Overview of Radiation Concepts & & Regulatory Structure

Types of Ionizing Radiation

- Radioactive materials will emit both ionizing particles and waves during decay
- Particles
 - Alpha particles
 - Beta particles
 - Neutrons
- Energy waves or "rays"
 - Gamma rays
 - X-rays
- These types of ionizing radiation interact with matter by depositing energy when they are moving

<u>Contamination</u>: Contamination results when a radioactive material (a gas, liquid, or solid) is somewhere you don't want it

Exposure: Radiation exposure occurs when the body absorbs radiation from an external source

Dose = measurement of radiation energy deposited in tissue

- 1 "R" is a relatively large radiation exposure
- Exposure measured in smaller fractions of an "R"
 - milliR (mR) (1/1,000 of R)
 - microR (μR) (1/1,000,000,000 of R)
- Typical background exposure rates are <u>5 to 10 μR/hr</u>

Units (Cont.)

Radioactivity = Curie (Ci)

- 1 "Ci" of radioactivity is considered a large amount
- Radioactivity measured in smaller fractions of a Curie
 - pico Curie (pCi) (i.e. 1/1,000,000,000,000 of Curie)
- The amount of radioactive material present = amount of radioactivity found in a gram or liter of the substance.....(pCi/g), or (pCi/L)

Sources of Radiation Exposure

NCRP Report 160

Doses in Perspective

Source	Exposure
Average U.S. annual exposure – all sources	360 mR/year
Average U.S. annual exposure – including medical/diagnostic	720 mR/year
Chest X-ray	5-10 mR
CT Scan	1,000 – 2,000 mR
Annual dose limit for radiation workers	5,000 mR/year
Emergency limit (saving major property)	10,000 mR/event
Emergency limit (saving life)	25,000 mR/event
Biological health effects observable (blood changes)	50,000 mR

Lethal radiation dose (50% lethality)

450,000 mR

Exposure Pathways

- How, specifically, does TENORM present an exposure concern?
 - Inhalation, ingestion, direct exposure
- How, specifically, does TENORM present an exposure concern to the general public?
 - Inappropriate disposal (illegal dumping)
 - Recycling of contaminated components

A Regulators' Guide to the Management of Radioactive Residuals from Drinking Water Treatment Technologies

Exposure Pathways

ronmental Quality

Mitigating External Radiation

- **TIME** minimize time spent near a source to minimize radiation exposure
- DISTANCE radiation dose rates fall off rapidly with distance; increase the distance between you and a source to minimize radiation exposure
- SHIELDING put something between you and the source to minimize radiation exposure

Mitigating Inhalation, Ingestion, & Exposure

- Proper and safe disposal –
 Modernized landfill design,
 construction, and
 operations.....monitoring,
 reporting, waste screening, daily
 cover.
- Training Limit exposure pathways by recognizing hazards and avoiding them.
- Prevent dispersal Covered during transport, dust control, etc.

Existing Regulatory Requirements (ARM 17.50 Subchapters 5-13)

- Landfill Siting
 - Location criteria and restrictions
- Waste Group/Class
 - TENORM is Group II waste = Class II facility
- Landfill Design and Construction
 - Must be protective of uppermost aquifer
 - Design must be approved by P.E. and DEQ
 - Must submit CQA/CQC plans and reports
- Landfill Operation
 - Hours, dust control, daily cover, etc...
- Landfill Monitoring

- Ground water sampled at least twice per year
- Certified by professional groundwater scientist
 - Air monitoring new for TENORM facilities

Existing Regulatory Requirements (ARM 17.50 Subchapters 5-13)

- Storm water control
 - Must control run-on and run-off from 24-hour, 25-year event
 - MPDES permit required for discharge
 - Permit requires storm water analysis
- Leachate Collection and Removal System
 - Maintain less than one-foot leachate on liner
 - Leachate management requirements
- Financial Assurance and Closure/Post-closure Care
 - FA funded prior to waste acceptance
 - Post-closure monitoring and care requirements

The goal for the proposed TENORM rules is to protect human health and the environment by:

- Establishing TENORM-specific standards to minimize exposure to humans and the environment:
 - Waste Characterization
 - Waste Acceptance Criteria
 - ✓ Dual waste acceptance criteria
 - Dose exposure limits and concentration limits
 - Waste Screening
 - Additional ground water and air monitoring
 - Spill reporting

- "Radiation: Facts, Risks, and Realities", US EPA. EPA-402-K-10-008 April 2012
- "A System's Guide to the Management of Radioactive Residuals from Drinking Water Treatment Technologies" EPA 816-F-06-012 August 2006
- "Suggested Guidelines for the Disposal of Drinking Water Treatment Wastes Containing Naturally Occurring Radionuclides" EPA July 1990
- "Radionuclides Notice of Data Availability Technical Support Document" EPA March 2000
- "Potential Radiological Doses Associated with the Disposal of Petroleum Industry NORM via Landspreading" Argonne National Laboratory DOE/BC/W-31-109-ENG-38-5 December 1998

