternative 2 alignment. The 78.7 miles of agency alignments were developed to address identified local scoping issues and concerns, but were not specifically developed to mitigate any potential impacts to wetland resources. The wetland types impacted by this alternative are similar to those under the Alternative 2 and Alternative 3. However, the higher proportion of coulees and unfarmed drainages that would be crossed by Alternative 4 in order to avoid farmed land does result in an

TABLE 3.6-4

<table>
<thead>
<tr>
<th>NWI Wetland Class</th>
<th>Acres within 500-foot alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palustrine Emergent (PEM)</td>
<td>49.7</td>
</tr>
<tr>
<td>Palustrine Unconsolidated Shore/Bottom/Aquatic Bed (PUS, PUB, & PAB)</td>
<td>8.3</td>
</tr>
<tr>
<td>Lacustrine (L2)</td>
<td>0.8</td>
</tr>
<tr>
<td>Riverine/Floodplain</td>
<td>3.5</td>
</tr>
<tr>
<td>Total</td>
<td>62.3</td>
</tr>
</tbody>
</table>

increased number of wetlands potentially impacted by the Alternative 4 alignment. The wetland types impacted under this alternative are shown in Table 3.6-5.

```
<table>
<thead>
<tr>
<th>NWI Wetland Class</th>
<th>Acres within 500-foot alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palustrine Emergent (PEM)</td>
<td>69.8</td>
</tr>
<tr>
<td>Palustrine Unconsolidated Shore/Bottom/Aquatic Bed (PUS, PUB, &amp; PAB)</td>
<td>4.2</td>
</tr>
<tr>
<td>Lacustrine (L2)</td>
<td>0.0</td>
</tr>
<tr>
<td>Riverine/Floodplain</td>
<td>2.4</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>76.4</strong></td>
</tr>
</tbody>
</table>
```

In total approximately 76.4 acres of wetlands have been mapped within the 500-foot Alternative 4 alignment, compared to 67.7 acres along the Alternative 2 alignment. The total wetland area does not include any wetlands visually identified by MATL (MATL 2006b) during the baseline field work in the approximately 25 miles of this alternative alignment where no official NWI data currently exist. Aerial photographs from 2005 of the 25-mile section where no wetland data exist were reviewed. In concurrence with MATL, several small wetland areas were observed on the photographs, but exact acreage quantification was not possible. All single large wetlands or groups of wetlands can be spanned by the typical 800-foot ruling span length.

Alternative 4 traverses around the southern and western sides of Benton Lake NWR area and would potentially impact fewer acres of wetlands from Great Falls to milepost 27.3, compared to Alternative 2, for this area. Several smaller palustrine and lacustrine wetlands, directly north of Great Falls (Black Horse Lake area) and along the western side of Benton Lake NWR, would be avoided by the Alternative 4 alignment.

The Alternative 4 alignment would cross Lake Creek, Teton River, Dry Fork Marias River, Marias River, and several major coulees (South Pondera, Pondera, Favot, and Big Flat). The higher proportion of coulees and unfarmed drainages that would be crossed by Alternative 4 in order to avoid farmed land does result in an increased number of wetlands potentially impacted by the Alternative 4 alignment compared to alternatives 2 and 3. The Alternative 4 alignment east of Conrad crosses slightly larger and more defined drainages due to its more eastern location. Drainages generally flow west to east in this area and tend to have more defined channels as they flow toward the Missouri River.

Most of the potentially impacted wetland acres (74 acres or 97 percent) are palustrine emergent or palustrine unconsolidated wetlands with only about 2.4 acres of riverine wetlands impacted at the Teton, Dry Fork of the Marias, and Marias river crossings. Alternative 4 would avoid the small seasonally flooded lacustrine area at Black Horse
Chapter 3 Wetlands and Floodplains

Lake. Overall, with successful implementation of the MATL proposed environmental protection measures (Table 2.3-4) and the required DEQ environmental specifications (Appendix F), impacts to wetlands under Alternative 4 would be minor and primarily of short duration.

3.6.4 Environmental Impacts to Floodplains

This section describes the types of impacts that could occur and effects of these impacts on floodplains specifically. Table 2.3-4 lists mitigation measures and best management practices that would be implemented to reduce potential impacts to wetlands, floodplains, and surface water resources. As stated above, MATL has committed to avoid all impacts to floodplains and would meet this goal by avoiding placement of any structure (or related construction impact) within a regulatory floodplain or below the ordinary high water mark (MATL 2006b).

Impacts to floodplains from all three action alternatives (Alternatives 2, 3, and 4) would be similar in nature and extent because all alternatives would cross delineated floodplains at the Teton, Dry Fork Marias, and Marias river crossings. The total acres of floodplains within the 500-foot-wide right-of-way have not been quantified because not all flood-prone areas within the Project study area have been delineated. However, the amount of riverine wetlands (comparable to floodplains by landscape position) within the Project study area is available from NWI maps for all of the Project study area except for portions in Teton County from approximately the town of Brady south to just north of Benton Lake NWR. The amount of riverine wetlands generally corresponds with the amount of flood hazard areas shown on the FIRMs. The acres of riverine wetlands that would potentially be impacted by the MATL transmission line range from 2.4 acres for Alternatives 2 and 4 and 3.5 acres for Alternative 3.

Numerous small drainages in the project area would be bisected; because they are situated generally west to east and the transmission line alignment would run primarily north and south. The typical ruling span of 800 feet, and the ability to span up to 1,600 feet, makes it feasible to cross most drainages and associated flood-prone areas in one span, without creating adverse impacts to any associated floodplains. The defined river channels and delineated flood hazard areas shown on the FIRMs for the Teton and Marias rivers would be crossed with a single span.

In June 1964, the Teton River near Dutton, MT, recorded a peak discharge of 71,300 cubic feet per second (cfs) that exceeded an estimated 500-year flood event of 50,000 cfs at this location. One transmission line structure would be sited on a north-side terrace of the Teton River that may have been flooded by the June 1964 event but is outside the 100-year floodplain (USGS 2007).
MATL has committed to avoid locating any structures within the regulatory 100-year floodplains or below the high-water marks of any major rivers (MATL 2006b). No major adverse impact on floodplains is expected. No direct filling or modification to the surface elevation is expected within the Teton, Dry Fork Marias, or Marias river floodplains. Any transmission line structures located on lower stream terraces along the Teton and Marias rivers would be outside and above the 100-year floodplain boundary.

Surface disturbance within the Teton River and Marias River bottomlands would be restricted to access roads to the structure sites. Earthmoving would be minimal. Construction could result in erosion and sedimentation to surface water, especially if flooding occurred during construction. Construction would not occur in flowing or standing water. Floodplain storage volumes would not be affected and flood stages would not increase measurably due to the presence of a structure on a lower river terrace. Little or no riparian vegetation would be disturbed during construction or operation of the transmission line. No adverse impacts from altered flooding patterns are expected to adjacent or downstream property owners. Impacts resulting from a structure placed on a lower Teton or Marias river terrace would be negligible. Impacts to floodplains would be further minimized by locating any needed access roads on naturally elevated areas.

No impacts to floodplains would be expected from the No Action alternative. Overall, with successful implementation of the MATL proposed environmental protection measures (Table 2.3-4) and the required DEQ environmental specifications (Appendix F), impacts to floodplains under the No Action and three action alternatives would be negligible and could occur only during construction.

Potential Mitigation and Best Management Practices

Mitigation measures have been developed by MATL to help avoid and minimize impacts to wetlands and floodplains from the proposed Project and alternatives. MATL’s mitigation measures are not necessarily exclusive for wetland and stream crossings and may provide concurrent benefits for impacts to soils and other biological resources. MATL’s stated measures to mitigate potential impacts to wetlands and floodplains include:

1) Avoiding existing wetlands, floodplains, and drainage channels to the maximum extent possible by completely spanning all wetlands, prairie pothole wetlands, riparian vegetation, coulees, Marias River, and Teton River.

2) Avoiding placement of transmission line structures in riparian vegetation areas.

3) Implementing erosion and sediment control best management practices during construction, as required by the State of Montana.
4) Completing timely seeding of all areas affected by project activities with native and/or non-invasive seed mixes to prevent soil erosion.

Agency-developed mitigation measures applicable to wetlands and floodplains would be attached to DEQ’s Environmental Specifications (Appendix F). One agency mitigation measure for wetlands would be for MATL to delineate all wetlands, waters of the U.S., and floodplains along any selected alignment that traverses Teton County where no official NWI or updated FIRM data exists. To help avoid locating a structure in a floodplain, the southern side of the Marias River floodplain in Pondera County should be identified (temporarily delineated) to verify that the proposed structure location is outside the floodplain. Delineating the wetlands, floodplains, and other potential jurisdictional areas would assist in minimizing potential alterations to the hydrology and plant communities during construction and allow placement of mitigation measures at the appropriate locations. Additional mitigation measures specific to wetlands and Waters of the U.S. may be required by the U.S. Army Corps of Engineers under a Nationwide #12 Permit (Utilities Line Activities), if any construction, maintenance, or repair of utility lines and associated facilities is required within a jurisdictional wetland and Waters of the U.S. The additional wetland mitigation measures would help ensure no net loss of wetland acreage and a consistent approach for mitigating potential impacts to wetlands associated with the MATL transmission line project.

3.6.5 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
3.7 Vegetation

3.7.1 Analysis Methods

Analysis Area

Quantitative analysis of acres for various vegetation communities in each alignment was derived from orthophotograph interpretation of cover types along the proposed alternatives. Assumptions associated with GIS derived acreages of vegetation resources include:

- GIS data are based on 2005 orthophotographs (USDA NAIP 2005) that were hand digitized in 2006. Some misidentification may have occurred due to orthophotograph resolution and changes in vegetation type and condition since the photographs were taken.
- The analysis area consists of 250 feet on either side of each alignment centerline.
- Except as noted, all newly constructed access roads would be located within the 500-foot alignments.

All common and scientific plant names are based on the USDA PLANTS Database (NRCS 2006b).

Information Sources

Vegetation community types and noxious weeds are discussed in this section. Threatened, endangered, candidate, and sensitive species including special status plant species are discussed in Section 3.10. Community type and distribution data are based on field evaluations conducted in 2005 by MATL. Additional data sources include the NHP (2006b) and the Montana NRIS. Montana Gap Analysis Program (GAP) (Redmond and others 1998) data were reviewed and determined to be inappropriate for vegetation classification at this scale and inaccurate due to land cover changes since publication of the data set.

3.7.2 Affected Environment

This section addresses the environmental baseline conditions for vegetation resources in the Project area. The large spatial extent of the Project area encompasses many different vegetation types and communities. Vegetation communities in Montana are generally determined by topography, soil type, and climate (NHP 2002). In general, dominant vegetative communities include irrigated and non-irrigated farmland, fallow crops, CRP areas, native shrub and grassland communities, and riparian and wetland communities.
Three Level IV Ecoregions, described by Woods and others (2002), are found within the Northwestern Glaciated Plains Ecoregion: North Central Brown Glaciated Plains, Foothill Grasslands, and Milk River Pothole Uplands. Ecoregions are areas with general similarity in the type, quality, and quantity of environmental resources and are relevant to integrated ecosystem management (Woods and others 2002). The Northwestern Glaciated Plains is characterized as the transition zone between the more level, moister Northern Glaciated Plains to the east and the dryer, irregular Northwestern Great Plains to the west and southwest. The Northwestern Glaciated Plains is well suited for agriculture with much of the area having been converted to farmland. **Table 3.7-1** presents the environmental attributes of the three Level IV Ecoregions found in the Project area.

<table>
<thead>
<tr>
<th>Level IV Ecoregion</th>
<th>Elevation (feet)</th>
<th>Precipitation Mean Annual (inches)</th>
<th>Potential Natural Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Central Brown Glaciated Plains</td>
<td>2,500 to 4,200</td>
<td>11 to 15</td>
<td>Grama-needlegrass-wheatgrass</td>
</tr>
<tr>
<td>Foothill Grasslands</td>
<td>3,500 to 5,500</td>
<td>11 to 22</td>
<td>Wheatgrass-fescue</td>
</tr>
<tr>
<td>Milk River Pothole Uplands</td>
<td>3,700 to 4,350</td>
<td>11 to 14</td>
<td>Grama-needlegrass-wheatgrass</td>
</tr>
</tbody>
</table>

Notes:

Potential natural vegetation for the Project area is dominated by the grama-needlegrass-wheatgrass and wheatgrass-fescue community types (Woods and others 2002). Mixed grass prairie in these areas is typified by open (40 to 60 percent canopy cover) graminoid dominated vegetation. Dominant native graminoids throughout the Project area include bluebunch wheatgrass (*Pseudoroegneria spicata*) and blue grama (*Bouteloua gracilis*) (**Table 3.7-2**). Bluebunch wheatgrass often shares dominance with needle-and-thread (*Hesperostipa comata*); blue grama is usually present in differing amounts depending on past grazing history. Western wheatgrass (*Pascopyrum smithii*) is also important in localized areas. Shrub cover is typically less than 10 percent in these communities with dominant species including broom snakeweed (*Gutierrezia sarothrae*), plains pricklypear (*Opuntia polyacantha*), and occasionally rubber rabbitbrush (*Ericameria nauseosa*) (NHP 2006a). Saline areas support alkali grass (*Puccinellia* spp.), wild barley (*Hordeum* spp.), greasewood (*Sarcobatus vermiculatus*), saltwort (*Salicornia rubra*), and Pursh seepweed (*Suaeda calceoliformis*) (MATL 2006b).
TABLE 3.7-2
DOMINANT PLANT SPECIES COMBINATIONS IN THE PROJECT AREA

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short- and Mid-grass Prairie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Grama</td>
<td>Bouteloua gracilis</td>
<td>Breaks above Marias and Teton rivers</td>
</tr>
<tr>
<td>Thickspike Wheatgrass</td>
<td>Elymus lanceolatus</td>
<td>North of Cut Bank, some CRP</td>
</tr>
<tr>
<td>Needle-and-thread</td>
<td>Hesperostipa comata</td>
<td>Breaks above Marias and Teton rivers, coulees</td>
</tr>
<tr>
<td>Northern Porcupine Grass</td>
<td>Hesperostipa curtiseta</td>
<td>Breaks above Marias and Teton rivers</td>
</tr>
<tr>
<td>Green Needlegrass</td>
<td>Nassella viridula</td>
<td>Southern, below 230-kV switch yard</td>
</tr>
<tr>
<td>Western Wheatgrass</td>
<td>Pascopyrum smithii</td>
<td>Breaks above Marias and Teton rivers, coulees</td>
</tr>
<tr>
<td>Foxtail Barley</td>
<td>Hordeum jubatum</td>
<td>Saline soil patches</td>
</tr>
<tr>
<td>Badlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Sagebrush</td>
<td>Artemisia cana</td>
<td>Kevin Rim, Dry Fork Marias River</td>
</tr>
<tr>
<td>Thickspike Wheatgrass</td>
<td>Elymus lanceolatus</td>
<td>North of Cut Bank</td>
</tr>
<tr>
<td>Creeping Juniper</td>
<td>Juniperus horizontalis</td>
<td>Trunk Butte, Kevin Rim</td>
</tr>
<tr>
<td>Shrublands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Sagebrush</td>
<td>Artemisia cana</td>
<td>Marias and Teton rivers; Kevin Rim</td>
</tr>
<tr>
<td>Blue Grama</td>
<td>Bouteloua gracilis</td>
<td>Missouri Plateau breaks/Rim north of Great Falls; Marias and Teton rivers</td>
</tr>
<tr>
<td>Needle-and-thread</td>
<td>Hesperostipa comata</td>
<td>Missouri Plateau breaks/Rim north of Great Falls; Marias and Teton rivers</td>
</tr>
<tr>
<td>Western Wheatgrass</td>
<td>Pascopyrum smithii</td>
<td>Breaks above Marias and Teton rivers, coulees</td>
</tr>
<tr>
<td>Silver Buffaloberry</td>
<td>Shepherdia argentea</td>
<td>Red River; coulees north of Cut Bank and central area</td>
</tr>
<tr>
<td>Riparian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxelder</td>
<td>Acer negundo</td>
<td>Kevin Rim; coulees</td>
</tr>
<tr>
<td>Silver Sagebrush</td>
<td>Artemisia cana</td>
<td>Marias, Teton, Dry Fork Marias rivers</td>
</tr>
<tr>
<td>Sedge</td>
<td>Carex spp.</td>
<td>Marias and Teton rivers, coulees</td>
</tr>
<tr>
<td>Spikerush</td>
<td>Eleocharis spp.</td>
<td>Teton River, coulees</td>
</tr>
<tr>
<td>Western Wheatgrass</td>
<td>Pascopyrum smithii</td>
<td>Marias and Teton rivers, coulees</td>
</tr>
<tr>
<td>Plains Cottonwood</td>
<td>Populus deltoides</td>
<td>Marias and Teton rivers</td>
</tr>
<tr>
<td>Narrowleaf Cottonwood</td>
<td>Populus angustifolia</td>
<td>Marias and Teton rivers</td>
</tr>
<tr>
<td>Chokecherry</td>
<td>Prunus virginiana</td>
<td>Marias and Teton rivers, coulees</td>
</tr>
<tr>
<td>Wild Currant</td>
<td>Ribes spp.</td>
<td>Marias and Teton rivers, coulees</td>
</tr>
<tr>
<td>Woods’ Rose</td>
<td>Rosa woodsii</td>
<td>Marias and Teton rivers, coulees</td>
</tr>
<tr>
<td>Peachleaf Willow</td>
<td>Salix amygdaloides</td>
<td>Dry Fork Marias River, coulees</td>
</tr>
<tr>
<td>Willow</td>
<td>Salix spp.</td>
<td>Rivers, coulees</td>
</tr>
<tr>
<td>Silver Buffaloberry</td>
<td>Shepherdia argentea</td>
<td>coulees</td>
</tr>
<tr>
<td>Western Snowberry</td>
<td>Symphoricarpous occidentalis</td>
<td>Rivers, draws, coulees</td>
</tr>
</tbody>
</table>

Notes:
Table is not intended to be a comprehensive list, rather a characterization of dominant species in the Project Area.
Source: MATL 2006b.
Chapter 3

Vegetation

Shrublands are comparatively rare and occupy a very small portion of the Project area. These communities tend to be small and isolated and are generally located in badlands, upland draws, and terraces along riparian zones. The primary upland shrub community throughout the northern portion of the Project area is silver buffaloberry, which occurs as small, isolated patches in protected draws, drainage heads, and swale bottoms. Silver sagebrush occurs in relatively mesic sites and is generally found as stringers on the upper floodplain terraces of the larger creeks and rivers in the area, particularly the Dry Fork Marias River (MATL 2006b) (Table 3.7-2).

Historically, drought, fire, and periodic grazing were the dominant disturbance factors in this area (USDA Forest Service 1994). Conversion of native grasslands to agricultural uses has yielded highly fragmented native communities and altered historic disturbances. Other disturbances such as livestock grazing and rangeland managed under the CRP have produced native communities in a variety of ecological and successional conditions, in turn providing opportunity for the introduction of noxious weed species. CRP rangelands are dominated by introduced wheatgrasses (*Agropyron* spp.), alfalfa (*Medicago* spp.), clover (*Trifolium pratense*), and annual weeds, for example, yellow salsify (*Tragopogon dubius*) (MATL 2006b).

3.7.2.1 Riparian Vegetation

Riparian vegetation plays an important role in many physical processes within riparian areas. Riparian vegetation dissipates energy and filters and retains sediment during peak flow periods. The vegetation also immobilizes, stores, and transforms chemical inputs such as nitrogen. Riparian communities also stabilize streambanks and moderate instream conditions, such as temperature, to provide valuable fish and wildlife habitat (Schultz and others 1994). Data characterizing riparian vegetation in the Project area rely predominately on MATL field investigations and were taken from the MATL MFSA application (MATL 2006b), unless otherwise noted.

Riparian communities within the Project area are generally restricted to the Marias River, Teton River, coulees, and small ephemeral tributaries of the Marias and Teton rivers. The character of these riparian zones is directly related to soil moisture as determined by drainage basin size and dimensions, the annual flooding regime, and the proximity to the head of the drainage. These drainages experience large seasonal and annual hydrologic variability, resulting in relatively undeveloped floodplains in most of the Project area. Riparian habitats are better developed and more complex along the Marias River and Teton River. The coulees and smaller streams are relatively xeric and do not support substantial riparian vegetation. Generally, riparian zones within the Project area consist of herbaceous (*Carex* spp.) and willow communities in the wettest zones, which transition to western snowberry, Woods’ rose, and silver sagebrush-western wheatgrass communities on the upper floodplain terraces. The Marias River and Teton River support narrow, discontinuous cottonwood stands interspersed by
broader terraces supporting silver sagebrush-western wheatgrass. Willow, cottonwood, and box-elder trees are found on shaded slopes of valleys and river terraces (Table 3.7-2).

The Marias and Teton rivers support the most important forested riparian habitats in the Project area including oxbow marshes and shrub-dominated terraces. The defining feature, however, is the cottonwood stands that line the rivers in places. Despite the fact that these riparian forests have been reduced and fragmented by conversion of the floodplain to irrigated agriculture and pasture (Jones 2003), they remain the only important native forested habitat within the Project area. The width of the cottonwood stands varies up to 500 feet.

In places, mature cottonwood trees dominate the Marias River and Teton River riparian communities. Mesic floodplains support a diverse understory that may include box elder, peachleaf willow, yellow willow, and chokecherry. Xeric floodplain terraces support a less diverse shrub layer dominated by western snowberry and Woods’ rose, or lack a shrub component altogether. The native grasses that once characterized these stands have been largely replaced by exotic species like Kentucky bluegrass (Poa pratensis). Grazing has greatly altered the shrub composition in these communities (Jones 2003). Teton River terraces are subjected to less frequent seasonal flooding due to upstream reservoirs and when not farmed often support a silver sagebrush-western wheatgrass community. Lack of flood disturbance has changed the ecological dynamics by suppressing cottonwood regeneration and facilitating the colonization of invasive species such as Russian olive (Elaeagnus angustifolia).

Noxious Weeds

Invasive plants are often early successional, pioneer species that colonize quickly following disturbance. They typically produce large quantities of seed that germinate quickly and are highly competitive. Both native and non-native invasive plants are found throughout Montana. Noxious weeds are defined as “any exotic plant species established or that may be introduced in the state that may render land unfit for agriculture, forestry, livestock, wildlife, or other beneficial uses or that may harm native plant communities” (7-22-2101, MCA). Noxious weeds are highly aggressive and lack native insects and diseases that aid in limiting the spread and distribution of the species. Some species can establish without soil disturbance and displace healthy native communities, resulting in noxious weed monocultures. Localized areas of spotted knapweed were found in the floodplain of the Marias River near Sullivan Bridge (Glacier County) and in the floodplain of the Teton River near Kerr Bridge (Teton County). Leafy spurge is also broadly distributed along the Marias River. Two additional noxious weeds, Canada thistle and field bindweed are located in the Project area. Canada thistle was found in the terraces above the Dry Fork Marias River (MATL 2006b). Montana Noxious Weed Survey and Mapping project data, hosted on NRIS,
indicate populations of Dalmatian toadflax near Conrad, Russian knapweed along the Marias and Teton river corridors, and leafy spurge scattered throughout the Project area (Montana Noxious Weed Survey and Mapping 1998). Table 3.7-3 lists several other noxious weed species located within counties in the Project area. Although not listed as a noxious weed, cheatgrass (*Bromus tectorum*), an annual grass, is considered a weed by many agricultural producers in the area.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada thistle</td>
<td>Cirsium arvense</td>
<td>Reported in all project area counties.</td>
</tr>
<tr>
<td>Common tansy</td>
<td>Tanacetum vulgare</td>
<td>Reported in Glacier, Cascade and Chouteau counties. Historically present in Toole and Pondera counties.</td>
</tr>
<tr>
<td>Dalmatian toadflax</td>
<td>Linaria dalmatica</td>
<td>Reported in all project area counties.</td>
</tr>
<tr>
<td>Diffuse knapweed</td>
<td>Centaurea diffusa</td>
<td>Reported in all project area counties.</td>
</tr>
<tr>
<td>Field bindweed</td>
<td>Convolvulus arvensis</td>
<td>Reported in all project area counties.</td>
</tr>
<tr>
<td>Houndstongue</td>
<td>Cynoglossum officinale</td>
<td>Reported in all project area counties.</td>
</tr>
<tr>
<td>Leafy spurge</td>
<td>Euphorbia esula</td>
<td>Reported in all project area counties.</td>
</tr>
<tr>
<td>Ox-eye daisy</td>
<td>Chrysanthemum leucanthemum</td>
<td>Reported in Glacier, Cascade and Chouteau counties. Historically present in Pondera and Teton counties.</td>
</tr>
<tr>
<td>Russian knapweed</td>
<td>Acroptilon repens</td>
<td>Reported in all project area counties.</td>
</tr>
<tr>
<td>Spotted knapweed</td>
<td>Centaurea repens</td>
<td>Reported in all project area counties.</td>
</tr>
<tr>
<td>St. Johnswort</td>
<td>Hypericum perforatum</td>
<td>Reported in Glacier, Cascade and Chouteau counties. Historically present in Teton County.</td>
</tr>
<tr>
<td>Sulfur cinquefoil</td>
<td>Potentilla recta</td>
<td>Reported in Glacier, Pondera, Cascade and Chouteau counties. Historically present in Toole County.</td>
</tr>
<tr>
<td>Whitetop or hoary cress</td>
<td>Cardaria draba</td>
<td>Reported in all project area counties except Glacier County (historically present).</td>
</tr>
<tr>
<td>Yellow toadflax</td>
<td>Linaria vulgaris</td>
<td>Reported in all project area counties.</td>
</tr>
</tbody>
</table>

Category 2- Established Invaders

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyers woad</td>
<td>Isatis tinctoria</td>
<td>Historically present in Pondera and Chouteau counties, but not currently reported.</td>
</tr>
<tr>
<td>Meadow hawkweed complex</td>
<td>Hieracium pratense, H. floribundum, H. piloselloides</td>
<td>Historically present in Pondera and Chouteau counties.</td>
</tr>
<tr>
<td>Perennial pepperweed</td>
<td>Lepidium latifolium</td>
<td>Reported in Toole, Pondera, Teton, Cascade and Chouteau counties.</td>
</tr>
<tr>
<td>Purple loosestrife or Lythrum</td>
<td>Lythrum salicaria, L. virgatum</td>
<td>Reported in Pondera and Cascade counties. Historically present in Toole County.</td>
</tr>
<tr>
<td>Tall buttercup</td>
<td>Ranunculus acris</td>
<td>Reported in Glacier county. Historically present in Teton County.</td>
</tr>
<tr>
<td>Tamarisk</td>
<td>Tamarix spp.</td>
<td>Reported in Cascade and Chouteau counties. Historically present in Teton County.</td>
</tr>
</tbody>
</table>

Source: MATL 2006b
3.7.3 Environmental Impacts

3.7.3.1 Alternative 1 - No Action

Alternative 1 would not have any effects on vegetation resources (riparian vegetation, species of concern, or weed control) in the analysis area.

3.7.3.2 Alternatives 2, 3, and 4 - Action Alternatives

Rangeland vegetation, such as grassland, improved pasture, seeded grasslands, shrubland, badland, and riparian and wetland areas, would be removed by the construction of access roads and structures and at construction staging areas. Impacts to riparian and wetland areas would be minimal as these areas would only be disturbed when absolutely necessary. Maintenance activities would not often result in additional ground disturbance. Alternative 4 impacts the greatest amount of rangeland cover types (47.4 miles) and is 9.6 miles longer than Alternative 2. The increased crossing in rangeland/pasture land cover types would result in more tower structures and access roads, thus increasing rangeland/pasture land impacts. Disturbance due to maintenance activities would also increase over the life of the Project due to increased structure and road placement in rangeland vegetation. Linear miles of rangeland cover types affected by alternative are in Table 3.7-4. Disturbance resulting from staging areas would be similar for all alternatives. Off right-of-way access roads would be necessary on the approaches to the Teton and Marias River crossings. The anticipated off right-of-way access roads in these two areas would be on rangeland/pasture land.

<table>
<thead>
<tr>
<th>Rangeland Cover Types</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Miles (percent)</td>
<td>Miles (percent)</td>
<td>Miles (percent)</td>
</tr>
<tr>
<td>Grassland/Shrubland</td>
<td>32.7</td>
<td>25.2</td>
<td>18.5</td>
</tr>
<tr>
<td>Riparian</td>
<td>1.4</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Forest (Cottonwood)</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>34.1</td>
<td>26.3</td>
<td>20.0</td>
</tr>
<tr>
<td>Total Line Length</td>
<td>129.9</td>
<td>--</td>
<td>139.6</td>
</tr>
</tbody>
</table>

Notes:
Source: Orthophotographs 2005 (Montana NRIS 2006a) interpretation of land cover in vegetation analysis area, October 2006.
-- Not applicable
Monopole structures would be used in cropland and CRP and would disturb approximately 28 square feet. H-frame structures would be placed in areas of native vegetation and would disturb approximately 44 square feet (Table 2.3-1).

Construction disturbance would include assembling structure disturbance, vehicle turnaround areas disturbance, and line pulling and tensioning area disturbance, construction road disturbance, and pole installation disturbance areas. Construction activities could result in accidental exposure to contaminants or fire. Accidental spills during equipment maintenance or refueling could result in temporary exposure to hazardous contaminants. Spill prevention plans would, however, be in place and impacted areas would be immediately reclaimed; so exposure would be temporary and restricted to the site of spill. Thus, impacts to vegetation would be restricted to those at the site of the spill. Accidental fires associated with construction and maintenance vehicles would result in the temporary loss of plants. These areas would be revegetated; thus, only the area occupied by structures would be impacted for the life of the Project.

Operational disturbance, the actual area occupied by the poles, would be approximately 8 square feet for H-frames. Operational disturbance would include H-frame structure base disturbance, other pole base disturbance, and access road disturbance. Table 3.7-5 shows the estimated amount of operational disturbance associated with H-frame structures in native cover types by alternative. Although MATL proposes to avoid riparian disturbance wherever possible (MATL 2006b), structures may be placed in riparian habitat. Therefore, riparian land cover is included in the analysis of ground disturbance resulting from H-frame structures (Table 3.7-5). Cottonwood stands were not included in the analysis because these areas are scarce and could be avoided and not disturbed (Table 3.7-4).

<table>
<thead>
<tr>
<th>TABLE 3.7-5</th>
<th>ESTIMATED OPERATIONAL DISTURBANCE FOR H-FRAME STRUCTURES BY NATIVE COVER TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rangeland Cover Types</td>
<td>Alternative 2</td>
</tr>
<tr>
<td></td>
<td>Percent Land Cover</td>
</tr>
<tr>
<td>Grassland/Shrubland</td>
<td>25.2</td>
</tr>
<tr>
<td>Riparian</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Notes:
a Average 800-foot span between structures and assuming 8 square feet of operational disturbance per H-frame.
Access road construction and maintenance would impact native vegetation during line construction and project maintenance. Following construction, many of the road beds would be revegetated and treated to control noxious weeds resulting in resource recovery in 3 to 5 years. During vegetation recovery the likelihood of noxious weed invasion would increase. Implementation of the proposed weed control program would greatly reduce the establishment of weed species.

The major threat to vegetation resources from maintenance activities is the introduction of noxious weed species. Project maintenance would create minor vegetation disturbance throughout the life of the project. Vegetation would not be greatly affected by occasional trampling from maintenance vehicles; however, the resulting ground disturbance and physical plant damage provide an opportunity for weed invasion. Adherence to the proposed weed management plan would reduce the likelihood of weed establishment as a result of maintenance activities.

Estimates of total ground disturbance from construction activities (assuming 28 square feet per structure and roadbed plus 20 percent for access roads) total approximately 214 acres under Alternative 2, 206 acres under Alternative 3, and 240 acres under Alternative 4 (Table 2.3-2). The total acreage of construction disturbance would be more than that for operational disturbance. Construction disturbance would be of varying intensity, with most areas, such as staging areas, requiring reseeding. All areas of disturbance would require noxious weed monitoring and possible weed treatment.

Estimates of total ground disturbance from operational activities include approximately 7 acres for Alternative 2, 11 acres for Alternative 3, and 15 acres for Alternative 4. Short- and long-term ground disturbance is greatest under Alternative 4.

Proposed practices to reduce potential vegetation loss and noxious weed invasion would include seeding disturbed areas with appropriate weed-free seed mixes, using weed-free borrow materials, and inventorying and treating noxious weeds according to the Noxious Weed and Invasive Plant Control Plan (MATL 2006b). The combination of the proposed revegetation and weed control measures along with vehicle cleaning and follow-up monitoring by DEQ would reduce the potential for native species displacement and noxious weed spread during project construction and long-term maintenance.

Riparian Vegetation

DEQ would apply its environmental specifications (Appendix F) to the project. The specifications include the requirement that MATL avoid placing poles or roads in designated 100-year floodplains. MATL has stated it would avoid riparian vegetation by completely spanning these areas to the maximum extent possible.
Chapter 3

Weed Control

Ground disturbance and increased travel during line construction and maintenance could increase the risk of noxious weed spread. Weed infestations are actively controlled in cropland and along country roads and other rights-of-way; however, resources are often limited when treating weeds in native vegetation. The weed control area for this project is defined by MATL as:

All lands disturbed by construction activities plus a 30-foot buffer area around disturbances. Newly constructed roadways, where needed, are expected to be about 14 feet wide with varying widths of cut and fill slopes. To buffer all disturbed areas it is estimated that the ‘weed control area’ would consist of an approximately 100-foot corridor along all roadways and tensioning sites that are used for construction, and all lands within 50 feet of each new transmission line structure. (MATL 2006b)

The proposed weed control program incorporates a baseline inventory and marking of existing noxious weed populations; preventative measures (that is, washing vehicles, flagging weed populations to be avoided, and seeding following disturbance); and an integrated control program involving spraying target species in coordination with the BLM, state weed coordinator, and county weed boards and groups. Mitigation practices such as washing vehicles and equipment would occur throughout construction and continue during future line maintenance activities. MATL would report annually to Federal, state, and county personnel on the condition and progress of this effort. The MATL integrated weed control plan would reduce the threat of noxious weed invasion following ground disturbance resulting from project construction and long-term maintenance. This weed control program would be implemented for the life of the project or as required by designated Federal, state, and county personnel to ensure long-term noxious/invasive plant control measures are met in the weed control area (MATL 2006b).

In addition to noxious weed invasion, unlisted weed species are likely to increase due to ground disturbance and increased traffic and activity in the study area. It is assumed MATL would treat these species in conjunction with noxious weeds. On farmland, it is assumed landowners would manage these species with the methods currently used.

3.7.3.3 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
Chapter 3 Wildlife

3.8 Wildlife

3.8.1 Analysis Methods

This section discusses the occurrence and distribution of vertebrates (mammals, birds, reptiles, and amphibians) within the analysis area.

Analysis Area

The analysis area includes wildlife habitat potentially impacted by the implementation of the proposed Project. This area was defined as 1 mile on either side of the proposed and alternative transmission line alignments. Figures showing the alignments are in Chapter 2.

Information Sources

Information on the distribution of wildlife in the analysis area was obtained from a variety of sources, including: literature review, reports from the Natural Heritage Program (NHP) and FWP, technical reports, peer-reviewed journal articles, and field investigations conducted during May, June, and August 2005 and April and May 2006. Field investigations were conducted to evaluate biological resources in the vicinity of the proposed transmission line alignments. The potential for occurrence of wildlife species not observed during field investigations was assessed based upon evaluation of species distribution and habitat use and information from previous research studies and biological reports (MATL 2006b).

Threatened, endangered, candidate, and sensitive species found in the analysis area are discussed in Section 3.10.

3.8.2 Affected Environment

The analysis area encompasses the following Level IV ecoregions of Montana: the North Central Brown Glaciated Plains, the Foothill Grassland, and the Milk River Pothole Upland (Woods and others 2002). Human development and conversion to agricultural cropland have fragmented the native vegetation communities and reduced the quality of these areas as habitat for grassland species. Areas such as Benton Lake NWR, WPAs, CRP lands, river corridors, and the Kevin Rim are important wildlife habitats in the analysis area. The WPAs provide habitat for wildlife, especially waterfowl. CRP lands, which comprise approximately 17.7 percent of the area, also provide valuable cover and forage for various species of wildlife.
Chapter 3

Wildlife

The Marias and Teton rivers represent the most important fisheries in the analysis area, and the associated cottonwood stands are the only sizeable woodlands in the area. The extent of a shrub-steppe community (silver sagebrush-western wheatgrass) is limited to the Kevin Rim in the northeast corner of the analysis area and lands southeast of Shelby north of the Marias River.

A list of wildlife species observed during field investigations is in Table 3.8-1. This table is not intended to be an exhaustive list of every species that occurs in the area, but rather to provide insight into current habitat conditions and general taxonomic groups that are found in the analysis area.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden eagle</td>
<td>Aquila chrysaetos</td>
<td>West of Benton Lake NWR</td>
</tr>
<tr>
<td>Northern harrier</td>
<td>Circus cyaneus</td>
<td>West of Benton Lake NWR</td>
</tr>
<tr>
<td>Swainson’s hawk</td>
<td>Buteo swainsoni</td>
<td>West of Benton Lake NWR; Bullhead Road; Kevin Rim</td>
</tr>
<tr>
<td>Red-tailed hawk</td>
<td>Buteo jamaicensis</td>
<td>West of Benton Lake NWR; Bullhead Road; north of Teton River</td>
</tr>
<tr>
<td>Ring-necked pheasant</td>
<td>Phasianus colchicus</td>
<td>McLean State Game Preserve; Bullhead Road</td>
</tr>
<tr>
<td>Sharp-tailed grouse</td>
<td>Tympanuchus phasianellus</td>
<td>West of Benton Lake NWR; Marias River; north of Shelby</td>
</tr>
<tr>
<td>Horned lark</td>
<td>Eremophila alpestris</td>
<td>North of Marias River</td>
</tr>
<tr>
<td>Meadow lark</td>
<td>Sturnella neglecta</td>
<td>Throughout</td>
</tr>
<tr>
<td>Common snipe</td>
<td>Gallinago gallinago</td>
<td>McLean State Game Preserve</td>
</tr>
<tr>
<td>Long-billed curlew</td>
<td>Numenius americanus</td>
<td>Throughout</td>
</tr>
<tr>
<td>Northern shooveler</td>
<td>Anas clypeata</td>
<td>North of Cut Bank</td>
</tr>
<tr>
<td>Blue-winged teal</td>
<td>Anas discors</td>
<td>North of Cut Bank</td>
</tr>
<tr>
<td>Mallard</td>
<td>Anas platyrhynchos</td>
<td>North of Cut Bank</td>
</tr>
<tr>
<td>Gray (Hungarian) partridge</td>
<td>Perdix perdix</td>
<td>Kevin Rim; McLean State Game Preserve</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coyote</td>
<td>Canis latrans</td>
<td>South of Cut Bank</td>
</tr>
<tr>
<td>American pronghorn</td>
<td>Antilocapra americana</td>
<td>Throughout</td>
</tr>
<tr>
<td>White-tailed jackrabbit</td>
<td>Lepus townsendii</td>
<td>Kevin Rim</td>
</tr>
<tr>
<td>Red fox</td>
<td>Vulpes vulpes</td>
<td>Bullhead Road</td>
</tr>
<tr>
<td>Mountain cottontail</td>
<td>Sylvilagus nutalli</td>
<td>Kevin Rim</td>
</tr>
<tr>
<td>Mule deer</td>
<td>Odocoileus hemionus</td>
<td>North of Teton River</td>
</tr>
</tbody>
</table>

Notes:
Source: MATL 2006b
3.8.2.1 Mammals

Mammal species found in the grasslands are numerous and include mule deer, American pronghorn, badger (Taxidea taxus), Richardson’s ground squirrel (Spermophilus richardsonii), coyote, mountain cottontail (Sylvilagus nutalli), and white-tailed jackrabbit (Lepus townsendii), and a variety of small rodents. These species are relatively common in grassland and sagebrush steppe habitats in northcentral Montana.

Badgers occur at low densities in grasslands throughout the analysis area. Richardson’s ground squirrel occurs in relatively low to moderate densities (Olson 2005a), including several active ground squirrel burrows in the Kevin Rim area (Zelenak 1996). Black-tailed prairie dogs (Cynomys ludovicianus) also occur in the analysis area east of Interstate 15 and are further discussed in Section 3.10. Riparian habitats along the Marias River and Teton River support additional mammal species, including raccoons (Procyon lotor), red fox, (Vulpes vulpes) and a variety of small rodents.

Ungulates

Mule deer (Odocoileus hemionus) occur in the analysis area south of the Marias River in low to moderate densities along coulees and draws and irrigated lands east of Conrad. Figures 3.8-1, 3.8-2, and 3.8-3 illustrate the winter distribution of mule deer within or adjacent to the analysis area. Although the NHP Animal Field Guide indicates that white-tailed deer (Odocoileus virginianus) are generally restricted to the southern portion of the analysis area, not reaching as far north as the Marias River (NHP 2004), landowners along the Marias River reported observing white-tailed deer in this area. The NHP Animal Field Guide reports that within the southern portion of the analysis area, white-tailed deer stay close to riparian habitats along the Teton River and its tributaries. Data indicate that white-tailed deer do not have winter ranges within the analysis area; however, the species’ range east of the continental divide varies greatly from year to year depending on climatic conditions (Montana NRIS 2005).

American pronghorn occur in low to moderate densities throughout the central and southern portions of the analysis area. Pronghorn were observed in grasslands, sagebrush steppe, and croplands during field investigations. NHP data indicate that pronghorn do not have a winter distribution within the analysis area (Montana NRIS 2005); however, pronghorn populations tend to fluctuate with environmental conditions. NHP and FWP data indicate that elk (Cervus elaphus) do not generally occur within the analysis area. The closest elk population is northeast of Shelby, outside the analysis area, in the Sweet Grass Hills.
FIGURE 3.8-1
PROPOSED MATL POWERLINE
MULE DEER WINTER RANGE AND
SPECIES OF SPECIAL CONCERN
SOUTH

GIS map by Patricia Williams - TTMTI 3-8-1-MuleDeerWinterRng-TnEsp-South.mxd
FIGURE 3.8-2
PROPOSED MATL POWERLINE
MULE DEER WINTER RANGE AND
SPECIES OF SPECIAL CONCERN
MIDDLE

LEGEND

MULE DEER WINTER RANGE (MTFWP)
BLACK-CROWNED NIGHT-HERON (Nycticorax nycticorax)
BLACK-NECKED STILT (Himantopus mexicanus)
BURROWING OWL (Athene cunicularia)
FERRUGINOUS HAWK (Buteo regalis)
PEREGRINE FALCON (Falco peregrinus)
SHARPTAIL GROUSE LEK PROTECTION BUFFER AREA

GIS map by Patricia Williams - TTTMT 3-8-2-MuleDeerWinterRng-Middle.mid
FIGURE 3.8-3 PROPOSED MATL POWERLINE MULE DEER WINTER RANGE AND SPECIES OF SPECIAL CONCERN NORTH

LEGEND
- MULE DEER WINTER RANGE (MTPWP)
- BLACK-CROWNED NIGHT-HERON (Nycticorax nycticorax)
- BLACK-BACKED STILT (Himantopus mexicanus)
- BURROWING OWL (Athene cunicularia)
- FERRUGINOUS HAWK (Buteo regalis)
- PEREGRINE FALCON (Falco peregrinus)
- SHARP-TAILED GROUSE LEK PROTECTION BUFFER AREA

CITIES AND TOWNS
- ALIGNMENT END AND EXIT POINTS
- STUDY AREA
- MAJOR HIGHWAYS
- SECONDARY ROADS
- RIVERS AND STREAMS

GIS map by Patricia Williams - TTMIT 3.8-3-MuleDeerWinterRng-North.mxd
Bats

The analysis area is within the known range of eight species of bats, representing one family and five genera (Table 3.8-2). All are insectivorous, preying upon nocturnal insects using highly evolved echolocation and foraging behavior. Bats use grasslands and riparian areas as foraging habitat. Some species are migratory, flying south for the winter (for example, the hoary bat and silver-haired bat), while others flock to local caves or mines for the lengthy winter hibernation (for example, *Myotis* spp. and the big brown bat). Migratory and wintering habits are poorly understood for many species. Townsend’s big-eared bat is classified as a sensitive species by BLM and has a State rank of S2 (imperiled because of rarity and/or other factors making it vulnerable to extinction). The NHP did not have element occurrence data for this particular species of concern within the analysis area.

Table 3.8-2

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Roosting Habitatb</th>
<th>Statusc</th>
<th>Migrationd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver-haired bat</td>
<td>Lasionycteris noctivagans</td>
<td>Tree cavities in mature coniferous/mixed forest</td>
<td>C</td>
<td>Migratory</td>
</tr>
<tr>
<td>Hoary bat</td>
<td>Lasiurus cinereus</td>
<td>Trees</td>
<td>C</td>
<td>Migratory</td>
</tr>
<tr>
<td>Big brown bat</td>
<td>Eptesicus fuscus</td>
<td>Tree cavities, buildings</td>
<td>C</td>
<td>Not known</td>
</tr>
<tr>
<td>Townsend’s big-eared bat</td>
<td>Corynorhinus townsendii</td>
<td>Caves, abandoned mines</td>
<td>U</td>
<td>Year-round resident</td>
</tr>
<tr>
<td>Western small-footed myotis</td>
<td>Myotis ciliolabrum</td>
<td>Caves, abandoned mines, rock crevices</td>
<td>U</td>
<td>Not known</td>
</tr>
<tr>
<td>Long-eared myotis</td>
<td>Myotis evotis</td>
<td>Tree cavities and exfoliating bark in mature conifers</td>
<td>U</td>
<td>Not known</td>
</tr>
<tr>
<td>Little brown myotis</td>
<td>Myotis lucifugus</td>
<td>Buildings, trees, rock crevices</td>
<td>C</td>
<td>Probably migratory</td>
</tr>
<tr>
<td>Long-legged myotis</td>
<td>Myotis volans</td>
<td>Trees, buildings, rock crevices</td>
<td>U</td>
<td>Probably migratory</td>
</tr>
</tbody>
</table>

Notes:
- Source: MATL 2006b
- a Based upon NHP distribution data
- b Primary hibernacula and roost habitats used by the species (Bat Conservation International 2002).
- d Current knowledge of migration status (Genter and Jurist 1995).

Due to local geologic and physiographic conditions, few if any caves or abandoned mines occur in the analysis area. Rock faces/crevices are found sparingly along parts of the Marias River and along the Kevin Rim. Accordingly, Townsend's big-eared bat and western small-footed myotis are unlikely to roost in much of the analysis area. Furthermore, the analysis area is at the distributional limits for these species, and
suitable roosting habitat does not exist in the area, thus the potential for occurrence of these species as residents is relatively low. In addition, the only known location of Townsend’s big-eared bat north of the Missouri River in northeastern Montana is in the Little Rocky Mountains approximately 130 miles to the east (Hendricks 2000).

The cottonwood stands along the Marias River and Teton River represent potential roosting habitat for those species that roost in tree cavities and exfoliating bark. These species may occur in low densities given the limited availability of forested habitats within the analysis area. Habitat generalists, such as the big brown bat, little brown myotis, or the long-legged myotis, are likely to be the most abundant bat species in the area, given their capacity to use both natural and man-made structures for day and night roosts. No roosts or hibernacula are known to occur in the vicinity of the analysis area.

3.8.2.2 Birds

The vegetative communities provide habitat for a number of migratory and resident bird species within the analysis area. These species can generally be classified as upland game birds, grassland birds, waterfowl and shore birds, and raptors. The Marias River and Teton River cottonwood stands are the only large tracts of relatively contiguous forests in the analysis area and provide potential habitat for bird species that use forested and riparian habitats. The prairie grasslands along the river breaks and coulees provide potential habitat for a number of obligate grassland species. The WPAs, Benton Lake NWR, and various prairie potholes provide potential habitat for waterfowl and shore birds.

Upland Game Birds

Upland game bird species known to occur in the analysis area include: the ring-necked pheasant, the gray (Hungarian) partridge, and the sharp-tailed grouse. Ring-necked pheasant and gray partridge habitat consists of a mosaic of open grasslands, cropland, and brushy cover. Extensive tracts of prairie grassland do not provide good pheasant habitat (Mussehl and Howell 1971). Pheasants occur throughout the analysis area, but primarily near waterways.

Although the greater sage grouse (*Centrocercus urophasianus*) is classified as sensitive by the BLM and sharp-tailed grouse is considered uncommon by the State, they are currently considered game species by FWP and are subject to a legal harvest season. Generally, the greater sage grouse is a sagebrush obligate that relies on big sagebrush habitats in all seasons. Due to the low occurrence of big sagebrush habitat (Section 3.7.2), distribution data indicate that sage grouse do not occur within the analysis area. The closest distribution of sage grouse is near Tiber Reservoir along the Marias River, approximately 30 miles east of the study area.
Sharp-tailed grouse inhabit grasslands interspersed with woody draws and shrub coulees. The entire analysis area contains potential habitat for sharp-tailed grouse (NHP 2005). Except for areas close to the Marias River, Teton River, and Benton Lake NWR, the analysis area contains lower quality sharp-tailed grouse habitat due to habitat loss and fragmentation associated with agricultural activities. During field investigations seven sharptail leks (courtship display areas) were recorded. Three of the leks were observed visually and four leks were only identified by sound. Although FWP did not have specific locations of leks, it identified water crossings, draws, and coulees that are not cultivated as probable locations for leks, specifically Benton Lake NWR, Cut Bank Creek breaks (including where the Two Medicine River and Cut Bank Creek come together to form the Marias River), Teton River, east of Dutton along coulees and draws, Big Flat Coulee, the Dry Fork of the Marias River, and the Kevin Rim (Olson 2005a).

Grassland Birds

The intact mid- and shortgrass prairie communities along the Marias River, Teton River, and several draws and coulees within the analysis area have been subjected to light to moderate grazing intensities and represent relatively high quality wildlife habitat. Several obligate grassland species may occur in the aforementioned areas. FWP identified the following grassland birds as having the potential to occur:

- McCown’s longspur (*Calcarius mccownii*);
- Mountain plover (*Charadrius montanus*);
- Sprague’s pipit (*Anthus spragueii*);
- Chestnut collared longspur (*Calcarius ornatus*); and
- Baird’s sparrow (*Ammodramus bairdii*).

None of these species was observed during field investigations. All five of these species are identified by the state as species of concern. Baird’s sparrow was identified by the NHP as known to occur within the analysis area and is discussed further in Section 3.10. The quality and relative intactness of the grassland prairie habitats declines with distance away from the Marias and Teton rivers due to increasing agricultural land uses.

Waterfowl and Shore Birds

Several waterfowl species are known to occur in the analysis area, the majority of which have been observed on Benton Lake NWR (Figure 3.6-1). Breeding bird surveys on Benton Lake NWR have documented 20 species of ducks, including 12 species that nest on the refuge (FWS 2000). These species likely use areas adjacent to the refuge for foraging. Birds have been documented to migrate into the refuge from all directions.
and no specific migratory pathways or low-level flight feeding pathways have been identified (Johnson 2005). Waterfowl habitat within the analysis area includes lakes, wetlands, stock ponds, the Marias River, and the Teton River. Wetlands and stock ponds tend to be small and isolated. Since most stock ponds lack emergent and/or wetland vegetation, nesting habitat is limited. Surface waters that possess potential nesting habitat include Benton Lake, Hay Lake, Grassy Lake, WPAs, and a few of the larger, undisturbed prairie potholes. The Marias and Teton rivers also provide waterfowl habitat, although hydrologic changes and channel incision have reduced the availability of quality nesting habitat along both rivers. Riparian communities along ephemeral streams that bisect the analysis area do not provide quality waterfowl habitat. Wetlands, stock ponds, Hay Lake, Marias and Teton rivers, and Benton Lake NWR also provide stopover habitat for migrating waterfowl.

Approximately 32 species of shore birds are known to occur in the analysis area, primarily on Benton Lake NWR (Table 3.8-3). These species nest in native grassland prairie habitats in proximity to mesic grasslands or shallow wetlands. Habitat for these species occurs primarily in the northern and central portions of the analysis area where native prairie grasslands are interspersed with small ponds, wetlands, and riparian areas. Habitat for other shore bird species includes the wetlands and stock ponds that are dispersed throughout the analysis area. With the exception of Hay Lake, the small size and lack of emergent wetland vegetation in most of the water bodies reduce their quality as shore bird habitat. The Marias and Teton rivers and adjacent areas also represent potential shore bird habitat.

<table>
<thead>
<tr>
<th>Shore birds</th>
<th>Swans, Geese, and Ducks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-bellied Plover</td>
<td>Tundra Swan (Whistling Swan)</td>
</tr>
<tr>
<td>American Golden Plover (Lesser Gol-Pl.)</td>
<td>Trumpeter Swan</td>
</tr>
<tr>
<td>Semi-palmed Plover</td>
<td>Greater White-fronted Goose</td>
</tr>
<tr>
<td>Piping Plover</td>
<td>Snow Goose</td>
</tr>
<tr>
<td>Killdeer</td>
<td>Ross’ Goose</td>
</tr>
<tr>
<td>Black-necked Stilt</td>
<td>Canada Goose</td>
</tr>
<tr>
<td>American Avocet</td>
<td>Wood Duck</td>
</tr>
<tr>
<td>Greater Yellowlegs</td>
<td>Green-winged Teal</td>
</tr>
<tr>
<td>Lesser Yellowlegs</td>
<td>American Black Duck</td>
</tr>
<tr>
<td>Solitary Sandpiper</td>
<td>Mallard</td>
</tr>
<tr>
<td>Willet</td>
<td>Northern Pintail</td>
</tr>
<tr>
<td>Spotted Sandpiper</td>
<td>Blue-winged Teal</td>
</tr>
<tr>
<td>Upland Sandpiper</td>
<td>Cinnamon Teal</td>
</tr>
<tr>
<td>Whimbrel</td>
<td>Northern Shoveler</td>
</tr>
<tr>
<td>Long-billed Curlew</td>
<td>Gadwall</td>
</tr>
</tbody>
</table>
TABLE 3.8-3 (Continued)
WATERFOWL AND SHORE BIRDS SIGHTED ON BENTON LAKE NWR SINCE 1961

<table>
<thead>
<tr>
<th>Shore birds</th>
<th>Swans, Geese, and Ducks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hudsonian Godwit</td>
<td>Eurasian Wigeon</td>
</tr>
<tr>
<td>Marbled Godwit</td>
<td>American Wigeon</td>
</tr>
<tr>
<td>Ruddy Turnstone</td>
<td>Canvasback</td>
</tr>
<tr>
<td>Red Knot</td>
<td>Redhead</td>
</tr>
<tr>
<td>Sanderling</td>
<td>Ring-necked Duck</td>
</tr>
<tr>
<td>Semipalmated Sandpiper</td>
<td>Greater Scaup</td>
</tr>
<tr>
<td>Western Sandpiper</td>
<td>Lesser Scaup</td>
</tr>
<tr>
<td>Least Sandpiper</td>
<td>Oldsquaw</td>
</tr>
<tr>
<td>Baird’s Sandpiper</td>
<td>White-winged Scoter</td>
</tr>
<tr>
<td>Pectoral Sandpiper</td>
<td>Common Goldeneye</td>
</tr>
<tr>
<td>Dunlin</td>
<td>Barrow’s Goldeneye</td>
</tr>
<tr>
<td>Stilt Sandpiper</td>
<td>Bufflehead</td>
</tr>
<tr>
<td>Short-billed Dowitcher</td>
<td>Hooded Merganser</td>
</tr>
<tr>
<td>Long-billed Dowitcher</td>
<td>Common Merganser</td>
</tr>
<tr>
<td>Common Snipe</td>
<td>Red-breasted Merganser</td>
</tr>
<tr>
<td>Wilson’s Phalarope</td>
<td>Ruddy Duck</td>
</tr>
<tr>
<td>Red-necked Phalarope</td>
<td></td>
</tr>
</tbody>
</table>

Note:
Source: MATL 2006b

Raptors

Raptor species are known to occur in the analysis area and have been observed during breeding bird surveys and field investigations conducted for this project. The Kevin Rim Area of Critical Environmental Concern and the Marias and Teton River breaks provide potential habitat for raptors. A list of raptors observed by other researchers along Kevin Rim from 1993-1994 is in Table 3.8-4 (Zelenak 1996).

While these species are present in the analysis area during breeding season, potential nesting sites, aside from Kevin Rim and the bluffs around the Marias and Teton rivers, are limited to small shrubs in draws and coulees, riparian cottonwood trees, and ornamental spruce trees near farms or residential areas (Olson 2005a). A historic peregrine falcon eyrie is located where Cut Bank Creek and Two Medicine River flow together to form the Marias River. The eyrie is discussed further in Section 3.10. Intermittent cottonwood stands along the Marias and Teton rivers are used by bald eagles during the winter, and indirect evidence of breeding has been observed in these areas (NHP 2005). Bald eagles and peregrine falcons are often seen in the spring on Benton Lake NWR (FWS 2000).
Potential raptor prey sources include colonial rodents, lagomorphs (rabbits and hares), waterfowl, young grouse, and carrion. Although prey populations in the analysis area have not been assessed, prey densities are generally low (Olson 2005a). Ground squirrels comprised the majority of prey items recorded in ferruginous hawk nests in 1993 and 1994, followed by lagomorphs and birds (Zelenak 1996). A black-tailed prairie dog town is known to exist east of Interstate 15 southeast of Shelby north of the Marias River. Rabbits and hares are common, and, while these populations are subject to large annual fluctuations, field investigations indicated that current lagomorph densities are relatively low. The five WPAs provide waterfowl concentration areas, which may serve as raptor prey sources. Carrion is available on ungulate winter ranges where bald eagles and other scavengers are attracted to the area by over-winter mortalities (Olson 2005a). Dead livestock may also provide carrion for scavenging raptors.

Migratory Birds

The analysis area contains rolling hills, gentle ridges, and plateaus bisected by small drainages. There are no obvious “funnels,” such as prominent ridgelines or mountain gaps that could potentially serve as a large scale or regional migratory pathway. The relatively small ridges within the analysis area may serve as local pathways for birds passing through as part of a large, broad front migration. Thousands of tundra swans, and snow and Ross’ geese stop at the Benton Lake NWR for a week or more while migrating from their wintering grounds in central California to nesting areas in arctic Alaska and Canada. Twenty species of ducks, including 12 species that stay to nest on the refuge, also migrate into and through this area. Aside from Benton Lake NWR, a limited amount of stopover habitat for migrating waterfowl is available within the analysis area (Johnson 2005). Hay Lake and Aloe Lake also provide stopover habitat. Riparian habitats can also provide stopover habitat for neotropical migrants. Examples
of neotropical migrant birds include species of plovers, terns, hawks, cranes, warblers, and sparrows.

3.8.2.3 Reptiles and Amphibians

Although fragmented by agricultural cropland, the upland, riparian, and aquatic communities within the analysis area may provide habitat for a variety of reptile and amphibian species. Field surveys were not conducted specifically for reptiles and amphibians; however, species distribution information suggests that 10 reptile and amphibian species are likely to occur in the analysis area (FWS 2000). Table 3.8-5 is a list of reptiles and amphibians that are likely to occur based upon observations of habitat during field investigations, the Benton Lake NWR wildlife list, previous NHP field studies, and the NHP Animal Field Guide database. The greater short-horned lizard is classified as a sensitive species by BLM and has a State rank of S3 (vulnerable because of rarity, or found in restricted range even though it may be abundant at some locations). The NHP did not have occurrence data for this particular species of concern within the analysis area. The species listed in Table 3.8-5 occupy a broad range of habitat types, ranging from ponds to mesic grasslands to xeric uplands, and may occur in appropriate habitats throughout the analysis area. No known critical breeding habitats or hibernacula for any reptile or amphibian species occur within the analysis area.

3.8.3 Environmental Impacts

For impacts of alternatives, the analysis focuses on assemblages of species that are of concern for reasons of public importance, sensitivity to disturbance, or regulatory issues. Potential impacts were determined mainly based upon the habitat type crossed and the known (that is, mule deer winter range) or potential (that is, sharp-tailed grouse leks) sensitive wildlife resources within that habitat type. Short-term direct impacts on wildlife resources would include loss of individuals during construction or direct disturbance of species during critical periods in their life cycles. Long-term direct impacts could include alteration and/or fragmentation of habitat and collisions. Indirect impacts could include fragmentation and disturbance caused by providing access to areas not previously accessible.

3.8.3.1 Alternative 1 - No Action

Under the No Action alternative, the proposed Project would not be implemented. Existing electrical transmission service would be maintained and operated at its current level. Selection of the No Action alternative would not result in any construction or operation of additional transmission lines within the analysis area; thus, no impacts to wildlife or their habitat would occur.
TABLE 3.8-5
REPTILE AND AMPHIBIAN SPECIES LIKELY TO OCCUR IN THE ANALYSIS AREAa
MONTANA ALBERTA TIE LTD., LETHBRIDGE, AB – GREAT FALLS, MT

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-horned lizardb</td>
<td>Phrynosoma hernandesi</td>
<td>Sparse, shortgrass and sagebrush habitats with exposed soils or rock</td>
</tr>
<tr>
<td>Racer</td>
<td>Coluber constrictor</td>
<td>Open habitats, particularly common in shortgrass prairie</td>
</tr>
<tr>
<td>Gopher snake</td>
<td>Pituophis catenifer</td>
<td>Arid sagebrush and grassland habitats</td>
</tr>
<tr>
<td>Western Rattlesnake</td>
<td>Crotalus viridis</td>
<td>Open, arid habitats with south-facing slopes and rock outcrops</td>
</tr>
<tr>
<td>Common Garter Snake</td>
<td>Thamnophis sirtalis</td>
<td>Numerous, prefer moist habitats along streams and ponds</td>
</tr>
<tr>
<td>Western Terrestrial Garter Snake</td>
<td>Thamnophis elegans</td>
<td>Nearly all habitats</td>
</tr>
<tr>
<td>Plains Garter Snake</td>
<td>Thamnophis radix</td>
<td>Numerous, including shortgrass prairie near water (ponds and coulees)</td>
</tr>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiger Salamander</td>
<td>Ambystoma tigrinum</td>
<td>Breeds in ponds and streams; burrows in prairie or agricultural habitats</td>
</tr>
<tr>
<td>Western Chorus Frog</td>
<td>Pseudacris triseriata triseriata</td>
<td>Mesic grasslands and marshes near ponds and small lakes</td>
</tr>
<tr>
<td>Painted Turtle</td>
<td>Chrysemys picta</td>
<td>Lakes, ponds, reservoirs, and sloughs that contain some shallow water areas and a soft bottom; also river backwaters and oxbows with little current</td>
</tr>
</tbody>
</table>

Notes:
Source: MATL 2006b
a Source: NHP 2004.
b BLM: Sensitive; State rank: S3 - potentially at risk because of limited and/or declining numbers, range, and/or habitat, even though it may be abundant in some areas.

3.8.3.2 Alternatives 2, 3, and 4 – Action Alternatives

Potential adverse impacts to wildlife associated with development of the transmission line can be separated into impacts associated with project construction (short term) and those related to operation and maintenance (long term). The primary potential impacts include direct mortality, habitat loss and fragmentation, disturbance and displacement of individual animals, interference with behavioral activities, and disturbance resulting from increased public access.
Short-term Impacts

Installation and development of the proposed transmission line and activities such as site clearing and grading, construction of access roads and support facilities, and off-road travel during construction could cause direct injury or mortality to wildlife. Species with higher likelihood to be impacted include species with limited mobility, species that burrow, or avian species, as nests and burrows could be destroyed during construction. Construction related disturbances would be short term (6 to 7 months) and confined to the construction site or adjacent storage areas.

Disturbance associated with the installation and development of the transmission line would result in some habitat loss and fragmentation. Construction activities such as site clearing, site grading, and development of access roads and support facilities would result in a temporary loss of approximately 72 to 80 acres of potential habitat in the analysis area, depending on the action alternative (MATL 2006b). While a portion of disturbed areas would be reclaimed upon completion of construction activities, permanent habitat loss would occur within the footprints of support structures, and access roads.

Construction activities would result in disturbance and behavioral interference. Noise, fugitive dust, and activities associated with site clearing and grading, installation of support structures, construction of access roads and support facilities, and associated equipment could disturb and displace wildlife within and adjacent to impact areas. All wildlife species within or near impact areas would be susceptible to disturbance. Disturbance would have the greatest impact during migration and breeding seasons. Some species with small home ranges or limited dispersal ability might experience a greater impact. These disturbances would be short term (6 to 7 months) and concentrated within the activity area.

The construction activities could also result in accidental exposure to contaminants or fire or increased legal and illegal killing of wildlife. Accidental spills during equipment maintenance or refueling could result in temporary exposure to hazardous contaminants. Because spill prevention plans would be in place and impacted areas would be immediately reclaimed, and exposure would be temporary and restricted to the site of spill, impacts to wildlife would be unlikely. Accidental fires associated with construction and maintenance vehicles would result in the temporary loss of habitat. The increased public access as a result of increased access roads may result in additional legal hunting and poaching.
Long-term Impacts

Collisions

Direct impacts to avian species could occur as a result of collisions with the proposed transmission line. Operation of the proposed transmission line would have the greatest potential impact on bird species, due to the collision threat posed by structures, transmission lines, guy wires, and ground wires. Most other wildlife would not be as impacted, since the presence of the transmission line, structures, and access roads generally does not present a barrier to migration, create excessive noise, or otherwise cause major behavior changes.

A variety of factors influence avian transmission line collisions: configuration and location of transmission lines; specific avian species and their tendency to collide with transmission lines; and the environment, such as weather, topography, and habitat (Avian Power Line Interaction Committee [APLIC] and FWS 2005). Line placement with respect to other structures and topography can influence the collision rate. Collisions usually occur near water or migration corridors and more often during inclement weather. Less agile birds, such as heavy-bodied birds or birds within flocks, are more likely to collide with overhead lines as they lack the ability to quickly negotiate obstacles. Some bird species, usually waterfowl, are prone to collisions with power lines, especially the grounding wires located at the top of the structures (Meyer 1978, James and Haak 1979, Beaulaurier 1981, Beaulaurier et al. 1982, Faanes 1987) though collisions with guy wires also occur. Raptor species are less likely to collide with power lines, perhaps due to their excellent eyesight and tendency to not fly at dusk or in low visibility weather conditions (Olendorff et al. 1981). Smaller migratory birds are at risk, but generally not as prone to collision because of their small size, ability to quickly maneuver away from obstacles, and because they often migrate high enough above the ground to avoid transmission lines. Permanent-resident birds that fly in tight flocks, particularly those in and near wetland areas, may be at higher risk than other species.

The action alternatives would implement environmental protection measures that would reduce the potential for avian collisions. Areas with a higher likelihood for avian collisions, such as known flyways, were avoided. In addition, MATL would apply *Suggested Practices for Avian Protection on Power Lines: The State of the Art in 2006* developed by the EEI, APLIC and the California Energy Commission (2006), as appropriate, during design and construction of overhead structures and the substation additions. Avian collisions would be reduced as approved line marking devices would be installed, at intervals suggested by manufacturer’s recommendations, on overhead ground wires within all stream, river and wetland crossings, such as crossings of the Marias River, the Dry Fork Marias River, Teton River, east of the Benton Lake NWR boundary and within a ½ mile of the refuge boundary. Line marking devices would also be placed within a ¼ mile buffer on either side of streams, rivers, or wetlands.
These marking devices have been reported to reduce mortality by approximately 40 to 90 percent. Annual mortality surveys would be conducted by MATL in these areas to ensure that the line marking devices are functioning properly. If the markers were found to be ineffective, alternative designs and configurations would be tried until mortality rates are reduced. In addition, to ensure that adverse effects would be avoided, MATL would complete and submit to the USFWS an Avian Protection Plan (APP) that would outline the elements of the MATL project that would reduce the avian risks and avian mortality.

Electrocutions

New transmission lines could potentially impact large birds, such as raptors, through electrocution. Electrocution occurs when birds with large wing spans come in contact with either two conductors or a conductor and a grounding device. Two factors influence the potential for avian electrocution: environmental factors such as topography, vegetation, available prey, and behavior; and inadequate separation between energized conductors and grounded hardware providing two points of contact (APLIC and FWS 2005). MATL transmission line design standards provide adequate spacing to eliminate the risk of raptor electrocution. MATL’s line would entail “avian safe” structures, which provide adequate clearance to accommodate a large bird between energized and/or grounded parts. These structures typically have 60 inches of horizontal separation, which can accommodate the wrist-to-wrist distance of an eagle. In addition, vertical separation of at least 48 inches can accommodate the height of an eagle from its feet to the top of its head (APLIC and FWS 2005).

Increased Predation

Impacts could occur from increased raptor predation within the areas surrounding the support structures. In areas where suitable prey habitat is within view, perch sites can provide an energy efficient method for hunting. There is the concern that raptors may use the horizontal cross arms of H-frame transmission structures or single pole structures as perches while scouting for food. Concerns have been raised in some circumstances that the raptors could impact the prairie nesting bird populations due to this. The proposed segments do not go through any major prairie bird nesting area, and the segments that have been identified to be within 2 miles of an identifiedlek would have perch guards installed on support structures in order to deter raptor perching. The 2-mile radius has been identified by FWP biologists (Northrup 2006) and peer reviewed management guidelines (Connelly et al. 2000) as an adequate buffer area to ensure that leks would be protected from an increase in raptor predation.

Impacts to Wildlife Species

All action alternatives would cross through similar habitat types with predominantly agricultural lands and scattered grasslands. Impacts to specific wildlife species are discussed below. Because only minor differences occur
between the action alternatives, impacts are discussed together with differences addressed within the discussion.

Big Game Species

Impacts on big game species would not be expected. Pronghorn and mule deer does with fawns could be displaced by activities during late spring and early summer, but disturbance within a given portion of the line would be temporary, and animals could easily use adjacent habitat during disturbance periods. Activities would not disturb wintering animals as the construction activities would occur during the spring and summer months. In the event that activities would occur in the winter, animals could be disturbed and potentially displaced; however, disturbance in a specific area would be temporary. The proposed and alternative transmission line alignments would cross through mule deer winter range, and there would be some permanent loss of habitat as a result of structures and access roads (Table 3.8-6). Under Alternative 2, approximately 0.5 to 2 miles of the transmission line bisecting mule deer winter range may vary in its location depending on the local realignment option selected. This habitat loss would not impact mule deer as this is a minor loss relative to the amount of available habitat within the region.

<table>
<thead>
<tr>
<th>TABLE 3.8-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULE DEER WINTER RANGE IMPACTED BY ALTERNATIVES</td>
</tr>
<tr>
<td>Mule Deer Winter Range</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Linear Miles of Mule Deer Winter Range Bisected by Transmission Line</td>
</tr>
</tbody>
</table>

Sharp-tailed Grouse

Potential sharp-tailed grouse habitat along alternative alignments is patchy due to fragmentation by agricultural land. The primary suitable habitat is in the grasslands above the Marias River where two leks were observed and two leks were identified by sound. In total, three leks are within the 2-mile buffer area of the alignments. Although no leks were observed above the Teton River during field investigations, the area where the action alternatives would cross the Teton is potential sharp-tailed grouse habitat.

Impacts on sharp-tailed grouse leks could result from disturbance during the breeding season in April and early May, and to nesting hens during May and early June. However, based on MATL’s commitment to curtail construction in any sharp-tailed grouse nesting habitat during the nesting season and to use raptor perch deterrents as appropriate, few impacts to breeding sharp-tailed grouse would be expected from implementation of the alternatives. Based on consultation with the FWP (Northrup 2006) and the “Guidelines for management of sage grouse populations and habitats” (Connely at al. 2000), all support structures that would cross within the 2-mile buffer area around the documented leks would be fitted with raptor perch deterrents to
reduce predation. For all action alternatives, this would result in approximately 73 support structures (11 miles of transmission line) to be fitted with raptor perch deterrents.

Raptors
Raptor nest surveys conducted along the action alternative alignments found no raptor nests within ½ mile of the alignments. Nesting habitat occurs in cottonwood groves found along the Marias and Teton rivers and in ornamental trees found near residences, generally greater than 1 mile away from the alignments (Olson 2005b). Impacts to raptors would not be expected; in the event that a raptor nest was identified during construction activities, MATL would consult with the FWP and take precautions to minimize impacts on nesting raptors.

Migratory Birds
Disturbance to migratory birds from noise, vehicles, and human presence during construction would be localized and of short duration. Bird nests could be destroyed if birds are nesting within the disturbed areas. However, many of the birds would re-nest if the first attempt were unsuccessful. No long-term impacts associated with operating and maintaining the line are expected.

Wetlands are an essential component of waterfowl nesting habitat, and nesting can occur up to a mile from wetlands (Ringelman 1992). Alternative alignments would not come within 1 mile of any of the five WPAs or any known nesting colonies in the Project study area. Peterson WPA, located in Glacier County northwest of Hay Lake, is approximately 1.7 miles from the Alternative 2 alignment and 1.4 miles from the Alternative 3 alignment. Nesting colonies of white pelicans, great blue herons, or double-crested cormorants are not known to occur within a 1-mile buffer area of any of the alternative alignment (Olson 2005b and Johnson 2005). Waterfowl nesting tends to be concentrated within uplands adjacent to wetlands (Ringelman 1992); thus, the construction and operation of the transmission line would not be expected to impact waterfowl nesting associated with the WPAs.

The alignments cross land to the east and west of Benton Lake NWR. Alternative 2 and 4 routes are approximately 0.9 mile away from Benton Lake NWR, while Alternative 3 is 0.8 mile away. Birds approach Benton Lake NWR during spring and fall migration.

As discussed above, impacts to birds would be minimized and avoided through the implementation of environmental protection measures. MATL’s line would entail “avian-safe” structures, which provide adequate clearance to avoid electrocutions. MATL would apply *Suggested Practices for Avian Protection on Power Lines: The State of the Art in 2006*, developed by the EEI, APLIC and the California Energy Commission (2006), as appropriate, during design and construction of overhead structures and substation additions. Areas with a higher likelihood for avian collisions, such as known flyways,
were avoided. Avian collisions would be reduced as approved line marking devices would be installed, at intervals suggested by manufacturer’s recommendations, on overhead ground wires within all stream, river and wetland crossings, such as crossings of the Marias River, the Dry Fork Marias River, Teton River, east of the Benton Lake NWR boundary and within a ½ mile of the refuge boundary. Line marking devices would also be placed within a ¼ mile buffer on either side of streams, rivers, or wetlands, and such marking devices have been reported to reduce mortality by approximately 40 to 90 percent. Annual mortality surveys would be conducted within these areas to ensure that the line marking devices are functioning properly. In addition, to ensure that adverse effects would be avoided, MATL would complete an Avian Protection Plan that would outline the elements of the MATL project that would reduce the avian risks and avian mortality.

3.8.3.3 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
Chapter 3

3.9 Fish

3.9.1 Analysis Methods

The following section discusses the occurrence and distribution of fish species within the Project area. Threatened, endangered, candidate, and sensitive fish species found within the Project area are discussed in Section 3.10.

Analysis Area

The analysis area includes all fish bearing waterways within the MFSA application Project study area (Figure 1.1-1). These waterways include: the Missouri River, the Marias River, the Teton River, their associated tributaries, and several man-made stock ponds and reservoirs.

Information Sources

Information on fisheries within the Project area was obtained from a variety of sources, including: literature review, reports from the NHP and FWP, technical reports, and peer-reviewed journal articles. Species lists, valuable information, and mapping of sensitive species and important habitats were obtained through meetings and correspondence with personnel from the FWS and FWP (MATL 2006b).

3.9.2 Affected Environment

The Project area crosses one sub-basin of the Milk Watershed and seven sub-basins of the Marias Watershed. The sub-basins crossed are: Upper Missouri-Dearborn Rivers, Sun River, Teton River, Marias River, Two Medicine River, Willow Creek, and Cut Bank Creek sub-basins in the Marias Watershed and the Upper Milk River sub-basin in the Milk Watershed. The only water body identified by the FWP as a blue ribbon or red ribbon river in the Project area is the Missouri River. The river miles at which all three alternatives cross the Marias and Teton rivers are considered Habitat Class 3 and Sport Class 4 fisheries.

Several intermittent gulches, coulees, creeks, and rivers cross the Project area. The majority of the water bodies act as tributaries to three major rivers within the Project area, the Marias, Teton, and Missouri. Both the Marias and Teton rivers drain into the Missouri River.

The gulches and coulees in the Project area are typically dry during the summer and do not support fisheries. Lakes are predominately man-made stock ponds, reservoirs, or prairie potholes. Water bodies and lakes that hold water year-round are generally
capable of supporting both warm-water and cold-water fish species. A list of fish species known to occur within the Project area is in Table 3.9-1.

<table>
<thead>
<tr>
<th>Game Fish</th>
<th>Rough Fish/Non-Game Fish</th>
<th>Forage Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Common Name</td>
</tr>
<tr>
<td>Brown Trout</td>
<td>Salmo trutta</td>
<td>Common Carp</td>
</tr>
<tr>
<td>Brook Trout</td>
<td>Salvelinus fontinalis</td>
<td>Bigmouth Buffalo</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>Oncorhynchus mykiss</td>
<td>Freshwater Drum</td>
</tr>
<tr>
<td>Burbot</td>
<td>Lota lota</td>
<td>River Carpsucker</td>
</tr>
<tr>
<td>Channel Catfish</td>
<td>Ictalurus punctatus</td>
<td>Shorthead Redhorse</td>
</tr>
<tr>
<td>Northern Pike</td>
<td>Esoc lucius</td>
<td>Smallmouth Buffalo</td>
</tr>
<tr>
<td>Shovelnose Sturgeon</td>
<td>Scaphirhynchus platyrynchus</td>
<td></td>
</tr>
<tr>
<td>Walleye</td>
<td>Sander vitreus</td>
<td></td>
</tr>
<tr>
<td>Yellow Perch</td>
<td>Perca flavescens</td>
<td></td>
</tr>
<tr>
<td>Smallmouth Bass</td>
<td>Micropterus dolomieu</td>
<td></td>
</tr>
<tr>
<td>Mountain Whitefish</td>
<td>Prosopium williamsoni</td>
<td></td>
</tr>
<tr>
<td>Sauger S2</td>
<td>Sander canadensis</td>
<td></td>
</tr>
<tr>
<td>Sauger X Walleye Hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden Trout</td>
<td>Oncorhynchus mykiss aguabonita</td>
<td></td>
</tr>
<tr>
<td>Paddlefish S1, S2</td>
<td>Polyodon spathula</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
S1: Critically imperiled because of extreme rarity and/or other factors making it highly vulnerable to extinction.
S2: Imperiled because of rarity and/or other factors making it vulnerable to extinction.
S3: Vulnerable because of rarity, or found in restricted range even though it may be abundant at some of its locations.
3.9.3 Environmental Impacts

3.9.3.1 Alternative 1 - No Action

Under the No Action alternative, the proposed Project would not be implemented. There would be no construction activities or associated activities related to a new transmission line and, existing electrical transmission service would be maintained and operated at its current level. This would result in no additional impacts to fish in the Project area.

3.9.3.2 Alternatives 2, 3, and 4 - Action Alternatives

Since all action alternatives would entail the proposed transmission line crossing fish-bearing water bodies, and impacts on the water bodies would not vary substantially between alternatives, impacts to fish and their habitat for all action alternatives are addressed within this section.

Potential impacts on the fish-bearing water bodies center around several disturbance related issues, such as: an increase in sediment transport due to increased erosion from disturbed and newly exposed areas; degradation of water quality as a result of contaminants (that is, herbicides or petroleum products); increased temperatures within water bodies as a result of removed riparian and streamside vegetation; or direct impacts or disturbance to fish and their habitats. None of the alternative alignments closely parallel streams or lakes where fish are present. Most crossings of stream habitats are short.

Impacts related to increased erosion and sediment transport would be mitigated and reduced through the implementation of best management practices and environmental protection measures. An erosion control plan would be developed and implemented during construction. Erosion control measures, such as water bars, drainage contours, straw bales, and filter cloths would reduce erosion within disturbed areas and largely prevent sediment transport to water bodies. In addition, disturbed areas would be contoured and seeded after completion of construction activities, which would reduce erosion and sediment transport. Due to the implementation of the environmental protection measures, increased sediment within water bodies as a result of the action alternatives would likely not occur, and fish and their habitat would likely not be impacted.

Implementation of a spill prevention plan and environmental protection measures would ensure that water quality is protected from petroleum products and herbicides, and impacts on fish or their habitat would not likely occur.
Impacts on fish habitat as a result of the removal of streamside vegetation and increased water temperatures would not be expected to occur because structures would not be sited within fish-bearing water bodies and there would be little or no removal of streamside vegetation as a result of construction or related activities.

The structures for Alternatives 2, 3, and 4 would not be sited within any water bodies, and construction activities would not occur within water bodies that support fish populations. Implementation of the action alternatives would not be likely to impact any fish populations or species distribution.

3.9.3.3 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
3.10 Threatened, Endangered, and Candidate for Listing Species

3.10.1 Analysis Methods

Analysis Areas

This section addresses the current occurrence, distribution of, and potential impacts to species that are listed as threatened and endangered species under the Endangered Species Act (ESA), species that are candidates for listing, and those that have been proposed for listing. In addition, species with limited members or distribution as indicated by the NHP and the FWP and BLM sensitive species also are discussed in this section. Only species in the Project area are discussed. Analysis areas for vegetation, wildlife, and fish are the same as described in Sections 3.7.1, 3.8.1, and 3.9.1.

Information Sources

Vegetation information sources are the same as described in Section 3.7.1. Wildlife and fish information sources are the same as described in Sections 3.8.1 and 3.9.1.

3.10.2 Affected Environment

3.10.2.1 Vegetation

Species of concern in Montana are those species that are at risk or potentially at risk due to a combination of rarity, restricted distribution, habitat loss, or other limiting factors (MATL 2006b). A variety of habitats in the Project area could support species of concern. Five plant species of concern have been reported to occur within or adjacent to the Project area (Table 3.10-1). Of these species, two (both non-vascular) are historic records. The three vascular species documented in Glacier and Cascade counties are found in similar habitats: wet soils or shallow water around ponds and meadows along streams.
TABLE 3.10-1
PLANT SPECIES OF CONCERN REPORTED TO OCCUR WITHIN OR ADJACENT TO THE PROJECT AREA

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>State Rank</th>
<th>County</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular Plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many-headed Sedge</td>
<td>Carex sychnocephala</td>
<td>S1<sup>a</sup></td>
<td>Glacier; Cascade</td>
<td>Moist soil of meadows along streams and ponds in the valleys and on the plains.</td>
</tr>
<tr>
<td>Long Sheath Waterweed</td>
<td>Elodea longivaginata</td>
<td>S1</td>
<td>Glacier</td>
<td>Shallow water of ponds and lakes on the plains.</td>
</tr>
<tr>
<td>Chaffweed</td>
<td>Centunculus minimus</td>
<td>S2<sup>b</sup></td>
<td>Cascade</td>
<td>Vernally wet, sparsely vegetated soil around ponds and along rivers and streams in the valleys and on the plains.</td>
</tr>
<tr>
<td>Non-vascular Plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entosthodon moss</td>
<td>Entosthodon rubiginosus</td>
<td>SH<sup>c</sup></td>
<td>Cascade</td>
<td>Seasonally damp and alkaline, usually silt or clay-rich soil at the edges of ponds, lakes, and sloughs, and on seepage slopes in relatively dry environments.</td>
</tr>
<tr>
<td>American funaria moss</td>
<td>Funaria americana</td>
<td>SH</td>
<td>Cascade</td>
<td>Little information is available; however, it is thought that this species prefers limestone caves and cliffs.</td>
</tr>
</tbody>
</table>

Notes:

Source: MATL 2006b

^a S1: Critically imperiled because of extreme rarity and/or other factors making it highly vulnerable to extinction.

^b S2: Imperiled because of rarity and/or other factors making it vulnerable to extinction.

^c SH: Historical, known only from records over 50 year ago; may be rediscovered.
3.10.2.2 Wildlife

Special status animal species the NHP reported as occurring within or adjacent to the Project area are in Table 3.10-2.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Statusa</th>
<th>FWS</th>
<th>BLM</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burrowing Owl</td>
<td>Athene cunicularia</td>
<td>--</td>
<td></td>
<td></td>
<td>S2B</td>
</tr>
<tr>
<td>Ferruginous Hawk</td>
<td>Buteo regalis</td>
<td>--</td>
<td></td>
<td></td>
<td>S2B</td>
</tr>
<tr>
<td>Baird’s Sparrow</td>
<td>Ammodramus bairdii</td>
<td>--</td>
<td></td>
<td></td>
<td>S2B</td>
</tr>
<tr>
<td>Black-necked Stilt</td>
<td>Himantopus mexicanus</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black-crowned Night-heron</td>
<td>Nycticorax nycticorax</td>
<td>--</td>
<td></td>
<td></td>
<td>S3B</td>
</tr>
<tr>
<td>Peregrine Falcon</td>
<td>Falco peregrinus</td>
<td>--</td>
<td></td>
<td></td>
<td>S2B</td>
</tr>
<tr>
<td>Common Tern</td>
<td>Sterna hirundo</td>
<td>--</td>
<td></td>
<td></td>
<td>S3B</td>
</tr>
<tr>
<td>White-faced Ibis</td>
<td>Plegadis chihi</td>
<td>--</td>
<td></td>
<td></td>
<td>S1B</td>
</tr>
<tr>
<td>Franklin’s Gull</td>
<td>Larus pipixcan</td>
<td>--</td>
<td></td>
<td></td>
<td>S3B</td>
</tr>
<tr>
<td>Black-tailed Prairie Dog</td>
<td>Cynomys ludovicianus</td>
<td>C</td>
<td></td>
<td></td>
<td>S3</td>
</tr>
<tr>
<td>Long-billed Curlew</td>
<td>Numenius americanus</td>
<td>--</td>
<td></td>
<td></td>
<td>S2B</td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>--</td>
<td></td>
<td></td>
<td>S3B, S3N</td>
</tr>
<tr>
<td>Black-footed Ferret</td>
<td>Mustela nigripes</td>
<td>E, XN</td>
<td></td>
<td></td>
<td>S1</td>
</tr>
</tbody>
</table>

Notes:

Source: MATL 2006b.

* FWS: E = endangered; C = candidate; XN = experimental, nonessential; -- = not listed

BLM: Sensitive = either known to be imperiled and suspected to occur on BLM lands, suspected to be imperiled and documented on BLM lands, or needing further study for other reasons; -- = not listed

State:

B = a state rank modifier indicating breeding status for a migratory species;

N = non-breeding.

S1 = critically imperiled because of extreme rarity, or because of some factor of its biology making it especially vulnerable to extirpation;

S2 = Imperiled because of rarity, or because of other factors demonstrably making it very vulnerable to extinction throughout its range;

S3 = vulnerable because of rarity, or found in restricted range even though it may be abundant at some of its locations;

S4 = apparently secure, though it may be quite rare in parts of its range, especially at the periphery;
Bald Eagle

The bald eagle is primarily a species of riparian and lacustrine habitats (forested areas along rivers and lakes), especially during the breeding season. Montana Fish, Wildlife and Parks delineated the project area as predominantly year-long habitat, with some winter habitat. Important year-round habitat includes wetlands, major water bodies, spring spawning streams, ungulate winter ranges, and open water areas. Wintering habitat may include upland sites. Nests are typically within 1 mile of permanent water (Anthony and Isaacs 1989). Nesting site selection is dependent upon maximum local food availability and minimum disturbance from human activity (Montana Bald Eagle Working Group 1994). Perch and roost sites are also important habitat components for bald eagles. Preferred perch sites include live trees and snags that provide good visibility and are near nest sites or foraging areas.

The cottonwood stands along the Marias and Teton rivers may be used by bald eagles during the winter; however, they are not known to nest in the Project area (Olson 2005b). The majority of birds nesting in Montana are found in the western third of the state, although breeding pairs may be found along many of the major rivers and lakes in the central portion of the state and along the Yellowstone and Missouri rivers to the eastern prairie lands (NHP 2004). East of the Continental Divide, the presence of bald eagles may be somewhat more seasonally dependent than in the western part of the state. Migrants from northern climates travel through Montana to reach wintering grounds further south.

The bald eagle has officially been removed from the Federal threatened and endangered species list (Final Rule published July 9, 2007, and effective August 8, 2007) and FWS has issued new guidelines for management of this species under the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act (May 2007).

Black-footed Ferret

Black-footed ferret habitat occurs within the project area as they are closely associated with prairie dog populations, and prairie dogs occur within the project area. Black-footed ferrets use open habitat, such as grasslands, steppe, and shrub steppe. The ferrets do not dig their own burrows and rely on abandoned prairie dog burrows for shelter. Only large prairie dog complexes (several hundred acres of closely spaced colonies) can support and sustain a breeding population of black-footed ferrets (Miller et al. 1996). A black-tailed prairie dog town is located southeast of Shelby in Toole County north of the Marias River.

All known populations of black-footed ferrets are a result of the reintroduction of captive bred ferrets. In 1998, a total of 217 kits were allocated for reintroduction and field breeding programs. Seventy-seven ferret kits were allocated to two separate release sites on a Montana experimental reintroduction area: 55 kits to the Ft. Belknap
Indian Reservation and 22 kits to the Charles M. Russell National Wildlife Refuge. The Fort Belnap Reservation is the closest release site to the project area, and it is approximately 125 miles away from the eastern boundary of the project area. Reintroduced black-footed ferret populations have been designated "non-essential experimental" populations under the Endangered Species Act. This designation allows Federal, state, and tribal resource managers and private citizens more flexibility in managing new populations. The Fish and Wildlife Service can develop special management regulations which are more flexible than the rules for species listed as endangered.

Ferruginous Hawk

A breeding population of approximately 20 pairs of ferruginous hawks was located in 1994 in the Kevin Rim and Buckley Coulee area in the northeastern and north-central portions of the Project area. NHP and FWP biologists indicate this species continues to breed along Kevin Rim (Olson 2005a). This area is a mix of privately owned land and state trust land in Toole County. Kevin Rim is a sandstone escarpment that runs approximately 8 miles, generally north-south, and faces east. The cliffs and adjacent badlands, grasslands, and draws host a very high density of raptor nests, primarily ferruginous hawks and prairie falcon. Two biologists walked along approximately 3 miles of Kevin Rim in early May 2005 surveying for raptor nests. No nests and no raptors were observed at that time (MATL 2006b).

Ferruginous hawks also occur in and around Benton Lake NWR in Cascade, Chouteau, and Teton counties. The area is a mix of Federally managed land (Benton Lake NWR), privately owned land, and state trust land. A breeding population of at least two pairs has been recorded within the refuge. The full extent of occupied breeding habitat is unknown. The habitat of ferruginous hawks in Montana has been studied extensively and described as mixed-grass prairie, shrub-grasslands, grasslands, grass-sagebrush complex, and sagebrush steppe (NHP 2004).

Peregrine Falcon

An historical peregrine eyrie is known to occur on private land near the confluence of Cut Bank Creek and Two Medicine River, where the Marias River forms in Glacier County. Eyries have a high potential for re-occupancy. It is unknown when peregrine falcons last occupied this eyrie. Peregrine falcons arrive in northern breeding areas in late April-early May, and departure begins in late August-early September. Nests typically are situated on ledges of vertical cliffs, often with a sheltering overhang. Ideal locations include undisturbed areas with a wide view, near water, and close to plentiful prey. Substitute man-made sites can include tall buildings, bridges, rock quarries, and raised platforms (NHP 2004).
Black-tailed Prairie Dog

A black-tailed prairie dog town is located southeast of Shelby in Toole County north of the Marias River. This particular population is at the western extent of this species’ known distribution (Olson 2005a). Prairie dog colonies are found on flat, open grasslands and shrub/grasslands with low, relatively sparse vegetation. The most frequently occupied habitat in Montana is dominated by western wheatgrass, blue grama, and big sagebrush. Colonies are associated with silty clay loams, sandy clay loams, and loams. Fine to medium textured soils are preferred, presumably because burrows tend to retain their shape and strength better than in coarse, loose soils. In Montana, colonies tend to be associated with areas heavily used by cattle, such as near water tanks and long-term supplemental feeding sites (NHP 2004).

Baird’s Sparrow

Baird’s sparrow nests and individual birds have been reported in Teton County on private land. The most recent data available are from the early 1990s. This species is more common east of the Continental Divide in Montana. The majority of observations of the species in the state occur at the earliest in May and the latest in July (NHP 2004). Baird’s sparrows prefer to nest in native prairie, but habitat structure may be more important than plant species composition. Nesting may take place in cultivated grasses (nesting has been observed in crested wheat, while smooth brome is avoided). This sparrow has also been found to use drier areas during unusually wet years and wet areas during unusually dry years. Because a relatively complex structure is so important for nesting, areas with little to no grazing activity are required (NHP 2004).

Burrowing Owl

Burrowing owl nesting sites are known to occur on Benton Lake NWR in Cascade and Chouteau counties and also in Pondera County. Fledglings have been observed on at least two nest sites on the refuge. Burrowing owls are migratory in the northern portion of their range, which includes Montana. The extreme dates of observation for burrowing owls in Montana are, at the earliest, March and, the latest, October (NHP 2005). The majority of the spring observations of this species occur in April with most fall observations in September (NHP 2004).

Burrowing owls are found in open grasslands, where abandoned burrows dug by mammals such as ground squirrels, prairie dogs, and badgers are available. Black-tailed prairie dog and Richardson's ground squirrel colonies provide the primary and secondary habitat for burrowing owls in the state. The burrows may be enlarged or modified, making them more suitable. Burrowing owls spend much time on the ground or on low perches, such as fence posts or dirt mounds (NHP 2004).
Burrowing owl nesting site surveys were conducted in July 2005 to help assess use of the Project area by the species. With the guidance of a FWP biologist (Olson 2005a) surveys were focused north of the Marias River, north of Highway 2, and along the Kevin Rim. Point-count surveys were used to survey for burrowing owls in July 2005 (Conway and Simon 2003). Point-count survey routes were selected based on habitat and anecdotal observation information by landowners and the FWP biologist. At each survey point, the observer pulled the vehicle off the road, parked on the shoulder, exited the vehicle, and performed a 6-minute point-count survey listening for burrowing owl calls and, using binoculars, scanning the surrounding landscape for owls. The biologists did not observe any burrowing owls during field investigations; however, landowners have reported seeing them within 1 mile of the proposed routes, north of the Marias River and in another area near the alignment off Bullhead Coulee road (Jacobson 2006).

Black-necked Stilt

Approximately 25 black-necked stilt nests were found in 1988 on Benton Lake NWR in Cascade, Chouteau, and Teton counties. This species continues to migrate to and nest on the refuge (Johnson 2005). Extreme migration dates in Montana are April, reported at Benton Lake NWR, and September, reported at Helena Valley Regulating Reservoir. In Montana, black-necked stilts nest in medium to large wetland complexes of open marshes and meadows, often in alkali areas.

Black-crowned Night-Heron

The first confirmed nesting of this species in Montana was in 1979, although records indicate presence of the birds as early as 1967 in the Benton Lake NWR area. The earliest records for Montana indicate arrival in April, with sightings throughout the summer months extending into September, when most of the individuals begin their southerly movement. In 2000, one individual was found in the Chester area and stayed until October. Although highly adaptable to a variety of habitats, the black-crowned night-heron is likely to use shallow bulrush (*Scirpus* spp.) or cattail (*Typha* spp.) marshes, most often within a grassland landscape. In addition, they will nest in cottonwoods, willows, or other wetland vegetation that allows them to nest over water or on islands that may afford them protection from mammalian predators. Most colonies are located in large wetland complexes, typically with a one-to-one ratio of open water and emergent vegetation (NHP 2004).

Common Tern

Approximately 75 common tern nests were found on Benton Lake NWR in 1988, and this species continues to nest on the refuge (Johnson 2005). The earliest migration date for common tern in Montana is in April, but the most concentrated arrival of birds is in
May. Breeding has been recorded in May, June, and July, with fall departure beginning in late August and continuing into September. Nesting in Montana generally occurs on sparsely vegetated islands in large bodies of water. Nest substrate at these locations includes sandy, pebbly, or stony substrate surrounded by matted or scattered vegetation (NHP 2004).

White-faced Ibis

Approximately 15 white-faced ibis nests were found in 1988 on Benton Lake NWR. The number and location of their nests on the refuge vary greatly from year to year. It is reported that they often nest with the black-crowned night heron. White-faced ibises usually leave their wintering grounds in late March to early April. The observation in Montana was at Lee Metcalf NWR in March, but the most concentrated arrival in Montana occurs in May. In Montana, most begin their southern movement in August, and by September they are usually gone from the state (NHP 2004).

The white-faced ibis breeding habitat is typically freshwater wetlands, including ponds, swamps, and marshes with pockets of emergent vegetation. They also use flooded hay meadows and agricultural fields as feeding locations. In Montana, these ibises usually use old stems in cattails, hardstem bulrush, or alkali bulrush over shallow water as their nesting habitat (DuBois 1989). Because water conditions usually determine whether nesting occurs in a particular area, their nesting sites can often move around from year to year. However, it is a fairly adaptable species, and the primary breeding requirement is colony and roosting site isolation (NHP 2004).

Franklin’s Gull

In 1994, approximately 13,000 Franklin’s gull nests were estimated to have occurred on Benton Lake NWR. The Franklin's gull generally returns to the state in mid-April and is gone by early to mid-October. Preferring large, relatively permanent prairie marsh complexes, they build nests over water on a supporting structure of emergent vegetation. Nesting over water differs from the nesting habits of Montana’s other, generally ground nesting, gulls. Franklin's gulls prefer to nest at sites with intermediate vegetation density, interspersed with open water of various sizes. One key feature of selected nesting sites is that the water levels remain high enough throughout the nesting period, or at least until the young can fledge, in order to provide protection from predators. During migration, the Franklin's gull can be found feeding on dry land, especially in cultivated fields prior to planting (NHP 2004).

Long-Billed Curlew

The long-billed curlew is ranked as S2B by the state and is considered at risk because of very limited and/or declining numbers, range, and/or habitat. The NHP did not have
any element occurrence records for this species within the Project area; however, long-billed curlews were observed within the Project area. The long-billed curlew is a migratory summer resident that breeds and nests in Montana. The species inhabits shortgrass prairie communities, with grassland structure more important than species composition, and appears to require large blocks of grasslands with diverse foraging habitats. The long-billed curlew nests in well-drained native grasslands, sagebrush, and agricultural lands with a gently rolling topography. The species migrates from coastal habitats in California, Texas, and Mexico to Montana, where it is typically present between May and August.

3.10.2.3 Fish

Four fish species identified within the Project area are listed by the NHP as threatened, endangered, or of special concern under the Montana Endangered Species Act (Table 3.9-1). The NHP species of concern occurrence report did not include any fish species of concern. However, a search of the Montana Fisheries Information System found that three special status fish species potentially occur in the Teton River within the Project area. These three species are sauger, blue sucker, and sturgeon chub.

The sauger is considered at risk by the State because of very limited and/or declining numbers, range, and/or habitat. The current distribution of the sauger in Montana includes the main stem of the Missouri River and portions of several tributaries, including the Teton River near where the transmission line would cross. The sauger is physiologically adapted for turbid environments, and the species typically inhabits large turbid rivers and shallow lakes. Saugers spawn in large tributaries, and juveniles rear in off-channel habitats during spring and summer before shifting to main channel habitats in autumn.

The blue sucker is considered at risk/potentially at risk by the State. Eastern Montana is the home of the blue sucker, and it appears to inhabit the larger streams, primarily the Missouri and Yellowstone rivers. They make long spawning movements from the lower Missouri River to upstream areas and tributary streams, followed by dispersal downstream. They prefer waters with low turbidity and swift current (NHP 2004). The Montana Fisheries Information System indicates that the blue sucker can be found in the Teton River within the Project area. This would be the western extent of this species’ distribution within Montana.

The State considers the sturgeon chub at risk. The sturgeon chub is one of several native minnows found east of the continental divide. Sturgeon chubs are rarely seen or collected, so little is known about them. Their food habits are unknown, but the ventral mouth and short intestine indicate they feed on bottom-dwelling insects. Sturgeon chubs are found in turbid water with moderate to strong current over bottoms ranging from rocks and gravel to coarse sand (NHP 2004).
3.10.3 Environmental Impacts

3.10.3.1 Alternative 1 - No Action

Under the No Action alternative, the proposed Project would not be implemented. There would be no construction activities or associated activities related to a new transmission line, and existing electrical transmission service would be maintained and operated at its current level. This would result in no impacts to special status plant species, special status wildlife species, or special status fish or their populations within the Project area.

3.10.3.2 Alternatives 2, 3, and 4 - Action Alternatives

Vegetation

Potential impacts to special status plant species for each alternative transmission line alignment were assessed through an evaluation of existing conditions and potential Project-related effects. These effects could include temporary disturbance, such as trampling, during construction and maintenance activities, habitat loss and fragmentation associated with structure footprints and access roads, the creation of new public access into undisturbed habitats, and possible noxious weed competition resulting from seed introduction from construction and maintenance activities. See Section 3.7.3 for further discussion of the proposed transmission line effects on native plants. Three state sensitive wetland species occur in or adjacent to the Project area; however, no Federally listed species were located in the area. The state sensitive species are many-headed sedge, long sheath waterweed, and chaffweed (Table 3.10-1). Historic occurrences of the state sensitive non-vascular species entosthodon moss and American funaria moss were recorded south of the Missouri River, outside of the study area.

The effects on special status vegetation species associated with construction, operation, and maintenance of the proposed transmission line would not differ from those discussed in Section 3.7.3. All special status vegetation species known are located outside of the analysis area and are therefore not likely to be affected by the alternative transmission line alignments.

Of the action alternatives, Alternative 2 has the least likelihood of affecting species of concern, because it crosses less riparian habitat than Alternatives 3 and 4 (Table 3.7-4).
Chapter 3
T&E and Candidate for Listing Species

Wildlife

Informal consultation with the USFWS under section 7 of the ESA is ongoing. A biological assessment of the potential impact of the proposed Project was prepared and submitted to FWS with a request for concurrence with its conclusion that the proposed Project may affect, but is not likely to adversely affect, bald eagles or their critical habitat and would have no effect on black-footed ferrets or their critical habitat.

Potential impacts to special status wildlife species for each alternative transmission line alignment were assessed through an evaluation of existing conditions and potential project-related effects. These effects could include temporary disturbance during construction and maintenance activities, habitat loss and fragmentation associated with clearing and grading of structure sites and access roads, and the creation of new public access into undisturbed habitats. For a more detailed discussion of general impacts of the proposed transmission line on wildlife see Section 3.8.3. Sensitive or important wildlife habitats for species of concern within the project area include intact native prairie grasslands that provide habitat for sharp-tailed grouse, long-billed curlew, and other grassland bird species, and mature riparian cottonwood stands that represent a unique habitat type and potential bald eagle winter habitat. Alternatives 3 and 4 would cross cottonwood stands on the Marias and Teton rivers.

The alternative alignments traverse the known habitat range of five species of concern. Table 3.10-3 lists the linear miles of special status species’ habitat range along each of the three action alternatives.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>State Rank</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-crowned night-heron</td>
<td>S3B</td>
<td>11.2 9.1 2.6</td>
</tr>
<tr>
<td>Black-necked stilt</td>
<td>S3, S4B</td>
<td>11.2 9.1 2.6</td>
</tr>
<tr>
<td>Burrowing owl</td>
<td>S2B</td>
<td>4.2 3.9 0</td>
</tr>
<tr>
<td>Ferruginous hawk</td>
<td>S2B</td>
<td>6.5 0 7.0</td>
</tr>
<tr>
<td>Peregrine falcon</td>
<td>S2B</td>
<td>2.5 2.2 3.0</td>
</tr>
<tr>
<td>Total for All species (Minus the overlap)</td>
<td>--</td>
<td>19.9 11.3 11.7</td>
</tr>
</tbody>
</table>

Notes:

State: S2 = Imperiled because of rarity, or because of other factors demonstrably making it very vulnerable to extinction throughout its range; B = a state rank modifier indicating breeding status for a migratory species; S3 = vulnerable because of rarity, or found in restricted range even though it may be abundant at some of its locations; S4 = apparently secure, though it may be quite rare in parts of its range, especially at the periphery. -- = not applicable
Bald Eagles
Bald eagles within the project area would be minimally affected by the construction activities related to the transmission line as disturbance would be short term, and breeding habitat would not be impacted. Project construction activities could result in disturbance and behavioral interference of wintering bald eagles within the project area. Noise, fugitive dust, and activities associated with site clearing and grading, installation of support structures, construction of access roads and support facilities, and associated equipment could disturb and temporarily displace bald eagles within and adjacent to impact areas. Disturbance associated with the installation and development of the transmission line would result in some habitat loss and fragmentation. Project construction activities, such as site clearing, site grading, and development of access roads and support facilities, would result in a temporary loss of approximately 72 to 80 acres of potential of upland winter foraging habitat in the project area (MATL 2006a). While a portion of disturbed areas would be reclaimed upon completion of construction activities, permanent habitat loss would occur within the footprints of support structures, and access roads.

New transmission lines could potentially impact bald eagles through electrocution. Electrocution occurs when birds with large wingspans come in contact with either two conductors or a conductor and a grounding device. Several factors influence the potential for avian electrocution: topography, vegetation, available prey, behavior, and inadequate separation between energized conductors and grounded hardware providing two points of contact (APLIC and FWS 2005). MATL transmission line design standards provide adequate spacing to eliminate the risk of raptor electrocution. MATL’s line would entail “avian safe” structures, which provide adequate clearance to accommodate a large bird between energized and/or grounded parts. These structures typically have at least 60 inches of horizontal separation, which can accommodate the wrist-to-wrist distance of an eagle. In addition, vertical separation of at least 48 inches can accommodate the height of an eagle from its feet to the top of its head (APLIC and FWS 2005). MATL would apply Suggested Practices for Avian Protection on Power Lines: The State of the Art in 2006, developed by the EEI, APLIC, and the California Energy Commission (2006), as appropriate, during design and construction of overhead structures and substation additions.

The operation of the proposed transmission line could potentially impact bald eagles that may use the project area. As with all birds and raptors, there is the potential for transmission line related collisions. Raptor species, such as eagles, are less likely to collide with power lines, perhaps due to their excellent eyesight and tendency to not fly at dusk or in low visibility weather conditions (Olendorff et al. 1981). Impacts would be avoided as the proposed action would implement environmental protection measures that would reduce the potential for avian collisions. Areas with a higher likelihood for avian collisions, such as known flyways, were avoided.
Avian collisions would be reduced as approved line marking devices would be installed, at intervals based on manufacturer’s recommendations, on overhead ground wires within ¼ mile of all stream, river, and wetland crossings, such as crossings of the Marias River, the Dry Fork Marias River, and Teton River. In addition, line markers would be placed within a ½ mile of the east boundary of Benton Lake NWR. These marking devices would also be placed on any additional important flyway or migration routes that may be identified during pre-construction or construction activities.

Annual mortality surveys by MATL would be conducted within these areas to ensure that the line marking devices are functioning properly. In addition, to ensure that adverse effects would be avoided, MATL would complete and submit to the USFWS an Avian Protection Plan (APP) that would outline the elements of the MATL project that would reduce the avian risks and avian mortality.

As outlined in the Montana Bald Eagle Management Plan (MBEWG 1994), the management goal for Montana populations of bald eagles is to facilitate population growth until the number of viable bald eagle breeding areas peaks. The transmission line design would follow the management plan guidelines and would be in compliance with the management goal as there would likely be no adverse effects to bald eagles. The transmission line design would also be in compliance with the USFWS National Bald Eagle Management Guidelines that were released in May 2007.

Black-footed Ferrets (Federally Endangered)
Since there are no known occurrences of black-footed ferrets within or adjacent to the project area, impacts to ferrets could potentially occur by way of destruction of habitat (prairie dog towns). The only known prairie dog town in the project area is located southeast of Shelby in Toole County, north of the Marias River. It would not be disturbed by the proposed action. This particular population is at the western extent of this species’ known distribution (Olson 2005b).

Installation and development of the proposed transmission line could cause direct injury or mortality to undocumented prairie dog towns within the impact areas. Activities such as site clearing and grading, construction of access roads and support facilities, and off-road travel during construction could destroy any undocumented prairie dog towns. Construction related disturbances would be short term (6 to 7 months) and confined to the construction site or adjacent storage areas. Since black-footed ferrets are not known to occur within the project area, they would not be directly impacted by the proposed action. Any indirect impacts by way of disturbance to undocumented prairie dog towns would be temporary and would not affect current populations of black-footed ferrets.
Chapter 3

Burrowing Owl (State Sensitive)
The transmission line alignments would pass through burrowing owl habitat along the east side of Benton Lake NWR. While biologists did not observe any burrowing owls during field investigations, FWP biologists (Olson 2005b) and landowners have reported seeing this species within 1 mile of the action alternative alignments, north of the Marias River and along Bullhead Coulee. The installation of support structures may disturb undetected burrows and displace burrowing owls. However, the amount of habitat loss would be relatively minor, and displaced owls would have adjacent burrow habitat to occupy in the event of disruption of burrows. Operation of the proposed transmission line could increase owl collisions. This would be expected to be rare as owls have excellent vision, and MATL would be using line-marking devices within designated areas. For more discussion of avian collisions and electrocutions from transmission lines see Section 3.8.

Black-necked Stilt and Black-crowned Night-heron (State Sensitive)
The transmission line alignments pass through the eastern edge of potential nesting grounds for the black-necked stilt and black-crowned night heron just outside the eastern boundary of Benton Lake NWR. This area is a potential migration corridor on the east side of Benton Lake NWR. Nesting stilts and herons may be disturbed and displaced during nesting season as a result of construction activities. This may interfere with the nest success of birds within or adjacent to the construction areas; however, construction activities would be temporary, and the opportunity for re-nesting would likely occur. Permanent habitat loss would be limited to the footprint of the support structures and access roads. This habitat loss would be a relatively minor amount with respect to the available habitat within the area.

Ferruginous Hawk (State Sensitive)
Ferruginous hawk habitat is known to occur within and adjacent to the Project area. Impacts to ferruginous hawks would not vary from impacts to other raptors. A discussion of impacts to raptors is in Section 3.8.

Long-billed Curlew (State Sensitive)
Long-billed curlews were observed in wheat-stubble fields and CRP land during field investigations throughout the summer 2005 (MATL 2006b) and in 2007 (DEQ 2007). Long-billed curlews would experience temporary disturbance and displacement during installation; however, construction activities would be temporary, and the opportunity for re-nesting would likely occur. There would be habitat loss as a result of support structures and access roads; however, this would be relatively minor and would not impact populations within the area. See Section 3.8 for further discussion of the proposed transmission line impacts on birds.
Peregrine Falcon (State Sensitive)
The transmission line alignments cross the location of a historic peregrine falcon eyrie along the Marias River. In May, July, and August 2005 biologists surveyed the confluence of Cut Bank Creek and Two Medicine River looking for the eyrie and signs of peregrine falcons. Neither eyries nor peregrine falcons were observed (MATL 2006b). It is unknown when peregrine falcons last occupied or were sighted around this eyrie (Olson 2005b). The construction activities associated with the proposed transmission line could potentially disturb the eyrie, if occupied. Disturbances would be temporary and would not directly disturb any occupied nest sites. For a discussion of collision and electrocution impacts on raptors see Section 3.8.

Fish

A search of the Montana Fisheries Information System indicated that three special status (State Sensitive) fish species potentially occur in the Teton River within the Project area. These three species are: sauger, blue sucker, and sturgeon chub. No Federally threatened, endangered, or candidate fish species were identified in the Project area.

Effects on special status fish associated with the implementation of the proposed transmission line would not differ from those discussed in Section 3.9.3.

3.10.3.3 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
Chapter 3

3.11 Air Quality

3.11.1 Analysis Methods

Potential impacts to air quality from installation of the power transmission line were evaluated using criteria pollutant emission rates from sources (for example, equipment engines and dust from construction activities) and air regulations (including emission standards, as applicable) pertinent to the project.

Analysis Area

The analysis area for air resources is the MFSA application Project study area (Figure 1.1-1) and the surrounding air shed within a distance of 10 miles. The analysis area is located in north central Montana and exhibits terrain described as rolling hills with elevations ranging from 3,400 feet (Great Falls) to 3,800 feet (Cut Bank) above mean sea level.

Information Sources

Base information for the analysis of air resources was derived from the Montana MFSA application (MATL 2006b). Base information includes data such as the alignments, area impacted by construction activities, equipment type, and duration of construction. Comparative information, such as ambient air quality, atmospheric conditions, and existing air emission sources, was derived from databases maintained by National Oceanic and Atmospheric Administration (NOAA) (2006), EPA (2006a, 2006b), WRCC (2006), and DEQ (2006a). Regulatory standards for air quality (for example, criteria pollutants) were obtained from EPA (2006b) and DEQ (2006a, 2006b).

3.11.2 Affected Environment

Air quality in the analysis area is affected by activities currently conducted within the area. Examples of such activities include fixed facilities such as petroleum refining plants (refineries), crude oil pumps and natural gas compressor stations, petroleum product terminals, coal-fired electrical generating plants, concrete mix plants, asphalt mix plants, and crematoriums. Portable source examples include facilities such as gravel crushers, associated processing equipment, asphalt plants, and farming. Smoke from grass and forest fires from late spring through early fall can degrade air quality depending on the year.
Chapter 3

Air Quality

Climate

Climate is influenced by major topographic features, including the plains of northern Montana and, 40 to 60 miles to the west, the Rocky Mountains. The continental divide and Rocky Mountains traverse the western half of Montana in roughly a north-south direction. The continental divide exerts a marked influence on local climate. Climate characteristics east of the continental divide are decidedly continental. In general, the analysis area (east of the continental divide) is colder, is characterized by lower precipitation, and is windier than conditions west of the divide.

Plains in the analysis area range in elevation from about 3,400 to 3,800 feet above mean sea level. Summers typically receive 1 to 2 inches of precipitation per month, and temperatures range from warm to hot. Winters, while usually cold, have few extended cold spells. Between cold waves, there are periods of mild but often windier weather called “chinook” weather. Wind speed and direction data for the subject area from NOAA show varying speeds and direction. Based on data collected at Great Falls, the typical wind speed averages 10.5 miles per hour and blows primarily from the southwest. Chinook winds frequently reach speeds of 25 to 50 miles per hour or more and can persist, with little interruption, for several days.

Temperature and Precipitation

Based on long-term data collected in Great Falls, Montana, the average daily temperature of the study area ranges from 30°F in January to 83°F in July. Average monthly precipitation ranges from 0.6 inch in February to 2.5 inches in May. The largest amount of precipitation occurs during the spring in May and June. Summer precipitation is often associated with thunderstorms. Total annual precipitation from 1961 to 1990 averaged 15.2 inches per year.

Fall and winter are cool to cold with few extended cold spells. Most precipitation during this period is in the form of snow; annual snowfall ranges from 14 to 60 inches with heavier accumulations generally recorded closer to Great Falls.

Air Quality

DEQ and the Federal government have established ambient air quality standards for criteria air pollutants, including carbon monoxide (CO), lead (Pb), sulfur dioxide (SO2), particulate matter smaller than 10 microns (PM10), ozone, and nitrogen oxides (NOx). In 1997, the EPA revised the Federal primary and secondary particulate matter standards by establishing annual and 24-hour standards for particles 2.5 micrometers in diameter or smaller (PM2.5).
Table 3-11.1 lists Federal and state air quality standards. National primary standards are levels of air quality necessary, with an adequate margin of safety, to protect public health. National secondary standards are levels of air quality necessary to protect public welfare from known or anticipated adverse effects of a regulated air pollutant.

The attainment status for pollutants within the project area is determined by monitoring levels of criteria pollutants for which National and Montana Ambient Air Quality Standards exist. Air quality in the analysis area is designated as attainment for all criteria pollutants. The attainment designation means that no violations of Montana or national air quality standards have been documented in the area. Great Falls was reclassified in 2002 by the EPA from non-attainment for carbon monoxide to attainment.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Air Quality Standard Concentration a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Montana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National</td>
</tr>
<tr>
<td>Ozone</td>
<td>1 hour</td>
<td>196 μg/m3 (0.10 ppm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>235 μg/m3 (0.12 ppm)</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>8 hour</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>157 μg/m3 (0.08 ppm)</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>26,450 μg/m3 (23 ppm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40,000 μg/m3 (35 ppm)</td>
</tr>
<tr>
<td></td>
<td>8 hour</td>
<td>10,000 μg/m3 (9.0 ppm)</td>
</tr>
<tr>
<td>Nitrogen Oxides</td>
<td>Annual Mean</td>
<td>94 μg/m3 (0.05 ppm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 μg/m3 (0.053 ppm)</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>Annual Mean</td>
<td>52 μg/m3 (0.02 ppm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 μg/m3 (0.03 ppm)</td>
</tr>
<tr>
<td></td>
<td>24 hour</td>
<td>262 μg/m3 (0.10 ppm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>365 μg/m3 (0.14 ppm)</td>
</tr>
<tr>
<td></td>
<td>3 hour</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,300 μg/m3 (0.50 ppm)b</td>
</tr>
<tr>
<td>Particulate Matter</td>
<td>Annual</td>
<td>50 μg/m3</td>
</tr>
<tr>
<td>as PM$_{10}$</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Particulate Matter</td>
<td>Annual</td>
<td>150 μg/m3</td>
</tr>
<tr>
<td>as PM$_{2.5}$</td>
<td></td>
<td>150 μg/m3</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>Calendar quarter/90-day averagec</td>
<td>1.5 μg/m3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 μg/m3</td>
</tr>
</tbody>
</table>

Note: μg/m3 = micrograms per cubic meter; ppm = parts per million; PM$_{10}$ = Particulate Matter smaller than 10 microns; PM$_{2.5}$ = Particulate Matter smaller than 2.5 microns.

Sources: Administrative Rules of Montana (ARM) 17.8 and 40 CFR Part 50, National Primary and Secondary Ambient Air Quality Standards

a Primary Standard unless otherwise noted

b Secondary Standard

c Calendar quarter for National; 90-day average for Montana
Chapter 3

Air Quality

Air Quality Monitoring Data

Ambient air quality data have been collected in or near the analysis area at monitoring stations in Great Falls and Browning, Montana. Data from monitoring stations in Browning (approximately 35 miles west of the power line alignment) were included to provide a second source (that is, city location) of information. Data collected at the Great Falls sites include criteria pollutants PM\textsubscript{10}, PM\textsubscript{2.5}, SO\textsubscript{2}, and CO. Data collected at the Browning sites include the criteria pollutant PM\textsubscript{10}. Air quality data for criteria pollutants are in Appendix K of the March 2007 document.

PSD Classification

The analysis area and vicinity are designated Class II, as defined by the Federal Prevention of Significant Deterioration (PSD) provision of the Clean Air Act. The PSD Class II designation allows for moderate growth or degradation of air quality within certain limits above baseline air quality. Industrial emission sources proposing construction or modifications will demonstrate that the proposed emissions would not cause major deterioration of air quality in all areas. The standards for significant deterioration are more stringent for Class I areas than for Class II.

Federal/State Mandatory Class I areas located within 100 miles of the project area include Scapegoat Wilderness (50 miles west), Bob Marshall Wilderness (50 miles west), Glacier National Park (40 miles west), and Gates of the Mountains Wilderness (50 miles southwest).

Existing Sources

There are multiple air emission sources in the vicinity of the project area. Some of the permitted fixed facilities include petroleum refining plants (refineries), crude oil pumps and natural gas compressor stations, petroleum product terminals, concrete mix plants, asphalt mix plants, crematoriums, and other facilities. Permitted portable facilities include gravel crushers and associated processing equipment and asphalt plants. These facilities operate under specific permit limits for criteria pollutants such as PM\textsubscript{10}, PM\textsubscript{2.5}, SO\textsubscript{2}, CO, and Pb. Other potential emission sources (for example, fugitive dust and smoke sources) include farming, field and forest burning, and dust from gravel roads.

Particulate Emissions

Potential sources of particulate (for example, PM\textsubscript{10}, PM\textsubscript{2.5}) emissions for the action alternatives are equipment used during the construction of the power line and equipment used to conduct maintenance and make repairs to the transmission line during the life of the project. Possible emissions during construction include fugitive dust from vehicles and equipment traveling on dirt roads and engine exhaust.
Gaseous and Photochemical Emissions
Potential sources of gaseous (for example, NO₂, SO₂, and CO) emissions for the proposed Project, including greenhouse gases, are equipment used during the construction of the power line and equipment used to conduct maintenance and make repairs to the transmission line during the life of the project. Possible emissions could be associated with engine exhaust from equipment traveling to the site and along access roads. These gaseous emissions from vehicles and equipment would include carbon dioxide (CO₂), a greenhouse gas (IPCC 2007). CO₂ would be released both directly from fuel combustion and indirectly as carbon monoxide (CO) that is converted to CO₂ after its release to the atmosphere.

Normal transmission line operations would produce a small amount of ozone from a photo-chemical reaction generated by corona activity. During damp or rainy weather, the ozone produced would be less than 1 part per billion which would be insignificant when compared to natural levels and their fluctuations (DOE 2001).

Air Quality Permitting
Industrial air quality permitting is part of the Montana State Implementation Plan process. DEQ uses air quality permit conditions to help ensure compliance with applicable Montana and National Ambient Air Quality Standards and PSD increments. Work conducted under the proposed Project would be subject to Administrative Rules of Montana (ARM) Title 17, Chapter 8 (Air Quality). Due to the nature of the project (that is, mobile equipment and short duration of construction), no specific permit requirements apply to gaseous emissions. However, construction would be required to comply with fugitive dust provisions under subchapter 3 of the rules, which require precautions to control airborne particulate emissions.

3.11.3 Environmental Impacts
Under all alternatives, no air quality permit or prevention of significant deterioration analysis would be needed.

3.11.3.1 Alternative 1 - No Action

Emissions
Under the No Action alternative, the power line would not be constructed, and emissions and air quality in the area would remain at current levels.
3.11.3.2 Alternatives 2, 3, and 4 - Action Alternatives

Alternatives 2, 3, and 4 would result in an increase in activities that could adversely affect air quality during construction (short term) and during operation and maintenance of the transmission line (long term). For example, construction equipment (earthmoving equipment, cranes, or other equipment) and support vehicles (crew transportation, fueling, or other vehicles) would be used during the construction phase, and lighter equipment (for example, four-wheel-drive pickups) would be used during the operation and maintenance period. The construction phase is anticipated to last approximately 8 months. Operations and maintenance activities would last the life of the project, but impacts would be intermittent (for example, monthly and quarterly) and relatively minor compared to impacts during construction.

Emissions

Emissions from construction equipment and support vehicles would be transient and short term. The duration of the adverse impact would be a function of whether the source activity is associated with construction, or with operations and maintenance activities. The majority of the adverse impact would occur during the project construction phase when there is a relatively larger amount of equipment movement and vehicular traffic. Air quality impacts would include fugitive dust, gaseous emissions from engine operation, and small amounts of ozone produced photo-chemically by corona activity. Fugitive dust would be controlled through dust control measures such as water sprays, limiting the speed of construction equipment, and reseeding the disturbed areas at the end of the construction period. Gaseous emissions would be limited through construction management and scheduling. The levels of ozone produced through normal line operations would be insignificant.

Differences in the rate of emissions between alternatives would be a function of the amount of time project vehicles and equipment are used in the transmission line right-of-way. The amount of time equipment is used depends on several factors including, but not limited to, length of the transmission line for each alternative, overall topography and the presence of difficult or steep terrain, and the number of stream crossings. An alternative characterized by a longer alignment or difficult terrain would result in overall greater emissions. The differences in emissions would be minor and not substantially different between alternatives. Gaseous emissions from vehicles and equipment would represent a very small contribution to the ongoing accumulation of greenhouse gases in the atmosphere.

3.11.3.3 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
3.12 Audible Noise

Noise is defined as unwanted sound. It may be continuous (constant noise and decibel level), steady (constant noise with a fluctuating decibel level), impulsive (having a high peak of short duration), stationary (occurring from a fixed source), intermittent (occurring at the same rate), or transient (occurring at different rate). Noise levels are quantified using units of decibels. The A-weighted scale, reported in A-weighted decibels (dBA), most effectively approximates the human ear’s response to sounds.

Audible noise from transmission lines is primarily due to point source corona (crackling and hissing with small amounts of light). It routinely occurs when air is ionized around a gap, burr, irregularity, or some non-insulated component during the conductance of electricity through power lines. Periods of rain, fog, or heavy humidity amplify these corona effects due to the bridging capabilities of electricity and water. Additionally, corona is produced when transmission lines break down over time and their fastener components loosen resulting in an air gap. All corona-based noise sources would be point source locations due to the inconsistencies found along the line.

In addition to audible noise due directly to the transmission line and to other environmental factors, noise can be generated as a result of wind blowing across power lines and power poles when airflow is non-laminar or turbulent (Section 3.12.3).

3.12.1 Analysis Methods

Analysis Area

The analysis area for noise is the proposed and alternative transmission line alignments. Noise estimates were made at the edge of the EMF safety zone (52.5 feet from the centerline) and 100 feet to either side of the centerline.

Information Sources

The U.S. Department of Housing and Urban Development (HUD) noise level criteria that developments and industrial construction must adapt to are a 65 dBA average day/night noise level (L_{dn}) for exterior environments and 45 dBA L_{dn} for interior home environments (HUD 2001).

The DOE and BPA conducted research to determine the likelihood of receiving complaints related to transmission line audible noise. These noise values can be related to the level during rain that would be exceeded 50 percent of the time over 1 year (L_{50}) (BPA 1982). The foul weather L_{50} values are calculated at 100 feet from the centerline (BPA 1982).
The following probabilities of receiving complaints are based on their expected audible noise level:

- High, Numerous Complaints: over 60 dBA
- Moderate, Some Complaints: 52 to 60 dBA
- Low, No Complaints: less than 52 dBA

MATL used the BPA Corona and Field Effects Program (Version 3.0) to determine the decibel levels from the centerline for the H-frame and monopole structures (MATL 2006b).

3.12.2 Affected Environment

With the exception of the immediate Cut Bank area, the proposed Project alternatives are in a rural, predominantly agricultural area. Sources of background noise to rural residents and occasional visitors to the area include wind, agricultural activity, recreation (primarily hunting), and vehicles traveling the numerous county and state roadways and Interstate 15 in proximity to these alternatives. See Table 3.12-1 for common noise sources and their noise levels.

<table>
<thead>
<tr>
<th>TABLE 3.12-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOISE LEVELS OF COMMON SOURCES</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Sound Source</td>
</tr>
<tr>
<td>Air raid siren at 50 feet</td>
</tr>
<tr>
<td>Maximum levels in audience at rock concerts</td>
</tr>
<tr>
<td>On platform by passing subway train</td>
</tr>
<tr>
<td>On sidewalk by passing heavy truck or bus</td>
</tr>
<tr>
<td>On sidewalk by typical highway</td>
</tr>
<tr>
<td>On sidewalk by passing automobiles with mufflers</td>
</tr>
<tr>
<td>Typical urban area background/busy office</td>
</tr>
<tr>
<td>Typical suburban area background</td>
</tr>
<tr>
<td>Quiet suburban area at night</td>
</tr>
<tr>
<td>Typical rural area at night</td>
</tr>
<tr>
<td>Isolated broadcast studio</td>
</tr>
<tr>
<td>Audiometric (hearing testing) booth</td>
</tr>
<tr>
<td>Threshold of hearing (with undamaged hearing)</td>
</tr>
</tbody>
</table>

Source: Cowan 1994

dBA = A-weighted decibels.
Chapter 3

Audible Noise

Generic noise level data from the EPA and the National Transit Institute were used to estimate a typical sound level range for rural residences and agricultural cropland. Typical baseline noise levels in the Project study area likely range from approximately 30 dBA to 48 dBA (EPA 1978).

ARM 17.20.1607(2)(a)(i) states “for electric transmission facilities, the average annual noise levels, as expressed by dBA-Ldn would not exceed 50 decibels at the edge of the right-of-way in residential and subdivided areas.” The affected landowner may waive this condition. The BPA design criterion for corona-generated audible noise (L50, foul weather) is 50 +/-2 dBA at the edge of the right-of-way (BPA 1982).

Commercial and industrial activities (linear/point facilities) within the analysis area include communication sites (cell towers, microwave facilities), oil and gas development, surface mines (gravel pits), airstrips (public and private), railroads, pipelines and transmission lines, roadways, and military installations (MATL 2006b). Most residential areas (sensitive receptors) throughout the analysis area are approximately ¼ mile or more from the proposed transmission line centerline and alternative alignments. The closest residence is roughly 270 feet from the centerline. Alternative 4 passes through a subdivided, though undeveloped area.

3.12.3 Environmental Impacts

3.12.3.1 Alternative 1 – No Action

There would be no noise impacts related to selection of the No Action alternative.

3.12.3.2 Alternatives 2, 3 and 4 – Action Alternatives

Noise resulting from these alternatives would come from construction, corona effects, and wind.

Construction Impacts

Transmission line construction would require the short-term use of the following kinds of construction equipment: cranes, augers, compressors, air tampers, generators, haul trucks, bulldozers, excavators, concrete equipment, and other equipment. Construction activities would create both intermittent and continuous noises throughout the project at multiple pole locations along the chosen alignment. Intermittent noises would be created by passing trucks, loading and unloading operations, drilling, and other activities. Continuous noises would be created by generators, air tampers, compressors, and drilling operations.
Chapter 3

Audible Noise

The typical range of noise for earthmoving equipment at 50 feet is from 72 to 96 dBA. Typical ranges of noise for material handling equipment is from 75 to 88 dBA. Noise values 100 feet from the source are 66 to 90 dBA; noise values ¼ mile away are 44 to 68 dBA. Different makes and models of equipment, motor idling speeds, engine maintenance characteristics, and overall muffler performance would result in different dBA values.

The typical ruling span for transmission line support structures would be approximately 800 feet, and the structures would be constructed within the alignment (MATL 2006b). Approximately 10 to 12 transmission line structures would be erected per day. Therefore, any individual location near the transmission line alignment would be affected for approximately one half day during the construction process (VandenBos 2006).

During the construction process, heavy equipment grading, transport, and compacting activities may cause vibrations noticeable to residents within 100 feet. Under Alternative 2, near milepost 73, one residence is located within 20 feet of the 500-foot alignment edge or about 270 feet from the centerline. The Belgian Hill local routing option was developed for this section of Alternative 2 (Section 3.16) and would reduce potential impacts to this residence by moving the alignment about ¼ mile to the west and away from this residence. The peak vibration level would occur during construction activities. Other activities, such as large trucks and equipment motoring over potholes and rocks, would cause slight noticeable vibrations up to 100 feet.

Operational Impacts

Corona

Table 3.12-2 identifies the audible noise values calculated in MATL’s permit application when simulating the 230-kV transmission line for both H-frame structures and monopole structures. Standard transmission line building constituents were used, including a rain rate (applicable to audible noise) of 0.14 inch per hour (MATL 2006b). BPA indicated that the rain data typically used in the program are from an average of rainfall throughout the northwest region (Storns 2006).

Table 3.12-2 shows that for H-frame structures, audible noise levels of 46.23 dBA and 49.56 dBA would be expected at distances of 100 feet and 52.5 feet (edge of safety zone) from the centerline, respectively. These values would be below the recommended guidelines of 65 dBA exterior noise housing regulations developed by HUD. Table 3.12-2 indicates that for monopole structures, audible noise levels of 47.13 dBA and 50.0 dBA would be expected at distances of 100 feet from the centerline, and at the edge of safety zone, respectively. These values would be below the recommended guidelines of 65 dBA exterior noise housing regulations developed by HUD. At the nearest
residence, roughly 270 feet, noise levels would be below state standards for residential and subdivided areas.

Sound pressure level analysis conducted at the edge of the right-of-way based upon the known audible noise level at the edge of the safety zones for each type of pole calculated the following dBA noise levels:

- H-frame Double Pole: 56.89 dBA; and,
- Monopole: 55.03 dBA.

These values were based upon a total right-of-way width of 45 feet (22.5 feet from the centerline to the edge of the right-of-way). These values for both structures are above the right-of-way design criteria of 50 dBA at the edge of the right-of-way in residential and subdivided areas, as specified in ARM 17.20.1607(2)(a)(i), using the existing rainfall event criteria (0.14 inches of rain per hour) to establish the safety zone noise levels used in this calculation (MATL 2006b). The 50 dBA requirement may be waived by the landowner or a wide right-of-way could be obtained.

<table>
<thead>
<tr>
<th>Pole Type</th>
<th>Distance from Centerline (feet)</th>
<th>Audible Noise (dBA) (L50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-frame Double Pole</td>
<td>100</td>
<td>46.23</td>
</tr>
<tr>
<td></td>
<td>52.5</td>
<td>49.56</td>
</tr>
<tr>
<td>Monopole</td>
<td>100</td>
<td>47.13</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>30.18</td>
<td>52.48</td>
</tr>
</tbody>
</table>

Notes:
Estimates calculated using Corona and Field Effects Program (Kingery 1991), and based on conductor ground clearance of 21.2 feet (NESC specification). dBA (L50) = decibels (A-weighted) during foul weather, indicated by L50.
No data are available for noise generated by wind.
Wind

Noise can be generated as a result of wind blowing across power lines and power poles when airflow is non-laminar. Only limited research has been conducted to address wind-caused noise due to transmission line placement in urban and rural settings. For example, a wind velocity of approximately 46 miles per hour across a single conventional-style conductor cable resulted in a single-point octave band center frequency of 55 dBA at 100 hertz (Furukawa Review 2002).

Corona effects due to both single pole and H-frame structures are minor based on the actual distance to residential structures near the power lines and the rain data used for the calculations of the safety zone audible noise.

Noise generated based from wind effects of power lines would be minor based on gust-wind (46 mile per hour) noise generated across the transmission lines.

The single difference between the alternatives is based upon the distance from the edge of the right-of-way to the edge of property lines of sensitive receptors. The further away the power line is from the sensitive receptors the quieter the corona-generated, wind based, and construction noises would be.

3.12.3.3 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
3.13 Socioeconomics

3.13.1 Analysis Method

Analysis Area

The socioeconomic analysis area defined for the Project includes portions of Cascade, Chouteau, Glacier, Pondera, Teton, and Toole counties. This section provides the demographic, social, and economic profiles of each of these counties. These profiles would serve as a basis from which to estimate potential impacts to the socioeconomic condition of the region should the Project be implemented. This section also includes the baseline conditions for evaluating effects of the Project on minority and low income populations in accordance with Executive Order 12898: Federal Actions to Address Environmental Justice in Minority and Low Income Populations (February 11, 1994).

Information Sources

The demographic profiles for each county are based on U.S. Census data collected in 2000. Population and growth estimates developed in 2005 by the U.S. Census Bureau are also referenced, although these data are not uniformly available across all counties and towns within the analysis area. As a result, these estimates are generally not used for quantitative analysis, but may be used in certain instances to provide a temporal characterization of a specific locality when appropriate. Additional demographic and economic statistics were compiled from various sources including, but not limited to, the Montana Department of Labor and Industry, Montana Department of Commerce, and the USDA.

Estimates of construction labor force and capital construction costs are based on available information from MATL and figures developed during construction of similar projects.

Information related to public services, including level of service and capacity, was obtained from documents provided by MATL to DEQ in the spring of 2006.

DEQ commissioned an independent report, the Farming Cost Review (HydroSolutions Inc. and Fehringer Agricultural Consulting, Inc. July 12, 2007), containing a detailed and critical review of three studies that estimate transmission line structure costs to a ‘representative farmer’ in the area of Conrad, Montana (Appendix N). The Farming Cost Review report estimated the annual costs to farmers of transmission structures in their crop fields.
Methods of Analysis

Direct, indirect, and cumulative impacts to socioeconomic resources were assessed based on reviews of similar projects in the state and other relevant energy industry policy documents and through interviews with individuals whose fields of expertise and experience provide insight relevant to this project. Such sources are referenced as appropriate. Conclusions regarding the impacts to local services that may occur during construction, operation, and maintenance of the project were developed by evaluating the number of employees and the duration of these activities relative to the availability of services and amenities that may be required.

3.13.2 Affected Environment

The discussion below presents information on demographics, economic activity, and local resources for each county in the analysis area.

3.13.2.1 Demographics

The Project analysis area is characterized by large expanses of open, sparsely populated agricultural land. Over 88 percent of agricultural land within the analysis area is cropland, while the remaining land is used for grazing or is under the Federal CRP (MATL 2006b). Like much of the upper Great Plains, market forces triggered in part by advances in farming technology, consolidation of large agricultural tracts into corporate production, and large tracts removed from production under the CRP have contributed to a decline in the populations of Pondera and Toole counties and general stagnation of growth in Teton County since the 1960s. The Montana Department of Labor and Industry (2005) reports that oil and gas account for about 11 percent of Toole County’s total wages and even less in the other counties in the analysis area. These factors have recently combined to reduce demand for labor and demand for goods and services related to agricultural and energy production.

Most counties in the analysis area have seen declines in population or have seen their population hold steady. The population of Chouteau County has declined to less than half the number of people today than were there in the early 1900s. However, the 2005 estimated population of Chouteau County is about the same as the reported population in 1990 (U.S. Census Bureau 2005a). Meanwhile, growing tribal population on the Blackfeet Reservation, which makes up the largest population sector in Glacier County, has resulted in a growth rate in that county that has mirrored the state’s growth pattern. The state’s population grew by almost 13 percent between 1990 and 2000, while the population of Glacier County grew by 9.3 percent during that same period. Growth levels for both the state and Glacier County have tapered since then, to 3.7 percent and 2.3 percent, respectively from 2000 to 2005. Cascade County’s population grew steadily, about 0.6 percent annually, throughout most of the 1900s, but tapered off toward the
end of the century and is estimated to have decreased since the 2000 Federal census (U.S. Census Bureau 2000a).

Demographic data for each of the counties within the Project analysis area are shown below and summarized in Tables 3.13-1 and 3.13-2.

Cascade County

Cascade County encompasses the southern portion of the Project analysis area and is Montana’s third most populous with 79,298 residents (U.S. Census Bureau 2000a). Cascade County covers approximately 2,698 square miles, resulting in an average population density of approximately 30 individuals per square mile. County population levels declined by approximately 2.7 percent between 1970 and 2005 based on estimates provided by the Montana Department of Commerce (2005).

The City of Great Falls is the largest population center (56,622 people based on the 2000 Federal census) in the county and is also the county seat. Other towns in the county include Belt, Black Eagle, Cascade, Fort Shaw, Monarch, Neihart, Simms, Stockett, Sun River, Ulm, and Vaughn. These towns range in size from approximately 70 people to almost 1,000 in Black Eagle, according to U.S. Census Bureau Data (2000a). Additional people also live at Malmstrom Air Force Base is in Cascade County east of Great Falls (Great Falls Development Authority 2005).

Average family size in the county is 2.97 individuals, and the average household size is 2.41 individuals. Most people are homeowners (64.9 percent), while the remainder rent housing. Less than 8 percent of housing units are unoccupied.

Chouteau County

Chouteau County encompasses 3,973 square miles. Based on the most recent population estimates of 5,463 individuals (Montana Department of Commerce 2005), the population density is approximately 1.4 persons per square mile. The 2005 population estimates, derived from tax records and birth and death statistics, suggest that the county has potentially lost up to 8.5 percent of its population between 2000 and 2005. This sharp decline balances with a similar increase in population between 1990 and 2000, but overall there has been a relatively steady decline since 1960. Communities in the county include the county seat of Fort Benton, Big Sandy, Box Elder, Carter, Geraldine, Iliad, Loma, and Shonkin. According to the 2000 Federal census, the average family in the county has 3.1 individuals and the average household size is 2.6 individuals. Approximately 69 percent of the county’s residents are homeowners while the remainder rent. The housing vacancy rate is fairly high at 19.8 percent.
TABLE 3.13-1
DEMOGRAPHIC PROFILES OF COUNTIES WITHIN THE PROJECT ANALYSIS AREA

<table>
<thead>
<tr>
<th></th>
<th>Cascade County No.</th>
<th>Percent in County</th>
<th>Teton County No.</th>
<th>Percent in County</th>
<th>Chouteau County No.</th>
<th>Percent in County</th>
<th>Pondera County No.</th>
<th>Percent in County</th>
<th>Toole County No.</th>
<th>Percent in County</th>
<th>Glacier County No.</th>
<th>Percent in County</th>
<th>Percent in Montana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>39,756</td>
<td>49.5</td>
<td>3,174</td>
<td>49.2</td>
<td>2,997</td>
<td>50.2</td>
<td>3,169</td>
<td>49.3</td>
<td>2,716</td>
<td>51.6</td>
<td>6,553</td>
<td>49.5</td>
<td>49.8</td>
</tr>
<tr>
<td>Female</td>
<td>40,601</td>
<td>50.5</td>
<td>3,271</td>
<td>50.8</td>
<td>2,973</td>
<td>49.8</td>
<td>3,255</td>
<td>50.7</td>
<td>2,551</td>
<td>48.4</td>
<td>6,694</td>
<td>50.5</td>
<td>50.2</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>15 or Younger</td>
<td>17,163</td>
<td>21.4</td>
<td>1,392</td>
<td>21.6</td>
<td>1,384</td>
<td>23.2</td>
<td>1,503</td>
<td>23.4</td>
<td>1,066</td>
<td>20.2</td>
<td>3,757</td>
<td>28.4</td>
<td>20.6</td>
</tr>
<tr>
<td>16 – 24</td>
<td>11,100</td>
<td>13.8</td>
<td>758</td>
<td>11.8</td>
<td>724</td>
<td>12.1</td>
<td>810</td>
<td>12.6</td>
<td>638</td>
<td>12.1</td>
<td>2,067</td>
<td>15.6</td>
<td>14.4</td>
</tr>
<tr>
<td>25 – 44</td>
<td>22,558</td>
<td>28.1</td>
<td>1,587</td>
<td>26.4</td>
<td>1,437</td>
<td>24.1</td>
<td>1,594</td>
<td>24.8</td>
<td>1,484</td>
<td>28.2</td>
<td>3,560</td>
<td>26.9</td>
<td>27.2</td>
</tr>
<tr>
<td>45 – 64</td>
<td>18,288</td>
<td>22.8</td>
<td>1,635</td>
<td>25.4</td>
<td>1,382</td>
<td>23.1</td>
<td>1,473</td>
<td>22.9</td>
<td>1,242</td>
<td>23.6</td>
<td>2,642</td>
<td>19.9</td>
<td>24.4</td>
</tr>
<tr>
<td>65+</td>
<td>11,248</td>
<td>14.0</td>
<td>1,073</td>
<td>16.6</td>
<td>1,043</td>
<td>17.5</td>
<td>1,044</td>
<td>16.3</td>
<td>837</td>
<td>15.9</td>
<td>1,221</td>
<td>9.2</td>
<td>13.4</td>
</tr>
<tr>
<td>Average Age</td>
<td>37.2</td>
<td>--</td>
<td>39.3</td>
<td>--</td>
<td>38.7</td>
<td>--</td>
<td>38.0</td>
<td>--</td>
<td>38.8</td>
<td>--</td>
<td>32.5</td>
<td>--</td>
<td>37.4</td>
</tr>
</tbody>
</table>

Notes:
- Source: U.S. Census Bureau, 2005a
- -- = Not applicable
TABLE 3.13-2
RACE AND ETHNICITY WITHIN COUNTIES IN THE PROJECT ANALYSIS AREA

<table>
<thead>
<tr>
<th>Race or Ethnicity</th>
<th>Cascade County</th>
<th></th>
<th>Teton County</th>
<th></th>
<th>Chouteau County</th>
<th></th>
<th>Pondera County</th>
<th></th>
<th>Toole County</th>
<th></th>
<th>Glacier County</th>
<th></th>
<th>Percent in Montana</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
<td>Number</td>
<td>Percent</td>
<td>Number</td>
<td>Percent</td>
<td>Number</td>
<td>Percent</td>
<td>Number</td>
<td>Percent</td>
<td>Number</td>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>72,897</td>
<td>90.7</td>
<td>6,207</td>
<td>96.3</td>
<td>5,015</td>
<td>84.0</td>
<td>5,374</td>
<td>83.7</td>
<td>4,945</td>
<td>93.9</td>
<td>4,693</td>
<td>35.4</td>
<td>90.6</td>
</tr>
<tr>
<td>Black or African American</td>
<td>900</td>
<td>1.1</td>
<td>12</td>
<td>0.2</td>
<td>5</td>
<td>0.1</td>
<td>6</td>
<td>0.1</td>
<td>8</td>
<td>0.2</td>
<td>11</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>American Indian and Alaskan</td>
<td>3,394</td>
<td>4.2</td>
<td>98</td>
<td>1.5</td>
<td>873</td>
<td>14.6</td>
<td>929</td>
<td>14.5</td>
<td>168</td>
<td>3.2</td>
<td>8,186</td>
<td>61.8</td>
<td>6.2</td>
</tr>
<tr>
<td>Native</td>
<td>652</td>
<td>0.8</td>
<td>6</td>
<td>0.1</td>
<td>14</td>
<td>0.2</td>
<td>9</td>
<td>0.1</td>
<td>16</td>
<td>0.3</td>
<td>9</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Hawaiian and other Pacific</td>
<td>67</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0.1</td>
<td>3</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
<td>7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Native Islander</td>
<td>547</td>
<td>0.7</td>
<td>27</td>
<td>0.4</td>
<td>14</td>
<td>0.2</td>
<td>8</td>
<td>0.1</td>
<td>17</td>
<td>0.3</td>
<td>24</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Some other race</td>
<td>1,900</td>
<td>2.4</td>
<td>95</td>
<td>1.5</td>
<td>43</td>
<td>0.7</td>
<td>95</td>
<td>1.5</td>
<td>112</td>
<td>2.1</td>
<td>317</td>
<td>2.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Two or more races</td>
<td>1,949</td>
<td>2.4</td>
<td>73</td>
<td>1.1</td>
<td>40</td>
<td>0.7</td>
<td>54</td>
<td>0.8</td>
<td>61</td>
<td>1.2</td>
<td>159</td>
<td>1.2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Note:
Percentages may not equal 100 because of rounding and potential duplicate counting for “some other race” and “two or more races.”
Chapter 3

Glacier County

After Cascade County, Glacier County is the most populous county within the Project analysis area with an estimated 2005 population of 13,552. Land area is 2,995 square miles, resulting in an average density of 4.5 people per square mile. Unlike the other counties within the analysis area that have experienced a population reduction, Glacier County grew approximately 2.3 percent between 2000 and 2005 (Montana Department of Commerce 2005).

Principal communities include Babb, Browning, Cut Bank, Del Bonita, and Saint Mary. Cut Bank is the county seat and reported an estimated population of 3,155 in 2004 (U.S. Census Bureau 2005a). The Blackfeet Reservation accounts for the majority of the county’s area and the majority of the county’s population. U.S. Census data indicate that in 2000, the total on-reservation and off-reservation trust land Blackfeet population was estimated to be about 10,100 and the on-reservation population alone was 8,507 (64.2 percent of the census year 2000 population). If all of these individuals resided in Glacier County, they would account for 76 percent of all people in the county. The Blackfeet tribe also represents a growing population in the county, which is likely the driving force behind the county’s growth (about 0.6 percent annually since 1970) (U.S. Census Bureau 2000b).

The average family size is 3.6 individuals and the average household size is 3 individuals. About 62 percent of the residents are homeowners; the remainder rent. About 18 percent of the county’s housing inventory is vacant.

Pondera County

Pondera County encompasses approximately 1,625 square miles and had an estimated population of 6,087 people in 2005 (Montana Department of Commerce 2005), resulting in an average population density of about 3.7 people per square mile. The 2005 population estimate indicates that the population of the county has declined by 5.2 percent since 2000. Historic population records indicate an annual decline of 0.2 percent since 1960.

Principal communities in the county include Conrad, Heart Butte, and Valier. Conrad is the county seat.

The average family size in the county is 3.2 individuals and the average household has approximately 2.6 individuals. Most of the county’s residents own their principal residence (70.5 percent), while the remainder are renters.
Chapter 3

Teton County

Teton County encompasses an area of 2,272.6 square miles. The total population as of 2000 was 6,445 persons, yielding a population density of approximately 2.8 persons per square mile. County population levels have been generally stagnant since about 1980, and recent population estimates for 2005 (Montana Department of Commerce 2005) indicate a 3.2 percent decline since 2000. Choteau is the county seat and is home to approximately 28 percent of the county’s residents. The remainder of the population is distributed throughout unincorporated county lands and small towns and communities, the largest of which is Fairfield with a 2004 estimated population of 641 (U.S. Census Bureau 2005a).

Average family size in Teton County is 3.1 individuals and the average household size is 2.5 individuals. Most people in the county own their home (75.4 percent) while the remainder rent. Approximately 12.8 percent of housing units are unoccupied.

Toole County

The total estimated population of Toole County in 2005 was 5,031 (Montana Department of Commerce 2005 and Montana Department of Labor and Industry 2005). Land area of the county is 1,911 square miles, yielding an average population density of 2.6 individuals per square mile. Communities include the county seat of Shelby, which is also the most populous town in the county with approximately 3,304 residents in 2004 (U.S. Census Bureau 2005a), and Kevin, Sunburst, and Sweetgrass.

The average family has 3.1 individuals, and the average household size is 2.5 individuals. Approximately 71.2 percent are homeowners. About 14.7 percent of the houses in the county are vacant.

3.13.2.2 Economic Activity

Economic activity in the analysis area ranges from heavy reliance on agriculture to growing development in the education, health, and social services sectors. In MATL’s March 2006 response to DEQ comments, employment and labor trend data compiled from the U.S. Department of Labor, Bureau of Statistics were presented for each of the counties in the analysis area (MATL 2006b). These data were compiled for the last 5 years, documenting the total labor force available, total employment, total unemployment, and the resulting unemployment rate (Table 3.13-3). In general, unemployment rates have been fairly steady over the last 5 years, with three counties (Cascade, Teton, and Toole) seeing a small decline (0.5 percent or more) in total unemployment. Higher unemployment rates in Glacier County are attributable to the disproportionately higher unemployment rate on the Blackfeet Indian Reservation, which in 2005 was reported to be 69 percent of the available tribal workforce (Bureau of...
Indian Affairs 2005). The unemployment rate for the county as a whole, which is the highest of the analysis area counties, is reported at 8 percent, though this has fluctuated over the last 5 years from a high of 8.2 percent to a low of 6.9 percent. Pondera and Chouteau counties saw a slight increase (less than 1 percent) in unemployment over the same period. (MATL 2006b).

<table>
<thead>
<tr>
<th>Year</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cascade County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>38,287</td>
<td>36,386</td>
<td>1,901</td>
<td>5.0</td>
</tr>
<tr>
<td>2001</td>
<td>38,419</td>
<td>36,719</td>
<td>1,700</td>
<td>4.4</td>
</tr>
<tr>
<td>2002</td>
<td>38,411</td>
<td>36,776</td>
<td>1,635</td>
<td>4.3</td>
</tr>
<tr>
<td>2003</td>
<td>38,558</td>
<td>36,992</td>
<td>1,636</td>
<td>4.2</td>
</tr>
<tr>
<td>2004</td>
<td>39,209</td>
<td>37,566</td>
<td>1,643</td>
<td>4.2</td>
</tr>
<tr>
<td>2005</td>
<td>40,474</td>
<td>38,697</td>
<td>1,777</td>
<td>4.4</td>
</tr>
</tbody>
</table>

	Chouteau County			
2000	2,799	2,698	101	3.6
2001	2,723	2,629	94	3.5
2002	2,474	2,387	87	3.5
2003	2,518	2,437	81	3.2
2004	2,633	2,454	88	3.3
2005	2,694	2,590	104	3.9

	Glacier County			
2000	5,715	5,248	467	8.2
2001	5,775	5,348	427	7.4
2002	5,585	5,199	386	6.9
2003	5,750	5,315	435	7.6
2004	5,942	5,466	476	8.0
2005	6,105	5,614	491	8.0

	Pondera County			
2000	2,976	2,836	140	4.7
2001	2,892	2,771	121	4.2
2002	2,745	2,630	124	4.5
2003	2,771	2,641	130	4.7
2004	2,715	2,568	147	5.4
2005	2,764	2,612	152	5.5

	Teton County			
2000	2,974	2,846	128	4.3
2001	2,926	2,815	111	3.8
2002	2,906	2,796	110	3.8
2003	2,949	2,840	109	3.7
2004	3,001	2,885	116	3.9
2005	3,047	2,931	116	3.8
TABLE 3.13-3
EMPLOYMENT AND DATA TRENDS BY COUNTY, 2000 – 2005a

<table>
<thead>
<tr>
<th>Year</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2,523</td>
<td>2,422</td>
<td>101</td>
<td>4.0</td>
</tr>
<tr>
<td>2001</td>
<td>2,429</td>
<td>2,346</td>
<td>83</td>
<td>3.4</td>
</tr>
<tr>
<td>2002</td>
<td>2,348</td>
<td>2,266</td>
<td>82</td>
<td>3.5</td>
</tr>
<tr>
<td>2003</td>
<td>2,538</td>
<td>2,453</td>
<td>85</td>
<td>3.3</td>
</tr>
<tr>
<td>2004</td>
<td>2,586</td>
<td>2,500</td>
<td>86</td>
<td>3.3</td>
</tr>
<tr>
<td>2005b</td>
<td>2,661</td>
<td>2,568</td>
<td>93</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Notes:

b Average through Nov. 2005

Countywide earnings data by industry sector were available for 2001 through 2004 (Tables 3.13-4 through 3.13-9). In general, the data for each county indicated an increase in total wages across most sectors. However, Cascade County experienced a marked decrease (almost 50 percent) in total wages within the natural resources and mining sector (agriculture, forestry, and mining) between 2001 and 2004. The decrease is likely attributable to growth in other, more urban-related sectors such as the information and health, education, and social services sectors. Teton County experienced a substantial decline in wages associated with the manufacturing industry sector (40 percent) over the same time period but saw large increases in retail trade (83 percent) and in the professional, scientific, management, administrative, and waste management industry sectors (almost 400 percent). Elsewhere, wages in the natural resources and mining sectors generally held steady or increased. Large increases in wages in this sector were realized in Glacier County between 2002 and 2004 (approximately 91 percent), where oil and gas exploration, as a subsector of the mining industry, increased by 150 percent from 2001 to 2004 (Montana Department of Commerce 2006).
TABLE 3.13-4
INDUSTRY SECTOR EARNINGS TRENDS – CASCADE COUNTY

<table>
<thead>
<tr>
<th>Industry</th>
<th>Total 2004 Wages by Sector (in thousands)</th>
<th>Trend between 2001-2004 (percent change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, forestry, fishing and hunting, and mining</td>
<td>2,815</td>
<td>-49.55</td>
</tr>
<tr>
<td>Construction</td>
<td>63,118</td>
<td>+21</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>32,166</td>
<td>+0.3</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>51,191</td>
<td>+18</td>
</tr>
<tr>
<td>Retail trade</td>
<td>103,637</td>
<td>+6.7</td>
</tr>
<tr>
<td>Transportation and warehousing, and utilities</td>
<td>34,264</td>
<td>+4.1</td>
</tr>
<tr>
<td>Information</td>
<td>23,985</td>
<td>+23.7</td>
</tr>
<tr>
<td>Finance, insurance, real estate, and rental and leasing</td>
<td>89,744</td>
<td>+19.4</td>
</tr>
<tr>
<td>Professional, scientific, management, administrative, and waste management services</td>
<td>74,368</td>
<td>+17.5</td>
</tr>
<tr>
<td>Educational, health and social services</td>
<td>224,140</td>
<td>+16.7</td>
</tr>
<tr>
<td>Arts, entertainment, recreation, accommodation and food services</td>
<td>50,432</td>
<td>+16.8</td>
</tr>
<tr>
<td>Other services (except public administration)</td>
<td>23,672</td>
<td>+14.5</td>
</tr>
<tr>
<td>Public administration</td>
<td>67,345</td>
<td>+21</td>
</tr>
</tbody>
</table>

TABLE 3.13-5
INDUSTRY SECTOR EARNINGS TRENDS – TETON COUNTY

<table>
<thead>
<tr>
<th>Industry</th>
<th>Total 2004 Wages by Sector (in thousands)</th>
<th>Trend between 2001-2004 (percent change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, forestry, fishing and hunting, and mining</td>
<td>1,263</td>
<td>+4.12</td>
</tr>
<tr>
<td>Construction</td>
<td>980</td>
<td>+68.38</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>289</td>
<td>-40.17</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>4,459</td>
<td>+29.28</td>
</tr>
<tr>
<td>Retail trade</td>
<td>3,333</td>
<td>+83.23</td>
</tr>
<tr>
<td>Transportation and warehousing, and utilities</td>
<td>3,632</td>
<td>+21.55</td>
</tr>
<tr>
<td>Information</td>
<td>6,961</td>
<td>+15.38</td>
</tr>
<tr>
<td>Finance, insurance, real estate, and rental and leasing</td>
<td>2,698</td>
<td>+39.1</td>
</tr>
<tr>
<td>Professional, scientific, management, administrative, and waste management services</td>
<td>1,292</td>
<td>+396</td>
</tr>
<tr>
<td>Educational, health and social services</td>
<td>9,927</td>
<td>+22.4</td>
</tr>
<tr>
<td>Arts, entertainment, recreation, accommodation and food services</td>
<td>1,209</td>
<td>+3.6</td>
</tr>
<tr>
<td>Other services (except public administration)</td>
<td>483</td>
<td>-13.6</td>
</tr>
<tr>
<td>Public administration</td>
<td>3,242</td>
<td>+3</td>
</tr>
</tbody>
</table>

TABLE 3.13-6
INDUSTRY SECTOR EARNINGS TRENDS – CHOUTEAU COUNTY

<table>
<thead>
<tr>
<th>Industry</th>
<th>Total 2004 Wages by Sector (in thousands)</th>
<th>Trend between 2001-2004 (percent change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, forestry, fishing and hunting, and mining</td>
<td>1,765</td>
<td>+23.0</td>
</tr>
<tr>
<td>Construction</td>
<td>433</td>
<td>+42.43</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>444</td>
<td>-5.7</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>1,678</td>
<td>+71.4</td>
</tr>
<tr>
<td>Retail trade</td>
<td>2,837</td>
<td>+11.65</td>
</tr>
<tr>
<td>Transportation and warehousing, and utilities</td>
<td>793</td>
<td>+25.28</td>
</tr>
<tr>
<td>Information</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Finance, insurance, real estate, and rental and leasing</td>
<td>864</td>
<td>-42.32</td>
</tr>
<tr>
<td>Professional, scientific, management, administrative, and waste management services</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Educational, health and social services</td>
<td>9,192</td>
<td>+5.62</td>
</tr>
<tr>
<td>Arts, entertainment, recreation, accommodation and food services</td>
<td>1,182</td>
<td>+32.51</td>
</tr>
<tr>
<td>Other services (except public administration)</td>
<td>233</td>
<td>+29.44</td>
</tr>
<tr>
<td>Public administration</td>
<td>2,769</td>
<td>+12.84</td>
</tr>
</tbody>
</table>

N/A – Not Disclosed: Data do not meet Bureau of Labor Statistics or State agency disclosure standards

TABLE 3.13-7
INDUSTRY SECTOR EARNINGS TRENDS – PONDERA COUNTY

<table>
<thead>
<tr>
<th>Industry</th>
<th>Total 2004 Wages by Sector (in thousands)</th>
<th>Trend between 2001-2004 (percent change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, forestry, fishing and hunting, and mining</td>
<td>748</td>
<td>-24.67</td>
</tr>
<tr>
<td>Construction</td>
<td>9,193</td>
<td>+14.88</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>1,021</td>
<td>-23.7</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>3,117</td>
<td>+9.7</td>
</tr>
<tr>
<td>Retail trade</td>
<td>4,016</td>
<td>+15.43</td>
</tr>
<tr>
<td>Transportation and warehousing, and utilities</td>
<td>6,324</td>
<td>+9.03</td>
</tr>
<tr>
<td>Information</td>
<td>449</td>
<td>+39.44</td>
</tr>
<tr>
<td>Finance, insurance, real estate, and rental and leasing</td>
<td>1,908</td>
<td>+1.76</td>
</tr>
<tr>
<td>Professional, scientific, management, administrative, and waste management services</td>
<td>1,497</td>
<td>+6.4</td>
</tr>
<tr>
<td>Educational, health and social services</td>
<td>13,022</td>
<td>+4.48</td>
</tr>
<tr>
<td>Arts, entertainment, recreation, accommodation and food services</td>
<td>1,180</td>
<td>+21.65</td>
</tr>
<tr>
<td>Other services (except public administration)</td>
<td>523</td>
<td>-2.8</td>
</tr>
<tr>
<td>Public administration</td>
<td>847</td>
<td>+5.35</td>
</tr>
</tbody>
</table>

TABLE 3.13-8
INDUSTRY SECTOR EARNINGS TRENDS – TOOLE COUNTY

<table>
<thead>
<tr>
<th>INDUSTRY</th>
<th>Total 2004 Wages by Sector (in thousands)</th>
<th>Trend between 2001-2004 (percent change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, forestry, fishing and hunting, and mining</td>
<td>4,287</td>
<td>+19.82</td>
</tr>
<tr>
<td>Construction</td>
<td>833</td>
<td>+33.28</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>424</td>
<td>-6.2</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>2,759<sup>a</sup></td>
<td>N/A</td>
</tr>
<tr>
<td>Retail trade</td>
<td>3,652</td>
<td>+33</td>
</tr>
<tr>
<td>Transportation and warehousing, and utilities</td>
<td>473</td>
<td>+1.94</td>
</tr>
<tr>
<td>Information</td>
<td>1,449</td>
<td>+54.3</td>
</tr>
<tr>
<td>Finance, insurance, real estate, and rental and leasing</td>
<td>2,087</td>
<td>+29.55</td>
</tr>
<tr>
<td>Professional, scientific, management, administrative, and waste management services</td>
<td>5,343</td>
<td>+27.8</td>
</tr>
<tr>
<td>Educational, health and social services</td>
<td>10,370</td>
<td>+20.34</td>
</tr>
<tr>
<td>Arts, entertainment, recreation, accommodation and food services</td>
<td>3,304</td>
<td>+47.3</td>
</tr>
<tr>
<td>Other services (except public administration)</td>
<td>373</td>
<td>-3.1</td>
</tr>
<tr>
<td>Public administration</td>
<td>8,130</td>
<td>+228.4</td>
</tr>
</tbody>
</table>

^a 2002 Data, No Data Available for 2004

N/A – Not Available: comparison data do not meet Bureau of Labor Statistics or State agency disclosure standards

TABLE 3.13-9
INDUSTRY SECTOR EARNINGS TRENDS – GLACIER COUNTY

<table>
<thead>
<tr>
<th>INDUSTRY</th>
<th>Total 2004 Wages by Sector (in thousands)</th>
<th>Trend between 2001-2004 (percent change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, forestry, fishing and hunting, and mining</td>
<td>4,939</td>
<td>+90.62<sup>a</sup></td>
</tr>
<tr>
<td>Construction</td>
<td>2,726</td>
<td>-5.05</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>583</td>
<td>-15.87<sup>a</sup></td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>3,056</td>
<td>+29.66</td>
</tr>
<tr>
<td>Retail trade</td>
<td>8,102</td>
<td>+22.39</td>
</tr>
<tr>
<td>Transportation and warehousing, and utilities</td>
<td>3,081</td>
<td>-6.8</td>
</tr>
<tr>
<td>Information</td>
<td>309</td>
<td>+6.19</td>
</tr>
<tr>
<td>Finance, insurance, real estate, and rental and leasing</td>
<td>2,158</td>
<td>+13.04</td>
</tr>
<tr>
<td>Professional, scientific, management, administrative, and waste management services</td>
<td>2,195</td>
<td>+21.2</td>
</tr>
<tr>
<td>Educational, health and social services</td>
<td>27,113</td>
<td>+28.52</td>
</tr>
<tr>
<td>Arts, entertainment, recreation, accommodation and food services</td>
<td>12,640</td>
<td>+1.93</td>
</tr>
<tr>
<td>Other services (except public administration)</td>
<td>1,311</td>
<td>-13.8</td>
</tr>
<tr>
<td>Public administration</td>
<td>36,200</td>
<td>+11.47</td>
</tr>
</tbody>
</table>

^a 2002 Data, No Comparison Data Available for 2001
Per capita personal income has generally increased for all of the counties in the analysis area (U.S. Department of Commerce 2006). Per capita income is the average individual income from all sources, and is calculated by dividing total income by the total population. For counties dependent on agriculture, increases or decreases in per capita income are typically attributable to the quantity and value of crops or livestock produced. For example, per capita income increased between 2001 and 2004 as a result of bumper crops of winter wheat and barley, particularly in Chouteau and Toole counties (Table 3.13-10).

TABLE 3.13-10

PER CAPITA PERSONAL INCOME TRENDS

<table>
<thead>
<tr>
<th>County</th>
<th>Per Capita Personal Income – 2004</th>
<th>Percent Change in Per Capita Personal Income, 2003 - 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td>$29,231</td>
<td>+5.9</td>
</tr>
<tr>
<td>Chouteau</td>
<td>$27,303</td>
<td>+13.6</td>
</tr>
<tr>
<td>Glacier</td>
<td>$20,637</td>
<td>+7.6</td>
</tr>
<tr>
<td>Pondera</td>
<td>$23,709</td>
<td>+4</td>
</tr>
<tr>
<td>Teton</td>
<td>$26,158</td>
<td>+6.6</td>
</tr>
<tr>
<td>Toole</td>
<td>$28,100</td>
<td>+12.3</td>
</tr>
</tbody>
</table>

Notes:
Source: Sonoran Institute 2004.

Additional details regarding the social and economic activities in each of the counties in the analysis area are summarized for each county below.

Cascade County

The economy of Cascade County is heavily influenced by the commerce and trade activities centered in and around Great Falls, Montana’s second largest city. This area provides the goods and services and other amenities drawn upon throughout the region. The largest private economic sector in the county is health care and social assistance, which accounts for nearly 24 percent of non-government employment. Another 14.2 percent of the labor force works in the retail trades. Malmstrom Air Force Base, just to the east of Great Falls, is home to several thousand military personnel and their families and employs about 4.9 percent of the county’s population (approximately 3,000 people). According to the USDA, there were 1,037 farms in Cascade County in 2002, a slight drop (1.2 percent) since the 1997 agricultural census (USDA 2004).

Median household income in Cascade County in 2003 was $34,471, or 100.1 percent of the state’s median household income (USDA Bureau of Labor Statistics 2005). Approximately 13.9 percent of the county’s residents lived below the poverty level during 2003 (U.S. Census Bureau estimates 2005b).
Chapter 3

Socioeconomics

Property tax revenues made up over 48 percent of all county revenues in fiscal year 2004-2005. Public safety was the largest segment draw on the county budget. For fiscal year 2004-2005, Cascade County appropriated $2,356,823 to its road fund, $39,451 to its rural fire fund, $165,088 to its emergency medical fund, and $6,811,144 to the public safety fund (MATL 2006b).

Chouteau County

The largest economic sector in Chouteau County is agriculture, accounting for almost 33 percent of the industries within the county and occupying over 90 percent of the county land area (USDA 2004). Still, the number of farms decreased by about 3.9 percent between 1997 and 2002 (USDA 2004). Education, health and social services combined constitute the next largest industry sector, followed by retail trades.

Chouteau County received more Federal farm subsidies than any other Montana county in 2003—over $33 million (Montana Department of Labor and Industry 2006). These subsidies reflect payments made for CRP lands, Loan Deficiency Payments, Crop Disaster Program, and the Livestock Compensation Program and reflected 20.6 to 32 percent of the reported per capita income in Chouteau County in 2003 (approximately $24,030). In 2004, the per capita income was $27,303, an increase of 23.6 percent from 2002 and 13.6 percent over 2003. Median household income in 2003 was $28,646, only 83.2 percent of the state average (USDA 2006). In 2003, 15 percent of the county population was estimated to be living in poverty (U.S. Census Bureau 2005b).

MATL provided DEQ with tables detailing county revenues and expenditures for the fiscal year ending June 2005 in its March 2006 submittal to the agency (MATL 2006b). In general, property tax made up nearly 50 percent of county revenues in fiscal year 2004-2005. Public works was the largest segment draw on the county budget. For fiscal year 2004-2005, Chouteau County appropriated $1,324,911 to its road fund.

Glacier County

Glacier County is home to the Blackfeet Indian Reservation and also encompasses the eastern portion of Glacier National Park. The presence of the park provides an important tourism draw to the area, which creates a higher degree of economic activity in the retail trade, accommodation and food services, and entertainment and recreation industry sectors. These sectors combined account for more than half the total private workforce, although government jobs, mostly tribal related, provide the greatest amount of employment (Montana Department of Labor and Industry 2005). Health care and social services are also a major industry sector (U.S. Census Bureau 2006), as is the oil and gas industry, which experienced a 150 percent increase in earnings from 2001 to 2004 (Montana Department of Commerce 2006). According to the USDA’s 2002
census, 85.8 percent of the land in the county is in farms. The total number of farms decreased slightly from 493 in 1997 to 472 in 2002.

County per capita personal income in 2004 was $20,637, an increase of 13.4 percent from 2002 (U.S. Department of Commerce 2006). Median household income in 2003 was $27,117 which was only 78.7 percent of the state average (USDA 2006). According to U.S. Census Bureau estimates, in 2003 25.6 percent of Glacier County’s population was living in poverty. The only other county in the state with a higher poverty rate was Roosevelt County (U.S. Census Bureau 2005b).

Property tax made up nearly 38 percent of county revenues in fiscal year 2004-2005. Largest segment draws on the county budget include public safety, public works, and general government expenditures; all tapping between 28 to 30 percent of revenue. For fiscal year 2004-2005, Glacier County appropriated $926,559 to its road department fund, $1,124 to the Cut Bank Fire Department fund, and $495,242 to the ambulance fund (MATL 2006b).

Pondera County

Economic data from 2004 indicate that within Pondera County the largest economic sector was education, health, and social services, which employed 302 individuals that year. A report on the economic impact of the health sector in Pondera County (Oklahoma State University 2005) indicated that the bulk of the health care workers (244) are employed by Pondera Medical Center. Retail trade was also a major sector, with approximately 280 employees (U.S. Census Bureau 2006). Agriculture was also a large industry in the county with 20.2 percent of individuals employed in that sector. Nearly 75,000 acres in Pondera County are irrigated cropland and 86.6 percent of the land is in farms (USDA 2004). Principal crops include winter wheat and barley.

In 2004, the county per capita personal income was $23,709, an 8.4 percent increase since 2002 (U.S. Department of Commerce 2006). Median household income was reported to be $29,362 in 2003, or 85.2 percent of the state average (USDA 2006). In 2003, 17.6 percent of county population was estimated to be living in poverty (U.S. Census Bureau 2005b).

Property tax made up nearly 50 percent of county revenues in fiscal year 2004-2005. Largest segment draws on the county budget include public works and general government expenditures. For fiscal year 2004-2005, Pondera County appropriated $925,355 to its road fund and $20,891 to its rural fire district fund (MATL 2006b).
Teton County

Based on the U.S. Census Bureau’s 2004 county business patterns study, retail trade establishments employ the largest percentage of the workforce in the county, followed by health care and social assistances (U.S. Census Bureau 2006). However, these statistics do not take into account those establishments without employee identification numbers, which may include some farms. Of all the counties in the Project area, Teton County is the only one to see an increase in the number of farms between 1997 and 2002 (from 625 to 700, or 12.5 percent increase). This area of Montana is known for its high quality winter wheat and barley production. Much of the barley is grown under contract with Anheuser-Busch. Another prominent contractor in the area is General Mills (Chouteau Acantha 2004).

Per capita personal income in 2004 was $26,158. Median household income in 2003 was $30,844, or 89.5 percent of the state average (USDA 2006). During the same year, 13.7 percent of Teton County’s population was living in poverty according to U.S. Census Bureau (2005b) estimates.

Taxes and assessments (including property tax) made up nearly 48 percent of county revenues in fiscal year ending 2004. Public safety was the largest segment draw on the county budget. For fiscal year 2004-2005, Teton County appropriated $787,037 to its road fund, $64,893 to its Fire Fee District, $15,000 to its rural fire fund, and $3,245 to the Choteau fire fund (MATL 2006b).

Toole County

The largest economic sector in Toole County was education, health, and social services. Retail trades was second, followed by accommodations and food service. Almost 90 percent of the county is farmland. Of the 405 farms in the county in 2002, 200 were oilseed and grain farms and 110 grew sugar beets, hay, and other types of crops. The remaining farms and ranches were primarily dedicated to beef cattle ranching and other animal production. Oil and gas extraction is also a major economic activity in the county, with about 11 percent of total private wages. The county is also home to Sweetgrass, the busiest port of entry on the Alaska-Canada Highway between eastern Washington and central North Dakota (Montana Department of Labor and Industry 2005).

Per capita personal income in 2004 was $28,100, an increase of 23 percent from 2002 (U.S. Department of Commerce 2006). Median household income in 2003 was $29,840 which was 86.6 percent of the state average (USDA 2006). According to the U.S. Census Bureau (2005b), an estimated 14.1 percent of the county population was living in poverty in 2003.
Chapter 3 Socioeconomics

Taxes and assessments (including property tax) made up about 39 percent of Toole County revenues in fiscal year 2004-2005, however intergovernmental revenues (state/Federal) made up over 55 percent of county revenue that fiscal year. Largest segment draws on the county budget include public health and general government expenditures. For fiscal year 2004-2005, the county appropriated $910,275 to its road fund and $88,000 to its ambulance fund (MATL 2006b).

3.13.2.3 Local Resources

Local resources that were examined include emergency and medical services, law enforcement, and fire response. Resources such as housing and schools were not examined in detail because the relatively low number of employees expected through the duration of Project construction, and the relatively short duration of activities occurring in a given locale make it unlikely that these resources would incur any measurable direct impacts. Service and retail providers that would experience impacts as a result of the construction and operation of the proposed Project or alternatives include lodging, restaurants, and gas stations. The principal communities that likely would serve project workers include Great Falls (Cascade County), Conrad (Pondera County), Cut Bank (Glacier County), and Shelby (Toole County). Each of these towns has lodging and dining options as well as grocers and gas stations.

Cascade County

Emergency and Medical Services: Benefis Healthcare provides care to approximately 225,000 people in a service area covering 15 counties in north-central Montana. Benefis Healthcare offers a full range of medical services, including a Level II Trauma Center. Facilities include 502 beds at its two campuses. Benefis also operates the Williams-Ario Regional Emergency and Trauma Center in Great Falls. This facility provides 19 emergency examination rooms and an additional seven non-urgent care rooms. The emergency department is staffed with nine board-certified or -eligible physicians. The Fast track program has four family nurse practitioners who treat non-urgent patients.

Flight services are available through Mercy Flight, which operates both helicopters and fixed-wing aircraft. Mercy Flight crews respond to bring patients from isolated areas or accident scenes to the Regional Emergency Center.

Law Enforcement: The Cascade County Sheriff’s Office covers all areas within the county, with the exception of Great Falls. The Sheriff’s office has 34 officers. The City of Great Falls is covered by the City Police Department, with 82 officers and 65 patrol and support vehicles.
Chapter 3

Socioeconomics

Fire Response: The Great Falls Fire Rescue consists of 65 uniformed firefighters, in addition to the Fire Chief, Assistant Chief, and several other staff. All suppression firefighters are certified EMTs, and 19 are also certified as paramedics. There are four stations with a total of six 1,250-gallon-per-minute fire engines, a water tender, a snorkel truck, a rescue vehicle, and hazardous materials response equipment. Additional fire services in Cascade County include:

- Sun River Fire Service Area
- Vaughn Volunteer Fire Department
- Black Eagle Volunteer Fire Department
- Malmstrom AFB Fire Department
- Gore Hill Volunteer Fire Department
- Cascade Volunteer Fire Department

Chouteau County

Emergency and Medical Services: The Missouri River Medical Center (MRMC) in Fort Benton provides a seven-bed acute care hospital, emergency room, laboratory, and radiology department. The MRMC Emergency room is available 24 hours a day, 7 days a week, and is staffed by a registered nurse with a physician on call. MRMC coordinates emergency services with Memorial Ambulance, Geraldine Ambulance, Benefis Healthcare, Mercy Flight, and Chouteau County.

Law Enforcement: The Chouteau County Sheriff’s Office covers the towns of Big Sandy, Loma, Carter, Highwood, Square Butte, Geraldine, and all rural areas in Chouteau County. Fort Benton has its own city police department. The county sheriff’s office has a force of nine full time officers and a reserve force of eight and is responsible for the investigation and prevention of crime, coroner duties, fire warden, civil process, bailiff, search and rescue, and emergency services response. The department has eight patrol cars and two suburbs (MATL 2006b).

Fire Response: There are eight volunteer fire departments in Chouteau County located in Fort Benton, Big Sandy, Geraldine, Highwood, Loma, Carter, Kness, and Elim. There are also five volunteer quick response units on call for emergency and fire situations, and three ambulance services in Fort Benton, Big Sandy, and Geraldine (MATL 2006b).

Glacier County

Emergency and Medical Services: Northern Rockies Medical Center in Cut Bank is a full service medical center with a 25-bed hospital, two fulltime physicians, one nurse practitioner, and several registered nurses. There are three ambulances in the county (MATL 2006b).
Chapter 3

Law Enforcement: The Glacier County Sheriff’s Office covers all areas in the county, though Cut Bank has its own police department as well. Glacier County Sheriff’s Office has 12 officers and seven reserves, and has 12 patrol vehicles. The City of Cut Bank Police Department employs six officers and has five vehicles available for patrol.

Fire Response: Cut Bank Volunteer Fire Department serves the City of Cut Bank and eastern Glacier County. The department has 25 volunteer firefighters, two city trucks, three rural trucks, and a rescue truck. The Cut Bank department also provides equipment and training to the Del Bonita Volunteer Fire Company. There are three rural trucks at this location, and a variable number of volunteer firefighters. Other departments in the county include the Browning Volunteer Fire Department and the Babb Volunteer Fire Department (MATL 2006b).

Pondera County

Emergency and Medical Services: Pondera Medical Center, in Conrad, is a 20-bed acute care facility with a full range of services. There are five local physicians and five allied staff at the facility along with a variety of visiting specialists. Pondera Medical Center provides 24-hour emergency room coverage by a physician assistant and nurse practitioner, with physician backup. Pondera County Ambulance, staffed with emergency medical technicians, serves the Pondera County area with round-the-clock emergency services. The ambulance also provides transportation services for patients to other facilities (MATL 2006b).

Law Enforcement: The Pondera County Sheriff’s Office covers all areas of the county with the exception of Conrad and reservation lands. The sheriff’s office has eight fulltime officers and eight patrol vehicles. Conrad is covered by the City Police Department, with a staff of five and two vehicles available for patrol. The Bureau of Indian Affairs handles law enforcement on reservation lands in the western part of the county.

Fire Response: There are four fire departments in Pondera County. These are the Brady Volunteer Fire Department, the Conrad Volunteer Fire Department, the Dupuyer Volunteer Fire Department, and the Valier Volunteer Fire Department. They have a total of 79 volunteer firefighters and 16 trucks. There is also one department located in Heart Butte that falls under the Bureau of Indian Affairs.

Teton County

Emergency and Medical Services: Teton Medical Center is a 10-bed critical access hospital and 36-bed extended care facility located in Choteau. The hospital provides 24-hour emergency services, with two rooms staffed by physicians, physician assistants, and nurses (MATL 2006b).
Law Enforcement: Teton County Sheriff’s Office covers the entire county. The office has a force of nine, including the sheriff and under sheriff, and has nine patrol vehicles.

Fire Response: There are five fire departments in Teton County – the Choteau Volunteer Fire Department, the Dutton Rural Fire Department, the Fairfield Rural Fire District, the Pendroy Volunteer Fire Company, and the Power Volunteer Fire Company (MATL 2006b).

Toole County

Emergency and Medical Services: Marias Medical Center in Shelby is a combined 20-bed acute care hospital with nursery, maternity rooms, intensive care and critical care units, and a 68-bed skilled nursing facility. The emergency room has a physician on call 24 hours a day, and a surgeon and anesthetist are available, as needed. The facility has 15 RNs on staff. Four ambulances serve the county, including one housed in Sunburst (35 miles north of Shelby). There is a helipad at the hospital, and transfers to fixed-wing aircraft can be made at the airport just north of Shelby.

Law Enforcement: Toole County Sheriff’s Office covers the entire county, including Shelby. The office has a force of 12 including the sheriff, and has six patrol vehicles.

Fire Response: There are two volunteer fire departments in Toole County. The Shelby Volunteer Fire Department provides fire services for Shelby and southern Toole County and has 21 firefighters, three city trucks, and five rural trucks available. There is also a volunteer fire department in Sunburst that serves northern Toole County. The department has 21 firefighters, two local trucks, one city truck, one water tender, and five rural trucks.

3.13.3 Environmental Impacts

The socioeconomic impacts of Alternative 2 and the other action alternatives can be divided into (1) those that are an immediate result of project construction such as an influx of workers to the area to complete the project; (2) those related to operation of the proposed Project or alternatives, such as impediments to property owners’ ability to make full and unimpeded economic use of their land and the addition of taxable property to state and county budgets; (3) those that would arise as a direct result of the presence of the proposed Project; and (4) those related to increased availability of power transmission options. Each of these types of effects is discussed in more detail below. Consequences more directly related to the changes that would occur to land use are discussed in more detail in Section 3.1.
3.13.3.1 Alternative 1 - No Action

Under the No Action alternative, economic and social activity in the area would continue as it has and follow currently expected trends. Neither the proposed Project nor any of the action alternatives would be constructed. Under this scenario, benefits to the counties in the analysis area from project-generated property taxes (Table 3.13-18), the Wholesale Electricity Tax, and any benefits from the increased utilization of local goods and services as a result of the project would not occur. The employment opportunities that would be created during construction of the project would also not occur. Wind generation projects are potentially expected to develop as a result of the construction of additional transmission capacity (also described in Section 3.13.3.2) would not be built in the immediate future; revenue to the counties from these projects would not materialize, nor would the associated temporary and permanent employment opportunities. Thus, the economic benefits of MATL and associated wind farms would not occur.

Under the No Action alternative, the social and economic situations of local landowners would continue as they have and follow currently expected trends. Costs that would occur from the MATL line to farmers and other landowners would not occur because these landowners would be able to use their land without incurring the inefficiencies caused by working around transmission structures. Conversely, local landowners would not receive a one-time easement payment for land they own in the transmission line right-of-way, nor would they receive any annual compensation from MATL for having to farm around those structures. Landowners would also not receive the recently approved 100% property tax break for land owned within 660 feet of the centerline of a new transmission line.

3.13.3.2 Alternative 2 - Proposed Project

Under the Proposed Project, the project owners would benefit from any future profits earned from transporting electricity on the line or bear costs from any future losses. Shareholders in the company would also profit from any returns on their investment (e.g. shareholders earning dividends and capital gains from stock options in the company) or bear costs from any future losses. It is likely that most shareholders in the company would not be from Montana. Wind power developers would also profit to the extent that the line would allow them to build wind farms. Montana landowners who receive payments from turbines on their land would stand to gain an additional source of annual income from those turbines as a result of the line being built. Landowners with the line on their property would incur costs from the structures on their land and benefits from compensation payments, and tax breaks.
Construction Phase: Approximately 55 employees would be needed to complete the Project within a 6-month timeframe (MATL 2006b). The local impact of construction activity would vary depending on whether the local labor pool is used or whether workers come from out of the region. An unknown number of those workers would potentially be locally hired, but some jobs may require skills that are unavailable in the local labor pool (MATL 2006b). Where local workers are hired, there would be a small but positive effect to local area personal income figures for the duration of construction and potentially a small reduction in unemployment in the analysis area’s counties. According to MATL (2006b), about two-thirds of the hired construction workers would earn between $20 and $26 per hour and the project would provide in excess of 200,000 person-hours of construction employment. Assuming an average pre-tax hourly wage of $23, construction employment alone may conservatively generate $4.6 million in income over the construction time period of approximately 6 months. Earned wages from local workers would also be a source of income tax to state and Federal taxing authorities, although this revenue may simply represent a replacement of similar revenue amounts generated by jobs previously held by those same workers and other project contractors.

Workers would be dispersed along the chosen alignment, rather than all concentrated in one area at one time (Section 2.3). For example, some workers would concentrate on digging and setting poles, while other crews would follow at a later time to string line. Similarly, line installation would also be dispersed. Secondary, or induced positive impacts would be created by the increase in use of the local retail business and service industries by workers. However, given the few workers and dispersed nature of the construction activities associated with the proposed Project and action alternatives, it is likely that the secondary beneficial impacts in any given town along the alignment would be small and short term.

No direct impacts to the regional demographics are expected to occur as a result of the project since some of the workers are expected to already be residing in the area and others would be dispersed over the breadth of the Project area. The dispersed nature of the construction phase of the project also means that local goods and services such as lodging facilities, restaurants, and gas stations would not be over-utilized to the degree that additional employment or additional facilities would be required to maintain pre-Project levels of service. Interviews conducted by MATL representatives with other community service workers at hospitals and law enforcement agencies also indicated that these types of services would not be unduly taxed by the influx of workers to the region (MATL 2006b). In addition, construction costs of the line would ultimately be paid for by the energy shippers, not by Montana rate payers.

As described more fully in Section 3.1, the construction phase of the action alternatives would require limited access road development to reach otherwise inaccessible tower locations, overland driving to geographically accessible locations, and other activities
related to structure placement. Temporary disruptions would occur to landowners, including brief inaccessibility to portions of their property in the right-of-way. Economic costs associated with such disruptions would be minimal due to the brief time required at each construction location.

Operation Phase: Portions of the proposed Project would be constructed on easements crossing irrigated and non-irrigated cropland and rangeland. Disruptions to farming practices would be expected to occur, including:

- Decreases in farming efficiency caused by pole placement in fields;
- Small, long-term decreases in farming acreage where the structures are located;
- Increases in farming costs and herbicide and pesticide spraying costs;
- Reduced coverage of aerial herbicide and pesticide resulting in increased weed pressure;
- Potential disruptions to DGPS-driven equipment; and
- The potential for reduced property values on farmland.

Because action alternatives are located in areas accessible by overland driving, few permanent access roads would be needed. However, where repeated compaction by heavy equipment occurs on fine-grained soils, previously productive cropland may require additional labor measures (such as tilling) to restore crop productivity to pre-construction levels.

Disruptions such as these would result in external costs associated to landowners and farm operators with the creation of non-productive farming areas; extra use of diesel, fertilizer, seed, pesticides and herbicides; modifications to DGPS networks infrastructure (that is, repeater installation/modification and tractor modifications); additional stress and increased flight time during aerial applications of fertilizer and pesticides due to the presence of tower and conductor obstructions; and real or perceived impacts to property values (MATL 2006b). Few recent studies are available that quantify the cost of these types of infringements to property owners with agreed-upon accuracy; however, a study conducted by Ontario Hydro in 1979 showed that the greatest financial effect of the towers comes as a result of the creation of a non-productive area, followed by time loss, crop damage, and material loss (Scott 1980). While the Ontario Hydro study attempted to quantify these losses, the values in the study are in terms of the averages between 1974 dollars for western Ontario and 1975 values for eastern Ontario. Therefore, it would be difficult to convert these monetary values to today’s U.S. dollar value for the specific types of farm and ranchland uses in northern Montana. To support this assessment, DEQ obtained an independent analysis of costs for farming around transmission line structures (HydroSolutions and Fehringer 2007). The analysis estimated costs to a “representative farmer” in the Conrad, Montana, area (Appendix N).
MATL has committed to provide compensation for the impact to farmers by making pole payments for each structure and annual payments to offset the increased cost of farming around the structures. Some of these payments would go to all landowners, and not just farmers. These payments also provide a new, predictable, and consistent revenue stream to landowners.

Farmer Costs from Transmission Structures

The average annual cost to farmers per transmission structure shown in Table 3.13-11 and Table 3.13-12 was used to estimate total costs to Montana farmers from having to farm around transmission structures. Total costs were calculated by estimating the number of each type of structure that would be located along each alternative (e.g. H-frame at the edge of a field, monopole in the interior of a field, etc.) based on land uses. An 800-foot ruling span (distance between structures) was assumed. Then, for each alternative, the total number of each type of structure was multiplied by the corresponding cost figure from Table 3.13-11 and Table 3.13-12. The total costs for each type of structure were then summed to estimate the total annual costs to farmers for each routing alternative. A range of costs was given for each alternative due to uncertainty over exact pole placement and these cost figures are estimates. Cost per pole is estimated as follows:

<table>
<thead>
<tr>
<th>Structure</th>
<th>Pole Diam. (ft)</th>
<th>Field Location</th>
<th>Orientation to Field Edge</th>
<th>Spring Wheat-Fallow</th>
<th>Continuous Crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-pole</td>
<td>6.5</td>
<td>Long-Span Edge</td>
<td></td>
<td>$15.06</td>
<td>$15.86</td>
</tr>
<tr>
<td>Mono-pole</td>
<td>6.5</td>
<td>Long-span Interior</td>
<td></td>
<td>$107.98</td>
<td>$160.44</td>
</tr>
<tr>
<td>H-pole</td>
<td>3.0</td>
<td>Edge</td>
<td>Perpendicular</td>
<td>$37.13</td>
<td>$40.91</td>
</tr>
<tr>
<td>H-pole</td>
<td>3.0</td>
<td>Edge</td>
<td>Straddling Fence Line</td>
<td>$20.98</td>
<td>$22.38</td>
</tr>
<tr>
<td>H-pole</td>
<td>3.0</td>
<td>Edge</td>
<td>Parallel</td>
<td>$14.99</td>
<td>$15.76</td>
</tr>
<tr>
<td>H-pole</td>
<td>3.0</td>
<td>Interior</td>
<td></td>
<td>$120.57</td>
<td>$177.74</td>
</tr>
</tbody>
</table>

Notes:
Costs reflect 2007 prices.
H-Pole: 3-ft diameter each, 20-ft separation center to center.
Source: Neal E. Fehringer, Certified Professional Agronomist, C.C.A. on 6/21/07.
TABLE 3.13-12
COSTS OF IRRIGATED FARMING AROUND POLE(s)

<table>
<thead>
<tr>
<th>Structure</th>
<th>Pole Diam. (ft)</th>
<th>Field Location</th>
<th>Orientation to Field Edge</th>
<th>Irrigated Cropping Annual Cost (per structure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-pole</td>
<td>6.5</td>
<td>Long-Span Edge</td>
<td></td>
<td>$18.69</td>
</tr>
<tr>
<td>Mono-pole</td>
<td>6.5</td>
<td>Long-span Interior</td>
<td></td>
<td>$266.61</td>
</tr>
<tr>
<td>H-pole</td>
<td>3.0</td>
<td>Edge</td>
<td>Perpendicular</td>
<td>$41.81</td>
</tr>
<tr>
<td>H-pole</td>
<td>3.0</td>
<td>Edge</td>
<td>Straddling Fence Line</td>
<td>$23.34</td>
</tr>
<tr>
<td>H-pole</td>
<td>3.0</td>
<td>Edge</td>
<td>Parallel</td>
<td>$18.51</td>
</tr>
<tr>
<td>H-pole</td>
<td>3.0</td>
<td>Interior</td>
<td></td>
<td>$290.41</td>
</tr>
</tbody>
</table>

Notes:
Cost reflect 2007 prices.
H-Frame: 3-ft diameter each, 20-ft separation center to center.
Source: Neal E. Fehringer, Certified Professional Agronomist, C.C.A. on 6/21/07.

Gross costs to farmers are the costs of farming around transmission structures. Gross costs do not include compensation from the Project owner back to the farmer/landowner. Individual farmer costs would vary with each farm and might be different than the average costs estimated here. In order to evaluate the long-term costs over the potential life of the transmission line, the agencies estimated costs over a 50-year period based on the calculated annual costs. Estimated total annual gross costs and estimated total gross costs over the next 50 years to farmers for each alternative are listed in Table 3.13-13. Discount rates (future costs or benefits at today’s equivalent value) over time are ignored in order to err on the side of farmers. Alternative 3 is the most expensive to farmers, and Alternative 4 is the least expensive.

TABLE 3.13-13
ESTIMATED ANNUAL AND 50 YEAR GROSS COSTS TO FARMERS FROM MATL (ROUNDED TO THE NEAREST $1,000)

<table>
<thead>
<tr>
<th>Route</th>
<th>Annual Gross Cost to Farmers</th>
<th>50-Year Gross Cost to Farmers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 2</td>
<td>$82,000 to $86,000</td>
<td>$4,083,000 to $4,310,000</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>$108,000 to $109,000</td>
<td>$5,399,000 to $5,446,000</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>$57,000 to $59,000</td>
<td>$2,839,000 to $2,935,000</td>
</tr>
</tbody>
</table>

Note: For Alternative 2, single pole structures would be used on 53 miles of cropland (including CRP) crossed on a diagonal; H-frame structures would be used on the remaining cultivated land. For Alternative 3, H-frame structures were assumed for the entire route. For Alternative 4, single pole structures were assumed on all cropland including CRP.
Mitigation/Compensation to Farmers and Other Landowners

Although farmers would bear costs as a result of the proposed Project, they would also be compensated by both property tax relief and MATL payments. To arrive at the estimated net costs to farmers, the estimated annual payment (Table 3.13-14) would be subtracted from the annual gross cost to farmers (Table 3.13-13). It is important to note that easement payments and per pole payments would go to all landowners, not just farmers. Property tax relief would only go to the owners of class 3 farmland. The four types of compensation to farmers and other landowners would include:

1) A one-time right-of-way payment from MATL for an easement on their property,

2) An annual payment per pole from MATL just for having the pole on a landowner’s property,

3) An annual payment per pole of $9.38 (Fernandez 2007) from MATL for extra costs incurred to farm around transmission structures (to farmers only), and

4) An elimination of property taxes for class 3 farmland (Glossary) within 660 feet of the centerline of a new transmission line.

The total annual payments to farmers and other landowners under Alternatives 2, 3, and 4 (not including the one-time easement payment) are given in Table 3.13-14.

<table>
<thead>
<tr>
<th>TABLE 3.13-14</th>
<th>ESTIMATED TOTAL ANNUAL PAYMENTS (ROUNDED TO THE NEAREST $1,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Payment per Pole Total</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>$46,000</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>$72,000</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>$39,000</td>
</tr>
</tbody>
</table>

Subtracting the two annual payments from MATL and the property tax break from the annual costs to farmers, the annual net monetary effect and 50-year effect to all landowners is positive for all three Alternatives (not taking into account the one-time easement payment). These net effects are given in Table 3.13-15.
TABLE 3.13-15
ESTIMATED ANNUAL NET EFFECT ON FARMERS
(ROUNDED TO THE NEAREST $1,000)

<table>
<thead>
<tr>
<th></th>
<th>Annual Cost to Farmers</th>
<th>Annual Compensation to Farmers</th>
<th>Net Annual Effect to Farmers</th>
<th>Net Effect to Farmers over 50 years (excluding one-time easement payment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 2</td>
<td>$82,000 to $86,000</td>
<td>$85,000</td>
<td>$9,000 to $13,000</td>
<td>$450,000 to $650,000</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>$108,000 to $109,000</td>
<td>$124,000</td>
<td>$15,000 to $16,000</td>
<td>$750,000 to $800,000</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>$57,000 to $59,000</td>
<td>$85,000</td>
<td>$26,000 to $28,000</td>
<td>$1,300,000 to $1,400,000</td>
</tr>
</tbody>
</table>

In addition, landowners in Montana who granted easements for the project would receive one-time easement payments totaling: $402,000 total for Alternative 2, $393,000 for Alternative 3, and $417,000 for Alternative 4. These easement payments were estimated by the agencies based on information from MATL, estimated lengths of the transmission line alignments, and land use data.

The four types of landowner compensation are discussed below in more detail:

1) **One-time easement payments to farmers**
 MATL would pay landowners a one-time easement payment of $375 per acre for rangeland, $650 per acre for dryland agricultural, and $1,200 per acre for irrigated agricultural land (Fernandez 2007). The easement payments are meant to compensate the landowners for MATL’s use of the landowner’s property. Forest land and riparian land would be compensated the same as rangeland and other types of land would be paid an easement corresponding to fair market value, depending on the area (e.g. Great Falls would have a higher value than Conrad). For the purposes of net costs to landowners, **Table 3.13-16** gives the total acreage for each type of land for Alternatives 2, 3 and 4 for farmers and ranchers only. The acreage is estimated by multiplying the 45-foot-wide easement by the total mileage for each land use category. This table also gives the total one-time easement payments to Montana landowners from MATL for each route.

TABLE 3.13-16
ACRES AND EASEMENT PAYMENT

<table>
<thead>
<tr>
<th></th>
<th>Acres of Rangeland</th>
<th>Acres of Dryland Ag Land</th>
<th>Acres of Irrigated Ag land</th>
<th>Total One-Time Easement Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 2</td>
<td>179</td>
<td>501</td>
<td>8</td>
<td>$402,000</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>123</td>
<td>501</td>
<td>18</td>
<td>$393,000</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>259</td>
<td>476</td>
<td>9</td>
<td>$417,000</td>
</tr>
</tbody>
</table>
2) Annual Payment per pole from MATL to Farmers

MATL would pay landowners an annual payment per pole for having a pole on their land (Fernandez 2007). For dryland agricultural land and rangeland with poles placed on the edges of fields, the annual payment would be $20. For any of these types of poles with a guy wire, the payment would be $30 per year. The $20 and $30 figures are assumed for poles on rangeland as well. For poles on irrigated agricultural land and/or those that are in the interior of a field (including the interior of a dryland field), MATL would pay landowners $50 per year for poles without guy wires and $60 per year for poles with guy wires. For all two-pole, H-frame structures, the numbers above would be multiplied by two. MATL would adjust these per pole payments for inflation every 5 years.

Alternative 3 would have only H-frames or two poles per structure, resulting in a significantly higher overall annual per pole payment to Montana landowners. Alternative 4 would be all monopoles in farm fields, and thus would have the lowest overall annual per pole payment of the three routes. Alternative 2 is estimated to have 350 monopole structures and 265 H-frame structures in farmland, resulting in the second highest overall annual payment of the three options.

Multiplying the ‘per pole’ payments by the estimated total number of each category of pole for each of the alternatives, total annual payments for poles are estimated to be about $46,000 for Alternative 2, $72,000 for Alternative 3, and $39,000 for Alternative 4.

3) MATL compensation to Farmers for additional costs

MATL would pay farmers an annual flat fee for additional farming costs from transmission structures based on a formula developed by DeVuyst et al. (2006). That study estimated that farmers would bear an additional cost of $9.38 per pole per year. This number was multiplied by the number of poles per structure on each of the three MATL routes times the number of structures per route. It is important to note that for Alternative 4, only monopole structures would occur on farmland, whereas for Alternative 3, H-frames would occur on all farmland. It is assumed that those landowners with poles on rangeland would be compensated the $9.38 as well. Table 3.13-17 summarizes the final expected total compensation to farmers per route based on the study.

<table>
<thead>
<tr>
<th>TABLE 3.13-17</th>
<th>PAYMENT TO FARMERS ANNUALLY TO COMPENSATE FOR FARMER LOSSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Monopoles</td>
<td>Number of H-Frames</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>350</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>0</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>587</td>
</tr>
</tbody>
</table>
4) Exemption of Property Taxes in House Bill 3:
Section 8 of House Bill 3 from the April 2007 Special Legislative Session provides for a property tax exemption for class 3 agricultural land and class 10 timberland within 660 feet of the center of the right-of-way of an electric transmission line with a capacity of 30 megavoltamperes or greater, constructed after January 1, 2007. The Montana Department of Revenue (DOR) estimates that the effect of the property tax exemption for land adjacent to the right-of-way of MATL would be a lowering of future tax revenues to the State general fund of $7,169 in both FY 2010 and FY 2011. The university state special revenue would be reduced by $452 in both FY 2010 and FY 2011. Local government and school revenues would decrease by $31,870 in both FY 2010 and FY 2011 (DOR 2007). It is assumed that this tax break would continue indefinitely. The estimated total of these decreases is about $40,000 per year, which is $40,000 less in property taxes that landowners along MATL would otherwise pay each year (DOR 2007).

Effects on Property Values

Property values depend on many factors. A review of recent studies indicates that property values could decrease slightly, might not change, or may increase with the presence of a transmission line (EPRI 2003). Some reduction in property values due to the presence of the transmission line could occur as a consequence of the visual effects of the towers, perceived health risks associated with high voltage, and effects on farming efficiency. Property devaluation would likely be more evident on properties immediately adjacent to the line, particularly those where residences are close, or the land is farmed. However, most of the MATL line is on remote ranch and cropland. For these properties, changes in value due to perceived impacts would likely be negligible (EPRI 2003) or at least partially offset by negotiated compensation.

There is an increasing body of literature concerning the effects of transmission lines on property values. The review mentioned in the previous paragraph, *Transmission Lines and Property Values: State of the Science*, by EPRI (November 2003), found that some transmission lines caused small decreases in property values, some caused no effect, and some lines caused a small increase in property values. These studies included surveys, opinion-based studies and quantitative studies that were either market-data comparisons or econometric approaches. Most of these studies were conducted from 1991-2003. The main conclusions (on page 4-1) of the study were:

1) There is evidence that transmission lines have the potential to decrease nearby property values, but this decrease is usually small (6.3% or lower);

2) Lots adjacent to the right-of-way often benefit; lots next to adjacent lots often have value reduction;
3) Higher-end properties are more likely to experience a reduction in selling price than lower-end properties;

4) The degree of opposition to an upgrade project may affect the size and duration of the sales price effects;

5) Setback distance, right-of-way landscaping, shielding of visual and aural effects, and integration of the right-of-way into the neighborhood can significantly reduce or eliminate the impact of transmission structures on sales price;

6) Although appreciation of property does not appear to be affected, proximity to a transmission line can sometimes result in increased selling times for adjacent properties;

7) Sales-price effects are more complex than they have been portrayed in many studies;

8) Effects of a transmission line on sales prices of properties diminish over time and all but disappear in five years.

An older review consisting of appraiser studies found varying results as well. This study was entitled The Effects of Overhead Transmission Lines on Property Values, A review and Analysis of the Literature, by Cynthia Kroll and Thomas Priestly, Edison Electric Institute Siting and Environmental Planning Task Force (1992). It found that property values may be but are not always affected by transmission lines. About half the studies the review looked at found no effects from transmission lines on property values for residential and agricultural property. Some studies found a small negative effect on agricultural land and a few found larger adverse effects (2 to 20 percent lower values). Only some agricultural property owners thought that their property was worth less overall because of the lines. It was stated in this review that the appraisal technique used for the review did not provide statistically reliable results.

Other Benefits and Costs from MATL to the Local Area

Employment: MATL proposes to use experienced operations and maintenance (O&M) contractors, possibly obtained from other regionally-located utility companies, for ongoing maintenance of the transmission line once it is constructed. This may provide additional employment opportunities. The number of employees that could be hired is unknown at this time; however, the estimated wages are expected to be in the $25 per hour range (Pfister 2007). A small number of new residents working on the MATL project might move into the study area as a result of the transmission line.

Tax Revenue: In Montana, property tax is the primary source of funding for local governments. A recent change in Montana tax law (2007 Legislative Session) allows certain new transmission lines that carry renewable energy to be taxed at a lower rate than the standard 12% property tax rate. According to MATL, the proposed transmission line would qualify for this tax break. The Project would be centrally assessed (as a single unit) at 3% rather than 12%. The revenue would be apportioned to different districts based on mileage of line within each district.
Property taxes assessed on the Project would be based on the value of the line. Applicable mill levies would also be applied to the property taxes paid within each district. The approximate amount of property taxes potentially available to each county within the analysis area was calculated based on an estimated transmission line value of $363,284 per mile and the approximate mileage of the proposed alignment and alternatives (Mullen 2006).

As shown in Table 3.13-18, the line may generate tax revenue ranging from $28,122 in Chouteau County to $259,742 in Pondera County. Since MATL crosses county lines, it would be assessed as a unit rather than as separate individual components. The total value is then allocated to taxing jurisdictions based on the portion of the line in each jurisdiction. As long as the line is used and maintained, its value would be based on capitalized future revenue rather than depreciated costs, and tax revenue and the benefits available to each county are expected to be relatively constant over time (Dodds 2006).

In addition to property taxes, the Project would also be subject to the Wholesale Energy Transaction (WET) Tax, which is imposed by the State of Montana at a rate of $0.00015 per kilowatt hour (kWh). Estimating total amounts that would be generated by the WET Tax is beyond the scope of this study. Revenue generated from this source is directed to the state’s general fund, which is distributed to projects (primarily school districts) throughout the state (Dodds 2006).

Increased Availability of Power Transmission Options: Although the expected permitted firm capacity of the Project has been sold, it is likely that some non-firm capacity would be available for other energy transactions. The operation of the MATL line would provide an additional avenue for transferring energy between the western U.S., including Montana, and Canada. Currently, without this or other future transmission lines, power transmitted between Montana and Alberta, must go through Idaho, Washington, and British Columbia. Energy shippers transferring power between Montana and Alberta incur additional transmission tariffs that would not be incurred if the MATL line were available to them.

Increased energy transactions between buyers and sellers of electricity as a result of MATL along with more efficient paths of conveyance could increase the competition between suppliers and potentially result in lower rates to customers. On the other hand Alberta prices tend to be higher most of the time than the Mid-Columbia Hub (Mid-C) prices, and Mid-C prices are usually higher than the prices that Montanans pay. (Mid-C electricity prices are measured in Washington State, and like the stock market, measure the hourly prices of electricity in the Northwest U.S. region). This could mean that some Montana-generated electricity might be exported to Alberta over MATL if Albertans can obtain cheaper electricity from the U.S. at certain times of the year. If the wind farms are constructed and electricity is exported from Montana to Alberta, it is not
likely to substantially affect Montana consumer rates. Because the amount of transmission capacity the MATL line would open up between Montana and Alberta would be relatively small compared to the total amount of interconnection capacity Montana currently has with other states, it is likely that increases in competition and changes in electricity prices would be limited or non-existent as a result of the proposed line.

3.13.3.3 Alternatives 3 and 4 - MATL B and Agency Alternative

The socioeconomic impacts described above are essentially equal for all of the alternatives with the exception of differences in the estimated property tax revenue available to each affected county depending on the mileage of the line that would ultimately be constructed within each county’s jurisdiction (Table 3.13-18). Also, net farmer benefits and landowner compensation would be slightly different for each Alternative.
TABLE 3.13-18
TAX BENEFIT ESTIMATES FROM MATL WITH 3% TAX RATE

<table>
<thead>
<tr>
<th>Alignment Length (Miles)</th>
<th>Value $/Mi.</th>
<th>Estimated Value in County</th>
<th>Class 9 Tax Rate: 3%</th>
<th>Taxable Value</th>
<th>Avg. Rural Mill Levy</th>
<th>Property Tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 2</td>
<td>12.76</td>
<td>$363,284</td>
<td>$4,635,504</td>
<td>0.03</td>
<td>$139,065</td>
<td>0.50412</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>12.31</td>
<td>$363,284</td>
<td>$4,472,026</td>
<td>0.03</td>
<td>$134,161</td>
<td>0.50412</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>19.81</td>
<td>$363,284</td>
<td>$7,196,656</td>
<td>0.03</td>
<td>$215,900</td>
<td>0.50412</td>
</tr>
<tr>
<td>Chouteau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 2</td>
<td>5.87</td>
<td>$363,284</td>
<td>$2,132,477</td>
<td>0.03</td>
<td>$63,974</td>
<td>0.43959</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>10.21</td>
<td>$363,284</td>
<td>$3,709,130</td>
<td>0.03</td>
<td>$111,274</td>
<td>0.43959</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>0</td>
<td>$363,284</td>
<td>$0</td>
<td>0.03</td>
<td>$0</td>
<td>0.43959</td>
</tr>
<tr>
<td>Glacier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 2</td>
<td>40.41</td>
<td>$363,284</td>
<td>$14,680,306</td>
<td>0.03</td>
<td>$440,409</td>
<td>0.53745</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>37.34</td>
<td>$363,284</td>
<td>$13,565,025</td>
<td>0.03</td>
<td>$406,950</td>
<td>0.53745</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>40.56</td>
<td>$363,284</td>
<td>$14,680,306</td>
<td>0.03</td>
<td>$440,409</td>
<td>0.53745</td>
</tr>
<tr>
<td>Pondera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 2</td>
<td>45.69</td>
<td>$363,284</td>
<td>$16,598,446</td>
<td>0.03</td>
<td>$497,953</td>
<td>0.52162</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>44.44</td>
<td>$363,284</td>
<td>$16,144,341</td>
<td>0.03</td>
<td>$484,330</td>
<td>0.52162</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>52.01</td>
<td>$363,284</td>
<td>$18,894,401</td>
<td>0.03</td>
<td>$566,832</td>
<td>0.52162</td>
</tr>
<tr>
<td>Teton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 2</td>
<td>25.16</td>
<td>$363,284</td>
<td>$9,140,255</td>
<td>0.03</td>
<td>$274,208</td>
<td>0.4991</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>17.32</td>
<td>$363,284</td>
<td>$6,292,079</td>
<td>0.03</td>
<td>$188,762</td>
<td>0.4991</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>27.26</td>
<td>$363,284</td>
<td>$9,903,122</td>
<td>0.03</td>
<td>$297,094</td>
<td>0.4991</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$731,525</td>
</tr>
<tr>
<td>Alternative 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$682,112</td>
</tr>
<tr>
<td>Alternative 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$789,488</td>
</tr>
</tbody>
</table>

Notes:
Sources: Mullen 2006
Montana Department of Revenue 2004
Chapter 3

3.13.3.4 Environmental Justice

Executive Order (EO) 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (59 FR 7629, 16 February 1994), directs each Federal agency to:

“make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effect of its programs, policies, and activities on minority and low-income populations.”

The Presidential Memorandum that accompanied EO 12898 emphasized the importance of using existing laws, including NEPA, to identify and address environmental justice concerns, “including human health, economic, and social effects, of Federal actions.” CEQ, which oversees the Federal government’s compliance with EO 12898 and NEPA, has subsequently developed guidelines to assist Federal agencies in incorporating the goals of EO 12898 into the NEPA process. This guidance, published in 1997, was intended to “assist Federal agencies with their NEPA procedures so that environmental justice concerns are effectively identified and addressed” (CEQ 1997). DOE has also published recommendations for complying with the EO as part of the NEPA process (DOE 2004).

Affected Environment

Pursuant to EO 12898, this section identifies possible minority or low-income populations that might be subject to disproportionately high and adverse environmental impacts or health effects from the proposed MATL Project.

Minority Populations. The CEQ guidelines define “minority” as individual(s) who are members of the following population groups: “American Indian or Alaskan Native; Asian or Pacific Islander; Black, not of Hispanic origin; or Hispanic” (CEQ 1997). The guidelines identify these groups as a “minority population” when either “(a) the minority population of the affected area exceeds 50 percent or (b) the minority population percentage in the affected area is meaningfully greater than the minority population percentage in the general population or appropriate unit of geographical analysis” (CEQ 1997).

To identify minority populations for this analysis, DOE compared the populations of ethnic minority groups in the study area (as defined for this EIS) with percentages tabulated for the state of Montana and the whole United States. As indicated in Table 3.13-2, there are only very small percentages of Asian or Pacific Islander, Black, or Hispanic residents in the study area and the state of Montana. Therefore, this analysis focuses only on two populations: (1) all minority groups combined and (2) American
Chapter 3

Indian populations. The following text discusses the total minority and American Indian populations within the study area using census tract\(^6\) data from the 2000 U.S. Census, which is the most recent year for which complete data are available at the census tract level. Figure 3.13-1 shows the census tracts in the region surrounding the proposed Project, and Figure 1.1-1 shows the study area as defined in this EIS. Table 3.13-19 lists the total minority and American Indian population percentages for the eight census tracts located at least partially within the study area.

Figure 3.13-1 Census tracts in the region surrounding the proposed Project (Area shown is approximately 130 miles across and does not include the full western extent of CT 9771 in Pondera County; Figure 1.1-1 shows the Project study area and the location of the three action alternatives.)

\(^6\)As defined by the Census Bureau, census tracts are small, relatively permanent statistical subdivisions of a county. Tracts are delineated by a local committee of census data users for the purpose of presenting data. Census tract boundaries normally follow visible features, but may follow governmental unit boundaries and other non-visible features in some instances; they always nest within counties. Designed to be relatively homogeneous units with respect to population characteristics, economic status, and living conditions, census tracts average about 4,000 inhabitants (U.S. Census Bureau 2007a).
As indicated in Table 3.13-19, the census tracts located within the study area have much lower total minority population percentages than the United States as a whole, and all but one have smaller percentages of minority populations than the state of Montana. One census tract in the study area (Census Tract 9760 in Glacier County) has an American Indian population that is more than 16 times higher (10.9 percentage points greater) than that tabulated for the United States in the 2000 census, but is only about twice as high (5.6 percentage points greater) as the statewide percentage of American Indians. Glacier County as a whole has a very high American Indian percentage (61.0 percent of the county’s population classified themselves as American Indian in the 2000 Census) due to the presence of the Blackfeet Indian Reservation, which is located west of the town of Cut Bank, outside the study area for this EIS. For purposes of incorporating environmental justice considerations into this analysis, the minority population percentage and American Indian percentage in the study area do not appear to be “meaningfully greater” than that in the state of Montana or the United States. The largest concentration of American Indians near the study area, the Blackfeet Indian Reservation in Glacier County, begins just to the west of the study area, and has headquarters over 30 miles away in Browning. The Project is not expected to have disproportionately adverse effects on any of the resources used by area Tribes (see discussion below).

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of residents</th>
<th>White</th>
<th>Total minority</th>
<th>American Indian</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT 101 in Cascade County</td>
<td>3,818</td>
<td>90.5</td>
<td>9.5</td>
<td>4.4</td>
</tr>
<tr>
<td>CT 102 in Chouteau County</td>
<td>2,221</td>
<td>97.8</td>
<td>2.2</td>
<td>0.4</td>
</tr>
<tr>
<td>CT 9760 in Glacier County</td>
<td>3,996</td>
<td>84.2</td>
<td>15.8</td>
<td>11.6</td>
</tr>
<tr>
<td>CT 9770 in Pondera County</td>
<td>4,069</td>
<td>95.5</td>
<td>4.5</td>
<td>2.1</td>
</tr>
<tr>
<td>CT 9771 in Pondera County</td>
<td>1,464</td>
<td>94.1</td>
<td>5.9</td>
<td>2.9</td>
</tr>
<tr>
<td>CT 1 in Teton County</td>
<td>1,966</td>
<td>95.2</td>
<td>4.8</td>
<td>1.0</td>
</tr>
<tr>
<td>CT 1 in Toole County</td>
<td>1,393</td>
<td>94.8</td>
<td>5.2</td>
<td>2.0</td>
</tr>
<tr>
<td>CT 2 in Toole County</td>
<td>3,874</td>
<td>92.7</td>
<td>7.3</td>
<td>3.5</td>
</tr>
<tr>
<td>State of Montana</td>
<td>902,195</td>
<td>89.5</td>
<td>10.5</td>
<td>6.0</td>
</tr>
<tr>
<td>United States</td>
<td>281,421,906</td>
<td>69.1</td>
<td>30.9</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau 2007b
Chapter 3

Low-Income Populations. CEQ guidance defines “low-income” using statistical poverty thresholds from the Bureau of Census Current Population Reports, Series P-60 on Income and Poverty, by household. In identifying low-income populations, a population may be considered either as a group of individuals living in geographic proximity to one another, or a set of individuals (such as migrant workers or Native Americans), where either type of group experiences common conditions of environmental exposure or effects.

To identify possible low-income populations, DOE used CEQ’s definition of low-income households, and compared the percentages of households below the poverty level (i.e., incomes less than or equal to the official 2000 poverty threshold of $17,463 for a family of four) in the eight study area census tracts with percentages tabulated for the state of Montana and the whole United States in the 2000 Census.

Table 3.13-20 lists the low-income population percentages (as indicated by the percentage of households below the poverty level) for the eight census tracts located at least partially within the study area.

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of households</th>
<th>Percentage of households below the poverty level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT 101 in Cascade County</td>
<td>1,464</td>
<td>12.9</td>
</tr>
<tr>
<td>CT 102 in Chouteau County</td>
<td>893</td>
<td>13.5</td>
</tr>
<tr>
<td>CT 9760 in Glacier County</td>
<td>1,578</td>
<td>11.8</td>
</tr>
<tr>
<td>CT 9770 in Pondera County</td>
<td>1,646</td>
<td>13.2</td>
</tr>
<tr>
<td>CT 9771 in Pondera County</td>
<td>541</td>
<td>20.9</td>
</tr>
<tr>
<td>CT 1 in Teton County</td>
<td>741</td>
<td>14.0</td>
</tr>
<tr>
<td>CT 1 in Toole County</td>
<td>509</td>
<td>13.8</td>
</tr>
<tr>
<td>CT 2 in Toole County</td>
<td>1,453</td>
<td>10.3</td>
</tr>
<tr>
<td>State of Montana</td>
<td>358,667</td>
<td>14.0</td>
</tr>
<tr>
<td>United States</td>
<td>105,480,101</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau 2007c

As indicated in Table 3.13-20, most of the census tracts within the study area have low-income population percentages similar to the state and national averages. However, Census Tract 9771 in Pondera County has a percentage of low-income households (20.9 percent) that is about one-and-one-half times the state percentage of low-income households (6.9 percentage points greater) and more than one-and-three-fourths times the national percentage (9.1 percentage points greater). This is a geographically expansive and sparsely settled census tract. Additional detail on income distribution within the census tract is not available. However, the preponderance of census-reported
poverty in this census tract may be attributable to the presence of several Hutterite colonies, the closest of which is the New Miami Colony that is about 9 miles west of Alternative 2 and 7.5 miles west of Alternative 3 (outside the study area for this EIS). Personal and household income data reported for families living in the communal setting of a Hutterite colony may not be consistent with the true household economic situation. Due to the small total size and highly dispersed nature of the population of this census tract, as well as the distance of the Hutterite colonies from the study area for this EIS, this census tract does not appear to be a “low income” population within the meaning of EO 12898.

Environmental Impacts

As discussed above, DOE identified one small “minority” concentration (the American Indians in Census Tract 9760 in Glacier County) and one small “low-income” concentration (Census Tract 9771 in Pondera County) in the study area census tracts. Although these do not appear to be “minority” or “low income” populations pursuant to EO 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, this section examines the potential for the proposed Project to result in disproportionately high and adverse impacts to any minority population (specifically American Indians) and low-income households in the study area.

Methodology: To determine whether there would be disproportionately high and adverse human health or environmental effects of the proposed Project on minority and low-income populations, DOE considered the following (DOE 2004):

- For each alternative, are there any significant adverse impacts to minority and low income populations that would appreciably exceed impacts to the general population or other appropriate comparison group, considering all potential impacts (e.g., health effects, air quality, water quality, cultural resources, cumulative impacts)?

- Would minority and low-income populations have different ways than the general population of being affected by an alternative, such as unique exposure pathways or rates of exposure (e.g., from subsistence fishing), special sensitivities (e.g., to air pollution because of less access to health care and poorer control of asthma), or different uses of natural resources (e.g., for cultural, religious, or economic practices)?

Alternative 1, the no-action alternative, would not result in any adverse impacts that would be experienced disproportionately by minority or low-income populations.

Under the action alternatives, the main environmental impacts potentially affecting residents within the study area would be in the form of changes to the visual setting from the presence of the transmission line and supporting towers. As discussed in Section 3.15.3, each of the alternative alignments would have visual impacts on
residents within the study area. However, because these impacts to residents would be distributed along the alternative alignments (as indicated by the locations of houses on Figures 3.15-1 through 3.15-3) and not concentrated in Census Tract 9760 in Glacier County or in Census Tract 9771 in Pondera County, the proposed Project’s visual impacts would not represent a disproportionately high and adverse effect on American Indian or low-income residents in these locations. Analysis in this EIS found that other potential environmental hazards, including EMF exposure, air emissions, and noise, would not significantly affect the surrounding population, and no mechanism has been identified for minority or low-income populations to be disproportionately affected.

As discussed in Section 3.8.3.2, the action alternatives would not negatively affect wildlife populations that could serve as a food source for minority or low-income populations in the area. DOE is not aware of any other special circumstance that would disproportionately impact American Indian or low-income residents.

The proposed Project is within the traditional territories of several Native American tribes, and Census Tract 9760 is just outside the eastern boundary of the Blackfeet Indian Reservation. As discussed in Section 3.14.3, Blackfeet Tribal representatives have stressed the need to evaluate the proposed Project’s potential to impact Traditional Cultural Properties (i.e., those sacred sites that have traditional spiritual values for the tribe). Mitigation measures described in Section 3.14.3 (e.g., inclusion of tribal monitors during cultural surveys, establishment of a Memorandum of Understanding [MOU] that includes the Blackfeet’s Tribal Historic Preservation Office [THPO]) would help prevent disproportionately adverse effects to Tribal Traditional Cultural Properties.

On the basis of the foregoing analysis, DOE concludes that no disproportionately high and adverse impacts would be expected for minority or low-income populations.
3.14 Paleontological and Cultural Resources

3.14.1 Analysis Methods

Paleontological and cultural resources provide valuable information about the behavior of past plant, animal, and human populations and their environments. Paleontological resources are fossilized plant and animal remains that are rare and have scientific research value. Cultural resources include archaeological sites, historic sites, architectural properties, traditional cultural properties, districts, landscapes, structures, features, or objects resulting from human activity. Both resources are nonrenewable and irreplaceable, and Montana state law requires that inventory for and evaluation of these resources occur before they are impacted by ground disturbing activities or removed from state ownership.

Federal regulations that were considered for this analysis include the National Historic Preservation Act of 1966, the Archaeological and Historic Preservation Act of 1974, the Archaeological Resources Protection Act of 1979, the American Indian Religious Freedom Act of 1977, the Native American Graves Protection and Repatriation Act of 1990, and Executive Orders relevant to cultural resources. State legislation considered includes the Montana Antiquities Act and the Montana Human Remains and Burial Site Protection Act.

Known prehistoric cultural resource sites (thousands of years old) and historic sites (at least 50 years old) have been documented in the project area. The number and variety of sites increases through time due to population increases and the effects of immigration. Existing sources of information were consulted in order to analyze paleontological and cultural resources, as described below.

Information Resources

The Montana Antiquities Database maintained by the Montana State Historic Preservation Office (SHPO) in Helena was the primary source for information about specific cultural resource sites and paleontological localities in the project study area. The Cultural Resources Information System (CRIS) contains summary information about previously recorded resources by site type and township, range, and quarter section. The Cultural Resources Annotated Bibliography System (CRABS) contains listings of previous resource inventories by township, range, and section. A search for sites listed in the National Register of Historic Places (NRHP) was conducted through SHPO and on-line through the National Park Service, as appropriate.
A variety of literature references including Frison (1991, 2001), Greiser (1984, 1994), Hanna (2003), Malone and Roeder (1976), Montana State Engineer's Office (1964), Montana Water Resources Board (1969), Schwantes (1996), Toole (1959), and Walker and Sprague (1998) were used in preparation of sections of this EIS related to paleontology, prehistory, and history. Information from Class I and Class III cultural resources inventories (Ferguson 2007; Petersen and Ferguson 2006) was also incorporated.

Analysis Area

The analysis area for paleontological and cultural resources is at least 480 square miles with a research area extending 2 miles to either side of the proposed and alternative alignments (figures showing these alignments are provided in Chapter 2).

In the Great Falls area, the lacustrine basins and related features are interspersed with areas of nearly level to steep soils on terraces, fans, and benches mixed with strongly sloping to steep soils on dissected sedimentary bedrock plains and hills. From just north of the Cascade County line to the Canadian border, the analysis area crosses the undulating to strongly rolling topography of the Glaciated Missouri Plateau section of the Great Plains physiographic province. This part of the area is also interspersed with nearly level soils in lacustrine basins surrounded by strongly sloping soils on terraces, fans, and benches. The lush grasslands once found in the area during much of the prehistoric past provided sufficient food for large herds of bison, antelope, and deer, with elk found in or near forested areas closer to the mountains or in the river breaks. These animals were not only food sources, but also provided materials for clothing, tools, and shelter. Grizzly and black bear were likely common and there was a wide variety of game birds and migratory water fowl. Other plant resources would provide roots, bulbs, fruits, berries, greens, and leaves for eating, making teas, and for medicinal purposes. Stone material left behind by glaciers or exposed by erosional episodes were used for hide anchors on tipis, piled for use as cairns or alignments for animal drive lines, and worked into stone tools.

Cultivation of much of the analysis area for more than the past century has impacted many of the shallow prehistoric cultural resource sites such as tipi rings or campsites in areas of little soil development. Intact prehistoric sites can be anticipated in areas of deep soils either on terrace or bench surfaces or in drainages where redeposited soils would protect them. Historic homestead, farm, or ranch buildings or foundations and related features or structures might be more visible in the agricultural areas.
Chapter 3

Paleontological and Cultural Resources

3.14.2 Affected Environment

Paleontological Sites

A fossil is defined as the remains, trace, or imprint of a plant or animal that has been preserved in a geologic context. These fossils are grouped into categories including: trace, plant, invertebrate, fish, amphibian, reptile, dinosaur, bird, mammal, and vertebrate. A trace fossil (ichnofossil) is a track, trail, burrow, or tube formed by the activity of an animal. Coprolites, or fossilized dung, are also trace fossils. Fossilized plants occur as physical remains (petrified wood) or imprints (leaf impressions). Stromatolites (laminated algal mounds) and Cyanobacteria (blue-green algae) are included in the plant category. Invertebrates are animals without backbones that inhabit marine, freshwater, and terrestrial environments, and are also found in the study area.

The geologic formation with the highest probability of containing fossils in the study area is the Two Medicine Formation. The only other formations with low to moderate probability of containing fossils include the Eagle, Kootenai, and Virgelle. The remaining formations or geologic types within the Study Area have little or no potential to contain fossils. Areas within the Two Medicine, Eagle, Kootenai, and Virgelle formations with potential to contain fossils primarily occur on steep exposed slopes above major river channels north from the Conrad area. In general, the distribution of fossils has not been determined at other locations within the Study Area since most of the Cretaceous rocks are covered by 1 to 15 feet of glacial deposits, and no paleontological fieldwork is reported. However, the likelihood of encountering new fossil types of significance to the scientific community is thought to be low because of the low amount of disturbance to deeper layers.

Cultural Sites

In some parts of the analysis area the nomadic, hunting and gathering lifeway persisted until European contact, while many Native American groups throughout the western United States generally became sedentary, settling in permanent or semi-permanent dwellings. By Late Prehistoric times the native populations were often settled into seasonal camps or villages, with those living on and near the Plains becoming specialized nomadic bison hunters. Known prehistoric site types in the analysis area include: tipi rings, buffalo jumps, open camps, lithic scatters, and cairn sites. Other site types that might be anticipated are house pits, cache pits, caves, rockshelters, kill or processing sites for other herd animals, lithic material quarries, pictographs, petroglyphs, medicine wheels, vision quest sites, and human burials.
Chapter 3 Paleontological and Cultural Resources

Known historic site types in the analysis area likely include: exploration and overland migration sites, such as trails (likely Native American in origin), river fords, wagon roads, encampments, or geologic/geographic landmarks; inscriptions, including pictographs, petroglyphs, or tree carvings; transportation sites, such as late nineteenth-early twentieth century roads, railroad engineered features (bridges, trestles, ballast, track, and ties) and construction camps; isolated trappers cabins; homesteading, ranching, and farming sites, such as residences (including foundations), outlying buildings and structures, cultural landscape elements (including fences, field/pasture patterns, stock ponds and dams, stock trails, and river fords), irrigation structures, and artifact scatters; mining and mine related sites; and abandoned town sites, including foundations and trash dumps.

Summary of Previously Recorded Data

A Class I review of previously recorded cultural resources and previous cultural resource inventories for the MATL proposed transmission line analysis area indicates that there are known prehistoric and historic cultural resources in or near the Proposed Action and the Alternative 3 (Petersen and Ferguson 2006). An additional Class I search for previously recorded cultural resources in sections containing Alternative 4 segments was conducted in November 2006. All Class I information is summarized in Table 3.14-1. The searches are computerized searches of records maintained by the SHPO using township, range, and section legal descriptions. The resulting data indicate the presence or absence of cultural resources in a section but not necessarily on the route of a specific alternative.

In total, ten sites, one prehistoric and nine historic, are eligible for the NRHP on the basis of consensus determination between the SHPO and a lead Federal or state agency. Cascade County contains the eligible Rainbow Dam Road 24CA416, which is located in sections containing Alternatives 2, 3, and 4. Another Cascade County site is 24CA1040, an eligible historic transmission line, crossed by Alternative 4. Site 24PN24 is an eligible tipi ring site along both Alternative 2 and Alternative 3 in Pondera County. Sites 24PN109 and 24PN111 are historic irrigation systems located in Pondera County intersecting Alternatives 2 and 3. Two eligible sites located in Pondera County are an historic railroad (24PN114), along Alternatives 2 and 3, and an historic oil refinery (24PN117), along Alternative 3. Sites 24GL191 and 24PN114 are portions of the Great Northern Railway; now part of the Burlington Northern-Santa Fe, located in Glacier and Pondera counties along Alternatives 2, 3, and 4. While the exact route of the Lewis and Clark National Historic Trail through the analysis area has not been identified, it is known that it followed the Marias River and is a resource of concern. Finally, two irrigation systems in Pondera County (24PN87 and 24PN88) are eligible historic sites.
TABLE 3.14-1
RESULTS OF CLASS I INVENTORY

<table>
<thead>
<tr>
<th>Site Type</th>
<th>Consensus Determination of Eligibility</th>
<th>No Determination or Unknown Eligibility</th>
<th>Not Eligible (Determined by SHPO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prehistoric Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipi Ring Sites</td>
<td>24PN24</td>
<td>24TT1008, 24PN21, 24PN5, 24GL55</td>
<td>24PN112</td>
</tr>
<tr>
<td>Buffalo Jumps</td>
<td>--</td>
<td>24GL348, 24GL587</td>
<td></td>
</tr>
<tr>
<td>Cairn Sites</td>
<td>--</td>
<td>24GL1032</td>
<td></td>
</tr>
<tr>
<td>Historic Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Road/Trail</td>
<td>24CA416</td>
<td>24CA645, 24PN83</td>
<td></td>
</tr>
<tr>
<td>Railroads</td>
<td>24GL191/24PN114</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Railroad/Stage routes</td>
<td></td>
<td>24PN34</td>
<td></td>
</tr>
<tr>
<td>Bridges</td>
<td>--</td>
<td>24PN46</td>
<td></td>
</tr>
<tr>
<td>Homesteads/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmsteads/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation Systems</td>
<td>24PN88, 24PN109, 24PN111</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Alternative 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prehistoric Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipi Ring Sites</td>
<td>24PN24</td>
<td>24PN21, 24GL55</td>
<td></td>
</tr>
<tr>
<td>Buffalo Jumps</td>
<td>--</td>
<td>24GL348, 24GL587</td>
<td></td>
</tr>
<tr>
<td>Cairn Sites</td>
<td>--</td>
<td>24GL1032</td>
<td></td>
</tr>
<tr>
<td>Historic Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Road/Trail</td>
<td>24CA416</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Railroads</td>
<td>24GL191/24PN114</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Bridges</td>
<td>--</td>
<td>24PN46</td>
<td></td>
</tr>
<tr>
<td>Homesteads/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmsteads/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation Systems</td>
<td>24PN87, 24PN109, 24PN111</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Historic Oil Refinery</td>
<td>24PN117</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Unknown Historic</td>
<td>--</td>
<td>24TT1006, 24PN20</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3.14-1
RESULTS OF CLASS I INVENTORY

<table>
<thead>
<tr>
<th>Site Type</th>
<th>Consensus Determination of Eligibility</th>
<th>No Determination or Unknown Eligibility</th>
<th>Not Eligible (Determined by SHPO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prehistoric Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipi Ring Sites</td>
<td>--</td>
<td>24CA194</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24CA195</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24CA196</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24TT1008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24PN773</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24PN61</td>
<td></td>
</tr>
<tr>
<td>Lithic Scatter</td>
<td>--</td>
<td>24CA192</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24CA193</td>
<td></td>
</tr>
<tr>
<td>Camp Site</td>
<td>--</td>
<td>24CA445</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24CA494</td>
<td></td>
</tr>
<tr>
<td>Historic Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Road/Trail</td>
<td>24CA416</td>
<td>24PN83</td>
<td>--</td>
</tr>
<tr>
<td>Railroads</td>
<td>24GL191</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Homesteads/ Farmsteads/ Residences</td>
<td>--</td>
<td>24CA190</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24CA191</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24CA199</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24PN91</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24PN95</td>
<td></td>
</tr>
<tr>
<td>Irrigation Systems</td>
<td>24PN88</td>
<td>24PN551</td>
<td>--</td>
</tr>
<tr>
<td>Historic Trash Dump</td>
<td>--</td>
<td>24PN62</td>
<td>--</td>
</tr>
<tr>
<td>Mining</td>
<td>--</td>
<td>24CA976</td>
<td>--</td>
</tr>
<tr>
<td>Historic Transmission Line</td>
<td>24CA1040</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Note: -- No reported site

Subcontracted personnel conducted an intensive pedestrian or Class III cultural resources inventory between May and November 2006 along much of Alternative 2 (Ferguson 2007). This inventory was conducted along undisturbed segments of Alternative 2. The intensive pedestrian cultural resource inventory was undertaken in areas of native grasslands, bases and edges of bluffs, stream terraces, and all Federal lands regardless of prior disturbance. The inventory covered a 500-foot-wide corridor centered on the proposed transmission line and a 100-foot-wide corridor along undeveloped access roads. The inventory process included analysis of visual effects on individual sites and cultural landscapes within one mile of the proposed centerline. Sites were recorded and evaluated for NRHP-eligibility according to SHPO standards. Any tribal consultation was to be undertaken by the lead Federal agency. All Class III information is summarized in Table 3.14-2.
TABLE 3.14-2
RESULTS OF CLASS III INVENTORY, ALTERNATIVE 2

<table>
<thead>
<tr>
<th>Site Type</th>
<th>NRHP-Eligible</th>
<th>Unevaluated/Unresolved NRHP-Eligibility</th>
<th>Not Eligible (Consultant Recommendation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prehistoric Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipi Ring Sites</td>
<td>24PN24(^1)</td>
<td>24GL1120, 24GL1121, 24GL1125, 24GL1126, 24GL1127, 24GL1132, 24PN148, 24PN150, 24PN152, 24PN153</td>
<td>24PN154, 24PN156, 24PN158, 24PN159, 24TT574, 24TT575, 24TT576, 24TT577, 24TT578, 24CA1053</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffalo Jump</td>
<td>--</td>
<td>24GL587</td>
<td>--</td>
</tr>
<tr>
<td>Multi-component sites</td>
<td>24PN5/24PN147(^2)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Road/Trail</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Railroads</td>
<td>24GL191(^1)/24PN114(^1)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Railroad/Stage Route</td>
<td>--</td>
<td>24PN34</td>
<td>--</td>
</tr>
<tr>
<td>Bridge</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Homesteads/Farmsteads/Residences/Structures</td>
<td>24PN149(^2)</td>
<td>24GL1119</td>
<td>24GL1133(^2), 24GL1134(^2), 24GL1136(^2), 24PN157(^2)</td>
</tr>
<tr>
<td>Irrigation Systems</td>
<td>24PN83(^1), 24PN88(^1), 24PN109(^1), 24PN111(^1)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Oil Camp</td>
<td>--</td>
<td>--</td>
<td>24GL1135(^2)</td>
</tr>
<tr>
<td>Historic Trash Dump</td>
<td>--</td>
<td>--</td>
<td>24PN151(^2)</td>
</tr>
<tr>
<td>Historic graffiti</td>
<td>--</td>
<td>--</td>
<td>24PN155(^2)</td>
</tr>
</tbody>
</table>

Notes:
1 - Previous Consensus Determination
2 - Consultant Recommendation
3 - Site subjected to mitigative measures, no longer exists
A total of 10 previously recorded cultural resource sites are located within, or are crossed by, the 500 foot inventory corridor. Four of the previously recorded sites are prehistoric, one of which (24PN24) has been determined NRHP-eligible, one (24PN5/24PN147) is recommended eligible, the eligibility of one (24GL587) is unresolved, and one (24PN112) was destroyed following recording and testing as mitigative measures. Of the six previously recorded historic sites, four irrigation canals (24PN83, 24PN88, 24PN109, and 24PN111) and portions of the Great Northern Railway (24GL191/24PN114) have been determined NRHP-eligible; the eligibility of one, an historic travel route (24PN34), is unresolved. The Class III inventory also located 30 previously unrecorded cultural resource sites in the inventory corridor. The 21 prehistoric sites have not been evaluated for NRHP eligibility. Of the nine historic sites, one homestead (24PN149) is recommended NRHP-eligible, while seven of the remaining eight are recommended not eligible and the eighth is unevaluated.

3.14.3 Environmental Impacts

Paleontological Resources

As part of MATL’s mitigation program, pre-construction reconnaissance would be conducted in areas where potential paleontological or fossil discovery exists. If found, fossil data would be recorded by trained professionals (with landowner permission). Under these conditions, the project may result in the beneficial impact of unknown or little studied fossils being discovered (MATL 2006).

Direct effects to paleontological resources from development projects such as the MATL proposed transmission line, include earthmoving or ground clearing activities, blasting of bedrock for tower foundations or access roads, boring for geotechnical surveys or placement of guy wires, and pedestrian or vehicular traffic. Indirect effects of projects such as the MATL transmission line include access to areas that were formerly not accessible. Access can lead to intentional damage to paleontological resources, such as unauthorized collecting, theft, and defacement, and result in the loss of information and destruction of the resource. An unanticipated discoveries plan that addresses discovery of paleontological resources in high probability areas during construction should be developed prior to project implementation.

Cultural Resources

Previous cultural resource inventories and/or recording of properties in the broader study area resulted in no properties listed in the NRHP being located on any of the alternative alignments. A segment of one NRHP-listed property, the Mullan Road (24CA89), is reportedly located in a section adjacent to the southern end of Alternatives 2 and 3 on the Benton Lake National Wildlife Refuge. This cultural resource site has never been located on the ground and formally recorded. It is recommended that if
either alternative is selected the area be thoroughly reviewed for intact portions of the property.

Nine cultural resource sites located along one or more of the alternative alignments are listed as NRHP-eligible by consensus determination in the SHPO CRIS system. One multi-component prehistoric site (24PN5/24PN147) is located along and near Alternative 2. One prehistoric tipi ring site (24PN24) is located along Alternatives 2 and 3. One historic road/trail (24CA416) and an historic railroad route (24GL191/24PN114), still in use, are crossed by Alternatives 2, 3, and 4. Historic irrigation systems (24PN109 and 24PN111) are crossed by Alternatives 2 and 3, while historic irrigation systems (24PN83 and 24PN88) are crossed by Alternatives 3 and 4.

The recommended treatment of either NRHP-listed or eligible cultural resource properties is avoidance, if at all possible, and protection. Many of the known, NRHP-eligible cultural resource sites within or crossed by the various alternatives are either limited in size or are linear sites. Direct impact to these sites can likely be avoided by adjusting the location of individual structures and roads.

Locations of Traditional Cultural Properties or potential locations identified by knowledgeable tribal members should be avoided. Traditional Cultural Properties or sacred sites are places that have traditional spiritual values for Montana Native people (Indian tribes or Indian religious practitioners) that are reverently dedicated to a person or object or event or activity and are secured against violation or infringement or interference.

In order to protect and preserve Indian religious practices, Executive Order 13007 and other laws and Executive orders of the U.S. Government place specific requirements on each executive branch agency with statutory or administrative responsibility for the management of Federal lands. Those agencies must, to the extent practicable, permitted by law, and not clearly inconsistent with essential agency functions, accommodate access to, and ceremonial use of, Indian sacred sites by Indian religious practitioners; avoid adversely affecting the physical integrity of sacred sites; and, where appropriate, maintain the confidentiality of sacred sites.

In the MFSA application, MATL stated that during a meeting Blackfeet Tribal representatives stressed the need to evaluate the proposed Project’s potential to impact traditional landscape and land use values. Inclusion of tribal monitors during cultural surveys and/or review of cultural resource findings by THPO personnel were suggested to assist in appropriate treatment of prehistoric findings. In addition, MATL is addressing Tribal issues with an appropriate level of cultural survey established through MOUs (MATL 2006).
During the summer of 2007, ethnographers and consultants representing the Blackfeet Tribe reviewed the Class I and class III cultural resource inventory reports and conducted field visits of four prehistoric sites. The Blackfeet consultants found the sites containing stone alignments, tipi rings, rock piles or cairns, and bison remains of particular relevance. As they visited the sites they found ceremonial [mineral] paint sources, traditionally utilized plants, traditionally utilized animals and their habitats (e.g., eagle nests, horned toads), rocks and fossils, and old graves not previously recorded by the cultural resource crews. The Blackfeet consultants consider the study area holy not only because of a connection with a culture hero, but also because the cultural resources located throughout the area, all of which are considered significant, are integral to Blackfeet culture and identity and to the future education of their children. Their recommendation is that all identified prehistoric cultural resources be avoided (Zedeño et al 2007).

Cultural resource properties and Traditional Cultural Properties where the NRHP eligibility is unknown, has not been determined, or is unresolved can either be avoided, if possible, or subjected to sufficient investigation to determine or resolve eligibility. In their report, the Blackfeet consultants recommended recording and mapping of possible stone effigies at sites 24PN150 and 24PN24 and they recommended excavation and documentation of any feature to be disturbed at sites that cannot be avoided. They further recommended that Blackfeet elders and monitors be hired and present during any excavations and any recovered artifacts be curated with the Blackfeet Tribe (Zedeño et al 2007).

If Alternatives 2, 3 or 4 are selected, then unevaluated cultural resource properties and Traditional Cultural Properties along the route should be individually evaluated in terms of Project effect. In addition, an intensive cultural resource inventory of areas not previously inventoried to Montana SHPO standards is necessary to comply with regulations in the Montana Antiquities Act, as amended (1995). Portions of a selected alternative along or within one-half mile of rivers, flowing streams, lakes, springs, or seeps should be considered high probability areas especially for prehistoric cultural resource sites and Traditional Cultural Properties. Such areas may also be more likely to contain historic sites, although intact homesteads may be more broadly distributed based on the system of patenting land in the late nineteenth and early twentieth centuries. Certain topographic features, such as those conducive to buffalo jump sites or high points for observation, should also be considered likely areas to contain prehistoric sites and Traditional Cultural Properties.

Areas least likely to contain cultural resource sites or NRHP-eligible sites are those areas far from reliable water and those areas where food or tool making resources would not occur. While areas subjected to plowing for farming may be less likely to contain intact cultural resource sites, plowed areas of well-developed soil may still contain intact prehistoric cultural resources.
Direct effects to cultural resource sites from development projects such as the MATL proposed transmission line include earthmoving or ground clearing activities and pedestrian or vehicular traffic. There is the potential for visual impacts to above-ground resources, such as historic buildings or houses. Indirect effects of projects such as the MATL proposed transmission line include soil erosion from earthmoving activities and access to areas that were formerly not accessible. Access can lead to intentional damage to cultural resource sites such as looting and vandalism, including unauthorized relic collecting, theft, and defacement, and result in the loss of information and destruction of the resource. An unanticipated discoveries plan that addresses discovery of artifacts or cultural resource sites during construction should be developed prior to project implementation.

3.14.3.1 Alternative 1 - No Action

Under the No Action Alternative, the proposed Project would not be constructed. Thus there would be no impacts to cultural resources or any Traditional Cultural Properties.

3.14.3.2 Alternative 2 - Proposed Action

The Class I cultural resource searches resulted in the identification of six previously recorded sites considered eligible for the NRHP in sections along Alternative 2. These sites include the Rainbow Dam Road, the Burlington Northern-Santa Fe Railroad, one other historic railroad, a large tipi ring site, and two historic irrigation systems. There are 12 sites where NRHP-eligibility has not been determined, is unknown, or is unresolved. This group includes four tipi ring sites, two buffalo jump sites, a prehistoric site consisting of stone cairns, two historic roads or trails, a railroad, a bridge, and a homestead. There is one previously recorded tipi ring site that was determined not eligible for the NRHP.

The Class III inventory, which was only conducted along undisturbed segments of Alternative 2, resulted in the relocation of seven previously recorded cultural resources sites considered NRHP-eligible. These include a large tipi ring site, multi-component prehistoric site, the Burlington Northern-Santa Fe Railroad, and four historic irrigation systems. A newly recorded historic homestead is recommended NRHP-eligible. There are 21 sites where NRHP-eligibility has not been determined, is unknown, or is unresolved. This group includes 20 tipi ring sites, one buffalo jump site, one historic railroad or stage route, and a homestead. There is one previously recorded tipi ring site that was tested and destroyed and is no longer considered eligible for the NRHP. There are seven historic sites recommended not eligible for the NRHP.
Chapter 3 Paleontological and Cultural Resources

3.14.3.3 Alternative 3 - MATL B

The Class 1 cultural resource searches resulted in the identification of seven previously recorded sites considered eligible for the NRHP in sections along Alternative 3. These sites include the Rainbow Dam Road, the Burlington Northern-Santa Fe Railroad, one other historic railroad, a large tipi ring site, an historic oil refinery, and two historic irrigation systems. There are nine sites where NRHP-eligibility has not been determined, is unknown, or is unresolved. This group includes two tipi ring sites, two buffalo jump sites, a prehistoric site consisting of stone cairns, an historic bridge, a homestead, and two sites only described as historic. There are two previously recorded homestead or residence sites that were determined not eligible for the NRHP.

3.14.3.4 Alternative 4 - Agency Alternative

The Class 1 cultural resource searches resulted in the identification of four previously recorded sites considered eligible for the NRHP in sections along Alternative 4. These sites include the Rainbow Dam Road, an historic transmission line, an historic irrigation system, and the Burlington Northern-Santa Fe Railroad. There are 19 sites where NRHP-eligibility has not been determined, is unknown, or is unresolved. This group includes six tipi ring sites, two lithic scatter sites, two prehistoric camp sites, an historic road or trail, five homesteads, one historic irrigation systems, one historic trash dump, and one historic mining site.

Two NRHP-eligible sites, 24CA416 the Rainbow Dam Road and 24CA1040 an historic transmission line just north of the Missouri River, are located in sections along Alternative 4. The sections crossed by Alternative 4 contain three of the tipi ring sites, the two lithic scatter sites, the two prehistoric camp sites, three of the homesteads, and the historic mining site in the category of undetermined, unknown, or unresolved NRHP eligibility.

One section along Alternative 4 contains one tipi ring site of undetermined NRHP eligibility. Several sections along Alternative 4 contain two of the tipi ring sites, two of the homesteads, the historic irrigation system, and the one historic trash dump in the category of undetermined, unknown, or unresolved NRHP eligibility.

Two sections along Alternative 4 contain the historic road or trail and the historic irrigation systems both of undetermined NRHP eligibility. Two additional sections along Alternative 4 contain the NRHP-eligible Site 24GL191, the Great Northern Railway – now part of the Burlington Northern-Santa Fe.
3.15 Visuals

3.15.1 Analysis Methods

Analysis Area

The visual resource analysis was developed using a resource analysis area 3 miles on either side of the proposed transmission line alternatives for reasons discussed in Section 3.15.3.

Information Sources

Visual resources refer to the natural and man-made features in the resource analysis area and include cultural and historic landmarks, landforms of particular beauty or significance, water surfaces, and vegetation. Together, these features form the overall impression that a viewer receives of an area or its landscape character.

Data and information for this section were compiled and refined from a variety of sources and verified by ground reconnaissance by Montana Alberta Tie, Ltd. during July and August 2005. Additional ground reconnaissance was conducted during May 2006 by DEQ and Tetra Tech. Additionally, aerial photographs were used to validate, change, or add to existing CAMA residential location information. Some of this information was originally compiled by AMEC Earth and Environmental for the MFSA application (MATL 2006b) and confirmed for use in this analysis.

Visual environmental impacts were analyzed in part by using computer generated photographic simulations. Technical information about these photographic simulations is provided in Appendix L.

3.15.2 Affected Environment

Landscape Character

The Project area is located in the Northwestern Glaciated Plains ecoregion (Nesser and others 1997) and is characterized by level to gently rolling glaciated plains crossed by alluvial corridors of the Marias and Teton rivers and their tributaries. Both dryland cultivation and irrigated cropland are common throughout the Project area (Montana Environmental Quality Council 1972). This agricultural land base gives the landscape its characteristic and dominant patterns of linear strips and blocks of dryland cultivation and circular and rectangular shapes associated with irrigated fields. Field colors that change seasonally among greens, yellows, and browns accentuate these strong landscape patterns. Scattered parcels of rangeland and native grassland found
in steeper coulees and rough terrain throughout the Project area provide additional color and texture in the viewed landscape.

Alluvial floodplains of the Marias and Teton rivers provide more topographic relief and diverse vegetation than surrounding uplands and plains. Mature cottonwood stands, riparian undergrowth of willows, boxelder, and chokecherry, eroded rock formations on valley walls, and meandering river channels contribute to a higher scenic quality in these floodplain corridors. In addition to these alluvial corridors and rivers, area lakes such as Benton and Hay lakes and Black Horse Lake, which is ephemeral, provide another type of water feature in the Project area. Scattered prairie potholes and wetlands dominated by trees, shrubs, emergents (cattails, bulrush), mosses, or lichens are also found in the Project area.

The cultivated and rural landscape provides the dominant cultural setting for the Project area. Rural farms and ranches dot the landscape, increasing in density where irrigation is present. Developed commercial and residential settings are found at small communities like Power, Dutton, and Brady, and the larger communities of Cut Bank and Conrad. Great Falls, at the southern edge of the Project area, is the only urban setting. Visual linear elements, including Interstate 15, state and local roads, railroads, and transmission lines crisscross the region, providing transportation and energy links for residents and commercial use. Other cultural modifications include the scattered oil and gas fields in the northern portion of the Project area and radio towers near Cut Bank and Great Falls. Dryland and irrigated cultivation are visually dominant throughout the Project area. Although cultural modifications and industrial development are present and visible in typical views, these modifications are typically subordinate to the predominant agricultural landscape.

Views are typically expansive throughout the entire Project area, extending across rolling uplands and plains to the Rocky Mountain Front and island ranges such as the Sweet Grass Hills and Highwood Mountains. Only in the alluvial valleys of the Teton and Marias rivers, their tributaries, and in steep coulees with some degree of topographic relief do views become more enclosed and limited.

Landscape Rating Units and Scenic Quality

The analysis area has been subdivided into landscape units for rating purposes (MATL 2006b). The rating areas (provided below) were delineated on a basis of: (1) similar physiographic characteristics; (2) similar visual patterns, texture, color, variety, and other features; and (3) areas that have similar impacts from man-made modifications. The landscape ratings and scenic quality assessments are based on a visual quality analysis methodology based on BLM methodology (BLM 1984).
Chapter 3

The scenic quality of each of the landscape units is provided at the end of each unit description. Scenic quality is a measure of the visual appeal of a tract of land or scenic quality rating unit. Scenic quality rating units can be assigned an A (outstanding), B (above average), or C (common) rating based on the apparent scenic quality, which is determined using seven key factors: landform, vegetation, water, color, adjacent scenery, scarcity, and cultural modifications (BLM 1984). No Class A areas are present. Those areas classified as Class B are shown on Figures 3.15-1, 3.15-2, and 3.15-3.

Alluvial Corridors
This unit constitutes narrow strips of land following coulees, creeks, and major rivers crossing the visual analysis area. The unit is moderately diverse in terrain, vegetation, and water features. Corridors along coulees and creeks in the analysis area are designated as Class C because their landform and vegetation are fairly common in the analysis area. The Marias River corridor and the Teton River corridor are designated as Class B due to floodplains, diverse vegetation patterns, river meanders, and topographic relief present in the setting.

Wetland Areas
Wetlands found in the visual analysis area include:

- permanently flooded lakes and reservoirs, and intermittent lakes;
- wetlands found along creek channels and coulees and in association with prairie potholes; and
- wetlands that have natural or artificial channels and periodically or continuously flowing water such as the permanently flooded river channel bottoms associated with the Marias and Teton rivers.

Figure 3.6-1, 3.6-2, and 3.6-3 show the locations of all mapped wetlands within the MATL Project study area. Most wetlands provide diverse vegetation and have low landform diversity and are designated as Class C. The wetlands associated with the Marias and Teton Rivers are designated as Class B because they contain a combination of diverse vegetation and a water feature.

Rims, Ridges, and Buttes
Several rims, ridges, and buttes occur in the Project study area. Prominent features include Lookout Butte, Abbott Ridge and Trunk Butte south of Cut Bank, West Knob and East Knob north of the Teton River in Chouteau County, Teton Ridge, and the Sun River/Missouri River Rim in the southern Project study area. These features are designated Class C because they offer less vegetation diversity than the Class B areas shown on Figures 3.15-1, 3.15-2, and 3.15-3 and little visual variety.
FIGURE 3.15-1
LOCATIONS OF VISUAL IMPORTANCE SOUTH
FIGURE 3.15-2
LOCATIONS OF VISUAL IMPORTANCE MIDDLE

CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS
STUDY AREA
MAJOR HIGHWAYS
SECONDARY ROADS
RIVERS AND STREAMS
NOTE:
ALT = ALTERNATIVE

HOUSES WITHIN 1/4 MILE OF ANY ALTERNATIVE
HOUSES BETWEEN 1/4 AND 1/2 MILE OF ANY ALTERNATIVE
HOUSES BETWEEN 1/2 AND 1 MILE OF ANY ALTERNATIVE
LEWIS AND CLARK CAMPSITES
RECREATION SITES
LEWIS AND CLARK TRAIL
VISUAL SIMULATION POINTS WITH CAMERA ANGLE

VISUAL QUALITY CLASS B AREAS
BENTON LAKE NATIONAL WILDLIFE REFUGE
LANDS MANAGED BY MT DEPT. FISH, WILDLIFE AND PARKS

VISUAL SIMULATION POINTS WITH CAMERA ANGLE
ALT2 - ALIGNMENT
ALT3 - ALIGNMENT
ALT4 - ALIGNMENT

GIS map by Ed Madej - TTEMI-HE Fig3_15-2_MATL_visual_impacts_middle_part_012007.mxd
FIGURE 3.15-3
LOCATIONS OF VISUAL IMPORTANCE NORTH

LEGEND

- HOUSES WITHIN 1/4 MILE OF ANY ALTERNATIVE
- HOUSES BETWEEN 1/4 AND 1/2 MILE OF ANY ALTERNATIVE
- HOUSES BETWEEN 1/2 AND 1 MILE OF ANY ALTERNATIVE
- LEWIS AND CLARK CAMPSITES
- RECREATION SITES
- LEWIS AND CLARK TRAIL
- VISUAL SIMULATION POINTS WITH CAMERA ANGLE
- ALT 2 - ALIGNMENT
- ALT 3 - ALIGNMENT
- ALT 4 - ALIGNMENT
- VISUAL QUALITY CLASS B AREAS
- BENTON LAKE NATIONAL WILDLIFE REFUGE
- LANDS MANAGED BY MT DEPT. FISH, WILDLIFE AND PARKS

NOTE:

ALT = ALTERNATIVE

CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS
STUDY AREA
MAJOR HIGHWAYS
SECONDARY ROADS
RIVERS AND STREAMS

GIS map by Ed Madej - TTEM-HE Figs_15-3_FINAL_visual-impacts_north_part_d_10X10.md
Chapter 3

Visuals

Uplands and benchlands

Uplands and benchlands comprise the majority of the Project study area. Benchlands are characterized by gently sloping terrain, expansive views, and cropland use. They occur predominantly in the center of the Project study area between the Marias River and Pondera Coulee and in the northern part of the study area associated with Kevin Rim. Rolling uplands with a fairly uniform landscape of gently sloping wheat fields and grassland constitute the remainder of the Project study area. These landscapes are designated Class C because their landforms, vegetation, and cultural modifications are common to the analysis area.

Existing Inventories

Federal and state land managers and local/county officials have not developed maps that establish an inventory of scenic attractiveness, distance zones or concern levels, scenic classes, and visual absorption capability for any portion of the Project study area.

Travel Routes

Travel routes include the primary and secondary roads shown in Figures 3.15-1, 3.15-2, and 3.15-3.

3.15.3 Environmental Impacts

Distance Zones and Visual Influence Zones

Distance zones were established based on thresholds for visual perception of form, texture, color, and line (BLM 1984). These visual criteria change as distance from a viewpoint increases. Detailed elements on the landscape tend to become less obvious and detailed at longer viewing distances. Elements of form and line become more dominant than color and texture at longer viewing distances. Four distance zones were established:

- Immediate Foreground (0 to 0.25 mile) — The immediate foreground is the dominant view threshold. Details are easily perceived and obvious. Changes may dominate the landscape.

- Foreground (0.25 to 0.5 mile) — The foreground is the viewed area in which details are perceived and obvious, though less so than the immediate foreground.

- Middleground (0.5 to 1 mile) — The middleground is the zone where details of foliage and fine textures are less perceptible. Vegetation begins to appear as patterns. Form and line are more dominant visual elements.
• Background (1 to 3 miles) — The background is the portion of the landscape where texture is weak and landform becomes the most dominant element.

Impact Types and Levels

Most visual impacts are direct and long term. The major impact concern assessed by the visual resources study is the potential for a decline in aesthetic quality. Visual impact types evaluated include the following:

• Effects on scenic quality
• Effects on views from residential, commercial, institutional, and other visually sensitive land uses (existing and planned)
• Effects on views from travel routes
• Effects on views from established, designated or planned park or recreation areas
• Visual contrast resulting from different structure types and/or materials, and construction of new access trails

Determination of potential impacts and levels was based on assessing: (1) physical contrasts or landscape changes that would result from the project and (2) the degree of visibility that the project would have from each sensitive land use or scenic area (key observation points) (DOE 1986). Visibility levels for key observation points were determined by assessing viewer sensitivity, distance from the proposed Project, and duration of views. The impact levels for areas with a current non urban area land use are described below. Table 3.15-1 provides a summary of the impact levels for various observation points.

Major Impact — A high level of impact would result if the construction and operation of the transmission line would potentially cause substantial adverse change to viewers at residential and designated recreation sites or result in substantial and noticeable landscape alteration in areas of above average or outstanding visual quality. Generally, structures within the immediate foreground and foreground (½ mile) of residences, immediate foreground of recreation sites, or within areas of Class B scenic quality would result in a major impact. Structures within the immediate foreground or foreground of primary use travel corridors would result in a major impact.

Minor Impact — A minor level of impact would result if the construction and operation of the transmission line would potentially result in a noticeable landscape alteration in areas of average visual quality to viewers at residences, designated recreation sites (including the Lewis and Clark trail corridor), or along travel corridors. Generally, structures within the foreground (¼ to ½ miles) of recreation sites and within the middleground (½ to 1 mile) of residences would result in a minor impact. Structures
within the middleground of primary use travel corridors would result in a minor impact.

Very Minor Impact – A very minor impact is the result of a small degree of landscape alteration in areas of average or common visual quality. Views of the transmission line within the middleground and background of recreation sites, within the background of primary use travel corridors, within the background of residences, or within middleground and background of secondary use travel corridors would result in a very minor impact.

Residences, recreation sites, travel corridors, and areas with Class B scenic quality within 1 mile of Alternatives 2 through 4 are shown in Figures 3.15-1 through 3.15-3. The remainder of the natural landscape in the Project study area – including uplands, benchlands, rims, ridges, buttes, and wetlands – has generally lower landscape and viewer sensitivity.

<table>
<thead>
<tr>
<th>Observation Points</th>
<th>Immediate Foreground (0 – ¼ mile)</th>
<th>Foreground (¼-½ mile)</th>
<th>Middleground (½ - 1 mile)</th>
<th>Background (> 1 mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Major</td>
<td>Major</td>
<td>Minor</td>
<td>Very Minor</td>
</tr>
<tr>
<td>Recreation</td>
<td>Major</td>
<td>Minor</td>
<td>Very Minor</td>
<td>Very Minor</td>
</tr>
<tr>
<td>Travel – Primary Roads</td>
<td>Major</td>
<td>Major</td>
<td>Minor</td>
<td>Very Minor</td>
</tr>
<tr>
<td>Travel – Secondary Roads</td>
<td>Minor</td>
<td>Minor</td>
<td>Very Minor</td>
<td>Very Minor</td>
</tr>
</tbody>
</table>

Notes:

a A transmission line going through a Class B scenic quality area would be a major impact.

3.15.3.1 Alternative 1 - No Action

There would be no additional visual impacts under the No Action alternative.

3.15.3.2 Alternatives 2, 3, and 4 - Action Alternatives

Table 3.15-2 summarizes the proximity of various observation points to the alternatives. These observation points include area residences, recreational sites, and Class B scenic areas that fall within the immediate foreground, foreground, and middleground of each alternative centerline. In addition, the miles of major highways that fall within the immediate foreground, foreground, and middleground of each alternative centerline are provided. Figures 3.15-1, 3.15-2, and 3.15-3 provide a visual overview of the data provided in Table 3.15-2.
TABLE 3.15-2
COMPARISON OF DISTANCE ZONES FROM VARIOUS OBSERVATION POINTS

Action Alternatives 2, 3, and 4

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Number of Residences (Points)</th>
<th>Recreation – General (Point)</th>
<th>Recreation - L & C Trail (Lineal Mileage)</th>
<th>Travel Corridor (Lineal Mileage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles</td>
<td>0 to 1/4 1/4 to 1/2 1/2 to 1</td>
<td>0 to 1/4 1/4 to 1/2 1/2 to 1</td>
<td>0 to 1/4 1/4 to 1/2 1/2 to 1</td>
<td>0 to 1/4 1/4 to 1/2 1/2 to 1</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>20 51 111</td>
<td>1 2 NA<sup>e</sup></td>
<td>7.94 3.39 NA</td>
<td>3.3 2.8 6.3</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>25 65 139</td>
<td>0 3 NA</td>
<td>7.72 2.3 NA</td>
<td>3.7 3.9 8.2</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>20 45 111</td>
<td>0 0 NA</td>
<td>6.51 2.85 NA</td>
<td>2.7 2.3 5.3</td>
</tr>
</tbody>
</table>

Notes:
- a Local routing options are not included in this table. Their impacts are discussed in Section 3.16.3.
- b All action alternatives would cross the Marias River and Teton River, which are Class B scenic areas.
- c Does not include the conservation easement located north of the Missouri River at Great Falls switch yard (Lewis and Clark Greenway Conservation Easement).
- d Interstate 15 and U.S. Highways 2 and 87
- e NA = Not available
Residential Areas – Long Term

Residences are located within the immediate foreground and foreground of the centerline of each action alternative. As Table 3.15-2 indicates, Alternative 4 would have the least number of residences (65) within ½ mile. Alternative 2 would have the second least (71). Alternative 3 would have the highest number of residences within ½ miles (90). As a result, the overall long-term impact for residences that would be classified as a major impact would be the highest for Alternative 3 and the lowest for Alternative 4. The long-term impact for residences that would be classified as minor (within ½ to 1 mile of an alternative centerline) would be highest for Alternative 3 (124 residences) and lowest for Alternative 2 (91 residences) (DOE 1986). No residential clusters are located within the immediate foreground or foreground of any of the alternatives.

Recreation Areas – Long Term

All three action alternatives would cross the Lewis and Clark National Historic Trail and the Teton and Marias river corridors. All action alternatives would also be within the foreground of the Missouri River Corridor and several developed recreation areas near Great Falls including Giant Springs State Park, the Lewis and Clark Interpretive Center, and the Lewis and Clark Heritage Greenway. Alternative 2 crosses the south and west edges of the Great Falls Shooting Sports Complex located north of Great Falls; Alternative 3 crosses to the west of the complex. Both Alternatives 2 and 3 cross within the foreground of Benton Lake National Wildlife Refuge. The Lewis and Clark National Historic Trail is paralleled and crossed by all alternatives between the Marias River and Cut Bank (Class B scenery). Other recreation areas considered, but not within the foreground, include wildlife production areas, research natural areas, and other sporting venues/complexes (for example, golf courses, race tracks, rodeo arenas, city parks) located along alignment alternatives near Cut Bank, Conrad, and Great Falls. Although the proposed transmission line would be within the foreground of several recreational areas in the Great Falls area, the proposed transmission line would be an additional line in a setting with many transmission lines and a substation. The visual effect of an additional line would be incremental.

As shown in Table 3.15-2, Alternative 4 would not have any recreational sites within ½ mile of the alignment. Alternatives 2 and 3 would each have three recreation sites within ½ mile; however, one site (Morony entrance to the Great Falls Shooting Sports Complex) would be less than ¼ mile from Alternative 2 only. Under the matrix used for this assessment, a transmission line within ¼ mile of a recreational site is classified as a major impact but because surrounding scenery is not an important contributor to the recreation experience at the Shooting Sports Complex, the impact would likely be minor (DOE 1986).
Chapter 3

Visuals

Travel Routes – Long Term

Major travel routes that were considered include: Interstate 15 and U.S. Highways 2 and 87. Each of these highways would be crossed by each action alternative. The action alternatives differ slightly in the lineal miles of proposed alignment that would be within ½ mile of these major travel routes. Alternative 2 would have 11.3 miles within ½ mile, Alternative 3 would also have 11.3 miles within ½ mile, and Alternative 4 would have 9.4 miles (Table 3.15-2). A transmission line within ½ mile of a major travel route is classified as a major impact because it would result in highly visible contrast with the surrounding landscape (BLM 1984).

A computer generated visual simulation was developed showing the proposed line looking northwest from Montana State Highway 44, also known as Bootlegger Trail (Figure 3.15-4). Though not a high volume road (major travel route), this viewpoint on Bootlegger Trail is typical of views from secondary roads. Because monopoles would be used on approximately 53 miles of diagonal alignment that would cross cultivated land, the computer generated view incorporates monopole structures (Figure 3.15-5). Many road crossings would have monopole structures but some would incorporate H-frame structures. While monopole structures would typically be about 25 feet taller than H-frame structures, the ruling span length would be similar for both structure types (Figure 2.3-5). The monopole visual impact levels would be comparable to H-frame visual impact levels.

Visual impacts on all major travel routes would be comparable for all action alternatives with major impact levels for the immediate foreground and foreground viewing areas (DOE 1986). The MATL 230-kV transmission line would cross secondary roads seven times under Alternative 2, seven times under Alternative 3, and six times under Alternative 4. Visual impacts on all secondary road crossings would be minor.

Landscape Alteration – Long Term

The visual contrast of the proposed transmission line would be based on varying levels of potential landform and vegetation alteration that would result from construction. Landform contrast would result where access roads and pads for structure erection are constructed in hilly or steep terrain. Hillside benching, exposure of subsoil, and erosion scars from project construction in steeper terrain could modify existing topography and soils, resulting in visual contrast that is long term. These effects are more likely to occur on steeper slopes near the crossings of the Marias and Teton rivers, compared to surrounding uplands and plains. However, the transmission line structures would be located so that no roads need to be constructed over the edge of cliffs along the Marias River. Some road building is anticipated on the south side of the Teton River. Figure 3.15-6 shows a computer generated visual simulation of an H-frame power line crossing the Marias River. Based on the crossing of rivers corridors with Class B scenic quality, the potential impact for all action alternatives would be major (DOE 1986).
FIGURE 3.15-4
VISUAL SIMULATION LOCATIONS

LEGEND

- ALTERNATIVE 2 - ALIGNMENT
- MILEPOSTS
- VISUAL SIMULATION POINTS
- WITH CAMERA ANGLE
- NOTE: ALT = ALTERNATIVE

- CITIES AND TOWNS
- ALIGNMENT END AND EXIT POINTS
- STUDY AREA BOUNDARY
- MAJOR HIGHWAYS
- SECONDARY ROADS
- RIVERS AND STREAMS

GIS map by Ed Madej - TTEMI-HE Fig3_15-4_MATL_Visual_Simulation_Locations_012007.mxd
Successful implementation of reclamation and revegetation efforts and the avoidance of dense riparian vegetation at the proposed river crossings would decrease the impact to minor levels (DOE 1986).

Vegetation contrast is a function of existing cover type (riparian forest, grassland, or agricultural cropland) and the amount of clearing needed for line construction and maintenance. Higher levels of vegetation contrast would result where woody riparian growth is removed from the right-of-way, structure sites, and access roads. This effect can be long term where mature trees, windbreaks, and other woody vegetation are trimmed or removed for line operation over the life of the project.

Visual Impacts — Short Term

In agricultural cropland, vegetation would be removed for one growing season as structures are erected and construction traffic uses access roads. This effect would likely be short term for all action alternatives as crops would be restored in the following year.

Visual Resource Mitigations

To minimize adverse environmental impacts to visual resources from Alternative 2 and address local visuals issues in specific places, DEQ identified several potential mitigation realignments that are described in Appendix A of the March 2007 document. The agency’s preliminary analysis of the environmental impacts is in that appendix.

3.15.3.3 Local Routing Options

Analysis of the impacts of the local routing options is in Section 3.16.
3.16 Local Routing Options

Issues raised during the public comment period on the March 2007 document are summarized in Chapter 1 and formal responses to these comments are provided in Volume 2 of this document. Throughout the review process, the agencies worked with landowners to refine Alternative 2 and developed 11 local routing options addressing local concerns. Several of these routing options could also be applied to some parts of Alternative 4. Figure 2.6-1 provides the general locations for the 11 local routing options that were developed primarily to address landowner concerns related to costs and impacts to farming, impacts to other land uses, impacts to visual resources, and impacts to wildlife. The local routing options also address the required finding under MFSA that the facility minimize adverse environmental impacts considering the state of available technology and the nature and economics of the various alternatives (75-20-301(1)(c), MCA).

The 11 local routing options are described in Section 2.6. Not all three potential routing options in the Diamond Valley area could be selected because they address similar portions of the Alternative 2 and 4 alignments. Local routing options could be adopted as part of either Alternative 2 or 4 in the following areas: Diamond Valley, Teton River Crossing, a portion of the Belgian Hill road, and South of Cut Bank. The agencies invite readers to comment on the environmental advantages and disadvantages as well as costs associated with the local routing options, especially in the Diamond Valley area. The agencies would consider these comments and, if appropriate, revise Section 3.18.

3.16.1 Analysis Methods

Potential impacts to all resources were analyzed for the 11 local routing options. For many resource areas, the impacts associated with local routing options and the portions of Alternatives 2 or 4 they could replace would be very similar. The resource areas most affected by the local routing options are land use and visuals, which are the primary reasons that the routing options were developed. Each local routing option is considered only in relation to the comparable portion of Alternative 2 or 4 it could replace.

Analysis Area

The analysis areas for the local routing options are the immediate areas where they are located.
Information Sources

Information sources used to analyze the local routing options came from field and air photo review and discussions with interested landowners. This information was supplemented by data from the MFSA application, as necessary.

3.16.2 Affected Environment

The affected resource environments for the local routing options are discussed in the applicable resource area sections of Chapter 3. For most resource areas, the affected environment is very similar, if not identical, to the affected environment described in the main resource area sections. The 11 local routing options are all located within the same Project study area.

3.16.3 Environmental Impacts

Section 2.6 summarizes the major differences in location between each local routing option and the corresponding segment of Alternatives 2 or 4. This impacts analysis focuses on the issues identified in comments on the March 2007 document: potential land use effects and costs associated with farming around structures. These costs are compared to the additional cost of line construction for a routing option. The following section discusses these differences and similarities, and the construction costs are summarized in Table 3.16-1.

Several resource areas have very similar impacts between the local routing options and corresponding portions of either Alternative 2 or 4. Unless specifically mentioned, potential effects to these resource areas are not discussed further: geology and soils, engineering and hazardous materials, water resources, wetlands and floodplains, fish resources, threatened and endangered species and candidates for listing, noise, and air quality. Overall, the local routing options would not result in socioeconomic impacts substantially different than those described in Section 3.13.3. However, at the local level several of the proposed options could reduce costs of farming around new structures, and, in some cases, these reduced farming costs would likely outweigh the additional cost of line construction as indicated in Table 3.13-15.

All local routing options avoid residences sufficiently so that the State standard for electric fields of 1 kV/m and the State standard for noise of 50 dBA at the edge of the right-of-way in residential and subdivided areas would be met. In addition, the newly recommended magnetic field standard of 1.4 mG would also be met at these residences.
TABLE 3.16-1
DIFFERENCES BETWEEN LOCAL ROUTING OPTIONS AND ALTERNATIVE 2a

<table>
<thead>
<tr>
<th>No.</th>
<th>Local Routing Options</th>
<th>Crossing Cropland</th>
<th>Construction Cost(^d)</th>
<th>Residences up to ¼ mile from Local Routing Option</th>
<th>Residences ¼ to ½ mile from Local Routing Option</th>
<th>Other Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diagonal(^b) Miles Approximate</td>
<td>Parallel & Perpendicular(^c) Miles Approximate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Diamond Valley South</td>
<td>0.3 (4.22)</td>
<td>5.54 (1.07)</td>
<td>$2,422,470 ($1,961,895)</td>
<td>0 (2)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>2</td>
<td>Diamond Valley Middle</td>
<td>0.84 (4.22)</td>
<td>5.86 (1.07)</td>
<td>$2,249,515 ($1,961,895)</td>
<td>0 (2)</td>
<td>3 (0)</td>
</tr>
<tr>
<td>3</td>
<td>Diamond Valley North</td>
<td>0.4 (4.22)</td>
<td>6.25 (1.07)</td>
<td>$2,302,500 ($1,961,895)</td>
<td>0 (2)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>4</td>
<td>Teton River Crossing</td>
<td>0.17 (0.63)</td>
<td>0.11 (0)</td>
<td>$266,825 ($237,980)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>5</td>
<td>Southeast of Conrad</td>
<td>1.08 (2.23)</td>
<td>0 (0)</td>
<td>$886,205 (927,675)</td>
<td>1 (1)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>6</td>
<td>West of Conrad</td>
<td>0 (1.35)</td>
<td>1.3 (0)</td>
<td>$575,260 ($464,255)</td>
<td>0 (0)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>7</td>
<td>Northwest of Conrad</td>
<td>0.25 (1.3)</td>
<td>1.21 (1.13)</td>
<td>$859,400 ($835,350)</td>
<td>0 (0)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>8</td>
<td>Belgian Hill (Alt 2)</td>
<td>0.3 (0.26)</td>
<td>1.63 (1.55)</td>
<td>$731,660 ($721,525)</td>
<td>2 (4)</td>
<td>2 (0)</td>
</tr>
<tr>
<td></td>
<td>Belgian Hill (Alt 4)</td>
<td>0.25 (0.5)</td>
<td>0.8 (1.4)</td>
<td>$239,500 ($335,300)</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

\(^a\) Alternatives 1 and 2 are not direct comparable, as Alternative 2 involves an existing road that has been reconstructed to a higher standard. Alternative 2 also uses existing utility lines which reduces construction costs. The costs are compared based on the existing conditions and not the new construction. The cost data is approximate and may vary due to local conditions.

\(^b\) Diagonal distance calculated as the shortest path between the intersections.

\(^c\) Parallel & Perpendicular distance calculated as the Euclidean distance between the intersections.

\(^d\) Construction cost includes all paving and grading work necessary to build the road.
TABLE 3.16-1 (Cont.)
DIFFERENCES BETWEEN LOCAL ROUTING OPTIONS AND ALTERNATIVE 2a

<table>
<thead>
<tr>
<th>No.</th>
<th>Local Routing Options</th>
<th>Crossing Cropland</th>
<th>Construction Costd</th>
<th>Residences up to ¼ mile from Local Routing Option</th>
<th>Residences ¼ to ½ miles from Local Routing Option</th>
<th>Other Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Bullhead Coulee South</td>
<td>Diagonalb Miles Approximate</td>
<td>0.56 (0.62)</td>
<td>$505,690 ($422,555)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel & Perpendicularc Miles Approximate</td>
<td>0.4 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bullhead Coulee North</td>
<td>Diagonalb Miles Approximate</td>
<td>1.16 (1.52)</td>
<td>$522,555 ($525,630)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel & Perpendicularc Miles Approximate</td>
<td>0.48 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>South of Cut Bank</td>
<td>Diagonalb Miles Approximate</td>
<td>0 (0)</td>
<td>$654,505 ($677,985)</td>
<td>1 (1)</td>
<td>3 (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel & Perpendicularc Miles Approximate</td>
<td>0 (0.67)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- a In this table where two numbers are listed, the first is for the local routing option, followed by a number in parentheses for the Alternative 2 comparative length, cost, or count.
- b Diagonal to due north, south, east, or west.
- c Parallel to north and south (+-5 due north or south). Perpendicular to north and south (+-5 due east or west).
- d Based on $239,500 per mile for H-frames and $326,500 per mile for monopoles. Cost of angle structures were not included in these figures.
- e Alternative 4 could include some of the Local Routing Options listed above but would use only a portion of the Belgian Hill Local Routing Option. If the Belgian Hill Local Routing Option is used with Alternative 2, it would be 1.93 miles long compared to 1.05 miles if used with Alternative 4.
3.16.3.1 Diamond Valley Area

As indicated in Figure 2.6-2, the Diamond Valley South routing option would avoid diagonal crossing of farmland and residences by at least ¼ mile. In the northeast corner of Section 7, T24N, R2E where this routing option diagonally crosses a field, the guyed angle structures would be located in range and pasture lands. Diamond Valley South would have two residences between ¼ and ½ mile from the centerline. The corresponding segment of Alternative 2 would have two residences between 0 and ¼ mile. It would be about 2 miles longer than Alternative 2 and would cost about $460,575 more to construct.

The Diamond Valley North routing option (Figure 2.6-2) also would avoid diagonal crossing of farmland and residences by at least ¼ mile. Diamond Valley North would have one residence between ¼ and ½ mile from the centerline. The corresponding segment of Alternative 2 would have two residences between 0 and ¼ mile. The Diamond Valley North realignment would cross the existing NWE 115-kV line twice, creating potentially non-sprayable areas in fields where the two lines are in close proximity and create an acute angle. This realignment would be located near a single grain bin that might have to be moved if too close to the transmission line. If the grain bin is not moved, the centerline might need to be adjusted to the west sufficiently to allow grain augers to be used safely and to meet NESC requirements. The Diamond Valley North realignment would be approximately 1.3 miles longer than Alternative 2 and would cost $340,605 more to construct plus potential costs to move the grain bin.

The Diamond Valley Middle routing option would follow field boundaries to reduce diagonal crossing of cultivated land compared to Alternative 2 (Figure 2.6-2). This option would have three residences between ¼ and ½ mile from the centerline whereas, the corresponding section of Alternative 2 would have two residences less than ¼ mile away. Diamond Valley Middle is an applicant-suggested routing option. This routing option would potentially result in several areas in fields where it would have angular approaches to the existing NWE 115-kV line (primarily Section 25 T25N, R1E) and make farming operations difficult. It would be about 1.4 miles longer than Alternative 2 and would cost $287,620 more to construct.

The three Diamond Valley local routing options all have equal likelihood of encountering cultural resource sites. These areas are considered moderate to low probability areas for cultural resources.

3.16.3.2 Teton River Crossing Area

The Teton River has a meandering channel near the river crossing, and a broad floodplain. The routing option (Figure 2.6-3) would allow one structure on the north side of the river to be on a slightly more elevated terrace that would avoid an area in the
right-of-way for Alternatives 2 and 4 that is reported to have flooded in 1964. It would also locate structures at the edge of fields to reduce interference with farming.

The proximity to residences would be the same for this realignment as Alternative 2, with no occupied residences nearby. Depending on final design, some additional clearing of tall growing riparian vegetation would be required on the south bank of the Teton River. Because the Teton River Crossing realignment would require more angled structures and be about a quarter mile longer than Alternative 2, it would cost at least $28,845 more to construct.

3.16.3.3 Southeast of Conrad

The Southeast of Conrad routing option would result in lower estimated farming costs because more rangeland and a reclaimed gravel pit would be used (Figure 2.6-4). The local routing option is about a tenth of a mile longer than the same segment of Alternative 2. The construction costs for the Southeast of Conrad realignment would be approximately $41,470 less than the costs for Alternative 2 because more H-frame structures would be used. The Southeast of Conrad realignment would have one residence between ¼ and ½ mile from the centerline whereas; Alternative 2 would have two residences between ¼ and ½ mile from the centerline. The number of residences within ¼ mile of the line, would be the same for the Southeast of Conrad realignment and the corresponding section of Alternative 2.

This routing option southeast of Conrad would cross more uncultivated, native range lands, compared to the Alternative 2 segment it would replace, and would have a greater chance of encountering cultural resource sites if this option was selected.

3.16.3.4 West of Conrad

The West of Conrad routing option would decrease potential mid-field interference with aerial crop dusting compared to the Alternative 2 alignment, but would cause more edge-of-field interferences along the southern east-west and west segments (Figure 2.6-5). The West of Conrad realignment would have two residences between ¼ and ½ mile from the centerline whereas; the corresponding section of Alternative 2 would have no residences between ¼ and ½ mile from the centerline. The local routing option is approximately a half mile longer than the same segment of Alternative 2. This routing option would likely result in cost savings (reduced farming costs) to farmers due to structure locations along the edges of fields. Cost of construction for this realignment would be about $111,005 more than Alternative 2.
3.16.3.5 **Northwest of Conrad**

The Northwest of Conrad routing option (Figure 2.6-6) would decrease the amount of cultivated land crossed diagonally compared to Alternative 2, thereby decreasing estimated costs to farm around structures. The local routing option is approximately a tenth of a mile longer than the same segment of Alternative 2 and would have an additional cost of $24,050. The approximate increased construction cost would not exceed the estimated cost savings to landowners. The Northwest of Conrad routing option realignment would have two residences between ¼ and ½ mile from the centerline whereas; Alternative 2 would have only residence between ¼ and ½ mile from the centerline. The number of residences within ¼ mile of the centerline would be the same for the Northeast of Conrad realignment and the corresponding section of Alternative 2.

This routing option may encounter several tepee rings, which can be spanned. It would cross more uncultivated, and native range lands, compared to the Alternative 2 segment it would replace, and would have a greater chance of encountering cultural resource sites.

3.16.3.6 **Belgian Hill Road Area**

The Belgian Hill route options are shown in Figure 2.6-7. The routing options could be used with Alternative 2 or the northern portion could be used with Alternative 4. Comments received on the March 2007 document and subsequent field review indicate that the old Belgian Hill reroute used with Alternative 2 would cross approximately ½ mile of cultivation on the diagonal and would also traverse a side-roll irrigated field. The revised Belgian Hill routing option would reduce estimated farming costs by slightly reducing the length of diagonal crossing of cultivated fields by about ¼ mile and would help avoid the crossing of the side-roll irrigated field. However, it would cross the same side roll irrigated field as Alternative 2 but at a location roughly 1,250 feet further west. The local routing option is approximately a tenth of a mile longer than the same segment of Alternative 2 and would have an additional cost of $10,135. It is approximately 0.4 miles shorter than Alternative 4 and would have cost savings of $130,600 over Alternative 4. The Belgian Hill routing option would be located between ¼ and ½ mile of four residences. As with Alternative 2, this routing option would still cross a field with a side roll irrigation system.

The Belgian Hill local routing option would reduce the potential for wind caused noise impacts to four residences close to Alternative 2 and be about 1,250 feet closer to two residences than Alternative 4.

The Belgian Hill local routing option alignment would have two residences between ¼ and ½ mile from the centerline whereas, the corresponding section of Alternative 2
would have no residences between ¼ and ½ mile from the centerline. However, the number of residences within ¼ mile of the line would be two for the Belgian Hill realignment and four for the corresponding section of Alternative 2. The Alternative 4 alignment would be the farthest away from the residences.

3.16.3.7 Bullhead Coulee Area

Under Alternative 2, a landowner could lose the opportunity of receiving annual payments from having a wind turbine located on his land since the proposed line location would be within 500 feet of a planned turbine. The turbine is part of wind farm that has not signed agreements with MATL but plans to interconnect with another transmission line in the area. The Bullhead Coulee South routing option ([Figure 2.6-8](#)) would allow placement of a wind turbine south of the line. Expected annual revenue from the turbine over the life of the line is estimated to exceed the additional cost of line construction. The affected landowner who suggested the reroute recognizes that the line would cross some additional CRP land on his property. This reroute would entail additional angle structures and would involve routing the line off a high bench, through fields, and back up to the bench. The local routing option is approximately a third of a mile longer than the same segment of Alternative 2 and would have an additional cost of $83,135. The potential for erosion would increase slightly, but proposed and required mitigating measures should adequately address such impacts. The proximity of residences to the Bullhead Coulee South realignment would not differ from Alternatives 2 or 4.

The Bullhead Coulee North routing option ([Figure 2.6-8](#)) could reduce farming costs by placing more structures on field edges. The local routing option is approximately 0.1 mile longer than the same segment of Alternative 2 but would cost about $3,075 less than Alternative 2 because more H-frame structures would be used. This local routing option visual and noise impacts would be the same as Alternative 2.

3.16.3.8 South of Cut Bank

This segment was designated as part of the tentative preferred alternative in the March 2007 document and has general local acceptance. This approximately 2.4-mile-long realignment would be approximately 0.1 mile longer than the same segment of Alternative 2 and be located ¼ mile west of the Alternative 2 alignment. This realignment would better follow property boundaries and section lines. It avoids a midfield location in a CRP field reducing potential for interference with farming. This local routing option visual and noise impacts would be the same as Alternative 2. The South of Cut Bank realignment would have a slightly higher cost to construct.
Chapter 3 Electrical Transmission System Operation and Reliability

3.17 Electrical Transmission System Operation and Reliability

This section describes the affected transmission system as it is currently configured and managed, and how reliability could be affected by the Project. This analysis was based, in part, on the results of a system feasibility study (ABB Consulting 2005) and the NorthWestern Energy MATL System Impact Study (Appendix I to the MATL application). Additional data and information for this section were compiled and refined from several sources including the MATL application for certification (MATL 2006b) and information contributed by DEQ’s economist (Blend 2007).

Prior to issuing a Presidential permit, DOE would prepare a separate reliability determination. At the time this document is published, information on which to base the DOE decision is preliminary.

3.17.1 Existing Transmission System

The North American transmission grid moves electricity from power-generating facilities to customers using a transmission system coordinated by the North American Electric Reliability Council (NERC) (Figure 1.1-2). NERC’s mission is to ensure that the bulk electric system in North America is reliable, adequate, and secure. NERC’s primary role is to set standards for the reliable operation of the bulk electric system and monitor and enforce compliance with reliability standards (NERC 2007). NERC is composed of eight regional reliability councils formed in response to national concern regarding the reliability of the interconnected bulk power systems, the ability to operate these systems without widespread failures in electric service, and the need to foster the preservation of reliability through a formal organization (NERC 2007).

Montana is located primarily within the western grid under the authority of the Western Electricity Coordinating Council (WECC). The WECC region is the largest and most diverse of the regional councils. WECC’s service territory extends from Canada to Mexico and includes the provinces of Alberta and British Columbia, the northern portion of Baja California, Mexico, and all or portions of the 14 western states in between (Figure 1.1-2). The WECC mission is to support efficient competitive power markets, assure open and non-discriminatory transmission access among members, and provide a forum for resolving transmission access disputes (WECC 2007). There is currently no direct power transmission connection between Alberta and Montana (Figure 1.1-2).
Transmission Capacity

Owners of transmission lines sell rights to use lines on a long-term firm basis, a long-term non-firm basis, or a short-term basis. “Firm” transmission service is a contractually established priority right to transmit a given amount of energy for a given period of time. “Non-firm” service is typically reserved and scheduled on an as-available basis and is subject to curtailment or interruption. An agreement must be in place between a shipper and an owner of a line before any power can be transmitted over the western grid. Under WECC requirements, the owner of a line must determine whether the line has available capacity before an agreement can be entered into. The available transmission capacity is calculated by subtracting contracted uses from the total rated line flow capacity. The transmission path can be described as congested if (1) no rights to use it are for sale, (2) it is fully scheduled and no firm space is available, or (3) the path is fully loaded to its flow capacity (DEQ 2004).

Electricity moving across the western grid does not necessarily follow contracted paths. Rather it flows along the paths of least resistance. Therefore, before a new transmission line is added to a grid, operators of the grid conduct studies to ensure that new power does not overload other lines and substations on the grid. In the case of the proposed MATL line, these studies are overseen by WECC. In August 2007, WECC released the results of its study and granted the MATL line an accepted rating of +/- 300 MW (Appendix M - Letter from WECC/BPA, Brian Silverstein, about MATL Phase 3 Status, dated August 28, 2007). Negotiations between MATL and NorthWestern Energy for MATL to connect to NorthWestern Energy’s line are still underway (Williams 2007d).

Montana’s Electricity Generation and Transmission System

Except for several rural electric cooperatives and Montana Dakota Utilities customers, Montana’s residential and commercial customers receive most of their contracted electricity from generation facilities located in Montana (DEQ 2004).

Most of Montana’s electric generation is owned by private utilities or by the Federal government through the U.S. Army Corps of Engineers or the Bureau of Reclamation. The Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA) market hydropower from Federal dams in Montana. PPL Montana is the largest supplier of Montana-consumed energy, owning both hydroelectric and coal-fired generation. PPL Montana’s hydroelectric generation facilities are regulated by the Federal Energy Regulatory Commission (FERC).

Montana has just over 5,000 MW of electrical generation capacity within its borders, most of it coal-fired and hydroelectric power. From 1999 to 2003, Montana’s electric generating plants produced an average output of about 3,000 average megawatts (aMW) (DEQ 2004). During that same time period, just over half of Montana generation
was consumed in-state, while approximately 1,400 aMW were delivered out of the state (DEQ 2004).

Wholesale prices of electricity are set by contract negotiations between transmission suppliers and electricity suppliers. Wholesale prices in Montana are usually bounded by prices at the Mid-Columbia hub located near the Columbia River in Washington State. Usually, the wholesale price for electricity goes no higher than the Mid-Columbia price minus transmission costs into Montana (Blend 2007). NorthWestern Energy (NWE), Montana’s largest private transmission and distribution utility, is the only major Montana transmission utility in-state on the Western Grid and is responsible for determining the default power supply for a majority of consumers in Montana. The default source will be approved by the Public Service Commission (Blend 2007).

NWE uses around 600 to 650 aMW of electricity to serve its customers, with a peak usage of over 1,000 MW. BPA and WAPA provide transmission service to electric cooperatives that deliver electricity to many of the smaller Montana customers on the western grid not served by NWE. Other wholesale suppliers provide electricity over transmission lines owned by NWE to a number of large commercial and industrial customers. NWE is regulated by the Montana Public Service Commission, FERC, and WECC rules, while BPA and WAPA and electric cooperatives will meet Federal regulatory and WECC requirements.

Alberta’s Electricity Generation and Transmission System
Alberta has experienced the fastest growing electricity demand in Canada over the past 5 years (Independent Power Producers Society of Alberta 2006). Since 1999, the demand for power in Alberta has grown by 21 percent, which compares to the average growth of demand in North America of 12 percent over the same time period (Independent Power Producers Society of Alberta 2006). To meet this demand, approximately 3,800 MW of new generation have been added to Alberta’s grid in the past 7 years (Independent Power Producers Society of Alberta 2006). This includes new coal units (450 MW), new wind and alternative fuel projects (300 MW), and 3,000 MW of new gas-fired generation. As of late 2006, Alberta had 11,557 MW of supply capacity, compared with almost 9,600 MW of peak demand (Alberta Department of Energy 2006). An additional 4,800 MW of power generation has been announced by industry for future development in Alberta (Alberta Department of Energy 2006).

Coal-fired generation makes up just over 50 percent of Alberta’s generating capacity and gas almost 40 percent, with hydro, wind, and alternative fuel making up the remaining 10 percent (Alberta Department of Energy 2006).

The electric transmission system in Alberta is owned, built, and maintained by private investors (Alberta Department of Energy 2006), except for some municipally owned utilities. Alberta has nearly 30 suppliers offering new electricity products and services.
to Alberta’s wholesale, commercial, and residential customers. Alberta also has electric cooperatives. Wholesale prices are set by the laws of supply and demand in Alberta and fluctuate daily in response to consumer demand (Alberta Government Services 2006). Alberta’s hourly wholesale electricity market is managed by the Alberta Electric System Operator (AESO), an independent system operator that facilitates Alberta’s competitive wholesale electricity market and is accountable for the administration and regulation of load settlement function (AESO 2007). Consumers may choose their own electricity supplier or remain under default supply arrangements determined by AESO, which are periodically adjusted to reflect actual wholesale power costs (Alberta Government Services 2006). The costs and expansion plans of Alberta’s transmission and distribution lines are regulated by the Alberta Energy and Utilities Board.

Alberta has been a net importer of electricity 5 out of the last 6 years, but electricity regularly flows in and out of the province (Alberta Department of Energy 2006). Alberta is not currently directly connected to Montana but has 800 MW of transmission connections with British Columbia and 150 MW with Saskatchewan (Figure 1.1-2).

3.17.2 System Reliability Constraints and Influences

Power transmission systems must include many sources of generation and pathways to be reliable sources of electricity. The MATL transmission line may improve reliability on Montana’s transmission system due to (1) better generation resource sharing and (2) different electric routing options. Different transmission system operators (jurisdictions) have different load factors and different mixes of generation. One example of this is peak loads occurring at different times of the day or seasons of the year for different jurisdictions. The fact that every jurisdiction does not experience peak demand and supply at exactly the same time of day/month allows the potential sharing of resources, which could lead to improved reliability (Williams 2006). Tie lines such as MATL can respond to these different load and generation characteristics.

A stand alone jurisdiction would need more generators standing by on an as-needed basis to cover planned and unplanned outages of generating units, than would be required for the same level of reliability if that jurisdiction was interconnected to other jurisdictions. The probability that multiple adjacent jurisdictions would experience a large loss of generation at the same time is very low, so adjacent jurisdictions can get the benefits of higher generation reliability by sharing generation resources. Sharing these resources costs each jurisdiction less than what it would cost to own the resource entirely and not share (Williams 2006).

MATL might also allow more alternative options for power routing within Montana. If a particular line was removed from service due to either an unexpected event or scheduled maintenance, the MATL tie line could be used to supply power from the north giving transmission operators in Montana one more option to use in case of a
removed line. This routing would depend upon loading on the line. Alberta’s independent system operators might be able to use MATL in a similar fashion for their service area.

Potential Impacts to System Reliability

Potential impacts to system reliability from the Project have been evaluated by NorthWestern Energy in its System Impact Study (NWE 2006) and by the potentially affected transmission system owners and agencies via the WECC Path Rating Process (WECC 2007). Summaries of these studies are provided in Appendix M. MATL has committed to mitigate the reliability impacts identified in NorthWestern’s system impact study and has committed to a process for mitigating the impacts identified in the WECC Path Rating process (Williams 2007e).

Potential Impacts to Reliability Based on Information Provided by NWE and MATL’s Plan to Mitigate those Impacts

Negotiations between MATL and NorthWestern Energy to interconnect the MATL line to the Great Falls 230-kV switchyard continue. The potential impacts to reliability have been identified by NWE in a system impact study (MATL System Impact Study Stand-Alone & Co-Existing, Third Revision, September 26, 2006), a copy of which is provided in Appendix M. A summary of those potential impacts and MATL’s plan to mitigate, or otherwise address them, is provided below:

Potential Reliability Impacts Identified by NWE

- The unused capability of the Great falls 230kV Switchyard without any system or network upgrades is 0 MW.

- The overload of the Great Falls 230/100 kV autotransformers must be mitigated. With the autotransformer upgrades, the MATL line will be able to connect its 230 kV line to the GF 230 kV Switchyard without further mitigation in the switchyard based on the information provided and analyzed in this study. The mitigation required must be coordinated with senior queue mitigation requirements.

- MATL needs to consider the voltage set points of the switched shunts to prevent high voltages during all conditions (N-0, N-1 and N-2). The high voltages at the new Marias and MATL 230 kV buses are present for the other contingency conditions too.

MATL Mitigation Plan and Comments

- MATL will mitigate the switchyard autotransformer constraint as described in the next section. In the event that further mitigation is required to move power out of the Great Falls 230kV Switchyard from the MATL project, then MATL’s shippers will be responsible for such mitigation.
• MATL will pay the cost of replacing the two existing 230/100 kV 100 MVA autotransformers with two 230/100 kV 200 MVA autotransformers. The commitment to upgrade the two autotransformers to 200 MVA capacity does take into account and coordinates with senior queue mitigation requirements.

• MATL commits to work with NWE, in its role as Control Area Operator of the Montana portion of the MATL project, in establishing the voltage set points of the switched shunts at the Marias substation. MATL also commits to work with the Alberta Electric System Operator, in its role as Control Area Operator of the Alberta portion of the MATL project, in establishing the voltage set points of the switched shunts at the MATL 120S substation.

Potential Impacts to System Reliability Based on WECC Path Rating Study

The WECC organization granted Phase III status for the MATL project with an Accepted Rating of +/- 300 MW on August 28, 2007. This Phase III status requires that MATL work with impacted transmission owners and agencies to develop remedial action schemes (RAS) and other forms of operational mitigation to address potential impacts on system reliability. MATL will initiate this work in 2008.
3.18 Information Regarding Findings for MFSA Certification

DEQ would approve a transmission line facility as proposed or as modified or an alternative to the proposed facility if it finds and determines:

- the need for the facility;
- the nature of probable environmental impacts;
- that the facility minimizes adverse environmental impact, considering the state of available technology and the nature and economics of the various alternatives;
- what part, if any, would be located underground;
- the facility is consistent with regional plans for expansion of the appropriate grid of the utility systems serving the state and interconnected utility systems;
- the facility would serve the interests of utility system economy and reliability;
- that the location of the proposed facility conforms to applicable state and local laws;
- that the facility would serve the public interest, convenience, and necessity;
- that DEQ has issued all necessary decisions, opinions, orders, certifications, and permits; and
- that the use of public lands for location of the facility was evaluated, and public lands were selected whenever their use is as economically practicable as the use of private lands (75-20-301[1], MCA).

Information pertaining to these determinations is summarized in this section.

3.18.1 Need

In order to determine that there is a need for the proposed electric transmission line, the Department must make one of the findings enumerated in ARM 17.20.1606. Pursuant to subsection (1)(a) of that administrative rule, insufficient power transfer capacity at adequate voltage levels under normal operating conditions may form a basis of need if the department finds that the transfer capacity of the proposed facility will be required within two years of the date the proposed facility is to be placed in service.

MATL held an Open Season between February 3 and April 15, 2005, during which companies could submit bids for transmission rights on the proposed 600 MW transmission line. MATL received 13 bids from four different companies, accepting bids totaling 420 MWs. The U.S. Federal Energy Regulatory Commission has determined that the bidding process used by MATL was nondiscriminatory, fair and transparent. MATL held an additional Open Season between June 9 and 30, 2006. MATL received 37 bids from four different companies for a capacity totaling more than 2000 MWs. MATL accepted bids from four companies totaling 300 MWs in each direction (Table 4.1-2).
Chapter 3

Findings for MFSA Certification

3.18.2 Nature of Probable Environmental Impacts

Probable impacts to land use, geology, soils, safety, hazardous material management, electric and magnetic fields, water, wetlands, vegetation, wildlife, fish, special status species, air quality, noise, socioeconomics, paleontological resources, cultural resources, transportation, utilities, visual resources, and the existing transmission system from the proposed Project and alternatives are described in Sections 3.1 through 3.17 and summarized in Table 3.18-1. This table summarizes impacts from Alternative 2 as proposed by the applicant along with Alternatives 3 and 4. It does not include mitigation measures; such as potential alignment changes described for land use and visuals. Applicant proposed measures to reduce impacts discussed in Chapter 3 would be applied to Alternative 2 if selected as the preferred alternative. Cumulative impacts are described in Chapter 4.

3.18.3 Facility Minimizes Adverse Environmental Impact

Section 75-20-301 (1)(c), MCA requires a finding that the facility as proposed or modified or an alternative to the facility must minimize adverse environmental impact considering the state of available technology and the nature and economics of the various alternatives. ARM 17.20.1607 outlines additional requirements before this finding can be made.

Project costs and costs of mitigation are presented in Table 4.20-1. The estimated annual net effect from the project on farmers is indicated in Table 3.13-15 along with the net effect over 50 years.

Table 3.18-1 summarizes probable impacts for each alternative. Resource specific impacts are described in Chapter 3. Cumulative impacts are described in Chapter 4. Monetary values of these impacts, except for estimated costs to farmers, cannot reasonably be quantified. Many potential adverse environmental impacts are minimized through measures proposed by the applicant and the application of environmental specifications (Appendix F). A plan for monitoring the facility is described in environmental specifications for the project in Appendix F and further detailed in ARM 17.20.1901.

The proposed line and alternatives would not cross any of the following areas: wilderness areas, national primitive areas, national wildlife refuges, state wildlife management areas and wildlife habitat protection areas, national parks and monuments, state parks, national recreation areas, corridors of rivers in the national wild and scenic rivers system and rivers eligible for inclusion in the system, roadless areas greater than 5,000 acres in size managed by federal or state agencies to retain their roadless character, and specially managed buffer areas surrounding national wilderness areas and national primitive areas. The line would cross isolated areas with rugged
topography on slopes greater than 30 percent. Vegetation may be destroyed during the construction process and soil exposed to erosion on these steep slopes. MATL has proposed a plan to control erosion during project construction and would be required to implement a storm water pollution prevention plan under Montana water quality statutes. DEQ would require a bond to ensure that areas disturbed during construction are reclaimed and revegetated.

If approved, DEQ would require that the project meet standards for noise and electric field strength in residential and subdivided areas unless affected landowners waive these requirements. The project would be required to meet minimum standards set forth in the National Electric Safety Code and Federal Aviation Administration requirements for marking the line.

Reasonable alternative locations for the project have been considered throughout the review process and will be considered in the final decision making process.

Before making its minimum impact determination DEQ is soliciting additional public comments on impacts, balancing the preferred location criteria listed on page 2-2 of this document, project design and line location.

3.18.4 Locating Transmission Lines Underground

No part of the transmission line would be built underground. Underground 230-kV lines would cost between 2 and 15 times the amount required to build an overhead line (Georgia Transmission Corporation 2006; Verbund 2006). Thus, the cost to build underground may be slightly more than $1 million per mile (Energy Central News 2007), compared with MATL’s estimate of about $293,500 per mile using H-frame structures. This would be cost prohibitive and would stop the project.

Digging trenches to bury the lines would result in greater construction disturbance to the land and would require greater time to install. Above ground access vaults would need to be constructed as well as above ground structures at line termination points. Buildings on the alignment would be restricted. Vegetation would likely have to be restricted to avoid reducing soil moisture that is needed to cool the transmission line. Problems with underground systems would also be more difficult to locate and repair.
3.18.5 Facility is Consistent with Regional Plans for Expansion of the Appropriate Grid of the Utility Systems Serving the State and Interconnected Utility Systems

The transmission line would allow new generators to connect to regional grids and provide a direct connection between Alberta and Montana grid systems. There is no single formal published plan for expansion of the regional grid. WECC oversees the Regional Planning Process. A Regional Planning Review Group was formed and on January 23, 2007 the WECC Planning Coordination Committee notified MATL that the Regional Planning Project Review had been completed. WECC has approved a path rating of +/- 300 MW. Negotiations for interconnection to NWE's transmission system are ongoing.

3.18.6 Facility Would Serve the Interests of Utility System Economy and Reliability

WECC has approved a path rating of +/- 300 MW. MATL and NWE have been conducting interconnection studies (Appendix M) and discussions of issues related to interconnection with NWE's transmission system at the Great Falls 230 kV switchyard are ongoing.

3.18.7 Location of the Proposed Facility Conforms to Applicable State and Local Laws

The location of the facility would conform to applicable state and local laws and regulations either as a permitting or license condition, or in compliance with project-specific environmental specifications (Appendix F).

3.18.8 Facility Would Serve the Public Interest, Convenience, and Necessity

The proposed transmission line would be built to meet the need for additional transfer capacity and transmission access for new wind power generators. Benefits to the applicant would be the monetary profit from operating the transmission line. Benefits to the state include local tax revenues to counties in which the line is located, state tax revenues from the line, a short-term boost to local economies from construction, future electricity generation, and the possible opening of spot electricity market within which Montana utilities can buy and sell electricity. The grid may also operate more efficiently.

Economic impacts due to the proposed transmission line would be minimal at a state level. Construction benefits would be short term. Line maintenance employment benefits and tax benefits would be long term but likely small at both a county and state level except for Pondera County which could earn up to $240,000 per year in tax
revenue. Farmers would experience greater costs from loss of farming acreage and difficulty farming due to the poles. Some of these costs would be mitigated by payments from MATL. Other environmental impacts (costs) are summarized in Table 3.18-1.

Benefits to the state of the wind farms include jobs, state taxes and county taxes. Costs include environmental impacts associated with wind farm development and operation. Benefits and impacts of wind farm development are described in Chapter 4.

The proposed facility is unlikely to have adverse affects on public health, welfare and safety because the line would conform to the requirements of the National Electric Safety Code and DEQ standards for electric field strength in residential or subdivided areas and at road crossings. Sensitive receptors such as residences, schools, and hospitals will be located at distances sufficient that even the most restrictive suggested standards for magnetic fields would be met under normal operating conditions. Structure designs would be used that discourage pole climbing by members of the public. Lastly, the project would be constructed in a manner that minimizes adverse impacts to soil, water, and aquatic resources.

The Montana DEQ is waiting for additional comments on the benefits and costs of MATL, and will make a final determination on public interest, convenience, and necessity after comments on this document are analyzed.

3.18.9 Public and Private Lands

The use of public lands for location of the facility was evaluated, and public lands were incorporated into alternatives whenever their use was as economically practicable as the use of private lands (75-20-301(1)(h), MCA). Table 3.1-5 lists the public land crossed by each alternative.

3.18.10 DEQ Issuance of Necessary Decisions, Opinions, Orders, Certifications, and Permits

As appropriate, the department would issue all necessary environmental permits at the time the decision is made on whether or not to grant a certificate for the facility. MATL has not applied for air or water quality permits.
TABLE 3.18-1
SUMMARY COMPARISON OF ENVIRONMENTAL IMPACTS AND COSTS BY ACTION ALTERNATIVE

<table>
<thead>
<tr>
<th>Resource Area/Resource Attribute</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Summary of Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use – General Impacts</td>
<td>Potential impacts compared to other alternatives depend on length of alignment in general, and length on cropland.</td>
<td>Potential impacts compared to other alternatives depend on length of alignment in general, and length on cropland.</td>
<td>Potential impact compared to other alternatives depend on length of alignment in general, and length on cropland.</td>
<td>Loss of production due to structures & roads, increased risk of weed introduction and spread, risk of equipment damage from hitting a structure, increased time to farm around poles, and some GPS-guided equipment may be affected. Cropland crossings also increase the risk of crop duster accidents.</td>
</tr>
<tr>
<td>Land Use – Total Amount of Land Crossed</td>
<td>129.9 miles</td>
<td>121.6 miles</td>
<td>139.6 miles</td>
<td>Alt 3 would disturb the least amount of land. Alt 4 would disturb the most.</td>
</tr>
<tr>
<td>Land Use – Total Cropland crossed</td>
<td>93.3 miles</td>
<td>97.7 miles</td>
<td>87.9 miles</td>
<td>Alt 4 crosses the least cropland. Alt 3 crosses the most cropland.</td>
</tr>
<tr>
<td>Land Use – Total Cropland Crossed Diagonally</td>
<td>52.9 miles</td>
<td>70.4 miles</td>
<td>27.1 miles</td>
<td>Alt 4 crosses the least cropland diagonally / Alt 3 crosses the most diagonally.</td>
</tr>
<tr>
<td>Land Use – Guaranteed Use of Monopoles On Cropland</td>
<td>Yes, for 53 miles</td>
<td>No</td>
<td>Yes</td>
<td>Alt 4 requires the use of monopoles for crossing all cropland, Alt 2 would use monopoles for 53 miles of cropland crossed diagonally. Alt 3 would not use monopoles unless at the discretion of MATL.</td>
</tr>
<tr>
<td>Land Use – Special Management Areas Crossed</td>
<td>11.2 miles</td>
<td>6.4 miles</td>
<td>11.2 miles</td>
<td>Alt 3 would cross the least amount of special management areas. Alt 4 would avoid most used portion of the Great Falls Shooting Sports Complex</td>
</tr>
<tr>
<td>Land Use – Conservation Easements Crossed</td>
<td>23.6 miles</td>
<td>18.1 miles</td>
<td>32.5 miles</td>
<td>Alt 3 would cross the least amount of conservation easements. Alt 4 would cross the most.</td>
</tr>
<tr>
<td>Resource Area/Resource Attribute</td>
<td>Alternative 2</td>
<td>Alternative 3</td>
<td>Alternative 4</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Land Use – Proximity to Residences</td>
<td>1 residence within about 270 feet of the centerline. 20 residences less than ¼ mile from the centerline.</td>
<td>25 residences less than ¼ mile from the centerline.</td>
<td>20 residences less than ¼ mile from the centerline.</td>
<td>Alts 2 and 4 have the fewest residences less than ¼ mile from the centerline. Alt 2 has the closest residence to the centerline.</td>
</tr>
<tr>
<td>Land Use – Length of 500-foot-wide Alignment Buffer Zone Within 100 feet of a Pipeline.</td>
<td>7.0 miles</td>
<td>23.7 miles</td>
<td>5.7 miles</td>
<td>Alt 4 has the least amount of the 500-foot alignment buffer zone near pipelines. Alt 3 contains the greatest length of alignment near pipelines.</td>
</tr>
<tr>
<td>Land Use – Impacts to Roads and Road Use</td>
<td>Increased traffic on roads during construction resulting in occasional conflicts with farm machinery.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>All alternatives have similar impact</td>
</tr>
<tr>
<td>Geology – Miles on Soil and Geologic Resources Prone to Mass Movement</td>
<td>9 miles</td>
<td>3 miles</td>
<td>20 miles</td>
<td>Alt 3 would have the least risk of causing mass movement that could result in pole instability. Alt 4 presents the greatest risk.</td>
</tr>
<tr>
<td>Soils – Miles on Unstable Soils</td>
<td>10 miles</td>
<td>12 miles</td>
<td>24 miles</td>
<td>Alt 2 would have the least risk of soil erosion. Alt 4 presents the greatest risk. Soil erosion impacts can be mitigated under all alternatives.</td>
</tr>
<tr>
<td>Engineering</td>
<td>No adverse impact to structural reliability is anticipated.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>All facilities are proposed to be constructed in compliance with accepted engineering standards.</td>
</tr>
<tr>
<td>Hazardous Materials</td>
<td>No impact to resources from hazardous materials is anticipated.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>MATL proposes to manage and transport hazardous materials and wastes in accordance with State and Federal requirements.</td>
</tr>
<tr>
<td>EMF – Exposure Levels</td>
<td>Low impact</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>Exposure levels would not exceed state standards for electric fields.</td>
</tr>
</tbody>
</table>
TABLE 3.18-1 (Continued)
SUMMARY COMPARISON OF ENVIRONMENTAL IMPACTS BY ACTION ALTERNATIVE

<table>
<thead>
<tr>
<th>Resource Area/Resource Attribute</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Summary of Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMF – Radio or TV Interference</td>
<td>Low impact</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>No alternative is expected to interfere with stationary radio or TV reception. Potential interference with mobile AM reception of weak signals.</td>
</tr>
<tr>
<td>EMF – DGPS Interference</td>
<td>Potential for interference with radio-based differential connection signal from corona, gap discharges, scintillation, and to a lesser degree, limited shielding of GPS satellite signal.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>Agencies would require mitigation for interference with GPS signals.</td>
</tr>
<tr>
<td>Water – General Impacts</td>
<td>Potential impact compared to other alternatives depends on number of river crossings</td>
<td>Potential impact compared to other alternatives depends on number of river crossings</td>
<td>Potential impact compared to other alternatives depends on number of river crossings</td>
<td>Minor short-term adverse impacts to surface water quality could occur by temporarily increasing sources of sediment from the time of construction to reclamation completion. This impact would be mitigated if water and riparian areas are undisturbed or measures to reduce sediment transport are installed.</td>
</tr>
<tr>
<td>Water – Potential Number of Perennial Stream or River Crossings</td>
<td>10</td>
<td>6</td>
<td>17</td>
<td>Alt 3 poses the lowest risk and Alt 4 poses the highest risk of contributing sediment to streams and lakes based on number of stream crossings. Multiple crossings would be addressed during on-site inspections.</td>
</tr>
<tr>
<td>Water – Potential Number of Lake Crossings</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>Spanning of most wetlands is expected. Construction disturbance could result in a change in wetland plant community if wetland hydrology is altered. This impact would not occur if wetlands were undisturbed during construction and maintenance.</td>
</tr>
<tr>
<td>Wetlands - General</td>
<td>Potential impact compared to other alternatives depends on acres of wetlands not spanned.</td>
<td>Potential impact compared to other alternatives depends on acres of wetlands not spanned.</td>
<td>Potential impact compared to other alternatives depends on acres of wetlands not spanned.</td>
<td>Spanning of most wetlands is expected. Construction disturbance could result in a change in wetland plant community if wetland hydrology is altered. This impact would not occur if wetlands were undisturbed during construction and maintenance.</td>
</tr>
</tbody>
</table>
TABLE 3.18-1 (Continued)
SUMMARY COMPARISON OF ENVIRONMENTAL IMPACTS BY ACTION ALTERNATIVE

<table>
<thead>
<tr>
<th>Resource Area/Resource Attribute</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Summary of Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands – Total Wetlands and Potential Wetlands Crossed</td>
<td>67.6 acres</td>
<td>62.3 acres</td>
<td>76.4 acres</td>
<td>Spanning of most wetlands is expected. Alt 3 crosses the least amount of ground that contains wetlands and potential wetlands. Alt 4 crosses the greatest amount of wetlands and potential wetlands.</td>
</tr>
<tr>
<td>Vegetation - General</td>
<td>Potential impact compared to other alternatives is dependent on acres of disturbed native vegetation</td>
<td>Potential impact compared to other alternatives is dependent on acres of disturbed native vegetation</td>
<td>Potential impact compared to other alternatives is dependent on acres of disturbed native vegetation</td>
<td>Temporary loss of vegetation and increased risk of weed emergence and dispersion in disturbed areas until reclaimed.</td>
</tr>
<tr>
<td>Vegetation – Potential loss during construction</td>
<td>38 acres</td>
<td>41 acres</td>
<td>48 acres</td>
<td>Alt 2 would disturb the least amount of native vegetation; Alt 4 would disturb the largest acreage.</td>
</tr>
<tr>
<td>Wildlife - General</td>
<td>Impacts greatest for birds and animals with low mobility.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>Short-term impacts include loss of individuals during construction or direct disturbance of species during critical periods in their life-cycles. Long-term impacts include habitat alterations and collisions. Impacts would be similar for all alternatives.</td>
</tr>
<tr>
<td>Wildlife- Crosses Mule Deer Habitat</td>
<td>19 miles</td>
<td>10 miles</td>
<td>28 miles</td>
<td>Minor to no impact to mule deer population relative to the size of the existing habitat and individual mobility.</td>
</tr>
<tr>
<td>Resource Area/Resource Attribute</td>
<td>Alternative 2</td>
<td>Alternative 3</td>
<td>Alternative 4</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Wildlife – Birds</td>
<td>Collisions with transmission line could result in bird loss. Portion of the line located near wetland and the Benton Lake National Wildlife Refuge would experience bird collisions.</td>
<td>Because the line length and location are similar to the existing 115-kV line in Alt 1 (within 1% difference) and both pass near wetlands and the Benton Lake National Wildlife Refuge, impacts to wildlife would be similar to Alt 2.</td>
<td>Close proximity to Benton Lake National Wildlife Refuge is avoided. Collision risk exists in other areas.</td>
<td>Bird collision potential is similar for all alternatives. Marking of line would reduce but not eliminate collisions.</td>
</tr>
<tr>
<td>Fish – Expected Impacts to Water Quality</td>
<td>10 perennial river crossings</td>
<td>6 perennial river crossings</td>
<td>17 perennial river crossings</td>
<td>Low impact is expected but Alt 3 poses the lowest risk of affecting fish habitat by contributing sediment to streams based on the number of stream crossings.</td>
</tr>
<tr>
<td>Special Status Species - Vegetation</td>
<td>All known occurrences are located outside the study area</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>Low impact is expected. Risk to vegetation special status species is based on risk to its habitat (wetlands). Alt 3 has the least likelihood of affecting vegetation species of concern because the alignment crosses less riparian habitat than Alts 2 and 4.</td>
</tr>
<tr>
<td>Special Status Species – Wildlife Habitat</td>
<td>19.9 miles</td>
<td>11.3 miles</td>
<td>11.7 miles</td>
<td>Alts 3 and 4 would cross the least amount of habitat type used by special status species wildlife.</td>
</tr>
<tr>
<td>Air Quality – General</td>
<td>Some localized short-term emissions of particulate matter would occur during construction.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>All alternatives have similar low impact</td>
</tr>
</tbody>
</table>
TABLE 3.18-1 (Continued)
SUMMARY COMPARISON OF ENVIRONMENTAL IMPACTS BY ACTION ALTERNATIVE

<table>
<thead>
<tr>
<th>Resource Area/Resource Attribute</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Summary of Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audible Noise - General</td>
<td>Short-term, localized construction noise. Noise from rain or wind on the transmission line would be below BPA and HUD guidelines.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>All alternatives have similar low impact</td>
</tr>
<tr>
<td>Social Resources</td>
<td>Increased short-term construction and long-term maintenance employment opportunities</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>All alternatives have similar impact</td>
</tr>
<tr>
<td>Economics - Short Term</td>
<td>Short-term construction-related employment would be available.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>All alternatives have similar impact</td>
</tr>
<tr>
<td>Economics - Counties</td>
<td>Long-term operation and maintenance employment would be available. County and State tax revenues would increase. Farmers would bear additional costs from having to farm around transmission structures</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>All alternatives have similar impact</td>
</tr>
<tr>
<td>Economics - State</td>
<td>Opportunities to export electric power would increase. Increased competition may reduce cost to ratepayers. Creation of opportunities to start up wind generation facilities.</td>
<td>Same as Alt 2</td>
<td>Same as Alt 2</td>
<td>All alternatives have similar impact</td>
</tr>
</tbody>
</table>
TABLE 3.18-1 (Continued)
SUMMARY COMPARISON OF ENVIRONMENTAL IMPACTS BY ACTION ALTERNATIVE

<table>
<thead>
<tr>
<th>Resource Area/Resource Attribute</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Summary of Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleontological Resources - Miles of Geologic Units Crossed With a High Probability of Containing Fossils.</td>
<td>51.6 miles</td>
<td>44.3 miles</td>
<td>44.6 miles</td>
<td>Alt 3 would cross the fewest miles having a surface expression of the Two Medicine Formation which has a high probability of containing fossils. Alternative 2 would cross the most miles over the Two Medicine Formation.</td>
</tr>
<tr>
<td>Cultural Resources - Number of Cultural Resources Crossed</td>
<td>Crosses 6 sites eligible for the NRHP and 13 sites of undetermined eligibility.</td>
<td>Crosses 7 sites eligible for the NRHP and 9 sites of undetermined eligibility.</td>
<td>Crosses 3 sites eligible for the NRHP and 20 sites of undetermined eligibility.</td>
<td>Alt 4 would pose a risk to the lowest number of cultural resource sites. Alt 3 would pose a risk to the greatest number of cultural resource sites.</td>
</tr>
<tr>
<td>Visuals - General</td>
<td>Potential impact compared to other alternatives is dependent on proximity to viewers and physical contrast</td>
<td>Potential impact compared to other alternatives is dependent on proximity to viewers and physical contrast</td>
<td>Potential impact compared to other alternatives is dependent on proximity to viewers and physical contrast</td>
<td>Decline in aesthetic quality of a view shed, visual contrast or landscape change due to contrast with natural landscape.</td>
</tr>
<tr>
<td>Visuals - Residences within ¼ mile</td>
<td>20 residences</td>
<td>25 residences</td>
<td>20 residences</td>
<td>Alt 2 would be visible from the fewest residences within ¼ mile. Alts 3 and 4 would have similar proximity to residences.</td>
</tr>
<tr>
<td>Visuals - Number of Residences ¼ - ½ Mile</td>
<td>51 residences</td>
<td>65 residences</td>
<td>45 residences</td>
<td>Alt 4 would be visible from the fewest residences within ¼ to ½ mile. Alt 3 would be visible to the most residences.</td>
</tr>
<tr>
<td>Visuals - Within ½ mile from a Travel Corridor</td>
<td>6.1 miles</td>
<td>7.6 miles</td>
<td>5.0 miles</td>
<td>Alt 4 would be visible from the shortest length of a travel corridor within ½ mile. Alt 3 would have the longest visibility.</td>
</tr>
</tbody>
</table>

Notes:
- Alt Alternative
- BPA Bonneville Power Administration
- EMF Electric and Magnetic Field
- EPA U.S. Environmental Protection Agency
- Est estimated
- GPS Global Positioning System
- HUD U.S. Housing and Urban Development
- L & C Lewis and Clark County
- NRHP National Register of Historic Places
- TV Television
Chapter 4

4.0 Cumulative Impacts and Other NEPA and MEPA Considerations

This chapter presents information and analysis necessary to comply with several provisions of NEPA and MEPA. To support the subsequent analyses, the chapter begins with a preface about what a merchant transmission line is and the potential uses of the proposed MATL line. The remaining sections in Chapter 4 discuss:

- Cumulative impacts of the proposed Project and alternatives when combined with past, present, and reasonably foreseeable future actions, including the interconnection of the proposed MATL line and potential wind farms that may use the line (Sections 4.1 through 4.16);
- Unavoidable adverse impacts (Section 4.17);
- Irreversible or irretrievable commitments of resources (Section 4.18);
- Short-term use versus long-term productivity (Section 4.19);
- Regulatory impacts on the applicant’s private property rights (Section 4.20); and
- Intentional destructive acts (Section 4.21).

Description of a Merchant Transmission Line

A transmission line is normally built for one of three different situations. The most typical situation is a transmission line constructed by an electric utility to help serve customers’ demand for electricity within its service area. A second situation is the construction of a transmission line by various parties (private and utility) interested in connecting a specific power-generating source to the regional electrical system. A third situation is a “merchant line,” a line constructed and owned by a private party with no electric service area who owns no other electrical facilities (generating units, distribution lines, or substations). A merchant line is generally intended to serve a need or market for electricity. MATL’s proposed 230-kV transmission line project would be a merchant line project.

The merchant transmission line development company finances its project through private sources and recovers its investment in the project by selling rights to use “capacity,” or space, on the line. Anyone may purchase capacity on a merchant line, including conventional electric generating sources or renewable sources. The FERC has an “open season” process by which merchant transmission developers offer the capacity for sale through a FERC-approved auction. FERC regulations require an open and fair offering of the capacity to shippers.

The entities that acquire transmission capacity through the open season auction have a guaranteed right to the purchased capacity for the specified period and, in return, have a firm obligation to pay the merchant transmission developer for these rights regardless
of whether or not they use them. Generally, this guaranteed payment from the purchasers of the transmission capacity facilitates the financing of merchant transmission projects.

Wind Power and the MATL Transmission Line

As of this writing, various developers of proposed wind farms have purchased all the shipping capacity (*Table 4.1-1*). However, because the capacity rights are a commodity that may be resold or traded, the original purchasers may not be the power suppliers that use the line. MATL has indicated that capacity rights contracts do not require the use of any particular form of power generation.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Total Awarded MW</th>
<th>Direction of Power Flow</th>
<th>Start Date/Contract Term (years)</th>
<th>Project Name/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturener USA</td>
<td>120</td>
<td>South to North, Cut Bank to Alberta</td>
<td>Unknown/15</td>
<td>McCormick Ranch Wind Park/Alberta</td>
</tr>
<tr>
<td>Naturener Canada</td>
<td>180</td>
<td>South to North</td>
<td>2008/24</td>
<td>Rim Rock Wind Farm/Toole County</td>
</tr>
<tr>
<td>Wind Hunter LLC</td>
<td>120</td>
<td>North to South</td>
<td>2007/25</td>
<td>Unnamed/unknown</td>
</tr>
<tr>
<td>Invenergy Wind Montana</td>
<td>180</td>
<td>North to South</td>
<td>Unknown/25</td>
<td>Unnamed/unknown</td>
</tr>
</tbody>
</table>

Notes:

MW = megawatt

In light of the foregoing, DOE believes that MATL’s proposed Project is separate from and has an existence and utility independent from the wind farms. While the wind farms could be the first users of the line, it is reasonably foreseeable that other shippers would use the MATL line. As a result, DOE does not view the wind farms as “connected actions” as defined in 40 CFR 1508.25(a) (1). Therefore, in this EIS the impacts from potential wind farms are evaluated as cumulative impacts, consistent with 40 CFR 1508.7, and not connected actions.
4.1 Cumulative Impacts

The CEQ regulations implementing the procedural provisions of NEPA define cumulative impacts as “the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions” (40 CFR 1508.7). The regulations further explain that “cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time.”

MEPA defines cumulative impacts as “the collective impacts on the human environment of the proposed action when considered in conjunction with other past, present, and future actions related to the proposed action by location or generic type” (75-1-220(3), MCA). “Related future actions may only be considered when these actions are under concurrent consideration by any agency through pre-impact statement studies, separate impact statement evaluations, or permit processing procedures” (75-1-208(11), MCA). Pursuant to ARM 17.4.627, whenever a state agency prepares a joint environmental impact statement that will comply with NEPA and MEPA, the joint document will be prepared in compliance with both statutes. The State agency may accede to and follow more stringent Federal requirements, such as additional content. NEPA requires reasonably foreseeable future actions to be included in the cumulative impacts analysis, not just those undergoing concurrent review. In order to comply with the more stringent Federal requirement, the cumulative impacts analysis in this document includes consideration of reasonably foreseeable future actions that do not meet the definition of related future actions, including potential wind farms.

DEQ considers cumulative impacts when making the findings under MFSA (ARM 17.20.1604 (1)(b) and 1607(1)(a)(vii)). Analysis of cumulative environmental impacts of a proposed Project and other actions helps to ensure that agency decisions consider the full range of consequences of the agencies’ actions to the extent information is available.

Because the proposed Project would have no direct or indirect effects in the area of Engineering, there is nothing to add to the past, present, and reasonably foreseeable future actions. Therefore, there are no cumulative effects from the proposed action on that topic. However, some reasonably foreseeable future actions might result in changes in the local electrical system with a resulting cumulative impact on electric system reliability.
4.1.1 Region of Influence for Cumulative Impacts

Cumulative impacts are identified only where there is a reasonable likelihood that the proposed Project would have a cumulative or incremental effect with other past, present, and reasonably foreseeable future actions.

Depending on which resource is being evaluated, impacts may be: (1) confined to a specific long-term footprint of development; (2) limited to the entire Project study area; or (3) extended over a much larger area beyond the resource analysis area.

4.1.2 Past and Present Actions Potentially Contributing to Cumulative Impacts

At least 17 pipelines and 8 transmission lines transect the Project study area and vicinity. Sources used to locate linear facilities that transect the study area are: 2005 aerial photos, field observations, and U.S. Geological Survey topographic maps at a scale of 1:24,000. Pipelines in the study area are described in Section 3.3.2. Transmission lines that start at either the Great Falls 230-kV switch yard or the Rainbow Substation and transect the study area are:

1. NWE 100-kV transmission line that runs southwest from Great Falls,
2. NWE 100-kV transmission line that runs south from Great Falls,
3. NWE 115-kV transmission line that roughly parallels the alignment proposed under Alternative 3,
4. NWE 161-kV transmission line that runs northeast from Great Falls,
5. WAPA 115-kV transmission line that runs east-west through Shelby and Cut Bank,
6. WAPA 161-kV transmission line that runs from Great Falls to Havre,
7. WAPA 230-kV transmission line that runs between substations located near Shelby, Conrad, and the Great Falls 230-kV switch yard, and
8. PPL Montana 100-kV transmission lines that connect hydroelectric developments to the Great Falls 230-kV switch yard.

Other present and past activities in the vicinity of the proposed Project include farming (irrigated and non-irrigated), grazing, weed management, hunting, and general recreation; growth of cities and towns, residential areas, and industrial and commercial areas; and Federal and state highways and county roads, railroads and railroad rights-

The Project study area is the area that includes the proposed alternative alignments and areas where roads may be built or improved. The study area was defined by MATL in its MFSA application to DEQ. The analysis area is the area evaluated for each resource. Different resources have different analysis areas. For some resources, the analysis area is the entire study area. For other resources, it may be a smaller area defined by the potential extent of impacts or a larger region defined by the units (for example, counties) for which relevant data are available.
Chapter 4 Cumulative Impacts

of-way, communication facilities, military installations, conservation easements, airports, and national trails.

4.1.3 Reasonably Foreseeable Future Actions Potentially Contributing to Cumulative Impacts

Reasonably foreseeable future actions that could occur in the Project study area include the development of wind farms, the new Southern Montana Electric Highwood Generating Station coal-fired power plant (250 MW) proposed to be located outside Great Falls, the proposed gas-fired Great Falls Energy Center (277 MW) power plant, and potential development of irrigation systems on cropland that is not now irrigated.

Table 4.1-2 shows the planned energy generation projects in the area. Available information on these and other reasonably foreseeable future actions is presented in more detail below.

Potential to Upgrade the Capacity of the MATL Proposed Transmission Line

MATL could upgrade the capacity of the proposed line from 300 MW to 400 MW in each direction. However, their end-to-end path rating as designated by WECC is for 300 MW (Appendix M).

Highwood Generating Station

Southern Montana Electric Generation and Transmission Cooperative, Inc. proposes to build a 250-MW coal-fired power plant and 6-MW wind generation facility, at a site east of Great Falls, Montana. Figure 4.1-1 shows the proposed location of this project, which is known as the Highwood Generating Station, along with the new transmission line to connect at the Great Falls 230-kV switch yard. Impacts from the proposed Highwood Generating Station are described in the Final EIS for the Highwood Generating Station, which was released in January 2007 (USDA Rural Utilities Service and DEQ 2007). DEQ and USDA issued a joint ROD in May 2007 and the air quality permit has been issued by DEQ.
TABLE 4.1-2
POTENTIAL GENERATION PROJECTS\(^1\) IN THE VICINITY OF THE MATL LINE FROM NORTHERN AND WAPA INTERCONNECTION QUEUES

<table>
<thead>
<tr>
<th>Queue Position</th>
<th>County</th>
<th>Interconnect Point</th>
<th>In-Service Date(^2)</th>
<th>Generating Facility Type</th>
<th>Output (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>Cascade</td>
<td>Great Falls NW - Holter 100 kV Line</td>
<td>February 27, 2006</td>
<td>Wind</td>
<td>9</td>
</tr>
<tr>
<td>Application Approved</td>
<td>Cascade</td>
<td>Great Falls 230 kV switch yard</td>
<td>March 31, 2009</td>
<td>Base Load- Coal Fired(^3)</td>
<td>268</td>
</tr>
<tr>
<td>8</td>
<td>Pondera</td>
<td>South Cut Bank to Conrad Auto 115 kV</td>
<td>October 15, 2008</td>
<td>Wind</td>
<td>104</td>
</tr>
<tr>
<td>10</td>
<td>Liberty</td>
<td>69 kV line at Chester</td>
<td>December 1, 2007</td>
<td>Wind</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Cascade</td>
<td>Rainbow switch yard</td>
<td>December 31, 2011</td>
<td>Hydro</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>Teton</td>
<td>Dutton 69 kV Substation</td>
<td>August 1, 2007</td>
<td>Wind</td>
<td>18.9</td>
</tr>
<tr>
<td>13</td>
<td>Teton</td>
<td>Choteau Substation</td>
<td>December 31, 2009</td>
<td>Hydro</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>Cascade</td>
<td>Great Falls 230 kV switch yard</td>
<td>Summer 2007</td>
<td>Gas Fired(^4)</td>
<td>277</td>
</tr>
<tr>
<td>16</td>
<td>Glacier</td>
<td>Cut Bank 115 kV Substation</td>
<td>October 1, 2008</td>
<td>Wind</td>
<td>110</td>
</tr>
<tr>
<td>Unknown</td>
<td>Pondera</td>
<td>Conrad</td>
<td>December 1, 2008</td>
<td>Wind</td>
<td>250</td>
</tr>
</tbody>
</table>

1 Under FERC regulations on Large Generator Interconnection Agreements, customer names are confidential until agreements have been signed.

2 Dates are those given in the cited source.

3 Assumed to be Highwood Generating Station.

4 Assumed to be Great Falls Energy Center.
FIGURE 4.1-1
PROPOSED HIGHWOOD GENERATING STATION
Great Falls Energy Partners – Great Falls Energy Center

Great Falls Energy Partners purchased the assets and permits for Montana First Megawatts from NorthWestern Energy in February 2007 and renamed their project the Great Falls Energy Center. The proposed project would include a gas-fired, combined cycle power plant capable of producing 275 MW with possible expansion for an additional 275 MW. An air quality permit was issued. The project would be located approximately 2 miles north of Great Falls and 2.2 miles west of the Great Falls 230-kV switch yard. Impacts of this gas-fired generator were addressed in an EA for the original air quality permit (DEQ 2001) as well as in a revised air quality permit (DEQ 2006a).

Wind Farms with MATL Capacity

MATL offered two open seasons to bid on the available capacity (300 MW each direction). The first open season was held between February 3, 2005, and April 15, 2005. MATL received six bids.

The second open season occurred between June 9, 2006, and June 30, 2006. MATL accepted bids for 600 MW of firm capacity from four bidders, all potential developers of wind farms, summarized in Table 4.1-1. Two of the early bidders (GE Energy and TransCanada) have withdrawn their bids and did not respond during the second open season (Railton 2006; Thornton 2006). More detailed information on the wind farms appears below. This information was gleaned from newspaper articles and press releases, from FWS or MATL, or is based on professional judgment. The accuracy of the information cannot be confirmed; the location, size, and number of turbines are estimates using the best available information. The potential locations of most individual wind farms remain confidential, and wind farms may not be designed yet.

1. Naturener USA – McCormick Ranch Wind Park

Naturener USA has a guaranteed right to purchase 120 MW of capacity to transmit power northward from Cut Bank into Alberta. According to MATL (MATL 2006b), Naturener USA may also transfer power from north to south. This project would be located between the Marias River north to Hjartarson Road and between McCormick and Sullivan Bridge roads. The wind farm would be on 12,000 acres in Glacier and Toole counties with 45 to 60 wind turbines. Once the construction is complete, it would take at least 15 technicians to operate and maintain year-round. The proposed location of the McCormick Ranch Wind Park and additional anemometer locations are shown on Figure 4.1-2.
Chapter 4 Cumulative Impacts

2. Naturener Canada – Rim Rock Wind Farm
The Rim Rock Wind Farm would be in northwest Toole County on 15,000 acres of privately owned land. Naturener Canada has a guaranteed right to purchase 180 MW of capacity.

3. Wind Hunter LLC – Unnamed Wind Energy Project
Wind Hunter LLC has a guaranteed right to purchase 120 MW of capacity southward. Wind Hunter would likely construct a wind energy project in the Cut Bank area.

4. Invenergy Wind Montana – Unnamed Wind Energy Project
Invenergy Wind LLC has a guaranteed right to purchase 180 MW of capacity southward on the proposed MATL transmission line. Invenergy is interested in constructing other wind energy projects in Montana, potentially in the Cut Bank/Shelby/Conrad area.

Other Wind Farms
DEQ staff is aware of several other initiatives under way to develop wind farms or areas under investigation for wind farm development, as listed below. Because these projects are speculative, they are discussed generally.

Potential wind farm developments in early stages of planning include:

- A wind farm at Trunk Butte (Belgian Hill) would interconnect with NorthWestern Energy’s Great Falls to Cut Bank transmission line. The size is unknown.
- A wind farm on Teton Ridge southwest of Dutton would be about 30 MW.

Other wind farms may connect to NorthWestern Energy and WAPA transmission lines. Information is available on developers currently pursuing interconnection agreements with NorthWestern Energy and WAPA (Table 4.1-2). Many wind farm projects reach the stage of submitting an initial request for an interconnection study and, after the prospective developers learn the results, they withdraw the request to interconnect.

DEQ has observed anemometers on higher elevation terrain to the west and north of Conrad, between Cut Bank and the Marias River east of the Blackfeet Indian Reservation, a few miles north of Hay Lake north of Cut Bank, and just east of Route 214 about 15 to 20 miles north of Cut Bank (Figure 4.1-2). An anemometer does not necessarily indicate that a wind farm is being considered; only that someone is monitoring the wind.
FIGURE 4.1-2
AREAS OF INTEREST
IN WIND FARM DEVELOPMENT

LEGEND

ALT 2 - PROPOSED ALIGNMENT
ANEMOMETER LOCATIONS
CITIES AND TOWNS
ALIGNMENT END AND EXIT POINTS
PROPOSED MARIAS SUBSTATION

GIS map by Ed Madej; TESM-HE Fig4_1-2_Marias_Wind_Farms_010908.mxd
DEQ Analysis of Permitting and Review Requirements for Wind Farms

DEQ administers no permits specifically for wind farms as energy projects. Certain permits may, however, be necessary for proposed wind farms, depending on the locations of the roads, turbines, and power lines. These are listed in Table 4.1-3. It is possible that few if any state permits would be necessary if a project were on private land with no stream or wetland crossings or encroachments. If no permits are needed, DEQ would not prepare an environmental assessment (EA) or an EIS.

<table>
<thead>
<tr>
<th>Permit/Approval Name</th>
<th>Nature of Permit</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 401 Water Quality Certification</td>
<td>Provides a review of potential adverse water quality impacts potentially associated with discharges of dredged or fill materials in wetlands and other waters of the U.S.</td>
<td>Section 401 of the Clean Water Act</td>
</tr>
<tr>
<td>MPDES Wastewater Discharge Permit</td>
<td>Permits construction and industrial activities that would result in the discharge of wastewater to waters of the state.</td>
<td>Montana Water Quality Act (75-5-401 et seq., MCA)</td>
</tr>
<tr>
<td>General Discharge Permit for Storm Water Associated with Construction Activity</td>
<td>Submit Notice of Intent for coverage under General Permit to authorize storm water discharges to surface waters of the state associated with the construction activities.</td>
<td>Montana Water Quality Act (75-5-401 et seq., MCA)</td>
</tr>
<tr>
<td>General Permit for Storm Water Discharges Associated with Industrial Activity</td>
<td>Permits storm water discharges from qualifying industrial activities.</td>
<td>Montana Water Quality Act (75-5-401 et seq., MCA)</td>
</tr>
<tr>
<td>Montana Joint Application: 310 Permit</td>
<td>Permits construction activities in or near perennial streams on public and private lands.</td>
<td>Montana Natural Streambed and Land Preservation Act (75-7-101 et seq., MCA)</td>
</tr>
<tr>
<td>Certificate of Compliance</td>
<td>Authorizes construction and operation of certain transmission lines with a design capacity greater than 69 kV.</td>
<td>Major Facility Siting Act (75-20-101 et seq., MCA)</td>
</tr>
<tr>
<td>Public Water Supply Approval</td>
<td>Review of engineering plans and specifications for a new public water supply for more than 25 people daily for period of at least 60 days in a one-year period.</td>
<td>75-6-112, MCA: Plan Review and Approval</td>
</tr>
<tr>
<td>Open Cut Permit (if new gravel sources are needed for the project)</td>
<td>Permit to excavate 10,000 cubic yards or more total aggregate from one or more pits regardless of surface ownership.</td>
<td>Open Cut Mining Act (84-4-401 et seq., MCA)</td>
</tr>
</tbody>
</table>
DEQ does not maintain a comprehensive list of authorizations, permits, reviews, and approvals required by other state and Federal agencies, but a preliminary list is in Table 4.1-4. The Montana Department of Commerce (MDOC) also has information about general permits and licenses for doing business in Montana. The FWS enforces the Migratory Bird Treaty Act and the Bald and Golden Eagle Protection Act. No permit is required per se; however, FWS has developed guidelines for use by wind farm developers to help determine the level of study necessary to address avian mortality issues before a project is built.

The U.S. Department of Defense (DoD) reviews proposals for wind farms and transmission lines to ensure that excavation would not disturb buried cable connecting Minuteman missile silos or interfere with military radar. Entities seeking to develop wind energy projects on BLM-administered lands are required to consult with the DoD regarding the location of wind power projects and turbine siting as early in the planning process as appropriate. An interagency protocol agreement between the BLM and the DoD is being developed to establish a consultation process and to identify the scope of issues for consultation (BLM 2005a).

The Federal Communications Commission (FCC) has regulatory authority to ensure that wind turbines and power lines do not cause microwave, television, radio, telecommunications, or navigation interference. FCC also issues licenses to operate industrial radio service for fixed microwave stations.

Assumptions about Cumulative Effects from Wind Farm Development

For purposes of cumulative impact assessment from wind farms, it is conservatively assumed that: (1) the MATL line capacity is proposed to be 300 MW in each direction and that the line could be upgraded, allowing the line to handle 400 MW in each direction; (2) new wind farms would be built to use the total 800 MW (400 MW in each direction) capacity; and (3) 1.5 to 2 MW turbines would be used. Accordingly, 400 to 533 turbines might generate electricity that would transmit on the MATL line.

The cumulative impacts analysis for potential wind farms is heavily adapted from the Final Programmatic Environmental Impact Statement on Wind Energy Development on BLM-Administered Lands in the Western United States (BLM 2005b) and refined for conditions found near the proposed MATL line. Because of the lack of detailed plans on the wind farms, site-specific issues associated with individual wind farms are not assessed in detail. Rather, the range of possible impacts is identified. The BLM EIS includes an extensive list of potential mitigation measures to reduce or eliminate impacts (Appendix O). These potential mitigations could be refined for conditions near the proposed MATL transmission line.
TABLE 4.1-4
AUTHORIZATIONS, PERMITS, REVIEWS, AND APPROVALS BY OTHER AGENCIES

<table>
<thead>
<tr>
<th>Action</th>
<th>Permit/Approval</th>
<th>Approving Authority/Approving Agency</th>
<th>Statutory or Regulatory Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEDERAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Line Interconnection</td>
<td>Interconnection Agreement</td>
<td>WAPA/BPA</td>
<td>Section 211 Federal Power Act, General Guidelines for Interconnection</td>
</tr>
<tr>
<td>NEPA Compliance to Grant ROW and WAPA Interconnection Agreement</td>
<td>EA and/or EIS</td>
<td>Federal Agencies</td>
<td>NEPA, CEQ 40 CFR Part 1500-et. seq.</td>
</tr>
<tr>
<td>Review and approval of State Highway permit application and support documentation for transmission lines in the Interstate Highway System right of way</td>
<td>Review and Approval authority</td>
<td>FHWA through MDT</td>
<td>23 CFR 1.23 and 1.27 USC Sections 116, 123, 315 (23 CFR Part 645 Subpart B), 23 CFR 77</td>
</tr>
<tr>
<td>Grant of ROW by BLM, USFS or Transmission Line Interconnection Agency</td>
<td>ESA compliance, Biological Assessment (BA), and Biological Opinion (BO)</td>
<td>USFWS</td>
<td>ESA, Section 7</td>
</tr>
<tr>
<td>Grant of ROW by BLM, USFS or Transmission Line Interconnection Agency</td>
<td>National Historic Preservation Act (NHPA) compliance, Section 106</td>
<td>BLM, WAPA, and Montana SHPO</td>
<td>NHPA of 1966, 36 CFR part 800, 16 USC 47</td>
</tr>
<tr>
<td>Tower location and height relative to air traffic corridors</td>
<td>Notice of Proposed Construction or Alteration</td>
<td>Federal Aviation Administration (FAA)</td>
<td>49 USC 1501; 13 CFR 77 Objects Affecting Navigable Airspace</td>
</tr>
<tr>
<td>Fill in a Wetland</td>
<td>404 permit</td>
<td>Army Corps of Engineers</td>
<td>CWA, Section 404</td>
</tr>
<tr>
<td>Construction in a navigable river or harbor</td>
<td>Section 10 permit</td>
<td>Army Corps of Engineers</td>
<td>River and Harbors Act of 1899</td>
</tr>
<tr>
<td>Crossing of Federally owned canals</td>
<td>Perpetual license for electric line crossings on Bureau of Reclamation land and canals</td>
<td>Bureau of Reclamation</td>
<td></td>
</tr>
<tr>
<td>Oversees Federal agencies regarding impacts on cultural resources</td>
<td></td>
<td>Advisory Council on Historic Preservation</td>
<td>National Historic Preservation Act Section 106</td>
</tr>
<tr>
<td>Review to determine if there could be communications interference</td>
<td>Review</td>
<td>Federal Communications Commission</td>
<td>Communications Act of 1934, as amended, 47 CFR parts 301, 303(f).</td>
</tr>
<tr>
<td>STATE OF MONTANA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allows construction activity within a designated 100 year flood plain</td>
<td>Montana Joint Application; Flood Plain Development Permit</td>
<td>Montana DNRC or County Floodplain Coordinator.</td>
<td>Montana Floodplain and Floodway Management Act (76-5-401 to 406, MCA)</td>
</tr>
<tr>
<td>Construction activities on state trust lands and navigable waterways</td>
<td>Easement/Land Use License</td>
<td>Board of Land Commissioners; Montana DNRC</td>
<td>Title 77, MCA</td>
</tr>
<tr>
<td>Leasing of State Lands</td>
<td>State Land Lease</td>
<td>Board of Land Commissioners; Montana DNRC</td>
<td>Title 77, Chapter 6, MCA</td>
</tr>
</tbody>
</table>
TABLE 4.1-4
AUTHORIZATIONS, PERMITS, REVIEWS, AND APPROVALS BY OTHER AGENCIES1

<table>
<thead>
<tr>
<th>Action</th>
<th>Permit/Approval</th>
<th>Approving Authority/Approving Agency</th>
<th>Statutory or Regulatory Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant utility crossing permits for transmission line and access roads</td>
<td>Utility Crossing Permit</td>
<td>Montana Department of Transportation (MDT)</td>
<td>RW 131 and/or RW 20</td>
</tr>
<tr>
<td>that may encroach on state maintained highways</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consults with project applicants and state agencies regarding impacts</td>
<td>Montana Antiquities Act consultation</td>
<td>Montana SHPO</td>
<td>Montana Antiquities Act (22-3-421 through 442, MCA)</td>
</tr>
<tr>
<td>on cultural resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Construction</td>
<td>Building permits per relevant building</td>
<td>Montana Department of Labor and Industry, Building</td>
<td>Title 50, Chapter 60 and Title 50, Chapter 74, MCA</td>
</tr>
<tr>
<td></td>
<td>codes</td>
<td>Codes Bureau</td>
<td></td>
</tr>
<tr>
<td>Countenance, suppression and eradication of noxious weeds</td>
<td>Noxious Weed Management Plan</td>
<td>County Weed Control District</td>
<td>7-22-2101-2153, MCA</td>
</tr>
<tr>
<td>ROW easement grants and road crossing permits for county property and</td>
<td>Easement grants and road crossing permit</td>
<td>County Commissioners</td>
<td></td>
</tr>
<tr>
<td>roadways</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction in or near perennial streams on public and private lands</td>
<td>Montana Joint Application: 310 Permit</td>
<td>Conservation District</td>
<td>Montana Natural Streambed and Land Preservation Act (75-7-101 et seq., MCA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1 This list is not comprehensive and not all of these agency actions would apply for all projects.

BLM – Bureau of Land Management
BPA – Bonneville Power Administration
CEQ – Council on Environmental Quality
CFR – Code of Federal Regulations
CWA – Clean Water Act
DNRC – Department of Natural Resources and Conservation (Montana)
EA – Environmental Assessment
EIS – Environmental Impact Statement
ESA – Endangered Species Act
FAA – Federal Aviation Administration
FHWA – Federal Highway Administration
FLPMA – Federal Land Policy Management Act
MCA – Montana Code Annotated
MDT – Montana Department of Transportation
NEPA – National Environmental Policy Act
NHPA – National Historic Preservation Act
ROW – Right of way
SHPO – State Historic Preservation Officer
USC – United States Code
USFS – United States Forest Service
USFWS – United States Fish and Wildlife Service
WAPA – Western Area Power Administration
Wind farms are likely to be located in windy areas, within about 30 to 40 miles of a transmission line with available capacity, and where agreements can be negotiated with landowners.

Currently many commercial wind farms are using individual turbines with the ability to generate about 1.5 MW to 2 MW. Larger, more efficient models are in development, but wind farms with smaller generators are still being constructed because the most cost efficient turbines for large-scale development seem to be about 1 to 2 MW.

Development of a wind farm is likely to involve establishing site access; constructing roads; removing vegetation; excavating; constructing towers; and installing turbines, control buildings, meteorological towers, substations, and transmission lines. Construction may take less than a year to several years. Access roads would typically be a minimum of 10 feet wide or as much as 30 feet wide. Existing public or private roadways may be altered to accommodate heavy or oversized vehicles. Based on experience, the final footprint for the above ground facilities is likely to be no more than 10 percent of the total acreage of the wind farm site (BLM 2005b).

The proposed Valley County Wind Energy Project in northeastern Montana (outside the Project study area) includes 114 1.5-MW turbines and covers 6,756 total acres to generate 170 MW. The Supplemental EA (BLM and DNRC 2007) for the wind farm estimated that a total of 244.7 acres would be disturbed for all activities associated with the wind farm including operation and maintenance buildings, access roads, turbine foundations, collector system, substation, staging areas, etc. This amounts to less than 4 percent of the total wind farm area, and approximately 2.15 acres disturbed per turbine (BLM and DNRC 2007). Permanent ground disturbance for the Valley County Wind Energy Project would total about 59 acres (BLM and DNRC 2007), or approximately 0.5 acres per turbine.

During wind farm operation, a 6- to 10-person maintenance crew would likely work at larger sites (Steinhower 2004); smaller sites might just have people on call. Maintenance includes inspection, lubrication, painting, or major overhauls. Technological advances may lead to replacing turbines or blades for efficiency.

Facilities may be removed and recycled when no longer needed. If decommissioning occurs, disturbed land areas could be restored to original grade and reseeded or replanted. During dismantling of electrical substations and storage buildings, the site could be inspected for industrial contamination from minor spills or leaks and decontaminated as necessary.
Chapter 4

4.2 Cumulative Impacts on Land Use and Infrastructure

Land use in the area would be affected by projects that connect to the MATL transmission line (including wind farms) or enter the Great Falls 230-kV switch yard (new transmission lines and upgrades). Public comment had identified a public concern regarding the impacts on land uses from wind farm development. These activities have been included in the cumulative effects analysis for land use and infrastructure.

Past, present, and reasonably foreseeable future actions identified in Section 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts on land uses.

Past and Present Actions

Transmission lines (see Section 4.1.2), smaller power lines, oil and gas well access, pipelines, communication lines and towers, military installations, and roads have affected, and would continue to affect, land uses in the analysis area for this resource. Depending on their location, these activities may continue to interfere with farming operations, remove farmland from production, and contribute to increased traffic on roads and highways. Transmission lines, smaller power lines, and communication towers may continue to pose obstacles to aircraft.

Reasonably Foreseeable Future Actions

Future transmission line upgrades would not result in cumulative impacts on land use. Although the structures on the rebuild/upgrade of WAPA’s Great Falls to Havre transmission line would be slightly wider than those on the existing line, impacts are expected to be similar to those on the existing line. The H-frame line is located in grain fields and rangeland not far from the Rainbow substation and is one of the lines that collectively make farming in the area more difficult. Additional information on this project can be found in the report “Final Environmental Assessment Havre-Rainbow Transmission Line Rebuild Project” (WAPA 2007). Similarly, any future upgrade of the MATL transmission line should not result in additional land use impacts because there would be no change to the support structures.

Future maintenance of power lines and pipelines would be infrequent and would not add greatly to traffic on area roads. Traffic would increase from reasonably foreseeable projects as workers commute and fuel and supplies are delivered.

Development of major projects such as the Highwood Generating Station and Great Falls Energy Center typically results in long-term land use changes on project sites. The Highwood Generating Station would convert about 545 acres from crop production to
industrial use (USDA Rural Utilities Service and DEQ 2007), while the Great Falls Energy Center would occupy a site of about 55 acres that was previously zoned for industrial use (Ecke 2007). Interconnecting transmission lines, rail spurs, and pipelines associated with these large projects also could disrupt land uses. A 230-kV interconnecting transmission line associated with the Highwood Generating Station would cross rangeland and cropland to connect the generating station with the Great Falls switch yard (Figure 4.1-1). This would add to the lines entering and exiting the substation and could interfere further with farming activities near the switch yard.

Construction activities associated with reasonably foreseeable future actions could cause a relatively short-term decrease in the level of service provided by local roadways during the construction period. It is possible that local roads might require fortification of bridges and removal of obstructions to accommodate large and heavy equipment, such as wind turbine components. Construction activities would temporarily affect the recreation setting through noise, dust, traffic, and the presence of a construction workforce. People engaged in activities where solitude is important could be affected the most. Some parks and campsites may have increased use by workers for temporary accommodations during project construction. New access roads could also increase the potential for trespass onto private land closed to hunting. Most long-term effects on recreational settings would relate to visual disturbances. Persons who may otherwise use areas for undisturbed recreational experiences may decide to go elsewhere.

Wind Farm Effects on Land Uses

Most of the areas close to the proposed MATL line where wind farms might be located are privately owned, as indicated in Section 3.1.2 and Figures 3.1-1, 3.1-2, and 3.1-3. Because of turbine spacing, only a small percentage of land would be taken out of use. Depending on the location, size, and design of a wind farm, wind development is compatible with a wide variety of land uses and generally would not preclude recreation, wildlife habitat conservation, military activities, livestock grazing, oil and gas leasing, dry land farming, or other activities that currently occur within the proposed Project area. However, recreation, wildlife habitat conservation, grazing, oil and gas drilling, and farming activities may be modified due to the presence of wind turbines and access roads.

As described above, a recent environmental assessment for a wind farm in northeastern Montana indicated that installation of wind turbines and construction of associated wind farm facilities would temporarily disturb about 2.15 acres per wind turbine and would permanently occupy about 0.5 acres per wind turbine (BLM and DNRC 2007). Given the 400 to 533 turbines assumed to be built by wind farm developers that have contracted for capacity on the MATL transmission line, approximately 860 to 1,146 acres could be disturbed for wind farm construction. About 0.5 acres per turbine, or a total of 200 to 267 acres of this land would be permanently dedicated to use for wind farms (for
example, the land occupied by turbines and support facilities) and, thus, converted from its existing uses. Additional wind farm development that could occur unrelated to the MATL line would increase land use impacts proportionately.

Because wind farms are constructed with landowner agreement they would not create a conflict with current and planned agricultural uses of surrounding land, with the exception of aerial crop dusting. Wind farms could adversely affect crop dusting on land adjacent to wind farms.

Grazing and the operation of agricultural equipment could continue around and between wind turbines, though there would be additional obstacles to farm around. Guy wires for anemometers associated with wind farms would occupy only a few square feet and would be installed with landowner permission. They would have a negligible impact on the land area in agricultural use, but plowing and harvesting patterns might need to be modified in the immediate vicinity of the turbines and roads.

Construction and future decommissioning of wind farms could temporarily disrupt livestock access to supplementary feeding and watering stations (BLM et al. 2006). Upon wind farm decommissioning, land converted from cropland and pasture/rangeland use could be returned to these prior uses. No permanent land use impacts would be expected when the wind farms are decommissioned (BLM et al. 2006).

CRP land disturbance would be minimal over the course of the operational life of wind farms because these lands are set aside for conservation and are usually not used for agricultural purposes. The largest impacts to CRP would be ground disturbance during the construction and decommissioning phases.

Compatibility of Wind Farms with Special Management Areas

BLM Areas of Critical Environmental Concern (ACEC), such as the Kevin Rim ACEC, and the FWS Benton Lake National Wildlife Refuge are unsuitable for wind farm development and would be excluded from consideration for development per agency management plans and direction.

Wind Farm Effects on Aviation

Additional elevated structures in the airspace would be a cumulative element for pilots to avoid.
4.3 Cumulative Impacts on Geology and Soils

Geology and soils in the area would be affected by projects that cause soil erosion or soil disturbance.

Past, present, and reasonably foreseeable future actions identified in Section 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts on geology and soils. The review indicated that simply upgrading the capacity of the MATL transmission line would not contribute cumulative effects on geology and soils.

There could be cumulative impacts on geology and soils in the Project study area from the construction and operation of future wind farms and new roads, and the increased need for new or expanded sand, gravel, and concrete operations. Most potential cumulative impacts from soil erosion, landslides, mixing of soil horizons, and soil compaction would have minimal extent, largely being limited to the areas actually disturbed. Erosion and sediment controls would be required on construction-related disturbances of more than 1 acre.

Construction activities that would affect geologic resources and soils include vegetation clearing, excavation, blasting, trenching, grading, and heavy vehicle traffic.

Sand and gravel and/or quarry stone would likely be mined close to the potential construction site, potentially creating soil erosion and mixing of soil horizons.

Construction could activate geological hazards and increase slope instability. Activities could increase the slope, cause toe-cutting at the base of slopes, or increase pore pressure, which weakens the strength of soils on slopes or causes accelerated soil erosion.

Surface disturbance could cause soil erosion, which in turn can result in soil nutrient loss and degradation of water quality in nearby surface water bodies. The magnitude of the impact depends on the project size, erosion potential of the soil, local terrain, vegetative cover, and the distance from a site to nearby surface water bodies. DEQ would require control of storm water during construction, reducing the potential for transport of eroded soils.
4.4 Cumulative Impacts Related to Hazardous Materials

Past, present, and reasonably foreseeable future actions identified in Sections 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts related to hazardous materials.

Construction, operation, and decommissioning associated with reasonably foreseeable future actions (including Highwood Generating Station, wind farms, Great Falls Energy Center, and transmission line upgrades) would require the use of some hazardous materials, although the variety and amounts of hazardous materials present during operation would be minimal. Types of hazardous materials that may be used include fuels (e.g., gasoline, diesel fuel), lubricants, cleaning solvents, paints, pesticides, wood preservatives, and explosives. These same types of materials would also continue to be used in farming, weed management, maintenance of roads and rail facilities, and other ongoing activities in the area. Wastes would be managed as required by state and federal law and there would be a low probability that any serious contamination would occur.

4.5 Cumulative Impacts on EMF and Health and Safety

Past, present, and reasonably foreseeable future actions that could affect EMF levels near residences are considered in this cumulative impacts analysis. Additionally, other potential impacts on occupational and public safety are considered. There is public concern about impacts on public safety from wind farms.

Residences within ¼ mile of the proposed MATL transmission line corridor may experience cumulative EMF impacts if additional energy-transmission projects are developed nearby.

If the line capacity were increased to 400 MW in each direction, the electric field at the edge of the right-of-way would increase, and the mean magnetic field would also be similar or slightly higher based on the increased wattage. Electric field strength would remain below the state standard of 1 kV/m at the edge of the right-of-way in subdivided and residential areas. There is no Federal standard for EMF. Sensitive stationary receptors could be exposed to magnetic fields greater than the 1 to 2 mG range, a newly suggested standard (BioInitiative Working Group 2007). Collector systems and transmission lines for wind farms could contribute some additional EMF impacts.

Potential effects on occupational health and safety from construction and operation of reasonably foreseeable future actions would be limited. Nevertheless, with the unique occupational hazards associated with heavy construction, wind farms, and the electric power industry, fatalities and injuries from on-the-job accidents could occur.
4.6 Cumulative Impacts on Water Resources

Past, present, and reasonably foreseeable future actions described in Sections 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts on water resources.

Past and present actions potentially affecting water resources in the vicinity of the analysis area include ongoing weed management, fertilization, crop production, grazing, road use and maintenance, and waterway modifications for stock watering. These activities can result in surface water flow alterations, water diversions, and stream bank modification and destabilization. Weed control and fertilization can introduce pesticides, nutrients, and total dissolved solids (salinity) into water supplies. Irrigation and waterway modifications for stock can result in increased salinity and flow reduction due to stream channel obstructions and diversions and saline seep. Some grazing practices result in sedimentation to surface water due to soil destabilization from reduced vegetation. Maintenance and use of roads at river and stream crossings can destabilize banks and increase sedimentation to surface water. These effects are commonly seen in agricultural areas.

DEQ has determined that seven water bodies in the analysis area have impaired or threatened beneficial uses by one or more of the activities described above: Missouri River, Benton Lake, Lake Creek, Teton River, Pondera Coulee, Cut Bank Creek, and Old Maids Coulee. These water bodies and their impairment causes and sources are described in Appendix I (March 2007 document). Two of these water bodies, the Teton River and Pondera Coulee, would be crossed by all action alternatives. The Teton River is classified as Category 4A: “all TMDLs (total maximum daily loads) needed to rectify all identified threats or impairments have been completed and approved but impaired beneficial uses have not yet achieved fully supporting status.” Pondera Coulee is classified as Category 5: “one or more applicable beneficial uses have been assessed as being impaired or threatened and a TMDL is required.”

Future construction activities in the region, including construction of wind farms, could affect streams and lakes by

- temporarily increasing soil erosion and stormwater runoff due to ground-disturbing activities, heavy equipment traffic, and extraction of geologic materials from borrow areas or quarries;
- temporarily or permanently diverting surface water flows by access road systems, storm water control systems, or excavation activities;
- temporarily or permanently altering the interaction between hydrologically interconnected groundwater and surface water;
• temporarily reducing stream flows due to water withdrawals for construction activities (for example, for concrete preparation and dust control);

• temporarily increasing discharges of wastewater or sanitary water; and increasing the short-term potential for runoff or spillage of fertilizers, pesticides, and

• other hazardous materials used in site preparation, construction, and post-construction revegetation.

In general, impacts from construction activities associated with reasonably foreseeable future actions would be similar to impacts from construction of the proposed MATL transmission line (Section 3.5.3).

These construction activities, when combined with the potential adverse impacts from the proposed Project and the effects of other present and past actions in the analysis area, could cumulatively increase sediment and other pollutants in water resources and potentially affect the quantity and quality of available water resources, cumulatively increasing the possibility of impairment of one or more beneficial uses. However, because most actions would be separated in time or space and because mitigation measures would be employed to reduce the potential for sedimentation and contaminant discharge, these adverse cumulative impacts are likely to be minor and short term.

Reasonably foreseeable future actions that could have long-term effects on stream flows and water quality in the region include potential expansion of irrigated agriculture and the operation of the Highwood Generating Station and the Great Falls Energy Center. The Highwood Generating Station would require 5,175 acre-feet of water per year (USDA Rural Utilities Service and DEQ 2007) for operation and the proposed Great Falls Energy Center would require about 875 acre-feet per year (Ecke 2007). In both cases, about 80% of the water demand would be used consumptively, while the remaining water would be discharged as wastewater to the Great Falls wastewater treatment plant. Estimates of water consumption by potential future irrigation are not available. There is little potential for cumulative long-term impacts with the proposed Project because operation of the MATL transmission line would have negligible water requirements and would not discharge wastewater or contaminated stormwater.

Few potential cumulative adverse impacts to water resources were identified from future operation of wind farms and none were identified for future upgrades of electric transmission lines. Wind farm operations would have minimal impact on water quantity and quality, and future upgrades of electric transmission lines (including the proposed MATL line) would not affect water resources because there would be minimal requirements for water use or wastewater discharge, and storm water controls would be required during construction.
4.7 Cumulative Impacts on Wetlands and Floodplains

Past, present, and reasonably foreseeable future actions identified in Sections 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts on wetlands and floodplains.

Past and present actions (e.g., farming, road construction) have disturbed many wetlands in the area through plowing or construction activities that destroyed them or that contributed soil erosion or soil disturbance that impacted them indirectly. Ongoing activities (e.g., use of pesticides or fertilizers in farming) have also impacted wetlands in the area.

Wind farm construction and construction associated with other projects identified as reasonably foreseeable future actions (Section 4.1.3) might result in cumulative impacts on wetlands and floodplains. During construction, access roads and transmission lines might cross wetlands and floodplains. As a result, the wetland and aquatic biota could be affected if construction of stream crossings for access routes or the location of a transmission line support tower in a wetland or floodplain is unavoidable.

Construction in wetlands, floodplains, or other aquatic habitats would in most cases require proper permits and review by local conservation districts, DEQ, FWP, and possibly the Corps of Engineers. As part of the permitting process, any such projects (e.g., wind farms) would be developed with mitigating measures to reduce disturbance to the wetlands or floodplains. Upgrading capacity on the MATL line or other transmission lines would not be expected to contribute cumulative effects to wetlands or floodplains, as there would be little, if any, construction as part of the upgrade and, thus, no impacts.

Thus, with successful implementation of mitigation measures, adverse cumulative impacts to wetlands and floodplains are likely to be minor, indirect, and short term.

4.8 Cumulative Impacts on Vegetation

Past, present, and reasonably foreseeable future actions described in Sections 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts on vegetation.

Vegetation in the area can be directly affected by projects that remove it during construction and indirectly affected by projects that cause soil erosion or other soil disturbance.

Most of the native vegetation communities in the vicinity of the proposed MATL transmission line have been converted to farmland. In some areas where native vegetation is still present, it is subject to grazing pressure. Grazing may change
community structure and composition and provide disturbed areas for weedy species establishment. Past development of facilities such as pipelines, oil wells, transmission lines, and access roads has also reduced native vegetation communities.

Vegetation communities would likely be disturbed, fragmented, or reduced by projects such as the Highwood Generating Station and as the reasonably foreseeable future development of wind farms and irrigation systems occurs in the region. Upgrading the capacity of the MATL transmission line would not, however, contribute cumulative effects on vegetation as it would not involve significant construction activities.

During construction of reasonably foreseeable future actions, plant communities would be destroyed on portions of the project sites. Impacts on vegetation communities could also occur from soil compaction, loss of topsoil, and removal of or reductions in the seed bank. Clearing of trees may also be required. Short-term disturbance for construction of wind farms (including turbines, access roads, other support facilities) would total about 2.15 acres per turbine and represent no more than about 5 to 10 percent of the wind farm site (Section 4.1.3). Over the long term, wind farm development would modify land use (thus affecting vegetation) of about 0.5 acres of land per turbine. Careful siting of wind turbines and support facilities could reduce removal of and other impacts to vegetation.

During very dry periods dust from construction may be relatively high at sites of future development and might affect vegetation immediately surrounding the project area. Dust cover on leaves has been shown to increase leaf temperature, which is one of the major parameters controlling photosynthesis (Eller 1977; Hirano et al. 1995), increase water loss (Ricks and Williams 1974; Eveling and Bataille 1984), and decrease carbon dioxide (CO2) uptake (Thompson et al. 1984; Hirano et al. 1995). Dust coating on leaves may also reduce photosynthesis through shading (Hirano et al. 1995; Thompson et al. 1984) and may physically remove cuticular wax, which may lead to increased water loss and wilting (Eveling and Bataille 1984). Implementation of mitigation measures to control dust could ensure that impacts from dust during construction are short term and localized to the immediate area.

Hazardous materials or wastes (such as waste paints and degreasing agents) may be generated during construction and operation of reasonably foreseeable future actions. Accidental spills or releases of fuel, hazardous materials, and pesticides could adversely impact vegetation on site or could migrate off site and affect vegetation in surrounding areas. After clean up of accidental spills or releases, reestablishment of vegetation might be delayed due to residual soil contamination. Implementation of hazardous materials handling and refueling protection requirements should limit the level of such spills or releases and their impact on vegetation.
Unauthorized off-highway vehicle use, illegal dumping, and illegal collection of plants (PBS&J 2002) could disturb vegetation. Visitors and off-highway vehicles may crush or trample vegetation or destroy roots and other below ground plant structures (Payne et al. 1983; Cole 1995; Douglass et al. 1999). Increased human activity also can increase the potential for fires that may allow invasive species to invade native plant communities and become the dominant species.

With implementation of reclamation and mitigation practices (e.g., weed control programs), cumulative impacts to native vegetation could be minor.

4.9 Cumulative Impacts on Wildlife

Past, present, and reasonably foreseeable future actions described in Sections 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts on wildlife. Public comments received on the March 2007 document identified a specific concern regarding the impacts on wildlife from future development of wind farms.

Past activities have affected wildlife within the analysis area through loss of native grassland habitat due to agricultural development, loss of wetland habitat due to drainage or conversion for agriculture, and minor loss in habitat and disturbance related to oil and gas development and construction of associated pipelines and transmission lines. These activities have resulted in displacement of individual animals due primarily to habitat loss; however, many wildlife species have adapted to habitat changes and, thus, have not been negatively affected at the population level. Wildlife species that have experienced the greatest impacts from past activities are those that are dependent on native grassland habitats, such as certain birds that have experienced a loss of their grassland nesting habitat.

Agriculture is currently the predominant land use within the analysis area. Since much of the area has already been converted to such use, conversion of grassland and wetland areas to agriculture no longer occurs at a high rate. Thus, land use within the region is relatively stable, and current land use practices do not generally further negatively affect wildlife.

Wildlife in the area could be affected by reasonably foreseeable future actions including the Highwood Generating Station, Great Falls Energy Center, wind farms, and new transmission lines. Upgrading the capacity of the MATL transmission line would not contribute cumulative effects to wildlife as it would not involve significant construction activities that would reduce habitat or operational changes that would impact animal behavior.
Construction of reasonably foreseeable future actions could cause the direct injury or death of animals that are not mobile enough to avoid construction operations (e.g., reptiles, small mammals, young), that utilize burrows (e.g., ground squirrels, burrowing owls), or that are defending nest sites (e.g., ground-nesting birds). More mobile animals, such as deer and adult birds, would move out of the area. It is assumed, however, that adjacent habitats are at carrying capacity and could not support additional biota from the construction areas. Thus, the subsequent competition for resources in adjacent habitats would likely preclude the incorporation of the displaced individuals into the resident populations. Construction could also affect wildlife by disturbing normal behavioral activities such as foraging, mating, and nesting.

Reasonably foreseeable future actions that developed new permanent facilities could result in some permanent change in existing wildlife habitat. Habitat may be reduced, altered, or fragmented, which could affect the diversity and abundance of area wildlife. Revegetation could, however, return some areas disturbed during construction to a habitat that could again support wildlife. The amount of habitat that would be permanently disturbed would, in general, be limited to the area of the footprint of the project. Birds, however, might avoid the area near transmission lines. For example, bird densities along a transmission line right-of-way in Oregon that exhibited noise levels of approximately 50 dB(A) were reported to be reduced up to 25 percent (Lee and Griffith 1978).

Wildlife may also be affected if a facility interferes with migratory movements. While migrating birds and bats are normally expected to fly around most individual buildings and continue their migratory movement (except for potential collisions with wind turbines or wire strikes as discussed below), the presence of a facility could disrupt movements of terrestrial wildlife. For example, herd animals, such as deer and pronghorn antelope, could be affected if facilities are placed along migration paths between winter and summer ranges or in fawning areas (NWCC 2002).

In addition to the impacts discussed above, operation of reasonably foreseeable future facilities such as the Highwood Generating Station could result in long-term increase in mortality of terrestrial mammals due to rail strikes and increased traffic on access roads. There is also some potential for increased mortality to birds and bats from collisions with wind turbines, as discussed below, and some bird mortality from wire strikes would be expected where the proposed transmission line associated with the Highwood Generating Station would cross the Missouri River.

Habitat available for birds could be reduced in wind farms. In southwestern Minnesota, lower bird population densities were reported in areas that were within 262 feet of the turbines than in control areas and areas that were 591 feet away from turbines (Leddy et al. 1999). Operation of wind farms could also impact birds through collisions (as discussed below).
The cumulative impact of habitat loss as described above could affect some wildlife, particularly grassland-dependent birds, but it would not likely reduce the viability of wildlife populations within the region, as structures would reduce habitat by a relatively small amount and would not likely consume critical habitats such as large expanses of grasslands or riparian areas.

Collision Hazards for Birds and Bats

Wind turbines, meteorological towers and associated guy wires, and overhead distribution lines represent a potential collision hazard to birds and bats.

The number of turbines associated with a wind project has been identified as the major variable associated with potential avian mortality (EFSEC 2003). Erickson et al. (2001) projected a total of 33,000 bird fatalities per year from the estimated 15,000 operating wind turbines (by the end of 2001) in the United States, an average of 2.2 avian fatalities per turbine per year for all species combined. Table 4.9-1 summarizes reported avian fatality rates at a number of wind energy projects. Local conditions heavily influence mortality at any site; the number of bird fatalities per turbine per year in individual studies ranged from none (at Searsburg, Vermont, and Algona, Iowa) to 4.45 (at Buffalo Ridge Phase III, Minnesota).

Based on mortality estimates at wind farms, the mid-range expected for passerine mortality would be approximately 1.2 to 1.8 birds per turbine per year. For wind turbines potentially built by developers with contracted capacity on the proposed MATL transmission line (400 to 533 turbines), this would equate to approximately 480 to 960 bird fatalities per year. For other reasonably foreseeable wind farms in the area (about 500 MW generation capacity derived from an estimated 252 to 335 wind turbines), this would equate to 302 to 603 bird fatalities per year.

Fatalities of raptors are of special concern because of their generally low numbers and protected status. Raptor mortality estimates based on data collected from the various wind farms in the United States indicate an average of 0.033 fatalities per turbine per year (Erickson et al. 2001). Except at the Altamont Pass in California, the number of raptors killed at any facility is small (Table 4.9-1; NWCC 2002). Some California wind farm sites have unusually high raptor fatalities due to topography, high raptor densities, and possibly older turbine technology (Kingsley and Whittam 2003). Excluding California, raptor fatalities were estimated at 0.006 per turbine per year (Erickson et al. 2001).
TABLE 4.9-1
AVIAN FATALITY RATES OBSERVED AT SOME WIND ENERGY PROJECTS

<table>
<thead>
<tr>
<th>Wind Farm</th>
<th>State</th>
<th>No. of Turbines</th>
<th>Bird Fatalities per Turbine per Yrb</th>
<th>Bird Fatalities per 100,000 m² of RSA per Yrb</th>
<th>Raptor Fatalities per Turbine per Yrb</th>
<th>Raptor Fatalities per 100,000 m² of RSA per Yrb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altamont Pass</td>
<td>CA</td>
<td>5,400 (in 2001), 7,340 (in early 1990s)</td>
<td>0.33 to 0.87, 0.05 to 0.1, 0.19</td>
<td>NA</td>
<td>0.16 to 0.24, 0.007 to 0, 0.048, 0.1</td>
<td>9.0 to 22.0, 1.0 to 2.0c</td>
</tr>
<tr>
<td>Buffalo Ridge (all phases)</td>
<td>MN</td>
<td>354</td>
<td>2.8</td>
<td>161.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Buffalo Ridge Phase 1</td>
<td>MN</td>
<td>73</td>
<td>0.33 to 0.66, 0.98</td>
<td>NA</td>
<td>0.01</td>
<td>NA</td>
</tr>
<tr>
<td>Buffalo Ridge Phase 2</td>
<td>MN</td>
<td>143</td>
<td>2.27</td>
<td>NA</td>
<td>0.0</td>
<td>NA</td>
</tr>
<tr>
<td>Buffalo Ridge Phase 3</td>
<td>MN</td>
<td>138</td>
<td>4.45</td>
<td>NA</td>
<td>0.0</td>
<td>NA</td>
</tr>
<tr>
<td>Foote Creek Rim</td>
<td>WY</td>
<td>69</td>
<td>1.5, 1.75</td>
<td>108.0</td>
<td>0.03, 0.036</td>
<td>3.0, 0.3c</td>
</tr>
<tr>
<td>Green Mountain (Searsburg)</td>
<td>VT</td>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>IDWGP (Algonia)</td>
<td>IA</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Klondike</td>
<td>OR</td>
<td>16</td>
<td>1.42</td>
<td>NA</td>
<td>0.0</td>
<td>NA</td>
</tr>
<tr>
<td>Montezuma Hills</td>
<td>CA</td>
<td>600</td>
<td>NA</td>
<td>NA</td>
<td>0.48</td>
<td>NA</td>
</tr>
<tr>
<td>Mountaineer Wind Energy Center</td>
<td>WY</td>
<td>44</td>
<td>4.04</td>
<td>NA</td>
<td>0.33</td>
<td>NA</td>
</tr>
<tr>
<td>Nine Canyon Wind Energy Project</td>
<td>WA</td>
<td>37</td>
<td>3.59</td>
<td>119.8</td>
<td>0.08</td>
<td>2.6</td>
</tr>
<tr>
<td>Princeton</td>
<td>MA</td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>San Gorgonio</td>
<td>CA</td>
<td>2,900</td>
<td>2.31</td>
<td>NA</td>
<td>0.01</td>
<td>NA</td>
</tr>
<tr>
<td>Somerset County</td>
<td>PA</td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Stateline</td>
<td>OR/WA</td>
<td>454</td>
<td>1.7</td>
<td>96.6</td>
<td>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Vansycle</td>
<td>OR</td>
<td>38</td>
<td>0.63</td>
<td>38.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>WI</td>
<td>31</td>
<td>2.83</td>
<td>73.3</td>
<td>0.02</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: IDWGP = Iowa Distributed Wind Generation Project; NA = not applicable (not calculated or appropriate); RSA = rotor-swept area.

b Multiple values are included if there were results from more than one study.

c Golden eagles only.

Sources: Curry and Kerlinger (2004a,b); Erickson et al. (2001, 2002, 2003a,b); Johnson et al. (2002, 2003a); Kerns and Kerlinger (2004); Osborn et al. (2000); Smallwood and Thelander 2004; Strickland et al., (2001a,b); Thelander and Rugge (2001); Young et al. (2003a).
Table 3.8-4 lists the raptors observed in the Kevin Rim Area in Toole County. Also, as indicated in Section 3.8.2.2, raptors have been observed during field investigations for the proposed MATL line. Based on the estimated total U.S. average raptor fatalities of 0.033 per turbine per year (Erickson et al. 2001), 13 to 18 annual raptor fatalities would be projected for the 400 to 533 operational turbines in the wind farms with contracted capacity on the proposed MATL line and 8 to 11 raptor fatalities would be projected for other wind farms that might be developed in the area. Excluding values of average raptor fatalities in California (Erickson et al. 2001), raptor fatalities would be estimated at 2 to 3 annually for the turbines potentially associated with the proposed MATL line and 1 to 2 annually for other wind farms that might be developed in the area.

Of the 15 bat species reported in Montana, 8 are likely to occur in the project study area (Table 3.8-2). Table 4.9-2 summarizes data on bat fatalities observed at wind farms. Based on the range of fatalities indicated in Table 4.9-2 for wind farms in non-forested areas (i.e., not including Buffalo Mountain in east Tennessee) (0.07 to 3.21 per turbine per year), the 400 to 533 turbines in the wind farms with contracted capacity on the proposed MATL line could cause estimated bat mortalities of 28 to 1,711 per year. In addition, other wind farms that might be developed in the area could cause estimated bat mortalities of 18 to 1,091 annually.

<table>
<thead>
<tr>
<th>Wind Resource Area</th>
<th>State</th>
<th>No. of Turbines</th>
<th>Estimated No. of Bat Fatalities per Turbine per Year^a</th>
<th>Estimated No. of Bat Fatalities per 100,000 m² of RSA^b per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo Mountain</td>
<td>TN</td>
<td>3</td>
<td>10.0</td>
<td>NA</td>
</tr>
<tr>
<td>Buffalo Ridge</td>
<td>MN</td>
<td>354</td>
<td>2.3</td>
<td>164.0</td>
</tr>
<tr>
<td>Buffalo Ridge Phase 1</td>
<td>MN</td>
<td>73</td>
<td>0.07, 0.26, 2.02</td>
<td>NA</td>
</tr>
<tr>
<td>Buffalo Ridge Phase 2</td>
<td>MN</td>
<td>143</td>
<td>1.78, 2.02</td>
<td>NA</td>
</tr>
<tr>
<td>Buffalo Ridge Phase 3</td>
<td>MN</td>
<td>138</td>
<td>2.04, 2.32</td>
<td>NA</td>
</tr>
<tr>
<td>Foote Creek Rim</td>
<td>WY</td>
<td>69</td>
<td>1.04, 1.34</td>
<td>97.0</td>
</tr>
<tr>
<td>Klondike</td>
<td>OR</td>
<td>16</td>
<td></td>
<td>33.3</td>
</tr>
<tr>
<td>Nine Canyon</td>
<td>WA</td>
<td>37</td>
<td>3.21</td>
<td>106.6</td>
</tr>
<tr>
<td>Stateline</td>
<td>OR/ WA</td>
<td>454</td>
<td>0.95</td>
<td>53.3</td>
</tr>
<tr>
<td>Vansycle</td>
<td>OR</td>
<td>38</td>
<td>0.74</td>
<td>45.0</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>WI</td>
<td>31</td>
<td>1.1</td>
<td>246.4</td>
</tr>
</tbody>
</table>

^a Multiple values were included if there were results from more than one study.
^b RSA — rotor-swept area.
^c NA = not applicable (not calculated or appropriate).
Sources: Erickson et al. (2002, 2003a,b); Johnson et al. (2003a); Strickland et al. (2001a,b); Young et al. (2003a,b).
Chapter 4

Cumulative Impacts

The cumulative impact from collisions from reasonably foreseeable future actions when added to those of the proposed MATL transmission line and past and current activities could cause a small reduction in population size for birds and bats. These impacts may, however, be reduced by employing careful siting practices and other mitigation measures.

4.10 Cumulative Impacts on Fish

Cumulative impacts that adversely affect water resources, as discussed in Section 4.6, could result in adverse effects to fish and fish habitats in the project area. The potential for impacts to fish and their habitats could be reduced by avoidance of fish-bearing streams during construction and other mitigation measures, as discussed in Section 3.9.3.

4.11 Cumulative Impacts on Special Status Species

Past, present, and reasonably foreseeable future actions described in Section 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts on special status species (i.e., federally listed threatened, endangered, and candidate species; BLM sensitive species; and species identified by Montana as vulnerable or imperiled).

Present and past activities throughout the analysis area are very similar, with agriculture as the predominant land use. Impacts to special status species within the analysis area from such activities are similar to the effects described in Sections 4.8 and 4.9 on cumulative impacts on vegetation and wildlife. The special status species that have experienced the greatest impacts are those that are dependent on native grassland habitats, such as black-footed ferrets, ferruginous hawks, peregrine falcons, black-tailed prairie dogs, Baird’s sparrow, burrowing owls, and long-billed curlews.

Impacts to special status species within the analysis area from reasonably foreseeable future actions including the Highwood Generating Station, Great Falls Energy Center, wind farms, and new transmission lines would be similar to the effects described in Sections 4.8 and 4.9 on cumulative impacts on vegetation and wildlife. That is, construction could cause the direct injury or death to special status species and reduce available habitat, while operation could impact birds from collisions with wind turbines and wire strikes where the proposed transmission line associated with the Highwood Generating Station would cross the Missouri River.

The cumulative impacts of habitat loss would not likely reduce the viability of special status species populations within the region, as structures would reduce habitat by a relatively small amount and would not likely consume critical habitats, such as large expanses of grasslands or riparian areas. Most of these impacts could be reduced with
sound siting practices and other mitigation measures. In addition, some projects would likely need to comply with ESA or state of Montana requirements to protect special status species, which would reduce the potential for adverse cumulative impacts.

4.12 Cumulative Impacts on Air Quality

Past, present, and reasonably foreseeable future actions identified in Section 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts on air quality.

Past and present actions with potential air quality impacts include: petroleum refining, crude oil pump and natural gas compressor stations, petroleum product terminals, coal-fired electrical generating plants, concrete mix plants, asphalt mix plants, crematoriums, gravel crushers and associated processing equipment, fugitive dust and smoke from farming and field and forest burning, and dust from gravel roads or during construction. For emission sources such as construction activities, burning, and road dust, the effects are temporary.

Air quality in the area would be affected by the reasonably foreseeable future construction and operation of projects such as the coal-fired Highwood Generating Station and the natural gas-fired Great Falls Energy Center. Other than during construction or maintenance activities, wind farms would not be expected to have air quality impacts. Impacts of construction for transmission line upgrades and wind farms would be similar to impacts of the proposed action. Cumulative impacts would not be expected, however, unless different nearby projects are being built at the same time.

The EIS for the Highwood Generating Station included an analysis of the combined air quality impacts from operation of the proposed Highwood Generating Station and other emission sources in the region (including background concentrations plus emissions from a petroleum refinery, ethanol plant, malting plant, and other sources). Modeling results indicated that all ambient air pollutant concentrations would continue to be well below applicable state and federal ambient air quality standards (USDA Rural Utilities Service and DEQ 2007). Regulation of operational air emissions under the Clean Air Act and related state regulations through permits issued by DEQ helps to minimize air quality impacts. Furthermore, because of differences in timing, few impacts would be cumulative with air quality impacts of the proposed Project.

Greenhouse Gas Emissions

Many human activities emit carbon dioxide (CO₂) and other "greenhouse" gases, such as methane and nitrous oxide, contributing to increasing concentrations of these gases in the atmosphere. Emissions of CO₂ from fossil fuel combustion are a major contributor
of greenhouse gases, totaling 29 billion tons per year globally during the period 2000 to 2005 (IPCC 2007).

Past and present activities in the study area contribute greenhouse gases to the atmosphere. The Montana Climate Change Advisory Committee has estimated that greenhouse gases with global warming potential equivalent to 41 million tons of CO₂ were emitted in Montana in 2005 (Montana Climate Change Advisory Committee 2007). Fossil fuel consumption accounted for 62 percent of Montana greenhouse gas emissions, agriculture accounted for 21 percent, and production of fossil fuels accounted for 14 percent.

As discussed in Section 3.11, the proposed Project would emit very small amounts of greenhouse gases, principally from vehicle and equipment operation during transmission line construction. However, generation of electricity by potential wind farms with contracted capacity on the proposed MATL transmission line could help to reduce emissions of greenhouse gases by avoiding the need to generate equal amounts of electricity from fossil fuels. Conversely, two of the other reasonably foreseeable actions identified in the region would be contributors to greenhouse gas emissions. Operation of the coal-fired power plant at the Highwood Generating Station would release an estimated 2,380,000 tons/year of CO₂ plus methane and nitrous oxide with global warming potential equivalent to 669,000 tons/year of CO₂ (USDA Rural Development and Montana Department of Environmental Quality 2007), adding up to about 7 percent of Montana’s total release of greenhouse gases in 2005. Detailed estimates are not available for the Great Falls Energy Center proposal; however, based on its generating capacity, the gas-fueled generator at that facility also would add to cumulative greenhouse gas emissions from the region by emitting over 1 million tons per year of CO₂.

4.13 Cumulative Noise Impacts

Past, present, and reasonably foreseeable future actions identified in Section 4.1.2 and 4.1.3 were reviewed for potential cumulative noise impacts.

Reasonably foreseeable future actions could result in cumulative noise effects from construction if construction of projects such as wind farms and the Highwood Generating Station occurred simultaneously with construction of the proposed Project. Cumulative impacts from wind turbine and transmission line noise during operation would depend on proximity to residences.

Construction would generally be during the day, when noise is tolerated better because of the masking effect of background noise. Nighttime noise levels probably would drop to the background levels of the project area. Noise levels for typical construction
equipment that would likely be used are about in the 80 to 90 dB(A) range at a distance of 50 feet, as shown in Section 3.12.3. Blasting may be required for installation of wind turbine foundations. If blasting is needed, it is anticipated that most foundations would require one to two blasts.

Transformers and switchgears from substations, corona noise from transmission lines, noise from generation facilities, and vehicular traffic noise are sources that would contribute cumulative effects in the MATL project study area. Wind blowing through power lines may also cause noise. Operating wind turbines produce mechanical and aerodynamic noise. The highest sound levels from wind turbines typically occur in frequency ranges that are inaudible to humans because they are below the threshold of human hearing. However, under certain conditions, turbines can produce audible noise loud enough that nearby humans would experience it as a doubling of background noise (Rogers et al. 2006). The level and character of noise produced varies depending on turbine design. Sound levels decline significantly with increasing distance from the source, and noise levels would depend on the observer’s location.

4.14 Cumulative Socioeconomic and Environmental Justice Impacts

Socioeconomic conditions in the region would be affected by projects that contribute to the economy, increase employment (temporarily or permanently), increase the demand for public services, or change tax revenue. A review indicated that reasonably foreseeable future actions that could produce these types of effect include construction and operation of a potential MATL transmission line, wind farms, and other energy generation facilities. Therefore, these activities have been included in the cumulative effects analysis for socioeconomics and environmental justice.

The Highwood Generating Station would contribute economic activity to the local and regional area. Plant operation would employ approximately 65 permanent workers (USDA Rural Utilities Service and DEQ 2007). Additionally, there would be increases in total purchases of goods and services, and an increase in the tax base.

Case studies of three wind generation projects elsewhere in the nation indicate that economic benefits may vary widely from project to project (Northwest Economic Associates 2003). For instance, the construction phase of a wind generation project may generate up to 100 jobs, while the operation and maintenance phase may provide between 6 and 31 permanent jobs and between $103,000 and nearly $1 million in additional annual personal income. Wind projects also provide additional landowner revenue in the form of lease payments. Assuming that these types of projects cause little or no increase in government or school budgets, tax payments made by project
owners may have the additional benefit of reducing the local tax burden for other local tax payers (Northwest Economic Associates 2003).

Economic effects of wind generation were estimated for several different levels of wind generation activity. For this cumulative impacts assessment, it is assumed that 600 to 800 MW of wind generation capacity would eventually be built to use transmission capacity of the proposed MATL transmission line. Additionally, to be conservative, the estimated economic effects from 600 MW of wind power are cut in half (which would be the same as the economic activity from 300 MW of wind power) to provide a lower bound number for the economic activity caused by future wind farms in the study area. Finally, because another 500 MW of wind power are in queues for interconnection to transmission lines operated by NorthWestern and WAPA, 1,300 MW of wind generation is treated as an upper bound.

Flowers and Tegen (NREL 2007) used a Jobs and Economic Development Impacts analysis to estimate economic impacts that may occur in the study area as a result of 600 MW of wind farms. They assumed that the 600 MW would be made up of six different projects of about 100 to 120 MW each.

Table 4.14-1 summarizes the economic effects of 300 MW, 600 MW, 800 MW and 1,300 MW of new wind generation based on the Flowers and Tegen study. The results from their study are used to proportionally estimate the economic impact of 300, 800, and 1,300 MW of wind power.

<table>
<thead>
<tr>
<th>Amount of Wind Generation</th>
<th>Construction Jobs (Short Term)</th>
<th>Permanent Jobs over Lifetime of Wind Farms</th>
<th>Construction Earnings to Montana Workers</th>
<th>Annual Earnings from Wind Farm Operation</th>
<th>Annual County Revenue ($ Millions)</th>
<th>Payments to Local Land-Owners ($ Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 MW</td>
<td>530</td>
<td>25-30</td>
<td>$20,000,000</td>
<td>$2,300,000</td>
<td>2.3 to 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>600 MW</td>
<td>1,060</td>
<td>50-60</td>
<td>$40,000,000</td>
<td>$4,500,000</td>
<td>5.5 to 6.0</td>
<td>2.0</td>
</tr>
<tr>
<td>800 MW</td>
<td>1,400</td>
<td>Up to 80</td>
<td>$53,000,000</td>
<td>$6,000,000</td>
<td>Up to 8.0</td>
<td>2.7</td>
</tr>
<tr>
<td>1,300 MW</td>
<td>2,300</td>
<td>Up to 130</td>
<td>$87,000,000</td>
<td>$9,750,000</td>
<td>Up to 13.0</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Note: 1,300 MW would impose larger costs on the local area in terms of demand for services, change in the character of the area, and change in land use.
Assuming a 1-2 year construction period, Montanans would earn $20-$53 million total for the construction of 300 to 800 MW of wind power. Again, the 600 MW numbers taken directly from the NREL study are cut in half to arrive at the conservative lower numbers in these economic ranges.

Over 20 years of operation of this wind energy development, Montanans would earn approximately $2.3-$6.0 million annually from plant operations and maintenance expenditures on all projects. The wind projects would generate another $2.3-$8.0 million per year in county revenue from property taxes along with another $1.0-$2.7 million per year in payments to local landowners who have turbines on their land (or about $5,000 per turbine), bringing the annual operational total economic benefit from wind farms in the area to about $6-$16 million in Montana. Total property taxes paid by wind farm owners would be about $9,000 per MW per year.

The wind developments would provide jobs to both in-state and out-of-state construction workers, as well as jobs related to local purchases of goods and services (such as cement suppliers, rebar suppliers, etc.). The construction phase would support about 530 to 1,400 direct jobs for Montanans during a 1- to 2-year period, with additional jobs going to out-of-state workers.

The potential for wind energy development projects to decrease residential property values has often been a concern in the vicinity of locations selected for wind power. Although wind farms could lower property values, a review of three studies that examined potential property value impacts of wind power facilities suggests that there would not be any measurable negative impacts (ECONorthwest 2002, Sterzinger et al. 2003, and Poletti and Associates 2007). However, these studies did not exclusively cover rural and agricultural lands. Thus, it is possible that wind farms could have an adverse effect on farm land values.

Additional socioeconomic impacts resulting from new energy generation projects enabled by the existence of the proposed MATL line would be similar to those described in Section 3.13.3 for the proposed MATL line. For example, each new project would have beneficial impacts to local economies due to the presence of construction and operation workers moving to the region and each project’s potential utilization of local labor pools. These benefits would increase local employment opportunities and increase local economic transactions as these workers and their families draw upon service and commodity providers. Each new project would also create new facilities subject to state and local taxation, thus further increasing each county’s tax revenue. Benefits may also be realized to the rate payer due to increased competition and abundant energy supplies that may become available as new wind farms come on-line. However, each new generation project would also require land commitments that could remove a small amount of land from production. The lease payments for wind sites are considered to be higher than the value of the land removed from crop and cattle
production. Thus, wind farms also would provide a new revenue stream to landowners.

Overall, additional development of wind energy generation projects and transmission capability would add employment to the area, which could increase demand for public services (schools, fire, police, etc.), add tax revenue, and increase need for goods locally and regionally. There may be a demand for additional housing associated with the increased employment, but it is anticipated that the existing housing supply could accommodate the additional workers and their families.

Cumulative Impacts on Environmental Justice

As discussed in Section 3.13.3.4, the proposed Project would not contribute to impacts that would cause a disproportionately high and adverse impact on minority or low-income populations compared to populations in the surrounding communities, the state of Montana, or the United States. Future activities by other entities could make such a contribution depending on the nature, location and size of the activities, but construction and operation of the proposed MATL transmission line would not make a significant contribution to such cumulative impacts.

4.15 Cumulative Impacts on Paleontological and Cultural Resources

Past, present, and reasonably foreseeable future actions identified in Sections 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts on paleontological and cultural resources. Paleontological and cultural resources in the area would be affected by projects that connect to the MATL transmission line (including wind farms), enter the Great Fall 230-kV switch yard (new transmission lines and upgrades), and other development actions that cause additional ground disturbance. Therefore, these activities have been included in the cumulative effects analysis for paleontological and cultural resources.

The review indicated that upgrading the MATL transmission line would not contribute cumulative effects on paleontological and cultural resources.

Paleontological Resources

Past and present actions including historic settlements, farming, roads, railroads, canals, transmission lines, telephone and fiber optic lines, and urban-related development have contributed to cumulative impacts to paleontological resources throughout all environmental settings in the area of the proposed MATL line.
Paleontological resources are generally identified on a project-specific basis. If there is a strong potential for fossil remains to be present in a project area, a survey could be conducted. The following describes the potential cumulative impacts to paleontological resources if they are present at a project site (e.g., a wind farm).

Impacts to paleontological resources could potentially occur from ground-disturbing activities and unauthorized collection of fossils during site monitoring, testing, construction, and operation. The level of impacts would be proportional to the scale of the project. If clearing, grading, excavation, and road construction are very limited, the impacts would also be limited. If more extensive excavation or road construction is needed during construction, more extensive impacts are possible. Impacts during operation would normally be less than those during construction.

Erosion caused by traffic and ground clearing could potentially affect fossils. Fossils could also be affected in small localized areas (e.g., in borings for geotechnical surveys, where guy wires are installed). Finally, the collection of fossils would be another possible impact. Although many of the activities (e.g., during the monitoring and testing phases) are characterized as temporary actions, paleontological resources are nonrenewable, and once impacted (i.e., removed or damaged) can not normally be recovered or recreated in the appropriate context for scientific analysis.

Cultural Resources and Traditional Cultural Properties

An unknown number of prehistoric cultural resources or traditional cultural properties important to area tribes have already been destroyed in the study area by past and present actions including historic settlement, farming, roads, railroads, canals, transmission lines, and telephone and fiber optic lines. While the construction of the MATL project could be designed to avoid impacts to prehistoric and historic properties, impacts from reasonably foreseeable non-linear projects, such as the Highwood Generating Station and the Great Falls Energy Center, may be more difficult to avoid.

Field review of portions of the MATL Project study area for traditional cultural properties indicates a concern for further impacts to a tipi ring site (24PN24), which is considered to be a traditional cultural property by members of the Blackfeet Tribe (Section 3.14.3). The property is located along a segment of the proposed Project that is common to both Alternatives 2 and 3. The site is currently crossed by two pipelines and a transmission line. Therefore, construction of the MATL Project across the property would add to past impacts.

The construction phase of reasonably foreseeable future actions (e.g., additional transmission lines, irrigation, energy generation facilities) could uncover or destroy cultural resources. If the resources are uncovered but not destroyed, the discoveries could be beneficial to professional archaeologists. Otherwise, Federal and state
legislation are designed to minimize the potential for impacts to the extent possible when there is Federal or state involvement in a proposed project. To minimize adverse effects, cultural resources should be fully evaluated for NRHP eligibility prior to construction. In addition, an unanticipated discoveries plan for cultural resources should be prepared prior to construction.

4.16 Cumulative Visual Resource Impacts

Past, present, and reasonably foreseeable future actions identified in Section 4.1.2 and 4.1.3 were reviewed for potential cumulative impacts on visual quality. Visual quality in the area would be affected by projects that connect to the proposed MATL transmission line (including wind farms), enter the Great Falls 230-kV switch yard (e.g., new transmission lines and upgrades), or are visible from the alignment. Public comment had identified a public concern regarding the impacts on visual quality from wind farm development between Great Falls and the Canadian border. These activities have been included in the cumulative effects analysis for visual impacts.

All action alternatives, when combined with past and present actions and reasonably foreseeable future actions (e.g., rebuilding the WAPA Havre to Rainbow transmission line) would increase the developed character of the regional landscape for the long term. In particular, the Highwood Generating Station would result in major adverse aesthetic impacts and contribute to cumulative impacts to the Great Falls Portage National Historic Landmark (USDA Rural Utilities Service and DEQ 2007). Construction of other new generation projects, such as the Great Falls Energy Center north of Great Falls, would contribute to a more developed and industrial character in the area. The proposed center’s 92-foot tall stack and 300-foot long building housing the gas turbines would be visible in foreground views from Highway 87.

During construction of reasonably foreseeable future actions, road development (i.e., new roads or expansion of existing roads) may introduce strong visual contrasts in the landscape. Small-vehicle traffic for worker access and large-equipment (e.g., trucks, graders, excavators, and cranes) traffic for road construction, site preparation, and construction would be conspicuous and frequent. Both would produce visible activity and dust in dry soils. If these roads are not removed after construction is complete, they would continue to contribute to the cumulative impact on visual resources.
Ground disturbance would result in visual impacts, including contrasts of color, form, texture, and line. Excavating, trenching, grading and surfacing roads and clearing, leveling, and stockpiling soil and spoils would create dust, expose slope faces, and damage vegetation.

Wind Farms

Wind generation facilities would be highly visible because of the introduction of turbines into typically rural or natural landscapes with few other comparable structures. Wind turbines may have visually incongruous “industrial” associations for some, particularly in a predominantly natural landscape. Visual evidence of wind turbines is difficult to avoid or conceal due to turbine size and exposed location. In addition, the temporary presence during construction of large cranes or a self-erection apparatus to construct wind farms would introduce contrasting elements to the landscape.

Figures 4.16-1 through 4.16-3 show the Judith Gap Energy Center wind farm. This 135-MW facility is located in central Montana between Harlowton and Judith Gap, adjacent to US Highway 191. Photos were taken in June 2007 from viewpoints within the wind farm.

Studies performed in the United Kingdom suggest a large area of visual influence for wind farms. Sinclair (2001)
provides a basis for determining the potential visual impacts and area of study for wind farms. The Sinclair-Thomas matrix based on numerous field observations of operating wind farms in the United Kingdom, identifies bands of visual influence surrounding wind farms. Sinclair suggests that bands or zones of visual influence having dominant to low visual impact can surround a wind farm for up to 15 miles.

For the Valley County Wind Energy Project (Wind Hunter 2004) with 1.5 MW turbines, the Sinclair-Thomas matrix was adapted to determine zones of visual influence that extended 18 miles from the proposed wind farm. Five levels of visual influence were assigned for potential impact levels:

- Proximate (0 – 1.5 miles)
- High (1.5 – 4.0 miles)
- Moderate (4.0 – 10.0 miles)
- Low (10.0 – 18.0 miles)
- None (18.0+ miles)

This analysis indicates that a potentially high level of visual impact can extend up to 4.0 miles from wind farms with 1.5 MW turbines, with moderate and low impacts at distances up to 18 miles. Zones of visual influence could be expected to extend further for 2.0 or 2.5 MW turbines that are up to 500 feet high. Factors such as location of viewers, proximity, viewer sensitivity, duration of views, degree of project visibility...
and contrast, scale of the project in relation to its setting, and presence of valued scenic
resources could be used to guide the assessment of potential impacts for any project
(National Academy of Sciences 2007).

Daily and seasonal low sunlight conditions striking ridgelines and towers would tend
to make turbines more visible and more prominent. Given the typical pale color of
turbines, their color contrast with surroundings would likely be the least in winter
when snow cover is present. In regions with variable terrain, wind developments along
ridgelines would be most visible, particularly when viewed from other similar or lower
elevations, owing partly to silhouetting against the sky. Higher viewing points relative to wind
farm locations would reduce silhouetting (Burton 1997; EFSEC 2003; Owens 2003;
WDFW 2003a). Interposition of turbines between observers and the sun, particularly in
the early and late hours of the day and during the winter season when sun angles are low,
could produce flickering shadows cast onto the ground and objects by the moving rotors.
Shadow flicker could be very noticeable because of its motion and frequency, and may increase
with snow cover, but would be a temporary effect and limited to daylight hours.

Reflection of the sun off rotating turbine blades could produce blade glint noticeable at
distances of about 6 to 9 miles and may be especially pronounced when aligned with
roadways or other viewing corridors. This temporary effect varies with the orientation
of the nacelle, angle of the rotor, and location of the observer relative to the sun.

If security and safety lighting were used for support facilities, even if they were
downwardly focused, visibility of the site would increase, particularly in the dark
nighttime sky typical of rural areas. It would also contribute to sky glow resulting from
ambient artificial lighting. Any degree of lighting may produce off-site “light trespass”;
it would be most abbreviated if the lighting were limited to the substation and
controlled by motion sensors.

Additional construction and installation of monitoring equipment may be required
during site operation. Infrequent outages, disassembly, and repair of equipment could
occur and produce the appearance of idle or missing rotors, “headless” towers (when
nacelles are removed), and lowered towers. Negative visual perceptions of “lost
benefits” (e.g., loss of wind power) and “bone yards” (for storage) may result.
For ground viewers of aeronautical safety markings white lights could be less obtrusive in daylight. Red lights would likely be conspicuous at great distances against dark skies (Gipe 2002). Although aeronautical safety beacons would concentrate light in the horizontal plane, they would increase visibility of the turbines, particularly in dark nighttime settings typical of rural areas. Because of their intermittent operations, beacons would likely not contribute to sky glow from artificial lighting. Their emission of light to off-site areas could, however, be considerable.

If decommissioning occurred, impacts on visual resources would be similar to those encountered during construction. Restoring a decommissioned site to pre-project conditions would entail recontouring, grading, scarifying, seeding, planting, and, perhaps, stabilizing disturbed surfaces. Newly disturbed soils would create a visual contrast that would persist at least several seasons before revegetation would begin to disguise past activity. Restoration to pre-project conditions may take much longer. Invasive species may colonize newly and recently reclaimed areas. Non-native plants would likely produce contrasts of color, form, texture, and line.

4.17 Unavoidable Adverse Impacts

This section summarizes the adverse impacts that cannot be avoided that are expected to occur with implementation of the proposed Project.

Construction and operation activities could have adverse impacts on wetland resources from the alteration of surface water drainage patterns, disturbances and trampling of vegetation during construction, and from an increase in sedimentation to localized wetland areas from disturbances on adjacent properties. Transmission line structures would not be placed in wetland areas, so no long-term impacts are expected for wetland resources. Native vegetation would be unavoidably disturbed, and weed infestations may occur. Travel routes could be unavoidably obstructed during construction. Long-term impacts to land use include loss of production from farmland, increased risk to aircraft, and interference with farming activities. An increase in avian mortality would be unavoidable and long term. There would be unavoidable major adverse impacts to the visual quality of the landscape where the transmission line crosses the Teton and Marias rivers or passes within 1/2 mile of residences or major highways.

4.18 Irreversible or Irretrievable Commitments of Resources

If concrete footings are used, the concrete would be left and irreversibly committed. Fuel used during construction and decommissioning would be irreversibly committed to the project. The wood used in structures would not be available for future transmission projects and would be irreversibly committed to the project. Energy lost
during transmission line operation (line losses) would be irretrievably committed to the project.

Paleontological and cultural resources, including traditional cultural properties, are nonrenewable resources. The MATL project would increase access to the areas where these resources may be located. This increased access could lead to intentional damage from looting and vandalism, including unauthorized relic collecting, theft, and defacement, and result in the loss of information and destruction of the resource. Impacts to these resources would constitute an irreversible commitment of resources.

4.19 Relationship between Short-Term Uses and Long-Term Productivity

As applied to the proposed Project, short-term uses of man's environment are characterized by existing land use of the Project study area as modified by the proposed Project, together with all activities that such land use facilitates. Maintenance and enhancement of long-term productivity involves sustaining the interrelationships of each resource in a condition sufficient to support ecological, social, and economic health.

All action alternatives would manage resources within regulatory standards for air quality, water quality, cultural resource preservation, and wildlife management. Impacts from any of the action alternatives on farming would not adversely affect long-term productivity of the resource. Beneficial impacts on socioeconomic resources would be realized from all action alternatives. Because Alternative 4 contains environmental mitigation measures (relative to Alternatives 2 and 3) for avoiding adverse impacts on farming, riparian areas, and surface water, this alternative presents the most protective alternative for the maintenance and enhancement of long-term productivity of the environment while benefiting socioeconomic resources.

Long-term impacts on cultural and paleontological resources would result from increased access to areas that were formerly not accessible. This access can lead to intentional damage to paleontological and cultural resources from unauthorized collecting, theft, and defacement, and result in the loss of information and destruction of the resource. In addition, the presence of the proposed MATL transmission line would allow development of wind energy projects that could contribute to cumulative impacts to paleontological or cultural resources. The location of the MATL Project on or near traditional cultural properties could have long-term effects on traditional cultural practices. In addition, the transmission line structures would be highly visible for the life of the project.
4.20 Regulatory Restrictions Analysis

MEPA requires agencies to evaluate any regulatory restrictions and incremental costs that could be imposed on the use of private property in connection with a proposed action.

Alternatives 3 and 4, local routing options, and mitigation measures are designed to protect environmental, cultural, visual, and social resources, although they add to the cost of the Project. Alternatives and mitigation measures that are required by Federal or state laws and regulations to meet minimum environmental standards do not need to be evaluated for extra costs to the proponent.

Bond requirements and other mitigation measures that might be imposed by DEQ would add from 1.3 to 1.9 percent to the basic construction cost of Alternative 2 (Table 4.20-1). Alternative 3 would be less expensive to build than Alternative 2. Alternative 4, including bond, would cost 12.5 percent more than the basic construction cost of Alternative 2 or 11.1 percent more than the cost of Alternative 2 including bond (Table 4.20-1).

Mitigation measures whose costs can be estimated are precision mapping of unstable soils, archaeologist observation of construction, use of conductors with dulled, non-reflective surfaces, wetlands delineation, and bonding for reclamation and revegetation. Monopole structures in addition to the 53 miles that MATL has committed to use for diagonal crossings of cultivated cropland might also be required in some areas.

The costs of other measures, such as damage payments, are not readily quantifiable but would add to the total cost of the proposed Project.

MATL has already negotiated easements across portions of the proposed Project alignment. The cost to MATL is unknown. If MATL has already paid for right-of-way access to lands that may be crossed by the Alternative 2 alignment and that alignment is not permitted, MATL may lose the money already spent. Additionally, if landowners along Alternative 2 were expecting compensation for the costs of farming around structures and that alignment is not permitted, the landowners would not receive their expected compensation.
Table 4.20-1
REGULATORY RESTRICTIONS ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Bond and 53 Miles of Monopoles Only</td>
<td>129.9 (53 miles monopoles, 76.9 miles H-frames)</td>
<td>129.9 (53 miles monopoles, 76.9 miles H-frames)</td>
<td>139.9 (88.9 miles monopoles, 51 miles H-frames)</td>
</tr>
<tr>
<td>Length (miles)</td>
<td>$39,874,650</td>
<td>$39,874,650</td>
<td>$43,994,350</td>
</tr>
<tr>
<td>Precision mapping of unstable soils</td>
<td>0 (11 miles)</td>
<td>$11,000 (11 miles)</td>
<td>$11,500 (23 miles)</td>
</tr>
<tr>
<td>Professional archaeologist to observe construction</td>
<td>0 (35 sections)</td>
<td>$160,000 (37 sections)</td>
<td>$160,000 (35 sections)</td>
</tr>
<tr>
<td>Delineate wetlands on alignment through Teton County</td>
<td>0 (23 miles)</td>
<td>$11,500 (23 miles)</td>
<td>$13,000 (26 miles)</td>
</tr>
<tr>
<td>Use of conductors with dulled, non-reflective surfaces</td>
<td>0 (129.9 miles)</td>
<td>$62,000 (121.6 miles)</td>
<td>$67,000 (139.9 miles)</td>
</tr>
<tr>
<td>Estimated bond</td>
<td>$500,000</td>
<td>$500,000</td>
<td>$615,000</td>
</tr>
<tr>
<td>Total cost</td>
<td>$40,374,650</td>
<td>$40,619,150</td>
<td>$44,873,350</td>
</tr>
<tr>
<td>Percent difference from basic construction cost of Alternative 2</td>
<td>+1.3</td>
<td>+1.9</td>
<td>-9.1</td>
</tr>
<tr>
<td>Percent difference from total cost of Alternative 2</td>
<td>0</td>
<td>+0.6</td>
<td>-10.0</td>
</tr>
</tbody>
</table>

Notes:

- **a** H-frame structures $293,500 per mile; monopole structures $326,500 per mile (assuming long-span monopoles; MATL 1/26/07)
- **b** $1,000 per mile of alignment, 500 feet wide.
- **c** $1,000 per day each for two full-time archaeologists for 4 months.
- **d** $1,000 per day per wetland specialist at 2 linear miles of alignment per day.
- **e** $30 per 1,000 feet per conductor additional cost for non-specular conductor (BPA 2007).
4.21 Intentional Destructive Acts

Intentional destructive acts, such as sabotage, terrorism, vandalism, and theft, sometimes occur at power utility facilities. These acts include shooting at insulators, power lines, transmission towers, or substation equipment; vandalism; and theft of equipment, supplies, tools, or materials. Vandalism and thefts are most common. The impacts from vandalism and theft, though expensive, do not generally cause a disruption of service to the area. Stealing equipment from electrical substations can, however, be extremely dangerous. Some would-be thieves have been electrocuted while attempting to steal equipment from energized facilities.

Utilities use physical deterrents such as fencing, cameras, warning signs, rewards, and other measures to help prevent theft, vandalism, and unauthorized access. In addition, some utilities offer rewards for information that leads to the arrest and conviction of individuals committing crimes against their facilities.

Depending on the size and voltage of the line, destroying towers or other equipment could disrupt electrical service. The effects of these acts would vary depending on the particular act and configuration of the transmission system. While in some situations these acts would have no noticeable effect on electrical service, in other situations service could be disrupted in the local area or, in the case of damage to equipment that is part of the main transmission system, a much larger area could be left without power.

The MATL transmission line would be made up of transmission line support structures, electric conductors, and electric substations. The support structures would be emplaced in the ground and would be difficult to dislodge. The overhead transmission conductors and the structures that carry them would be mostly on unfenced utility rights of way.

Given the characteristics of the proposed MATL transmission line project and its rural location, it is unlikely that intentional destructive acts would occur. Even if such an act did occur, it would not have a major impact on the transmission system or electrical service, since the grid is designed to withstand the loss of key elements and still provide uninterrupted service to customers. Service is provided by the network, not by individual transmission lines. Any impacts from sabotage or terrorist acts likely could be quickly isolated. In addition, security measures are included to prevent such acts and to allow for a quick response.
5.0 Consultation and Coordination

MFSA requires that a project applicant consult with government agencies to identify their concerns over the facility’s possible locations or effects on the environment, to discuss mitigation measures suggested by the agencies, and to explain how the agency concerns were incorporated into identifying the proposed Project and alternative locations. MEPA and NEPA require DEQ and DOE to consult with local, Federal, and state agencies about the proposed Project during the project scoping.

DEQ and DOE have consulted with the applicant, other Federal and state agencies, local governments, and with individuals and non-government stakeholders. The consultation process took place during scoping and follow-up discussions. Interested individuals and organizations, affected Federal, state, and local agencies, as well as affected Indian Tribes were invited to submit comments to DEQ and DOE. MFSA requires FWP, DNRC, MDT, the Department of Revenue, and the Public Service Commission to report their recommendations on this project to DEQ. Results of this reporting would be incorporated into the final EIS.

Initial Consultation and Coordination

The MFSA consultation process began on May 9, 2005, when MATL representatives met with DEQ personnel to introduce the proposed Project and discuss issues or concerns during initial stages of the MFSA application process. MATL conducted open house sessions in Conrad and Cut Bank, Montana, on June 29 and 30, 2005, to provide the public an opportunity to meet representatives of the MATL project team and obtain information on the scope of the project. These open houses provided a venue for the public to voice and document their concerns and issues to MATL.

DEQ hosted an interagency project meeting on August 26, 2005, in Helena, Montana, to familiarize participating agency personnel with the proposed Project, to field agency questions, and to formalize agency roles and responsibilities. Attendees for the August 26, 2005, meeting included personnel from the following agencies:

- DEQ
- U.S. Department of Energy (DOE; via teleconference)
- Montana Fish, Wildlife and Parks (FWP)
- Montana Department of Transportation (MDT)
- Montana Department of Commerce
- DNRC

MATL submitted a MFSA application to DEQ on December 1, 2005, and submitted additional information and/or amended the application on January 11, January 24, March 16, March 30, June 9, July 31, August 11, November 30, and December 15, 2006.
Public Scoping

Three public scoping meetings were held in Cut Bank, Conrad, and Great Falls in early December 2005. The scoping process is discussed in Section 1.5. A follow-up meeting was held in Cut Bank on June 26, 2006. The December 2005 and June 2006 public meetings were advertised in *The Valierian, The Cut Bank Pioneer Press, The Glacier Reporter*, and *The Shelby Promoter* for a 3-week period prior to meetings. Based on the additional public comments and to address deficiencies in the original December 1, 2005, application, MATL revised its MFSA application and provided additional information as discussed above.

DOE also published a Notice of Intent to Prepare an Environmental Assessment and to Conduct Public Scoping Meetings in the *Federal Register* on November 18, 2005 (70 FR 69962). A copy of this notice was transmitted by mail to landowners in the study area.

Formal and Informal Consultation and Coordination

In addition to the general meetings and telephone contacts, DEQ hosted a meeting in Great Falls on October 6, 2006, to share information about multiple projects that may involve construction in and around the NWE Great Falls 230-kV switch yard. Meeting attendees for the October 6, 2006, Great Falls meeting included personnel from the following agencies and organizations:

- DEQ
- MATL
- NorthWestern Energy Corporation
- Western Area Power Administration (WAPA)
- PPL Montana
- Montana Fish, Wildlife and Parks (FWP)
- Sheffels Farms, Inc.
- Joe Stanek Farms (area landowner)
- Tetra Tech

Concerned citizens have submitted written comments and suggestions and have called DEQ throughout the process.

DEQ, DOE, and MATL have sought consultation from other interested individuals, SHPO, USFWS, and non-government organizations, as well as affected Indian Tribes. Consultation with SHPO and USFWS is ongoing. **Table 5.0-1** provides a listing of the non-government stakeholders that were contacted by MATL or DEQ about the proposed MATL project.
Chapter 5 Consultation and Coordination

MATL also sought consultation with the Blackfeet Tribal Council in Browning. On September 12, 2005, MATL and representatives from their project team met with Blackfeet Tribal Council members in Browning to discuss potential effects on tribal economic, social, and traditional lands interests. Blackfeet Tribal Council members, staff, and interested parties in attendance included: Owna Scott-Big Bull, William Big Bull, John Murray, Teri Lawrence, Wendy Running Crane, Brian Crawford, Terry Tatsey, Douglas Quade, Curly Bear Wagner, Joseph Weatherwax, Kenneth Augare, Gerald Wagner, Pat Schildt, and Earl Old Person. Following introductions and a brief project overview provided by MATL personnel, Blackfeet Councilmen, staff, and tribal members raised several substantive issues that were addressed or recorded for follow-up. See Section 3.14 for discussion of cultural resources.

Public Hearings on the March 2007 Document

In March 2007, the DEQ and DOE published a draft document that was both the Federal EA and the State of Montana Draft EIS (March 2007 document). The document was distributed for public comment, and three public hearings were conducted to receive comments on the document during a 55-day public comment period. The public hearings were held at:

- Conrad on Tuesday, March 27, 2007
- Cut Bank on Wednesday, March 28, 2007
- Great Falls on Thursday, March 29, 2007

Based on comments received on the March 2007 document relating to land use and potential effects on farming, DOE has now determined an EIS to be the proper NEPA compliance document. Comments on the document were also submitted in writing to the agencies. Over 600 comments were received and are responded to in Volume II of this document. Accordingly, on June 7, 2007, DOE published in the Federal Register (72 FR 31569) a Notice of Intent to Prepare an EIS and to Conduct Scoping.
TABLE 5.0-1
MATL PROPOSED PROJECT
NON-GOVERNMENTAL ORGANIZATIONS CONTACTED

<table>
<thead>
<tr>
<th>Organization</th>
<th>Contact Person</th>
<th>Contact Information</th>
</tr>
</thead>
</table>
| Ducks Unlimited | Layne Krumwiede | 1023 West St.
| | Regional Director | Lewistown, MT 59457
| | | (406) 538-9094 |
| Northern Plains Resource Council | Teresa Erickson | 220 South 27th Street
| | Staff Director | Suite A
| | | Billings, MT 59101
| | | (406) 248-1154 |
| Montana Environmental Information Center | Patrick Judge | P.O. Box 1184
| | Energy Program Director | Helena, MT 59624
| | | (406) 443-2520 |
| Montana Stockgrowers Association | Steve Pilcher | 420 No. California Ave.
| | Director | Helena, MT 59601
| | | (406) 442-3420 |
| Montana Stockgrowers Association | Keith Schott | 750 6th St. S.W.
| | President | P.O. Box 1165
| | | Great Falls, MT 50403
| | | (406) 761-4596 |
| The Nature Conservancy | Susan Benedict | 32 South Ewing
| | Program Associate | Helena, MT 59601
| | | (406) 443-0303 |
| Montana Land Reliance | William Long | 324 Fuller Ave.
| | Managing Director | P.O. Box 355
| | | Helena, MT 59624-0355
| | | (406) 443-7027 |
| National Audubon Society, Montana Chapter | Janet Ellis | P.O. Box 595
| | Acting Exec. Director | Helena, MT 59624
| | | (406) 443-3949 |
| Alternative Energy Resources | -- | 432 N. Last Chance Gulch
| Organization | | Helena, MT 59601
| | | (406) 443-7272 |
| Natural Heritage Program | Sue Crispin | 1515 East 6th Avenue
| | Director | P.O. Box 201800
| | | Helena, MT 59620
| Sheffels Farms | Jim or John Sheffels | Box 1545
| | Owners/operators | Great Falls, MT 59403 |
| Stanek Property | Joe Stanek or Lyle Meeks | Lyle Meeks, P.E.
| | | NCI Engineering Inc.
| | | P.O. Box 6350
| | | Great Falls, MT 59401 |
| Diamond Valley Area Landowners | Katrina Martin | Ms. Katrina Martin
| | | Dutton, MT 59433
| | | (406) 463-2337 |
6.0 List of Preparers

Department of Environmental Quality

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom Ring</td>
<td>Project Coordinator</td>
<td>B.S., Fish and Wildlife Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S., Earth Science</td>
</tr>
<tr>
<td>Greg Hallsten</td>
<td>Project Coordinator</td>
<td>B.S., MS Range Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S., Wildlife Biology</td>
</tr>
<tr>
<td>Warren McCullough</td>
<td>EIS Reviewer</td>
<td>B.A., Anthropology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.S. Geology</td>
</tr>
<tr>
<td>Nancy Johnson</td>
<td>Visuals</td>
<td>B.S., Education</td>
</tr>
<tr>
<td></td>
<td>EIS Reviewer</td>
<td>M.S., Secondary Education</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.L.A, Landscape Architecture</td>
</tr>
<tr>
<td>Jeff Blend</td>
<td>Socioeconomics</td>
<td>B.S., Economics</td>
</tr>
<tr>
<td></td>
<td>Transmission System</td>
<td>M.S., Economics</td>
</tr>
<tr>
<td></td>
<td>Analysis</td>
<td>PhD., Agricultural Economics</td>
</tr>
<tr>
<td>Craig Jones</td>
<td>Land Use/EIS Reviewer</td>
<td>B.A., Political Science</td>
</tr>
</tbody>
</table>

Tetra Tech

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameo Flood</td>
<td>Assistant Project Manager</td>
<td>B.S., Forestry</td>
</tr>
<tr>
<td></td>
<td>Land Use, Farming and Ranching</td>
<td></td>
</tr>
<tr>
<td>J. Edward Surbrugg</td>
<td>EIS Project Manager</td>
<td>B.S., Range Ecology</td>
</tr>
<tr>
<td></td>
<td>Vegetation/Wetlands</td>
<td>M.S., Land Rehabilitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D., Soil Science</td>
</tr>
<tr>
<td>Jim Dushin</td>
<td>Visual Simulations</td>
<td>A.A.S., Forestry</td>
</tr>
<tr>
<td>Chris Reynolds</td>
<td>Geology and Soils</td>
<td>B.S., Wildlife Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S., Geology</td>
</tr>
<tr>
<td>Ed Madej</td>
<td>Database/GIS</td>
<td>B.S., Biology and Oceanography</td>
</tr>
<tr>
<td>Stacy Pease</td>
<td>Wildlife/Fisheries</td>
<td>M.S. Watershed Management</td>
</tr>
<tr>
<td>Gary Sturm, P.E.</td>
<td>Engineering</td>
<td>B.S., Engineering Physics</td>
</tr>
<tr>
<td>Alicia Stickney</td>
<td>Editorial Review,</td>
<td>M.S., Civil Engineering</td>
</tr>
<tr>
<td></td>
<td>Community Resources</td>
<td></td>
</tr>
<tr>
<td>Alice Stanley</td>
<td>MEPA/NEPA Specialist</td>
<td>B.S., Geology</td>
</tr>
<tr>
<td></td>
<td>Hydrology</td>
<td>M.S., Geology</td>
</tr>
<tr>
<td>Alane Dallas</td>
<td>Word Processing/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admin Record</td>
<td></td>
</tr>
<tr>
<td>Linda Daehn</td>
<td>Public Relations</td>
<td>B.S., Journalism</td>
</tr>
<tr>
<td>Dan Buffalo</td>
<td>Groundwater</td>
<td>M.S., Water Resources Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S., Biology</td>
</tr>
<tr>
<td>Chris Martin</td>
<td>Surface Water/Visuals</td>
<td>M.S. Coursework, Mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teacher Cert/B.A. Equiv., Mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S., Watershed Science - Hydrology</td>
</tr>
<tr>
<td>Earl Griffith</td>
<td>Utilities and</td>
<td>B.S., Earth Science</td>
</tr>
<tr>
<td></td>
<td>Transportation</td>
<td>M.S., Earth Science (Geology)</td>
</tr>
</tbody>
</table>
Tetra Tech (Cont.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Specialty</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Mark Blauer</td>
<td>Human Health and Environment</td>
<td>PhD., Nuclear Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.S., Earth and Space Sciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S., Chemistry</td>
</tr>
<tr>
<td>Heidi Raymer</td>
<td>Electromagnetic Effects</td>
<td>B.S., Nursing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.S., Environmental Occupational Safety and Health</td>
</tr>
<tr>
<td>Jay Rose</td>
<td>Presidential Permit</td>
<td>B.S., Ocean Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.D.</td>
</tr>
<tr>
<td>Amy Sivers</td>
<td>Hazardous Materials</td>
<td>M.S., Geosciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.A., Geography</td>
</tr>
<tr>
<td>C. Ray Windmueller</td>
<td>Air</td>
<td>B.S., Petroleum Engineering</td>
</tr>
<tr>
<td>Nancy Linscott</td>
<td>Socioeconomics and Environmental Justice</td>
<td>B.S., Earth Science (Geology)</td>
</tr>
<tr>
<td>Keith Cron</td>
<td>Noise</td>
<td>M.S., Environmental Policy and Management</td>
</tr>
<tr>
<td>Mike DaSilva</td>
<td>NEPA/MEPA Specialist</td>
<td>B.A., Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.S., Biology</td>
</tr>
</tbody>
</table>

HRA

<table>
<thead>
<tr>
<th>Name</th>
<th>Specialty</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weber Greiser</td>
<td>Cultural Resources</td>
<td>B.S., Anthropology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.A., Anthropology</td>
</tr>
</tbody>
</table>
Glossary

Affected Environment: Existing biological, physical, social, and economic conditions of an area subject to change, both directly and indirectly, as the result of a proposed human action.

Air Pollution: Dust, fumes, smoke, other particulate matter, vapor, gas, odorous substances or any combination of these.

Alignment: The facility location.

Alluvial: Composed of alluvium or deposited by a stream or running water.

Alluvium: A general term for all deposits resulting from the operations of modern rivers and creeks, including the sediments laid down in riverbeds, floodplains, and fans at the foot of mountain slopes.

Ambient Air Quality Standard: An established concentration, exposure time, and frequency of occurrence of air contaminant(s) in the ambient air that shall not be exceeded.

Ambient Level: The existing level of air pollutants, noise, or other environmental factors used to describe background conditions (i.e., conditions before a project is implemented).

Analysis area: The area, defined for each resource, which the impact analysis addresses. The analysis boundary is different for each resource. For instance, the impact to soils or vegetation of a transmission pole may be confined to the structure footprint. The impact to land use may be the entire field in which the structure is placed.

Aquifer: Rock or sediment which is saturated with water and sufficiently permeable to transmit economic quantities of water to wells.

Benthic: of, relating to, or occurring at the bottom of a body of water.

Best Management Practices: A practice or combination of practices that is determined to be the most effective and practicable (including technological, economic, and institutional considerations) means of controlling point and nonpoint pollutants at levels compatible with environmental quality goals.

Big Game: Those species of large mammals normally managed as a sport hunting resource.
Centerline: See reference centerline.

Class 3 farmland - In accordance with the provisions of 15-7-202, MCA, contiguous parcels of land under one ownership as defined in ARM 42.20.601, 160 acres or larger in size shall be valued as agricultural land, provided that no portion of the ownership meets the criteria for forest land classification and there are no covenants, easements, deed restrictions, or other operations of law that prohibit the land from being used as agricultural, or the land is not used for residential, commercial, or industrial purposes. (42-20-640, MCA)

Class 10 timberland - contiguous land of 15 acres or more in one ownership that is capable of producing timber that can be harvested in commercial quantities (can produce 25 cubic feet or more of stemwood per acre per year in live softwood trees at the culmination of the mean annual increment for fully stocked, natural sands and (2) meets the stocking requirements set forth by an administrative rule. (ARM 42.20.701)) and that is producing timber unless the trees have been removed by man through harvest or by natural disaster. (15-44-102, MCA)

Colluvium: Rock detritus and soil accumulated at the foot of a slope.

Conductor: Wires or lines that carry the electrical current in a transmission line.

Corona: Breakdown of the air, for example, on the surface of a high-voltage conductor, to produce air ions

CRP Lands: Farmlands for which a landowner receives an annual payment and cost-share assistance to establish long-term resource conserving covers. Administered by the U.S. Farm Service Agency.

Cultural Resources: Those fragile and nonrenewable remains of human activities, occupations, and endeavors as reflected in sites, buildings, structures, or objects, including works of art, architecture, and engineering.
Cumulative effect: Environmental effects that result from the incremental impact of a Proposed Action in addition to other actions (past, present, or future) in the vicinity. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time.

Current: The flow of electricity. A voltage will always try to drive a current. The size current that is driven depends on the resistance of the circuit.

dB(A): Stands for A weighted decibels. This decibel scale is used to approximate the way human hearing responds more to some frequencies than to others.

Dead end: A point on a distribution line where conductors terminate. A "double dead-end" has conductors terminating from two directions. Jumper wires are used to connect these two sets of conductors.

Dead end: (angle greater than 45°): A transmission line structure that would be used where the line turns at an angle greater than 45°. The structure used in this instance would be a 3 pole dead end.

Dead end: (angle less than 1°): A transmission line structure that would be used where the line turns less than 1°. The structure used in this instance would be a 4 pole dead end.

Direct impact: An effect that results solely from the construction or operation of the Proposed Action.

DGPS: Differential Global Positioning System is an enhancement to Global Positioning System that uses a network of fixed ground based reference stations to broadcast the difference between the positions indicated by the satellite systems and the known fixed positions. These stations broadcast the difference between the measured satellite pseudoranges and actual (internally computed) pseudoranges, and receiver stations may correct their pseudoranges by the same amount.

Easement: a general term for a limited right to make use of a property owned by another party.

Electric fields: Produced by voltages, irrespective of how much current is flowing and indeed whether any current is flowing at all. The electric field is the region around a conductor where a force will be experienced by a charge.

Electric Grid: All parts of an electrical system that are directly connected to each other through alternating current transmission lines. The term used in the industry is "Interconnection."
Electric Transmission Grid: The western grid moves power from many different generating plants to customers and their electric loads.

Electromagnetic interference: high frequency electrical noise that can cause radio and television interference.

Emergent Wetland: Any area of a vegetated wetland where non-woody vegetation (e.g. cattail, grasses, sedges) comprises at least 30 percent areal cover.

Eminent Domain: In common law legal systems is the inherent power of the state to seize a citizen’s private property, expropriate property, or rights in property, without the owner’s consent. The property is taken either for government use or by delegation to third parties who will devote it to “public use.” The most common uses of property taken by eminent domain are public utilities, highways, and railroads. Some states require that the government body offer to purchase the property before resorting to the use of eminent domain.

Emission: The release of air contaminants into the ambient air.

Emission Standard: A requirement established under the Federal Clean Air Act which limits the quantity, rate, or concentration of emissions of air contaminants on a continuous basis.

EMFs: Electric and magnetic fields. Sometimes also defined as electromagnetic fields.

Environmental effect: Any change that an action may cause in the environment, including biological resources, land use, health and socioeconomic conditions, cultural heritage, geology, and paleontology.

Environmental Justice: Evaluation of potential disproportionately high and adverse impacts on low income and/or minority populations that may result from a Proposed Action.

Ephemeral Drainage: A stream or stream segment that flows only briefly in response to local precipitation and has no base flow.

Erosion: Wearing away of soil and rock by weathering and the actions of surface water, wind, and underground water.
Farmland of Statewide Importance: Land that is of statewide importance for the production of food, feed, fiber, forage, and oil seed crops. Criteria for defining and delineating this land are to be determined by the appropriate State agency or agencies. Generally, additional farmlands of statewide importance include those that are nearly prime farmland and that economically produce high yields of crops when treated and managed according to acceptable farming methods.

Federal Energy Regulatory Commission (FERC): The Federal commission that regulates interstate and wholesale power transactions, including power sales and transmission services, as well as licensing of hydroelectric projects.

Floodplains: Floodplains are the lowlands and relatively flat areas adjoining inland and coastal waters and the flood prone areas of offshore islands. Regulatory floodplain means an area inundated by a 100-year flood as depicted on a Flood Insurance Rate Map (FIRM) published by the Federal Emergency Management Agency. The 100-year flood is the flood event estimated as having a 1.0 percent chance of occurring in any given year.

Fugitive Dust: A particulate emission made airborne by forces of wind, human activity, or both. Unpaved roads, construction sites, and tilled land are examples of areas that originate fugitive dust.

Heavy angle structure: A transmission line structure that would be used where the line turns between 30° and 45°.

Impact zone: The study area in which data are collected during the baseline study in order to make a determination of the impacts from construction, operation, maintenance, or decommissioning of a proposed facility or associated facility at preferred and reasonable alternative locations.

Indirect impact: An effect that is related to but removed from a Proposed Action by an intermediate step or process.

Insulators: a device made of porcelain or polymer that prevents energized conductors from coming in contact with each other. They also prevent conductors from energizing structures or facilities that are not designed to carry electricity. Bushings are a type of insulator.

Intermittent Stream: A stream that flows in a well-defined channel in response to precipitation and is dry for part of the year.

Jurisdictional wetlands: Wetlands protected by the Clean Water Act. They must have a minimum of one positive wetland indicator from each parameter (i.e.,
vegetation, soil, and hydrology). The U.S. Army Corps of Engineers requires a permit to fill or dredge jurisdictional wetlands.

Kilovolt (kV): 1,000 Volts. The Volt is unit for measuring electrical potential, or "pressure."

Kilovolt ampere (kVA): The practical unit of apparent power, which is 1,000 volt-amperes. The volt-amperes of an electric circuit are the mathematical products of the volts and amperes of the client.

Kilowatt (kW): The electric unit of power equal to 1,000 watts.

Kilowatt-Hour (kWh): The basic unit of electric energy equal to one kilowatt of power supplied to or taken from an electric circuit for one hour.

Lacustrine: Of, relating to, formed in, living in, or growing in lakes.

Lek: A traditional courtship display area attended by male sharp-tailed grouse or sage grouse.

Linear facility: An electric transmission line or pipeline covered under Montana’s Major Facility Siting Act.

Load: The amount of electric power delivered or required at any specified point or points on a system. Load originates primarily at the power consuming equipment of the customer.

Megawatt (MW): One million watts.

Megawatt-hour (MWh): One thousand kilowatt-hours or one million-watt hours.

Medium angle structure: A transmission line structure that would be used where the line turns between 5° and 30°.

Mesic: Characterized by, relating to, or requiring a moderate amount of moisture.

Milligauss: A unit of measurement for magnetic fields.

Mitigation: An action to avoid, minimize, reduce, eliminate, replace or rectify the impact of a management practice.

Montana Major Facility Siting Act (MFSA): This law governs the siting of most large energy transporting facilities in Montana.
Nacelle: The structure in a wind turbine that houses the rotor shaft, gearbox, and generator.

National Environmental Policy Act of 1969 (NEPA): This act requires Federal agencies to evaluate the environmental effects of Proposed Actions.

Nitrogen Dioxide (NO₂): A reddish brown gas that is a component of smog.

Nitrogen Oxides (NOₓ): A group of compounds containing varying proportions of nitrogen and oxygen.

No Action Alternative: The No Action alternative is required by MEPA and regulations implementing NEPA. The No Action alternative provides a baseline for estimating the effects of other alternatives. Where a project activity is being evaluated, the No Action alternative is defined as one where No Action or activity would take place.

Nonattainment: Description of areas of the state not yet in compliance with National Ambient Air Quality Standards.

North American Electric Reliability Council (NERC): NERC consists of eight regional reliability councils: Electric Reliability Council of Texas, Inc. (ERCOT), Florida Reliability Coordinating Council (FRCC), Midwest Reliability Organization (MRO), Northeast Power Coordinating Council (NPCC), Reliability First Corporation (RFC), Southeastern Electric Reliability Corporation (SERC), Southwest Power Pool, Inc. (SPP), and Western electricity Coordinating Council (WECC).

Noxious Weed: Exotic (non-native) species of plants that proliferate and reduce the value of land for agriculture, forestry, livestock, wildlife, or other beneficial uses.

Operational right-of-way: MATL defined the transmission line operational right-of-way as 45 feet wide (22.47 feet to either side of the centerline).

Palustrine: Inland wetland that lacks flowing water and contains less than 0.05 percent ocean-derived salts.

Passerine: Large order of birds which include songbirds of perching habits.

Per capita personal income: According to the U.S. Bureau of Economic Analysis, the average income received per person. This includes income received from all sources such as wages, proprietor’s income, rental income, and dividend income.
Personal income (Total): Income received from all sources.

Prime Farmland: Land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops, and is also available for these uses (the land could be cropland, pastureland, rangeland, forest land, or other land, but not urban built-up land or water). It has the soil quality, growing season, and moisture supply needed to economically produce sustained high yields of crops when treated and managed, including water management, according to acceptable farming methods.

Raptor: Bird of prey.

Reference centerline: The facility location. DEQ approves a 500-foot-wide facility location (250 feet to either side of a presumed centerline unless there is a compelling reason to enlarge or narrow this width.

Right-of-way: The right to pass over property owned by another. The strip of land over which facilities such as roadways, railroads, pipeline, or power lines are built.

Ruling Span- a calculated weighted average of span lengths between deadend power line towers. Ruling span is used to design transmission lines and then subsequently used in monitoring sag of the lines.

Salmonid: Any of a family (Salmonidae) of elongate bony fishes (as a salmon or trout) that have the last three vertebrae upturned.

Special Status Species: Those species of plants or animals that have a protective status designated by a state or Federal agency because of general or localized population decline.

Substation: an installation which accomplishes one or more of the following:

- voltage changed from one level to another level.
- voltage regulated to compensate for system voltage changes.
- electric transmission and distribution circuits switched into and out of the system.
- electric power flowing in the transmission and distribution circuits measured.
- communication signals are connected to the circuits.

System reliability: the ability of a power system to provide uninterrupted service.
Tertiary: The Tertiary period or system of rocks.

Topsoil: Fertile soil or soil material, usually rich in organic matter, used to top dress disturbed areas. Topsoil is better suited to supporting plants than other materials.

Total Maximum Daily Load (TMDL): The total amount of a pollutant, per day, (including a margin of safety) that a waterbody may receive from any source (point, nonpoint, or natural background) without exceeding the state water quality standards. The term frequently refers to a plan or strategy to return a waterbody to compliance with the water quality standards and therefore fully supporting of its designated uses.

Transmission capacity: the maximum load that a transmission line or network of transmission lines is designed to carry.

Transmission lines: High voltage electric conductors used for bulk movement of large volumes of power across relatively long distances.

Transmission restricted: the existing transmission capability is limiting the flow of electricity into and out of the area, in this case, Montana.

Utility: A regulated entity which exhibits the characteristics of a natural monopoly. For the purposes of electric industry restructuring “utility” refers to the regulated, vertically integrated electric company. “Transmission utility” refers to the regulated owner/operator of the transmission system only. “Distribution utility” refers to the regulated owner/operator of the distribution system which serves retail customers.

Viewshed: The landscape that can be directly seen under favorable atmospheric conditions, from a viewpoint or along a transportation corridor.

Volatile Organic Compound (VOC): Any of several compounds of carbon that participate in atmospheric photochemical reactions, forming secondary pollutants.

Volt: A unit of electrical pressure. It measures the force or push of electricity. Volts represent pressure, correspondent to the pressure of water in a pipe. A volt is the unit of electromotive force or electric pressure analogous to water pressure in pounds per square inch. It is the electromotive force which, if steadily applied to a circuit having a resistance of one ohm, will produce a current one ampere.
Volt-amperes: The volt-amperes of an electric circuit are the mathematical products of the volts and amperes of the client.

Voltage: Measure of the force of moving energy.

Watt: The electric unit of power or rate of doing work. One horsepower is equivalent to approximately 746 watts.

Watt-Hour: One watt of power expended for one hour.

WECC: Western Electricity Coordinating Council is a regional forum for promoting regional electric service reliability in Western Canada and the Western United States.

Western Grid: The Western Grid includes the western third of the continental United States (excluding Alaska), the Canadian provinces Alberta and British Columbia, and a portion of Baja California Norte, Mexico.

Wetlands: Areas that are inundated by surface or ground water with a frequency sufficient to support and under normal circumstances, does or would support a prevalence of vegetative or aquatic life that requires saturated or seasonally saturated soil conditions for growth and reproduction.

Wide Area Augmentation System (WAAS): Augments GPS with additional signals for increasing the reliability, integrity, accuracy and availability of GPS.

Xeric: Characterized by, relating to, or requiring only a small amount of moisture.
Acronym List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSR</td>
<td>Aluminum Core Steel Reinforced</td>
</tr>
<tr>
<td>AESO</td>
<td>Alberta Electric System Operator</td>
</tr>
<tr>
<td>aMW</td>
<td>average megawatts</td>
</tr>
<tr>
<td>APLIC</td>
<td>Avian Power Line Interaction Committee</td>
</tr>
<tr>
<td>ARM</td>
<td>Administrative Rules of Montana</td>
</tr>
<tr>
<td>BLM</td>
<td>U.S. Bureau of Land Management</td>
</tr>
<tr>
<td>BPA</td>
<td>Bonneville Power Administration</td>
</tr>
<tr>
<td>CAMA</td>
<td>Computer Assisted Mass Appraisal</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>cfs</td>
<td>Cubic feet per second</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>COE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CRP</td>
<td>Conservation Reserve Program</td>
</tr>
<tr>
<td>dBA</td>
<td>A-weighted decibels</td>
</tr>
<tr>
<td>DEQ</td>
<td>Montana Department of Environmental Quality</td>
</tr>
<tr>
<td>DNRC</td>
<td>Department of Natural Resources & Conservation</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DGPS</td>
<td>Differential Global Positioning System</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EEI</td>
<td>Edison Electric Institute</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental impact statement</td>
</tr>
<tr>
<td>E.O.</td>
<td>Executive Order</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>EMF</td>
<td>Electric and magnetic field</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FERC</td>
<td>Federal Energy Regulatory Commission</td>
</tr>
<tr>
<td>FIRM</td>
<td>Flood Insurance Rate Maps</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
</tr>
<tr>
<td>ft/day</td>
<td>feet per day</td>
</tr>
<tr>
<td>FWP</td>
<td>Montana Fish, Wildlife and Parks</td>
</tr>
<tr>
<td>FWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HUC</td>
<td>Hydrologic unit codes</td>
</tr>
<tr>
<td>HUD</td>
<td>Housing and Urban Development</td>
</tr>
<tr>
<td>Kcmil</td>
<td>1,000 circular mils</td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolt</td>
</tr>
<tr>
<td>kV/m</td>
<td>Kilovolts per meter</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt hour</td>
</tr>
<tr>
<td>L_{dn}</td>
<td>day-night average noise level</td>
</tr>
<tr>
<td>LIDAR</td>
<td>Light Detection and Ranging</td>
</tr>
<tr>
<td>mA</td>
<td>Milliampere</td>
</tr>
<tr>
<td>MATL</td>
<td>Montana-Alberta Tie, Ltd.</td>
</tr>
<tr>
<td>MBMG</td>
<td>Montana Bureau of Mines and Geology</td>
</tr>
<tr>
<td>MCA</td>
<td>Montana Code Annotated</td>
</tr>
<tr>
<td>MDT</td>
<td>Montana Department of Transportation</td>
</tr>
<tr>
<td>MEPA</td>
<td>Montana Environmental Policy Act</td>
</tr>
<tr>
<td>MFSA</td>
<td>Major Facility Siting Act</td>
</tr>
<tr>
<td>mG</td>
<td>Milligauss</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>MPDES</td>
<td>Montana Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>MRMC</td>
<td>Missouri River Medical Center</td>
</tr>
<tr>
<td>mVA</td>
<td>Megavolt-amperes</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>ND</td>
<td>No data</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NERC</td>
<td>North American Electric Reliability Council</td>
</tr>
<tr>
<td>NESC</td>
<td>National Electric and Safety Code</td>
</tr>
<tr>
<td>NHP</td>
<td>Montana Natural Heritage Program</td>
</tr>
<tr>
<td>NIEHS</td>
<td>National Institute of Environmental Health Sciences</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>Nitrogen oxide</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NRIS</td>
<td>Natural Resource Information System</td>
</tr>
<tr>
<td>NWE</td>
<td>NorthWestern Energy</td>
</tr>
<tr>
<td>NWR</td>
<td>National Wildlife Refuge</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
</tbody>
</table>
Glossary and Acronym List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OASIS</td>
<td>Open Access Same Time Information System</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Act</td>
</tr>
<tr>
<td>PAB</td>
<td>Palustrine Aquatic Bed wetlands</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>PEM</td>
<td>Palustrine emergent</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Particulate matter equal to or smaller than 10 microns</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Particulate matter equal to or smaller than 2.5 microns</td>
</tr>
<tr>
<td>PPL</td>
<td>Pacific Power and Light</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PSD</td>
<td>Prevention of Significant Deterioration</td>
</tr>
<tr>
<td>PUB</td>
<td>Palustrine Unconsolidated Bottom wetlands</td>
</tr>
<tr>
<td>PUS</td>
<td>Palustrine Unconsolidated Shore wetlands</td>
</tr>
<tr>
<td>ROW</td>
<td>Right-of-way</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Office</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Sulfur dioxide</td>
</tr>
<tr>
<td>SSSA</td>
<td>Soil Science Society of America</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>TBD</td>
<td>To be determined</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total maximum daily load</td>
</tr>
<tr>
<td>USC</td>
<td>United States Code</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USFS</td>
<td>U.S. Forest Service</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Augmentation System</td>
</tr>
<tr>
<td>WAPA</td>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td>WECC</td>
<td>Western Electricity Coordinating Council</td>
</tr>
<tr>
<td>WPA</td>
<td>Waterfowl Production Area</td>
</tr>
<tr>
<td>WRCC</td>
<td>Western Regional Climate Center</td>
</tr>
<tr>
<td>µg/m3</td>
<td>Micrograms per square meter</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
</tbody>
</table>
8.0 References

A

B

E

Fernandez, Jose. 2007. MATL Senior Vice President, Land Personal Communication with Jeff Blend, DEQ, Regarding Various MATL Payments to Farmers. August 7.

Populations in Woodland. II. Breeding Dispersal of Male Willow Warblers
(Phylloscopus trochilus) in Relation to the Proximity of a Highway,” Journal of

and Herpetofauna in the Southern Appalachians,” Forest Ecology and Management

Center Edgeley/Kulm Project North Dakota, DOE/EA-1465, April. Available at

San Diego, CA.

Smithsonian Institution, Washington D.C.

Furukawa Review. 2002. “Development of Conductors with Reduced Wind Drag and

G

Program, Helena, Montana. Online address: http://nr.is.state.mt.us/mtnhp

Transmission Lines Underground?” Accessed on November 9, 2006. Online
address: http://www.gatrans.com

Industry,” in Proceedings of the International Workshop on Wind Energy and
Landscape (WEL), C.F. Ratto and G. Solari (editors), Genoa, Italy, June 26–27,

H

Montana Forest and Conservation Experiment Station and The University of Montana, School of Forestry. Miscellaneous Publication No. 54. May.

Hollis, Aidan. 2007. Letter from Aidan Hollis, Associate Professor, University of Calgary, Department of Economics to Bob Williams, Vice President, MATL Regulatory. June 4.

Johnson, G.D., and M.D. Strickland. 2004. An Assessment of Potential Collision Mortality of Migrating Indiana Bats (Myotis sodalis) and Virginia Big-eared Bats (Corynorhinus townsendi virginianus) Traveling between Caves, supplement to Biological Assessment for the Federally Endangered Indiana Bat (Myotis sodalis) and Virginia Big-eared Bat (Corynorhinus townsendi virginianus), prepared by Western Ecosystems Technology, Inc., Cheyenne, Wyo., for NedPower Mount Storm LLC, Chantilly, Va., April 14.

References

Jones, Craig. 2007. Personal communication Craig Jones, Montana DEQ with Susan Conell, Cascade Planning Office. June 1.

K

• Appendix I Updated Tables for Sections 4.3.4, 4.7. April 18, 2006.

• MATL Response to Tetra Tech’s January 15th, 2007 Information/Clarification Requests. Received from AMEC by e-mail February 1, 2007.

Montana Department of Environmental Quality (DEQ). 2001. Montana Air Quality Permit – Permit # 3154-00. Issued to NorthWestern Montana First Megawatts, LLC. October 12.

DEQ. 2002. Montana Air Quality Permit – Permit # 3154-02. Issued to North Western Montana First Megawatts I, LLC.

DEQ. 2005. Montana Air Quality Permit – Permit # 3154-03. Issued to Montana Megawatts I, LLC.

O

Olson, G. 2005b. Personal communication G. Olson, Region 4 Game Biologist, Montana Fish, Wildlife, and Parks, Conrad, MT with Meghan Trainor-Fitch, AMEC Biologist. October 11.

Pfister, Laura. 2007. E-mail communication from Laura Pfister, AMEC, to Pat Mullen, AMEC, January 18.

Railton, John. 2006. “Email from John Railton, MATL Engineer, to Patrick Mullen, AMEC Project Manager, regarding transmission line firm shippers.” August 29.

Silverstein, B. 2007. Letter to DEQ from Western Electricity Coordinating Council (WECC) to Bonneville Power Authority (BPA), August 28.

Simonetti, Barbara. 2006. McCormick Ranch Wind Farm gets initial nod from commissioners, approval from residents. Published in unknown regional newspaper. April 27.

Smith, Sherwin. 2006. Personal communication Sherwin Smith, Executive Director of the Teton County Farm Service Agency, Chouteau, MT, with Earl F. Griffith, P.G., Tetra Tech, Senior Scientist. July 5.

Steinhower, S. 2004. personal communication from Steinhower (SeaWest, Inc., Oakland, Calif.) to R. Kolpa (Argonne National Laboratory, Argonne, Ill.), March 19.

Sterns, Rick. 2006. Personal communication Rick Sterns, Electrical Engineer Support Staff, Bonneville Power Administration with Keith Cron, Industrial Hygienist, Tetra Tech, Great Falls, Montana.

Chapter 8

Tonbridge Power, Inc. 2007. Project Update, Helena, Montana. Power Point Presentation provided to the Montana Department of Environmental Quality on January 11.

U

USDA Farm Service Administration, National Agriculture Imagery Program (NAIP). 2005. Orthophotographs, full color at 1 meter resolution. Available electronically from Montana NRIS.

Chapter 8 References

U.S. Department of Interior Bureau of Land Management (BLM) and Montana Department of Environmental Quality (DEQ). 1996. Express Crude Oil Pipeline Final Environmental Impact Statement.

VandenBos, Jared. 2006. GIS and Mapping Technician with Compton Signatures. Personal communication with Keith Cron, Industrial Hygienist, Tetra Tech, Great Falls, Montana.

Williams, Bob. 2006. Personal communication with Mr. Jeff Blend, Montana Department of Environmental Quality, Economist, and Mr. Bob Williams, Vice President, MATL Regulatory. June.

Williams, Bob. 2007c. Letter from Bob Williams, Vice President, MATL Regulatory, to Tom Ring, Senior Environmental Specialist, Facility Siting Program, Montana Department of Environmental Quality. July 17.

Williams, Bob. 2007d. Personal communication (telephone) between Tom Ring, DEQ, and Bob Williams, MATL. November 30.
Williams, Robert. 2007e. Montana Alberta Tie. E-mail dated December 6 to Tom Ring, Montana DEQ.

References

Z

9.0 Distribution List

The Draft EIS distribution list is available upon request and can be downloaded from DOE’s website: www.eh.doe.gov/nepa/documentspub.html