DESIGN PHASE – SOIL RECLAMATION SPRING MEADOW LAKE RESIDENTIAL AREAS SPRING MEADOW LAKE HELENA, MONTANA

July 16, 2013

Project #: 776-020-002

SUBMITTED BY: Trihydro Corporation

1252 Commerce Drive, Laramie, WY 82070

ENGINEERING SOLUTIONS. ADVANCING BUSINESS. Home Office | 1252 Commerce Drive | Laramie, WY 82070 | phone 307/745.7474 | fax 307/745.7729 | www.trihydro.com

Table of Contents

1.0	INTR	ODUCTION	1-1
2.0	SAM	PLE COLLECTION AND MANAGEMENT	2-1
	2.1	Sample Locations	2-1
	2.2	Sample Collection	2-2
		2.2.1 Collection Using Geoprobe®	2-2
		2.2.2 Screening Using XRF	2-2
		2.2.3 Samples for Laboratory Analyses	2-2
		2.2.3.1 Total Metals Analysis	2-2
		2.2.3.2 Toxicity Characteristic Leaching Procedure Metals Analysis	2-3
		2.2.4 QA/QC Samples	2-4
	2.3	Sample Handling and Analytical Requirements	2-5
	2.4	Decontamination	2-5
	2.5	Investigative Derived Waste	2-5
	2.6	Compliance with the Approved SAP	2-6
3.0	LAB	ANALYSIS AND QUALITY ASSURANCE/QUALITY CONTROL	3-1
	3.1	Data Quality Objectives	3-1
	3.2	Laboratory Analysis	3-1
	3.3	Data Validation and Data Usability	3-2
4.0	ASSE	SSMENT RESULTS AND DISCUSSION	4-1
	4.1	Soil Results and Discussion	4-1
	4.2	Correlation of XRF and Laboratory Analyses	4-1
	4.3	Results of TCLP Analysis	4-2
5.0	RECI	LAMATION ANALYSIS	5-1
	5.1	Action Levels	5-1
		5.1.1 Arsenic	5-1
		5.1.2 Lead	5-1
	5.2	Risk Analysis	5-2
		5.2.1 Evaluation of ARARs	5-2
	5.3	Reclamation	5-3
		5.3.1 Excavation Alternatives	5-3

Table of Contents (cont.)

6.0	RECOMMENDATIONS	.6-1
7.0	SUMMARY	.7-1
8.0	REFERENCES	.8-1

List of Tables

- 1-1. Property Descriptions, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana
- 2-1. Analytical Methods and Sampling Criteria, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana
- 3-1. Reporting Limits and QA/QC Specifications, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana
- 4-1. Soil Sample XRF and Laboratory Results, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana
- 4-2. Soil Sample TCLP Results, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana
- 4-3. Adjusted Soil Sample Results, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana
- 5-1. Estimated Soil Volumes to be Excavated, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana

List of Figures

- 1-1. Properties Designated for Reclamation, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana
- 2-1. Soil Sampling Grid and Conceptual Sample Locations, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana
- 2-2. Actual Sample Locations, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana
- 2-3. TCLP Sample Locations, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana
- 4-1. Depth of Impact, Spring Meadow Lake Residential Areas, Design Phase, Helena, Montana

List of Appendices

- A. UTILITY LOCATE RECORDS
- B. SAMPLING LOG
- C. LABORATORY DATA PACKAGES
- D. DATA VALIDATION
- E. XRF LABORATORY CORRELATION
- F. TIMELINE

1.0 INTRODUCTION

The Spring Meadow Lake site is located on the northwestern edge of the city of Helena, Montana, in Lewis and Clark County. The Spring Meadow Lake site consists of Spring Meadow Lake State Park (Park) and Montana WILD/Montana Wildlife Center (MWC). In 1910, the Northwestern Metals Company operated an ore processing facility which deposited ore processing wastes in the MWC area. Northwestern Metals Company went bankrupt in 1915 and in 1916 the New York-Montana Metals Testing and Engineering Company took over the MWC property and operated another ore processing facility until 1920. Ore from Butte, Philipsburg, and local sources were processed at the facilities. From the early 1920s to the early 1960s, the Park and MWC property were used for various gravel mining operations which resulted in the creation of Spring Meadow Lake. In 1981, The State of Montana purchased the 42-acre gravel pit and an additional 4.1 acre parcel (Tetra Tech, 2010).

As a result of years of ore processing, the Park and MWC area were contaminated with high levels of heavy metals in soil and sediment that posed a threat to human health and the environment. In 2009, Montana Department of Environmental Quality (DEQ) Abandoned Mine Lands (AML) Program performed reclamation activities at the Park and MWC area to reduce risks to visitors (Tetra Tech, 2010). In early 2013, DEQ received information that soils impacted with heavy metals, including arsenic and lead, might extend beyond the Park and MWC area onto adjacent residential properties. The residential properties adjacent to the Park and MWC area are the focus of the investigation described in this report.

DEQ Site Response Section (SRS) tasked Trihydro with performing a surface soil and domestic groundwater sampling investigation in the Spring Meadow Lake residential area; the objective of the sampling investigation was to determine the presence of metals in surface soil and groundwater which may potentially be associated with the Spring Meadow Lake site. Work conducted for this investigation was prescribed in the February 12, 2013 Sampling and Analysis Plan (SAP) to conduct surface soil and domestic water well sampling for the study area (Trihydro, 2013a). The results of the investigation were documented in the April 16, 2013 Spring Meadow Lake Residential Area Investigation report (Trihydro, 2013b). The results of the investigation indicated that three residential properties were impacted by arsenic, lead, and manganese in the surface soil at concentrations in excess of established action levels; these three properties were therefore designated for reclamation of impacted soil at each.

Subsequent to submittal of the report to DEQ-SRS, the DEQ-AML requested that Trihydro conduct further investigation at the three impacted properties in order to refine an estimate for potential removal action. Work conducted for this secondary investigation was prescribed in the May 21, 2013 SAP which addressed the design phase for soil reclamation in the residential area (Trihydro, 2013c). The properties targeted in this study are located to the

east of Spring Meadow Lake, and consist of three adjacent residential parcels and an undeveloped easement area (included to better characterize the lateral extent of the high metals concentrations), comprising approximately 1 acre in total. There are homes and a number of outbuildings on each of the parcels, as shown on Figure 1-1 which presents an overhead view of the properties. Property legal descriptions are contained in Table 1-1.

2.0 SAMPLE COLLECTION AND MANAGEMENT

2.1 SAMPLE LOCATIONS

The conceptual sample locations presented on Figure 2-1 illustrate the division of the target properties into sample grids of approximately 25 feet by 25 feet. As shown on Figure 2-1, some grids included structures or locations that were otherwise inaccessible for sampling, and were therefore not sampled; however, this grid design was selected to retain adequate sample density to represent irregularly-shaped or isolated sections of the properties. Actual sample locations were repositioned within each grid as necessary, as shown on Figure 2-2, and were defined in the field using a combination of visual evaluation of features shown on aerial photographs and a wide area augmentation system-enabled global position system (GPS) device. Soil samples were obtained using a hand Geoprobe® sampler and were screened for arsenic and lead at 12-inch depth intervals using a portable X-ray Fluorescence (XRF) analyzer. In addition to screening with the XRF analyzer, a number of samples were submitted for laboratory analysis, as discussed in Section 2.2.4.

Prior to conducting soil sampling activities, DEQ arranged with property owners for the sampling team to access the various sampling locations and utility locates were performed prior to commencement of sampling operations. Based on the locations of the proposed sample locations presented in the SAP, six public utilities were contacted, including:

- Northwestern Energy Electrical
- Northwestern Energy Natural Gas
- Qwest Communications
- Phillips 66 Pipeline LLC
- Bresnan Communications
- The City of Helena

The utility locates were conducted by ELM and public utilities prior to commencement of sampling on May 28, 2013; records of the utility locating activities are contained in Appendix A.

Notes regarding general activities associated with conducting sampling the residential area were recorded in a site sampling logbook, presented in Appendix B.

2.2 SAMPLE COLLECTION

2.2.1 COLLECTION USING GEOPROBE®

Soil samples were collected using a hand Geoprobe[®]. At each sample location the Geoprobe[®] was used to obtain samples in 2-foot increments. The Geoprobe[®] was manually advanced into the soil to a depth of 2 feet or until refusal was encountered, as described below. The Geoprobe[®] was extracted from the ground after the target depth was achieved and the soil core was removed and the soils were screened for arsenic and lead at each 12-inch interval using the XRF analyzer.

2.2.2 SCREENING USING XRF

A portable XRF analyzer was used to screen soil samples for arsenic and lead in the field. Prior to each day's calibration of the unit was verified using the procedures detailed in the instrument operating procedures. A copy of the calibration forms was retained with the field notes in Appendix B. Samples for XRF analysis were taken from the sample core at each 12-inch interval. For the most consistent results, the analyzer window was placed in direct contact with the soil during measurement. Analysis results for arsenic and lead were recorded for each sample interval in the field sample log which is also contained in Appendix B.

If the XRF analysis of the 12-24 inch sample indicated arsenic or lead concentrations greater than their respective action levels (arsenic, 49.6 milligrams per kilogram [mg/kg]; lead, 400 mg/kg), another soil sample was obtained from the same or an immediately adjacent borehole, sampling the 2- to 4-foot interval. This process was continued in successive 2-foot intervals until Geoprobe® advancement refusal was encountered or arsenic and lead concentrations were measured below their respective screening levels.

Although the XRF analyzer was used as a screening tool, it is important to note that the readings obtained from this instrument are not as reliable in determining actual metals concentrations as is analysis by a certified environmental laboratory; thus the measurements obtained using the XRF analyzer were considered estimates and a statistical correlation analysis was performed as described in Section 4.2.

2.2.3 SAMPLES FOR LABORATORY ANALYSES

2.2.3.1 TOTAL METALS ANALYSIS

The locations of concentrations of arsenic, lead, and manganese in excess of their respective action levels were shown in the Trihydro report (Trihydro, 2013b) to be highly correlated; i.e. where high levels of manganese occurred, there were corresponding high concentrations of arsenic and/or lead. Thus removal of soils containing high levels of arsenic

or lead is also expected to address areas with high concentrations of manganese. Soil samples for laboratory analysis of total arsenic and total lead were collected at a minimum frequency of one per eight XRF-screened samples, where an XRF-screened sample is defined as a 12-inch (one-foot) interval of the soil core. Wherever possible, samples submitted for laboratory analysis were from alternating extremes of concentration, as measured by the XRF analyzer; i.e. if the previous laboratory sample was taken from a 12-inch interval that the XRF analyzer indicated had a high concentration of arsenic or lead, then the next laboratory sample was taken from an interval with lower readings. This provided for laboratory confirmation of the XRF analyzer results over a broader range of operation. Results of the laboratory analyses and the corresponding XRF analyzer readings were statistically evaluated as discussed in Section 4.2 to determine a best-fit correlation equation, so that XRF readings can be used to more accurately characterize metals concentrations without requiring laboratory analyses of each sample; the information obtained from the correlation analyses will also be applicable, should real-time screening of soil using the XRF analyzer be required during excavation activities.

Soil from each sample location designated for laboratory analysis was transferred directly from the acetate sample sleeve to the appropriate sample container using a decontaminated stainless-steel spoon or spatula. The sample containers were labeled with the project identifier (ID) (SMLRY) followed by a unique sample location (1 through 60; see Figure 2-1) and sample depth in inches (e.g. 12-24). Each sample ID was also preceded by the alpha character identifying the property from which it was taken. For example, the 0-12 inch sample from location 58 (located in lot D) was labeled D-SMLRY-58-0-12. The date and time were also recorded on the labels.

2.2.3.2 TOXICITY CHARACTERISTIC LEACHING PROCEDURE METALS ANALYSIS

Analysis for arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver using the Toxicity Characteristic Leaching Procedure (TCLP) is necessary to characterize the soil that will be delivered for disposal at a Class II landfill. The TCLP analysis is designed to determine the mobility of inorganic (and organic) analytes present in waste, and is intended to simulate landfill conditions. A composite sample frequency of 1 sample per 400 cubic yards of soil is required and samples were selected so as to best characterize the overall metals concentrations in the soil; i.e. samples indicated by XRF analysis to have low concentrations were not designated for laboratory analysis by the TCLP method.

Three samples from each of the four parcels were collected and submitted for TCLP analyses. Actual location of the borings sampled for TCLP analysis was determined in the field; those sample locations are shown ion Figure 2-3, and were recorded on the field sampling log Appendix B. The sample used for TCLP analysis was taken from the entire soil core, which was thoroughly mixed and screened with the XRF prior to transferring to sample containers. This

compositing approach is intended to avoid over- or under-representing the level of contamination in the soil destined for landfill disposal.

Soil from each designated sample location was transferred directly from the sample core to the appropriate sample container using a decontaminated stainless-steel spoon or spatula. The sample containers were labeled with the project identifier (ID) (SMLRY-TCLP) followed by a unique sample location (1 through 12) and sample depth in inches (e.g. 0-24). Each sample id was also preceded by the alpha character identifying the property from which it was taken. For example, a 0-48 inch sample from location 8 and located in lot C was labeled C-SMLRY- TCLP-8-0-48. The date and time were also recorded on the labels. These soil samples were submitted to the laboratory for TCLP analysis of arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver concentrations.

2.2.4 QA/QC SAMPLES

In addition to the 30 investigative soil samples provided for laboratory analysis, 7 quality assurance/quality control (QA/QC) samples were collected, including 4 blind field duplicates and 3 equipment rinsate blanks. The number of QA/QC samples was chosen to represent a QA/QC sample frequency of at least 1 per 10 investigative samples collected.

Blind duplicate samples were generated by splitting the samples from a set of sample aliquots into pairs of samples. The duplicate samples were collected by first transferring the soil from a sample into a zip-lock plastic bag. The soil in the bag was then mixed thoroughly using a stainless-steel spoon and then was transferred from the bag to the appropriate sample containers. One sample container was labeled with the project ID (SMLRY) followed by the unique sample location, and sample depth interval, and preceded by the alpha character identifying the property from which is taken. The date and time were also recorded on the label. The second (duplicate sample) container was labeled with the project ID (SMLRY) followed by the <u>sample location plus 100</u>, the sample depth interval, and the sample date but not the sample time. This sample identification was also preceded by the alpha character identifying the purposes, the duplicate sample for this sample would be labeled D-SMLC-158-0-12) was split for field duplicate purposes, the specific time and sample location/interval where each duplicate was collected as a cross-reference. The blind duplicate sample evaluates the precision of sampling data and the laboratory was not made aware of what samples were duplicated.

The soil samples were analyzed for metals as directed in the DEQ scope of work and as presented in Table 2-1. Field sampling equipment was decontaminated between sampling locations using the procedures outlined in Section 3.5 of the Design Phase SAP.

Equipment rinsate blanks were collected by pouring deionized water through or over decontaminated sampling equipment and into appropriate sample containers. The purpose of the equipment rinsate blank sample is to test for cross-contamination related to decontamination procedures. The equipment rinsate blanks collected alternated between each of the pieces of sampling equipment requiring decontamination between samples (stainless–steel spoons, hook knives, etc.). The equipment rinsate blanks were labeled with the project ID (SMLRY) followed by the equipment rinsate blank ID (e.g. EB-1, EB-2, etc), and the sample date and time. The rinsate samples were analyzed for metals as presented in Table 2-1.

2.3 SAMPLE HANDLING AND ANALYTICAL REQUIREMENTS

Labeled sample containers were carefully packaged to reduce the chance for breakage and the coolers containing the samples were secured using chain-of-custody procedures until ready for shipment to the laboratory, which occurred at the end of the sampling activities. Samples were maintained under chain-of-custody procedures. The samples were analyzed for metals following the appropriate United States Environmental Protection Agency (EPA) Method, as listed in Table 2-1. The analyses were performed by Pace Laboratories Inc. in Minneapolis, MN. As required by DEQ, the samples were analyzed under an expedited analytical schedule with a five-day turnaround time.

2.4 DECONTAMINATION

Sampling equipment that is not expendable was thoroughly decontaminated prior to use. The sampling devices were decontaminated in the field prior to sampling. Non-disposable field equipment was decontaminated as follows: Equipment was first be wiped with paper towels to remove as much material as possible. It was then washed in tap water with Alconox (or similar detergent) and then tap water. The equipment was then rinsed with deionized water and then towel-dried and placed in a plastic bag until used.

2.5 INVESTIGATIVE DERIVED WASTE

Soil generated from the sampling activities that was not containerized and submitted for laboratory analysis was containerized, tagged with the sample identification number, and was retained at the Trihydro field office in Helena, for disposal with the excavated soil from the subsequent removal action. Disposable field equipment was wiped with paper towels to remove as much material as possible, and decontaminated as necessary, and was disposed as general refuse.

2.6 COMPLIANCE WITH THE APPROVED SAP

Work was conducted in accordance with the May 2013 SAP (Trihydro, 2013c). The SAP-specified procedure for determining the TCLP sample locations was discussed with the DEQ Project Manager and subsequently modified to allow the acquisition of TCLP samples from the established sample locations, rather than determining new sample locations for each. There were no other deviations from the approved SAP.

3.0 LAB ANALYSIS AND QUALITY ASSURANCE/QUALITY CONTROL

3.1 DATA QUALITY OBJECTIVES

Data quality objectives (DQOs) are qualitative and quantitative statements that clarify the purpose of the study, define the most appropriate data to collect and the conditions from which to collect the data, and specify tolerable limits on decision errors. These limits are then used as the basis for establishing the quantity and quality of data needed to derive a defensible decision.

This soil investigation required that a sufficient number of samples be collected from soil locations such that the vertical extent of concentrations of metals, in particular arsenic and lead, can be reliably characterized. To ensure adequate characterization and identification of potential risk, it is necessary that the data meet specific criteria for precision, accuracy, and representativeness.

The DQOs for the data collected during the investigation activities are listed in Table 3-1, and required the analysis of samples using EPA approved methods and the laboratory analysis of blank, laboratory control, duplicate, and matrix spike quality control samples. The information listed in Table 3-1 includes the constituent, analytical method, reporting limit specified by DEQ, maximum relative percent difference (RPD), and acceptable recovery range.

The DQO's for the project were met and the data validation (Section 3.3) discusses the laboratory data and compliance with DQOs.

3.2 LABORATORY ANALYSIS

Samples collected during this investigation were maintained under chain-of-custody (COC) procedures. The COC records from field to laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. Samples were determined to have been received in good condition, intact, and within acceptable temperatures. Copies of the COCs receipts are provided with the laboratory data package in Appendix C.

Pace Laboratories Inc. in Minneapolis, Minnesota performed the analysis of the soils collected during this investigation. The samples were analyzed for total lead and total arsenic following EPA Method 6010, and a subset of samples were analyzed for arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver following EPA Method 1311/6010C as required by the SAP, with a requested a 5-day turnaround time.

3.3 DATA VALIDATION AND DATA USABILITY

were evaluated in general accordance with validation criteria set forth in the EPA Contract Laboratory Program (CLP) National Functional Guidelines for Inorganic Superfund Data Review, document number EPA 540R-10-011, January 2010 (EPA 2010), with additional reference to the EPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA 540-R-04-004, October 2004 (EPA 2004). Review of duplicates was conducted in accordance with EPA Region 1 Laboratory Data Validation Functional Guidelines for Evaluation of Organic Analysis, December 1996 (EPA 1996) or as specified by the method (as applicable).

The data validation process assessed data for precision, accuracy, method compliance, and completeness. The assessment of these components resulted in the following conclusions:

- The calculated RPD values for Matrix Spike / Matrix Spike Duplicates were reported to be within data validation or laboratory QC limits.
- Field duplicate samples were collected in accordance with SAP requirements. Data QC limits for field duplicate RPDs, as specified in the project-specific SAP, were set at 0-35 percent (%) for soil samples.
- Analytes were not detected in the equipment blank samples for this sample collection effort.
- Reported MS/MSD recoveries were within the data validation QC limits.
- The criteria for data quality objectives were met for method compliance and instrument performance.
- The SAP required that the percentage of useable sample data points be equal to 100% of the total number of data points expected from the planned sample analyses. The completeness of the data validated was measured to be 100%.

All soil sample data were determined to have acceptable quality for use in this site evaluation. No data were rejected or otherwise qualified, and sample analyses were performed as requested. Detailed data validation reports are presented in Appendix D.

4.0 ASSESSMENT RESULTS AND DISCUSSION

4.1 SOIL RESULTS AND DISCUSSION

A total of 145 soil samples from 47 sample locations were analyzed for arsenic and lead with the XRF analyzer; of these, 30 samples were also submitted to the laboratory for analysis. Table 4-1 presents the results of the XRF and the laboratory analyses for total arsenic and total lead and Table 4-2 presents the results of the laboratory TCLP analyses for metals; the EPA Soil Screening Level, and Regional Screening Level (EPA 2012) for each of the listed metals are also shown, as are the EPA Regulatory Limits for the TCLP analyses.

4.2 CORRELATION OF XRF AND LABORATORY ANALYSES

Since the XRF analyzer was used for analysis of most of the soil samples collected at this site, and in the future may be used for real-time verification of metals concentrations in the field during potential reclamation activities, it is desirable to estimate how closely the XRF results represent laboratory analytical results. To this end, a statistical correlation was performed, evaluating the 30 pairs of XRF and laboratory data using Statistical Analysis System statistical software. The results of this regression analysis are shown in Appendix E which includes the tabular output from the regression analyses as well as plots displaying the results.

The plots shown in Figures APP-E-1 and APP-E-2 display a best-fit linear regression line and the associated equation of that line for arsenic and lead, respectively; they also show the R-squared (Rsq) value which can be used to give an idea of the fit of the equation to the data as it tells how much of the variability in the data is explained or accounted for by the model (equation). For instance, in Figure APP-E-1, the Rsq=0.8110 indicates that approximately 81 percent of the variability in the arsenic data is accounted for by the derived regression equation. As shown in the plots, the regression equations for arsenic and lead are, respectively:

 $As = 218.65 + 0.6549 * As_{XRF}$ and $Pb = 42.206 + 1 * Pb_{XRF}$

In other words, given an XRF analyzer reading for arsenic or lead, one should be able to apply the appropriate multiplier and then add the indicated constants in these equations to produce a concentration value that is close to the value that would be determined in a laboratory analysis of arsenic or lead concentrations.

The plots in Plots APP-E-1 and APP-E-2 show that many of the data used in the regression analyses have concentrations (both XEF and laboratory results) that are much higher than the action levels in place for this site (arsenic, 49.6 mg/kg; lead, 400 mg/kg). It is also evident from the plots that although the Rsq values suggest a reasonable fit in both cases, there are many points located a distance from the regression line for each model. In order to improve the model, particularly in the range of concentrations nearer the action levels for arsenic and lead, the analysis was repeated with extreme values removed; the removed values included the highest concentrations and data pairs that exhibit the poorest fit to the model. The repeat of the regression analysis therefore used the remaining data pairs (8 for arsenic and 16 for lead); the results are included in Appendix E and plots are shown in Plots APP-E-3 and APP-E-4 for arsenic and lead respectively.

As shown in the plots for the regression analysis on the reduced data, the Rsq values still indicate that the model provides a reasonable fit and most of the data pairs conform reasonably well to the best fit equation, i.e. all appear to be reasonably represented by the modeled equation. The regression equations resulting from the analysis performed on the reduced data sets as shown on the plots for arsenic and lead are respectively:

 $As = -11.112 + 1.0237 * As_{XRF}$ and $Pb = 74.458 + 0.4523 * Pb_{XRF}$

These values were applied to the results obtained from the XRF analyses of soil samples obtained during this sampling event as shown in Table 4-3, where samples that contain calculated concentrations of arsenic or lead that exceed the respective action levels are shown in bold. Figure 4-1 illustrates the depths in soil at which the calculated arsenic or lead concentrations exist at levels exceeding their respective action levels (arsenic, 49.6 mg/kg; lead, 400 mg/kg). Figure 4-1 also shows that impact depths range from 0 feet (not impacted) to 5 feet. It is important to note that for several sample locations, these depths are the maximum depth at which sampling and analysis were performed due to Geoprobe® advancement refusal; the sample locations that were affected in this manner include C-26, C-32, C-34, E-7, E-8, E-9, E-10, E-11, E-13, E-15, E-18, and Z-2.

4.3 RESULTS OF TCLP ANALYSIS

A total of 12 samples were submitted for arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver TCLP analysis; as stated in Section 2.2.4.2, this analysis method is designed to simulate landfill conditions. Table 4-2 contains the results of the laboratory analyses and also lists the EPA regulatory limit for each metal analyzed using this

method. As shown in Table 4-2, none of the samples exceeded the regulatory limit and therefore any soil excavated from this site should be acceptable for disposal at a Class II landfill.

5.0 RECLAMATION ANALYSIS

5.1 ACTION LEVELS

5.1.1 ARSENIC

Risk-based screening levels for arsenic in residential soil may range from 0.39 to less than 10 mg/kg. However, arsenic is a naturally-occurring element in the western United States with published regional concentrations ranging from 4 to 16.5 mg/kg (Schacklette and Boerngen, 1984). In 2005, DEQ established a Montana-specific background value for arsenic in surface soil by calculating the 95% upper confidence limit (UCL) of the mean arsenic concentration measured in 209 surface soil samples. The result was a statewide generic action level for arsenic in surface soil of 40 mg/kg (MDEQ, 2005; DEQ recently completed a statewide metals background study that may result in a decrease in this level.). In 2011, DEQ contracted with Trihydro to determine naturally-occurring levels of arsenic in the Helena area, specifically in the area of the Joslyn Street Tailings Facility located northeast of the study area. Trihydro acquired samples from multiple depths at 30 DEQ-selected locations and calculated a 95% UCL of the mean arsenic concentration in surface soil, of 49.6 mg/kg (Trihydro, 2011). The background arsenic levels determined in the Joslyn Street Tailings Facility study are comparable to those found in the previous Spring Meadow Lake investigations (Tetra Tech, 2006), and as the Spring Meadow Lake site is in the same drainage basin as the Joslyn Street Tailings Facility, the site-specific background action level of 49.6 mg/kg for arsenic is also appropriate for Spring Meadow Lake residential surface soils.

5.1.2 LEAD

Like arsenic, lead is naturally-occurring in the western United States. Although lead is classified as a "probable" carcinogen, other health effects caused by lead exposure occur at much lower doses than those causing cancer and include hypertensive and reproductive problems, and developmental difficulties in children; therefore and because there are no carcinogenic slope factors or reference doses for lead, the residential cleanup levels for lead were established using the integrated exposure uptake biokinetic (IEUBK) model for lead in children (EPA, 2007). The IEUBK model is used to calculate a lead concentration that will not result in more than a 5% likelihood that a child's level of lead in the blood will exceed 10 micrograms/deciliter (μ g/dl) with exposure to residential soil. The residential soil lead action level (i.e. the maximum safe exposure level for the noncancerous effects of lead) is 400 mg/kg. While this level is included as an EPA RSL, including site-specific parameters in the model would not result in a different action level. In addition, the U.S. Center for Disease Control has documented that health effects may occur at blood lead concentrations of 5 μ g/dl or less; therefore, while the EPA has not finalized its changes to the model or the screening levels, cleanup levels in excess of 400 mg/kg for residential soil would not be protective of human health.

5.2 RISK ANALYSIS

Previous soil investigations (e.g. Tetra Tech, 2006), have shown that the contaminants of concern for the Spring Meadow Lake site are arsenic, lead, and manganese and that the elevated concentrations of these metals are predominately co-located. Based on this observed association, addressing actionable concentrations of arsenic and lead on the residential properties sampled during this investigation are expected to address the actionable levels of manganese.

5.2.1 EVALUATION OF ARARS

Applicable or relevant and appropriate requirements (ARARs) are Federal or State environmental laws which guide or limit activities associated with a reclamation project. Applicable requirements are those environmental laws that specifically address hazardous substances, contaminants, activities, locations, or other situations that may be encountered at a specific site; relevant or appropriate requirements on the other hand, address circumstances that are sufficiently similar to situations that may be encountered at the site, that their use is appropriate at that site. The Spring Meadow Lake Residential Area Investigation report (Trihydro, 2013b) contained a discussion of the ARARs previously used to guide recommendations for reclamation in this area. Although the focus of that previous effort was on reclaiming land designated for future use as a park, no additional ARARs are required to address the residential area. The following is a description of the types of ARARs:

- <u>Contaminant-specific ARARs</u> establish an allowable level or concentration of a hazardous or deleterious substance in the environment or prescribe a level or method of treatment for a hazardous or deleterious substance; the Spring Meadow Lake ARARs related to arsenic, manganese, and lead in the residential area are the same as those used in the prior reclamation at the site.
- <u>Location-specific ARARs</u> serve as restrictions on the concentration of a hazardous or deleterious substance or the conduct of activities solely because the site is in a specific location or the action affects specified types of areas; the Spring Meadow Lake residential area is adjacent to Spring Meadow Lake site with no additional extenuating factors.
- <u>Action-specific ARARs</u> are triggered by the performance of a certain activity as part of a particular remedy. They
 do not, in themselves, determine the remedy but rather indicate the manner in which the remedy must be executed.
 The remedy will not involve any additional actions that require compliance with additional ARARs.

Thus the results of the analysis of ARARs that was previously completed by DEQ will be used for the current work at the Spring Meadow Lake residential area.

5.3 RECLAMATION

General potential response actions to satisfy reclamation objectives for the Spring Meadow Lake Site have been evaluated and the following recommendations are based on DEQ's direction that reclamation efforts will employ excavation and disposal at a solid waste landfill. These recommendations also recognize that these residential properties contain several large, mature trees which would not be removed, limiting excavation activities in these areas.

Under this directive, contaminated soils discovered during this investigation would be excavated and disposed of off-site at the city of Helena Landfill or the Valley View Landfill near East Helena. The reclamation approach includes the following: (1) excavating and hauling waste materials to the selected landfill; (2) backfilling and placing cover soil over the excavated areas; (3) restoring / repairing private drives, fences, etc.; and (4) revegetating the disturbed areas at each site.

The disturbed areas would be prepared for revegetation; the excavated areas will be backfilled and graded to restore landscaping and drainage, match the contour of the land surface, and cover soil will be applied to the disturbed areas.

Efforts would be made to spare or replace other vegetation (trees/shrubs) to the maximum extent practicable. Revegetation would likely take place during the late summer of the year. Lawns would be sodded and back lots will be seeded; where seeding is performed, the seed mixture and fertilizer would be simultaneously drilled into the prepared seed beds, and mulch will be applied to promote temporary protection of the disturbed erodible surfaces.

Some ancillary infrastructure (e.g. above-ground decks, planters, sidewalks, driveway surfacing, etc.) may be removed to facilitate the excavation; in the event that this is necessary, they will be replaced in kind, at equal or greater value.

Heavy equipment may be required to implement this alternative efficiently; however; the relatively constricted area in some of the residential lots may require the use of smaller, more agile equipment. Multiple large capacity haul trucks, bulldozers, front-end loaders, excavators, and compactors may nevertheless be needed to excavate, haul the material, and restore the residential yards.

5.3.1 EXCAVATION ALTERNATIVES

As noted in Section 4.2, contamination depth ranges from 0 to 5 feet in different sections of the residential yards; thus one excavation alternative is to excavate and backfill each sampled grid to its maximum depth of contamination, using an XRF analyzer to confirm removal of soils with concentrations of arsenic and lead in excess of the respective action levels. For example, the section represented by sample E-24 would be excavated to a depth of at least 5 feet, while

adjacent sample section E-19 would be excavated to a depth of at least 2 feet. A second option as explained in the EPA Superfund Lead-Contaminated Residential Sites Handbook (EPA, 2003) is to excavate and backfill each of the sample sections to a depth of 2 feet, which still allows for unrestricted residential use, including gardening. A third option is a combination of the first two, which is to excavate and backfill only impacted soils to a maximum depth of 2 feet.

The first alternative would result in removal and backfilling a minimum of approximately 1442 cubic yards of material while the second would result in removal and backfilling of approximately 1597 cubic yards; the third option would result in an estimated removal and backfill fill of approximately 1123 cubic yards of soil. A breakdown of the estimated minimum volumes of soil to be excavated under each option is shown in Table 5.1

6.0 RECOMMENDATIONS

The first of the three excavation approaches considered in Section 5.3.1 offers a difference from the second option of approximately 10% in estimated minimum volume of soil excavated and backfilled, and therefore may be slightly advantageous from a cost perspective. The third approach, which involves excavating only impacted soils to a maximum depth of two feet, is projected to require removal of the least amount of soil. However, from a practical perspective, the second approach, i.e. removal and backfill of to a depth of two feet across the site, appears to be more logistically practical than excavation to various depths and employs an accepted federal agency approach for residential areas. The accepted agency approach (EPA, 2003) entails:

- Remove of ancillary residential structures (e.g. wooden decks, planters, sidewalks, etc.)
- Excavate to uniform depth of 2 feet area-wide
 - Excavation to extend as closely as possible to existing trees and large bushes, leaving them intact
- Backfill with clean fill and top soil, restoring/improving grade
 - Prep and revegetate backfilled area
- Replace ancillary residential structures previously removed and resurface drive/approach areas

It is important to note that under either the second or third option, (excavating soil to a depth of 2 feet) soils containing concentrations of metals in excess of the action levels will remain in some areas of the residential properties at depths greater than 2 feet, as shown on Figure 4-1.

The timeline for the reclamation effort proposed above includes engineering design, conformation to DEQ bid advertising requirements, and execution of the work, and is illustrated in the Gantt chart contained in Appendix F. The schedule shown in Appendix F encompasses approximately 15 weeks, with an estimated completion in mid-November, 2013, and is dependent upon DEQ expediting agreements with property owners detailing the manner in which replacement or reconstruction of infrastructure will take place.

7.0 SUMMARY

As noted above, DEQ tasked Trihydro with performing a follow up soil sampling investigation at the Spring Meadow Lake residential area in Helena, Montana. The objective of this sampling investigation was to determine the depth of impact of arsenic and lead concentrations in soil that may potentially be associated with the Spring Meadow Lake site.

The results of the investigation indicate that arsenic and lead are present in the soil at concentrations exceeding their respective action levels of 49.6 and 400 mg/kg, at varying depths ranging from 0 to at least 5 feet across the site. The recommended actions for remediating the site include excavation and replacement of the upper 2 feet of soil in accordance with the approach outlined by the EPA, followed by revegetation of backfilled areas, and reconstruction/replacement of infrastructure impacted during the process. The results of the TCLP analyses indicate that soil removed from the site during this process is acceptable for disposal at a Class II landfill.

8.0 REFERENCES

EPA, 1990. USEPA Contract Laboratory Program Statement of Work.

- EPA 2003. USEPA Superfund Lead-Contaminated Residential Sites Handbook.
- EPA, 2004. USEPA Contract Laboratory Program, National Functional Guidelines for Inorganic Data Review.
- EPA, 2012. USEPA Regional Screening Levels (November).
- DEQ, 2010. Montana Department of Environmental Quality Data Validation Guidelines for Evaluating Analytical Data.
- Tetra Tech, 2006. Reclamation Investigation and Expanded Engineering Evaluation and Cost Analysis, Spring Meadow Lake Site, Helena, Montana.
- Tetra Tech, 2010. Tetra Tech EMI, Inc., Final Construction Report for the Spring Meadow Lake Reclamation Project, Helena, Montana MT DEQ MWCB Contract No. 41001.
- Trihydro, 2011. Natural-Occurring Lead and Arsenic Investigation.
- Trihydro, 2013a. Sampling and Analysis Plan Surface Soil and Domestic Water Well.
- Trihydro, 2013b. Spring Meadow Lake Residential Area Investigation.
- Trihydro, 2013c. Sampling and Analysis Plan, Design Phase Soil Reclamation.

TABLES

TABLE 1-1. PROPERTY DESCRIPTIONS SPRING MEADOW LAKE RESIDENTIAL AREAS, DESIGN PHASE, HELENA, MONTANA

Prefix	Owner Name	Property Address	Legal Description
С	Herbel	2466 COUNTRY CLUB AVE	WEST HELENA TOWNSITE, S23, T10 N, R04 W, BLOCK 9, Lot 11A, CHIEF IND 16X56 1996 TITLE E002579
D	Wegner	2460 COUNTRY CLUB AVE	WEST HELENA TOWNSITE, S23, T10 N, R04 W, BLOCK 009, Lot 9 - 10, NASHUA 14 X 66 1977
Е	Wittke-Sears	2470 COUNTRY CLUB AVE	WEST HELENA TOWNSITE, S23, T10 N, R04 W, BLOCK 009, Lot 13A, COS #618927/AP
Z	P&S MT Properties	None (easement)	WEST HELENA TOWNSITE, S23, T10 N, R04 W, BLOCK 010, Lot 009

TABLE 2-1. ANALYTICAL METHODS AND SAMPLING CRITERIA SPRING MEADOW LAKE RESIDENTIAL AREAS, DESIGN PHASE, HELENA, MONTANA

Matrix / Constituent	Analytical Method	Preservation	Holding Time	Sample Size/ Sample Container
	,			
Soil Samples				
Arsenic, Total	EPA 6010C	None	180 days (NA ¹)	50 gram/plastic or glass
Lead, Total	EPA 6010C	None	180 days (NA ¹)	50 gram/plastic or glass
Arsenic, TCLP	EPA 1311/EPA 6010C	None	180 days (NA ^{1,2})	250 gram/plastic or glass
Barium, TCLP	EPA 1311/EPA 6010C	None	180 days (NA ^{1,2})	250 gram/plastic or glass
Cadmium, TCLP	EPA 1311/EPA 6010C	None	180 days (NA ^{1,2})	250 gram/plastic or glass
Chromium, TCLP	EPA 1311/EPA 6010C	None	180 days (NA ^{1,2})	250 gram/plastic or glass
Lead, TCLP	EPA 1311/EPA 6010C	None	28 days (NA ^{1,2})	250 gram/plastic or glass
Mercury, TCLP	EPA 1311/EPA 7470A	None	180 days (NA ^{1,2})	250 gram/plastic or glass
Selenium, TCLP	EPA 1311/EPA 6010C	None	180 days (NA ^{1,2})	250 gram/plastic or glass
Silver, TCLP	EPA 1311/EPA 6010C	None	180 days (NA ^{1,2})	250 gram/plastic or glass

Notes:

¹ Samples to be delivered to lab within 24 hours of collection

² Holding time from collection to TCLP leaching is 180 days (28 days for mercury). Holding time from TCLP leaching to analysis is 180 days (28 days for mercury)

TABLE 3-1. REPORTING LIMITS AND QA/QC SPECIFICATIONS SPRING MEADOW LAKE RESIDENTIAL AREAS, DESIGN PHASE, HELENA, MONTANA

<u>Soil</u>

Constituent	Analysis Method	Required Reporting Limit (mg/kg)	Maximum Field Duplicate RPD	Matrix Spike Recovery Range	Laboratory Control Sample (LCS) Recovery Range	EPA Regional Screening Levels (mg/kg)	EPA Soil Screening Levels (mg/kg)
Arsenic, Total	EPA 6010C	1	50%	75-125%	70-130%	49.6**	49.6**
Lead, Total	EPA 6010C	1	50%	75-125%	70-130%	400	140
		Required Reporting				EPA Regulatory Limit	
		Limit (mg/L)				(mg/L)	
Arsenic, TCLP	EPA 1311/EPA 6010C	0.5	50%	75-125%	70-130%	5	
Barium, TCLP	EPA 1311/EPA 6010C	1	50%	75-125%	70-130%	100	
Cadmium, TCLP	EPA 1311/EPA 6010C	0.1	50%	75-125%	70-130%	1	
Chromium, TCLP	EPA 1311/EPA 6010C	0.5	50%	75-125%	70-130%	5	
Lead, TCLP	EPA 1311/EPA 6010C	0.5	50%	75-125%	70-130%	5	
Mercury, TCLP	EPA 1311/EPA 7470A	0.02	50%	75-125%	70-130%	0.2	
Selenium, TCLP	EPA 1311/EPA 6010C	0.1	50%	75-125%	70-130%	1	
Silver, TCLP	EPA 1311/EPA 6010C	0.5	50%	75-125%	50-150%	5	

**-area-specific background

TABLE 4.1. SOIL SAMPLE XRF AND LABORATORY RESULTS SPRING MEADOW LAKE RESIDENTIAL AREAS DESIGN PHASE, HELENA, MONTANA

									ARSENIC					LEAD		
								SSL=19.6			=49.6 ¹		SS	_=140		RSL=400
SAMPLE ID	DATE SAMPLED	PROPERT Y IDENTIFIE R		SAMPLE START DEPTH	SAMPL E END DEPTH	Units	XRF RESULT	XRF LIMIT	XRF DETECT	LAB RESULT	LAB DETECT	XRF RESULT	XRF LIMIT		LAB RESULT	LAB DETECT
C-SMLRY-26-0-12	5/29/2013	С	26	0	12	ppm	342.81	50	YES			108.04	60	YES		
C-SMLRY-26-12-24	5/29/2013	С	26	12	24	ppm	659.3	50	YES			349.9	60	YES		
C-SMLRY-26-24-36	5/29/2013	С	26	24	36	ppm	1756.32	50	YES			1316.38	60	YES		
C-SMLRY-26-36-48	5/29/2013	С	26	36	48	ppm	269.03	50	YES			255.03	60	YES		
C-SMLRY-27-0-12	5/29/2013	С	27	0	12	ppm	1148.12	50	YES	1120	YES	988.95	60	YES	1030	YES
C-SMLRY-27-12-24	5/29/2013	С	27	12	24	ppm	50	50	NO			60	60	NO		
C-SMLRY-28-0-12	5/29/2013	С	28	0	12	ppm	173.37	50	YES			193.47	60	YES		
C-SMLRY-28-12-24	5/29/2013	С	28	12	24	ppm	1160.27	50	YES			871.1	60	YES		
C-SMLRY-28-24-36	5/29/2013	С	28	24	36	ppm	98.09	50	YES			60	60	NO		
C-SMLRY-28-36-48	5/29/2013	С	28	36	48	ppm	50	50	NO			60	60	NO		
C-SMLRY-29-0-12	5/30/2013	С	29	0	12	ppm	683.16	50	YES			578.37	60	YES		
C-SMLRY-29-12-24	5/30/2013	С	29	12	24	ppm	247.18	50	YES	171	YES	265.82	60	YES	134	YES
C-SMLRY-29-24-36	5/30/2013	С	29	24	36	ppm	50	50	NO			60	60	NO		
C-SMLRY-29-36-48	5/30/2013	С	29	36	48	ppm	50	50	NO			93.4	60	YES		
C-SMLRY-30-0-12	5/30/2013	С	30	0	12	ppm	1083.72	50	YES			678	60	YES		
C-SMLRY-30-12-24	5/30/2013	С	30	12	24	ppm	783.45	50	YES	455	YES	660.39	60	YES	776	YES
C-SMLRY-30-24-36	5/30/2013	С	30	24	36	ppm	50	50	NO			60	60	NO		
C-SMLRY-30-36-48	5/30/2013	С	30	36	48	ppm	50	50	NO			60	60	NO		
C-SMLRY-31-0-12	5/30/2013	С	31	0	12	ppm	1604.06	50	YES			1846.22	60	YES		
C-SMLRY-31-12-24	5/30/2013	С	31	12	24	ppm	1980.22	50	YES			1544.14	60	YES		
C-SMLRY-31-24-36	5/30/2013	С	31	24	36	ppm	63.02	50	YES			60	60	NO		
C-SMLRY-31-36-48	5/30/2013	С	31	36	48	ppm	50	50	NO			60	60	NO		
C-SMLRY-32-0-12	5/30/2013	С	32	0	12	ppm	504.56	50	YES			453.62	60	YES		
C-SMLRY-32-12-24	5/30/2013	С	32	12	24	ppm	943.22	50	YES	528	YES	670.06	60	YES	429	YES
C-SMLRY-32-24-36	5/30/2013	С	32	24	36	ppm	54.16	50	YES			60	60	NO		
C-SMLRY-32-36-48	5/30/2013	С	32	36	48	ppm	83.32	50	YES			60	60	NO		
C-SMLRY-32-36-48*	5/30/2013	С	32	36	48	ppm	86	50	YES			60	60	NO		
C-SMLRY-32-48-60	5/30/2013	С	32	48	60	ppm	157.46	50	YES			99.57	60	YES		
C-SMLRY-33-0-12	5/30/2013	С	33	0	12	ppm	456.91	50	YES			1154.7	60	YES		
C-SMLRY-33-24-36	5/30/2013	С	33	24	36	ppm	50	50	NO			60	60	NO		
C-SMLRY-34-0-12	5/30/2013	С	34	0	12	ppm	178.31	50	YES	161	YES	270.14	60	YES	159	YES
C-SMLRY-34-12-24	5/30/2013	С	34	12	24	ppm	543.48	50	YES			404.92	60	YES		
C-SMLRY-34-24-36	5/30/2013	С	34	24	36	ppm	180.27	50	YES			183.62	60	YES		
C-SMLRY-34-36-48	5/30/2013	С	34	36	48	ppm	76.86	50	YES			71.73	60	YES		
C-SMLRY-35-0-12	5/30/2013	С	35	0	12	ppm	933.67	50	YES	780	YES	800.05	60	YES	887	YES
C-SMLRY-35-0-12*	5/31/2013	С	35	0	12	ppm	933.67	50	YES	1080	YES	800.05	60	YES	1020	YES
C-SMLRY-35-12-24	5/30/2013	С	35	12	24	ppm	576.33	50	YES			477.96	60	YES		
C-SMLRY-35-24-36	5/30/2013	С	35	24	36	ppm	50	50	NO			60	60	NO		
C-SMLRY-35-36-48	5/30/2013	С	35	36	48	ppm	50	50	NO			60	60	NO		
D-SMLRY-39-0-12	5/28/2013	D	39	0	12	ppm	471.68	50	YES	1290	YES	398.39	60	YES	1070	YES
D-SMLRY-39-12-24	5/28/2013	D	39	12	24	ppm	50	50	NO			60	60	NO		
D-SMLRY-40-0-12	5/28/2013	D	40	0	12	ppm	111.66	50	YES			167.89	60	YES		
D-SMLRY-40-12-24	5/28/2013	D	40	12	24	ppm	235.62	50	YES			312.03	60	YES		
D-SMLRY-40-24-36	5/28/2013	D	40	24	36	ppm	50	50	NO			60	60	NO		
D-SMLRY-40-36-48	5/28/2013	D	40	36	48	ppm	57.35	50	YES			60	60	NO		
D-SMLRY-40-48-60	5/30/2013	D	40	48	60	ppm	50	50	NO			60	60	NO		
D-SMLRY-40-60-72	5/30/2013	D	40	60	72	ppm	50	50	NO			60	60	NO		
D-SMLRY-41-0-12	5/28/2013	D	41	0	12	ppm	692.6	50	YES	957	YES	1040.75	60	YES	1040	YES
D-SMLRY-41-12-24	5/28/2013	D	41	12	24	ppm	50	50	NO			60	60	NO		
D-SMLRY-42-0-12	5/28/2013	D	42	0	12	ppm	50	50	NO			205.66	60	YES		
D-SMLRY-42-12-24	5/28/2013	D	42	12	24	ppm	50	50	NO			86.03	60	YES		
D-SMLRY-42-24-36	5/28/2013	D	42	24	36	ppm	50	50	NO			60	60	NO		
D-SMLRY-42-36-48	5/28/2013	D	42	36	48	ppm	50	50	NO			60	60	NO		
D-SMLRY-43-0-12	5/28/2013	D	43	0	12	ppin	50	50	NO			271.38	60	YES		

M:\GovState\MDEQSRS\SpringMeadowsLake\ProjectDocs\DESIGNPHASE\Reports\201307_DesignPhaseRPT\2_Tables\201307_TBL4-1_TBL-4-1

TABLE 4.1. SOIL SAMPLE XRF AND LABORATORY RESULTS SPRING MEADOW LAKE RESIDENTIAL AREAS DESIGN PHASE, HELENA, MONTANA

									ARSENIC					LEAD		
								SSL=19.6			=49.6 ¹		SS	L=140		RSL=400
SAMPLE ID	DATE SAMPLED	PROPERT Y IDENTIFIE R	SAMPLE NUMBER	SAMPLE START DEPTH	SAMPL E END DEPTH	Units	XRF RESULT	XRF LIMIT	XRF DETECT	LAB RESULT	LAB DETECT	XRF RESULT	XRF LIMIT	-		LAB DETECT
D-SMLRY-43-12-24	5/28/2013	D	43	12	24	ppm	138.34	50	YES			283.94	60	YES		
D-SMLRY-43-24-36	5/28/2013	D	43	24	36	ppm	50	50	NO			60	60	NO		
D-SMLRY-43-36-48	5/28/2013	D	43	36	48	ppm	68.59	50	YES			60	60	NO		
D-SMLRY-43-48-60	5/30/2013	D	43	48	60	ppm	50	50	NO			109.01	60	YES		
D-SMLRY-45-0-12	5/28/2013	D	45	0	12	ppm	103.18	50	YES			79.12	60	YES		
D-SMLRY-45-12-24	5/28/2013	D	45	12	24	ppm	59.16	50	YES			60	60	NO		
D-SMLRY-45-24-36	5/30/2013	D D	45 45	24 36	36 48	ppm	50	50 50	NO			60 60	60 60	NO NO		
D-SMLRY-45-36-48	5/30/2013	D	45 46	30 0		ppm	50	50 50	NO	87.3	YES		60 60	YES	110	YES
D-SMLRY-46-0-12	5/28/2013	D	46 46	12	12 24	ppm	239.26	50 50	YES NO	07.3	160	286.57 60	60 60	NO		160
D-SMLRY-46-12-24	5/28/2013	2	46 47			ppm	50		YES		YES					YES
D-SMLRY-47-0-12	5/28/2013	D	47 47	0	12	ppm	101.11	50	NO	75.4	1ES 	175.89	60	YES NO	105	
D-SMLRY-47-12-24	5/28/2013	D		12	24	ppm	50	50	YES	212	YES	60	60	YES		
D-SMLRY-48-0-12	5/28/2013	D	48 48	0 12	12 24	ppm	521.42	50 50	NO	212	160	1037.38	60 60	NO	512 	YES
D-SMLRY-48-12-24 D-SMLRY-54-0-12	5/28/2013 5/28/2013	D	46 54	0	24 12	ppm	50 50	50 50	NO			60 70.88	60 60	YES		
D-SMLR1-54-0-12 D-SMLRY-54-12-24	5/28/2013	D	54 54	12	24	ppm ppm	50 50	50	NO			60	60 60	NO		
D-SMLR 1-54-12-24 D-SMLRY-55-0-12	5/28/2013	D	54 55	0	24 12	ppm	101.07	50	YES			60	60 60	NO		
D-SMLR1-55-0-12 D-SMLRY-55-12-24	5/28/2013	D	55	12	24	ppm	50	50	NO			60	60 60	NO		
D-SMLRY-56-0-12	5/28/2013	D	56	0	12	ppm	128.72	50	YES	142	YES	148.75	60	YES	156	YES
D-SMLRY-56-12-24	5/28/2013	D	56	12	24		50	50	NO			60	60	NO		
D-SMLRY-57-0-12	5/28/2013	D	57	0	12	ppm ppm	87.44	50	YES			60	60	NO		
D-SMLRY-57-12-24	5/28/2013	D	57	12	24	ppm	50	50	NO			60	60	NO		
D-SMLRY-58-0-12	5/28/2013	D	58	0	12	ppm	133.15	50	YES	161	YES	179.26	60	YES	188	YES
D-SMLRY-58-0-12*	5/29/2013	D	58	0	12	ppm	133.15	50	YES	165	YES	179.26	60	YES	188	YES
D-SMLRY-58-12-24	5/28/2013	D	58	12	24	ppm	70.02	50	YES			60	60	NO		
D-SMLRY-58-24-36	5/30/2013	D	58	24	36	ppm	50	50	NO			60	60	NO		
D-SMLRY-58-36-48	5/30/2013	D	58	36	48	ppm	50	50	NO			60	60	NO		
E-SMLRY-10-0-12	5/29/2013	Ē	10	0	12	ppm	6495.01	50	YES	5030	YES	2419.28	60	YES	3250	YES
E-SMLRY-10-12-24	5/29/2013	Ē	10	12	24	ppm	57.14	50	YES			60	60	NO		
E-SMLRY-10-24-36	5/29/2013	Ē	10	24	36	ppm	381.02	50	YES			171.22	60	YES		
E-SMLRY-11-0-12	5/29/2013	Ē	11	0	12	ppm	167.53	50	YES	237	YES	129.72	60	YES	218	YES
E-SMLRY-13-0-12	5/29/2013	Е	13	0	12	ppm	129.52	50	YES			60	60	NO		
E-SMLRY-13-12-24	5/29/2013	E	13	12	24	ppm	251.35	50	YES			60	60	NO		
E-SMLRY-13-24-36	5/29/2013	E	13	24	36	ppm	81.98	50	YES			60	60	NO		
E-SMLRY-14-0-12	5/29/2013	E	14	0	12	ppm	2426.22	50	YES	3370	YES	1569.34	60	YES	2320	YES
E-SMLRY-14-12-24	5/29/2013	E	14	12	24	ppm	50	50	NO			79.55	60	YES		
E-SMLRY-15-0-12	5/29/2013	E	15	0	12	ppm	78.8	50	YES			94.96	60	YES		
E-SMLRY-15-12-24	5/29/2013	E	15	12	24	ppm	322.96	50	YES	230	YES	274.41	60	YES	235	YES
E-SMLRY-16-0-12	5/29/2013	E	16	0	12	ppm	305.62	50	YES			81.97	60	YES		
E-SMLRY-16-12-24	5/29/2013	E	16	12	24	ppm	102.25	50	YES			60	60	NO		
E-SMLRY-16-24-36	5/29/2013	E	16	24	36	ppm	109.87	50	YES	75.7	YES	88.33	60	YES	40.9	YES
E-SMLRY-16-36-48	5/29/2013	E	16	36	48	ppm	50	50	NO			115.25	60	YES		
E-SMLRY-17-0-12	5/29/2013	E	17	0	12	ppm	4117.96	50	YES	2690	YES	2199.18	60	YES	2290	YES
E-SMLRY-17-12-24	5/29/2013	E	17	12	24	ppm	226.86	50	YES			988.06	60	YES		
E-SMLRY-17-24-36	5/29/2013	E	17	24	36	ppm	132.7	50	YES	965	YES	151.52	60	YES	736	YES
E-SMLRY-17-36-48	5/29/2013	E	17	36	48	ppm	50	50	NO			60	60	NO		
E-SMLRY-18-0-12	5/29/2013	E	18	0	12	ppm	152.28	50	YES			130.66	60	YES		
E-SMLRY-18-12-24	5/29/2013	E	18	12	24	ppm	263.52	50	YES			95.44	60	YES		
E-SMLRY-18-24-36	5/29/2013	E	18	24	36	ppm	50	50	NO			108.16	60	YES		
E-SMLRY-18-36-48	5/29/2013	E	18	36	48	ppm	325.63	50	YES			236.4	60	YES		
E-SMLRY-19-0-12	5/29/2013	E	19	0	12	ppm	79.27	50	YES			60	60	NO		
E-SMLRY-19-12-24	5/29/2013	E	19	12	24	ppm	396	50	YES	1200	YES	794.93	60	YES	875	YES
E-SMLRY-19-24-36	5/29/2013	E	19	24	36	ppm	50	50	NO			60	60	NO		

TABLE 4.1. SOIL SAMPLE XRF AND LABORATORY RESULTS SPRING MEADOW LAKE RESIDENTIAL AREAS DESIGN PHASE, HELENA, MONTANA

									ARSENIC					LEAD		
								SSL=19.6		RSL	= 49.6 ¹		SS	L=140		RSL=400
SAMPLE ID	DATE SAMPLED	PROPERT Y IDENTIFIE R	SAMPLE NUMBER	SAMPLE START DEPTH	SAMPL E END DEPTH	Units	XRF RESULT	XRF LIMIT	XRF DETECT	LAB RESULT	LAB DETECT	XRF RESULT	XRF LIMIT	-	LAB RESULT	LAB DETECT
E-SMLRY-20-0-12	5/29/2013	E	20	0	12	ppm	50	50	NO			60	60	NO		
E-SMLRY-20-12-24	5/29/2013	E	20	12	24	ppm	1190.32	50	YES			1445.54	60	YES		
E-SMLRY-20-24-36	5/29/2013	E	20	24	36	ppm	50	50	NO	33.6	YES	60	60	NO	29.6	YES
E-SMLRY-20-36-48	5/29/2013	E	20	36	48	ppm	50	50	NO			60	60	NO		
E-SMLRY-21-0-12	5/29/2013	E	21	0	12	ppm	216.5	50	YES	252	YES	120.48	60	YES	181	YES
E-SMLRY-21-0-12*	5/29/2013	E	21	0	12	ppm	216.5	50	YES	253	YES	120.48	60	YES	196	YES
E-SMLRY-21-12-24	5/29/2013	E	21	12	24	ppm	267.76	50	YES	440	YES	228.29	60	YES	246	YES
E-SMLRY-21-24-36	5/29/2013	E	21	24	36	ppm	301.23	50	YES			164.16	60	YES		
E-SMLRY-21-36-48	5/29/2013	E	21	36	48	ppm	50	50	NO			109.63	60	YES		
E-SMLRY-22-0-12	5/29/2013	Е	22	0	12	ppm	558.53	50	YES			268.63	60	YES		
E-SMLRY-22-12-24	5/29/2013	Е	22	12	24	ppm	50	50	NO			73.74	60	YES		
E-SMLRY-23-0-12	5/29/2013	Ē	23	0	12	ppm	5055.88	50	YES	2240	YES	2441.74	60	YES	1450	YES
E-SMLRY-23-12-24	5/29/2013	E	23	12	24	ppm	90.31	50	YES			60	60	NO		
E-SMLRY-23-24-36	5/30/2013	Ē	23	24	36	ppm	79.52	50	YES			60	60	NO		
E-SMLRY-23-36-48	5/30/2013	Ē	23	36	48	ppm	50	50	NO			60	60	NO		
E-SMLRY-24-0-12	5/29/2013	Ē	24	0	12	ppm	169.93	50	YES			60	60	NO		
E-SMLRY-24-12-24	5/29/2013	Ē	24	12	24	ppm	561.37	50	YES			308.39	60	YES		
E-SMLRY-24-24-36	5/29/2013	Ē	24	24	36	ppm	77.42	50	YES			60	60	NO		
E-SMLRY-24-36-48	5/29/2013	Ē	24	36	48	ppm	81.01	50	YES			60	60	NO		
E-SMLRY-24-48-60	5/30/2013	E	24	48	40 60	ppm	77.66	50	YES			60	60	NO		
E-SMLRY-24-60-72	5/30/2013	E	24	60	72	ppm	50	50	NO			60	60	NO		
E-SMLRY-25-0-12	5/29/2013	E	24	0	12		50	50	NO			82.57	60	YES		
E-SMLRY-25-12-24		Ē	25		24	ppm	690.54	50	YES	1060	YES	1431.63	60	YES	1620	YES
	5/29/2013	Ē	25 25	12		ppm		50 50	YES		TES					TES
E-SMLRY-25-12-24*	5/29/2013	Ē		12	24	ppm	690.54			1270	VEO	1431.63	60	YES	2420	VEO
E-SMLRY-25-24-36	5/29/2013		25	24	36	ppm	93.72	50	YES	111	YES	74.94	60	YES	122	YES
E-SMLRY-25-36-48	5/29/2013	E	25 7	36	48	ppm	50	50	NO			60	60	NO		
E-SMLRY-7-0-12	5/29/2013	E	-	0	12	ppm	130.17	50	YES	246	YES	209.13	60	YES	446	YES
E-SMLRY-8-0-12	5/29/2013	E	8	0	12	ppm	50	50	NO			126.27	60	YES		
E-SMLRY-8-12-24	5/29/2013	E	8	12	24	ppm	69.28	50	YES			60	60	NO		
E-SMLRY-9-0-12	5/29/2013	E	9	0	12	ppm	1126.75	50	YES	772	YES	825.8	60	YES	573	YES
E-SMLRY-9-12-24	5/29/2013	E	9	12	24	ppm	63.5	50	YES			60	60	NO		
Z-SMLRY-1-0-12	5/28/2013	Z	1	0	12	ppm	50	50	NO			174.05	60	YES		
Z-SMLRY-1-12-24	5/28/2013	Z	1	12	24	ppm	50	50	NO			60	60	NO		
Z-SMLRY-2-0-12	5/28/2013	Z	2	0	12	ppm	104.83	50	YES			142.81	60	YES		
Z-SMLRY-2-12-24	5/28/2013	Z	2	12	24	ppm	147.21	50	YES			194.52	60	YES		
Z-SMLRY-2-24-36	5/28/2013	Z	2	24	36	ppm	122.86	50	YES			60	60	NO		
Z-SMLRY-3-0-12	5/28/2013	Z	3	0	12	ppm	136.64	50	YES	105	YES	295.11	60	YES	273	YES
Z-SMLRY-3-12-24	5/28/2013	Z	3	12	24	ppm	50	50	NO			60	60	NO		
Z-SMLRY-4-0-12	5/28/2013	Z	4	0	12	ppm	50	50	NO			60	60	NO		
Z-SMLRY-4-12-24	5/28/2013	Z	4	12	24	ppm	50	50	NO			60	60	NO		
Z-SMLRY-5-0-12	5/28/2013	Z	5	0	12	ppm	50	50	NO			113.37	60	YES		
Z-SMLRY-5-12-24	5/28/2013	Z	5	12	24	ppm	89.55	50	YES			60	60	NO		
Z-SMLRY-5-24-36	5/28/2013	Z	5	24	36	ppm	50	50	NO			60	60	NO		

1) area-specific background value * => Field Duplicate SSL= Soil Screening Level RSL= Regional Screening Level ppm=parts per million

Notes:

TABLE 4.2. SOIL SAMPLE TCLP RESULTS SPRING MEADOW LAKE RESIDENTIAL AREAS, DESIGN PHASE, HELENA, MONTANA

DATE SAMPLED	UNITS	SAMPLE		ARSENIC	BARIUM	CADMIUM	CHROMIUM	LEAD	MERCURY	SELENIUM	SILVER
			EPA Regulatory Limit (mg/L)	5	100	1	5	5	0.2	1	5
5/30/2013	ppm	C-SMLRY-TCLP-7-0-48		2.9	0.35	0.056	ND(0.05)	ND(0.05)	ND(0.0006)	0.23	ND(0.05)
5/30/2013	ppm	C-SMLRY-TCLP-8-0-48		2.5	0.15	0.031	ND(0.05)	ND(0.05)	ND(0.0006)	0.24	ND(0.05)
5/30/2013	ppm	C-SMLRY-TCLP-9-0-48		1.3	0.12	ND(0.015)	ND(0.05)	ND(0.05)	ND(0.0006)	0.25	ND(0.05)
5/30/2013	ppm	D-SMLRY-TCLP-10-0-72		0.82	0.93	ND(0.015)	ND(0.05)	ND(0.05)	ND(0.0006)	0.27	ND(0.05)
5/30/2013	ppm	D-SMLRY-TCLP-11-0-60		ND(0.5)	0.15	ND(0.015)	ND(0.05)	ND(0.05)	ND(0.0006)	0.25	ND(0.05)
5/30/2013	ppm	D-SMLRY-TCLP-12-0-48		0.9	1.1	ND(0.015)	ND(0.05)	ND(0.05)	ND(0.0006)	0.28	ND(0.05)
5/30/2013	ppm	E-SMLRY-TCLP-4-0-36		3.5	0.23	0.029	ND(0.05)	ND(0.05)	ND(0.0006)	0.2	ND(0.05)
5/30/2013	ppm	E-SMLRY-TCLP-5-0-48		1.8	0.25	0.016	ND(0.05)	ND(0.05)	ND(0.0006)	0.2	ND(0.05)
5/30/2013	ppm	E-SMLRY-TCLP-6-0-72		3.4	0.47	0.029	ND(0.05)	ND(0.05)	ND(0.0006)	0.24	ND(0.05)
5/30/2013	ppm	Z-SMLRY-TCLP-1-0-20		ND(0.5)	0.17	ND(0.015)	ND(0.05)	ND(0.05)	ND(0.0006)	ND(0.1)	ND(0.05)
5/30/2013	ppm	Z-SMLRY-TCLP-2-0-36		ND(0.5)	0.57	ND(0.015)	ND(0.05)	ND(0.05)	ND(0.0006)	0.13	ND(0.05)
5/30/2013	ppm	Z-SMLRY-TCLP-3-0-36		ND(0.5)	0.3	ND(0.015)	ND(0.05)	ND(0.05)	ND(0.0006)	0.18	ND(0.05)

Notes: ND(xx)= nondetect (detection limit)

mg/L = milligrams per liter

ppm=parts per million

TABLE 4.3. ADJUSTED SOIL SAMPLE RESULTS SPRING MEADOW LAKE RESIDENTIAL AREAS, DESIGN PHASE, HELENA, MONTANA

									ARS	ENIC					LI	EAD		
								SSL=19.6			RSL=49.6 ¹			SS	L=140		RSI	_=400
SAMPLE ID	DATE SAMPLED	PROPERT Y IDENTIFIE R	SAMPLE NUMBER	SAMPLE START DEPTH	SAMPL E END DEPTH	Units	XRF RESULT	XRF LIMIT	XRF DETECT	LAB RESULT	LAB DETECT	Adjusted ²	XRF RESULT	XRF LIMIT	XRF DETECT	LAB RESULT	LAB DETECT	Adjusted
C-SMLRY-26-0-12	5/29/2013	С	26	0	12	ppm	342.81	50	YES			339.82	108.04	60	YES			123.32
C-SMLRY-26-12-24	5/29/2013	С	26	12	24	ppm	659.3	50	YES			663.81	349.9	60	YES			232.72
C-SMLRY-26-24-36	5/29/2013	С	26	24	36	ppm	1756.32	50	YES			1786.83	1316.38	60	YES			669.86
C-SMLRY-26-36-48	5/29/2013	c	26	36	48	ppm	269.03	50	YES			264.29	255.03	60	YES			189.81
C-SMLRY-27-0-12	5/29/2013	C	27	0	12	ppm	1148.12	50	YES	1120	YES	1164.22	988.95	60	YES	1030	YES	521.76
C-SMLRY-27-12-24	5/29/2013	С	27	12	24	ppm	50	50	NO			40.07	60	60	NO			101.60
C-SMLRY-28-0-12	5/29/2013	c	28	0	12	ppm	173.37	50	YES			166.37	193.47	60	YES			161.96
C-SMLRY-28-12-24	5/29/2013	C	28	12	24	ppm	1160.27	50	YES			1176.66	871.1	60	YES			468.46
C-SMLRY-28-24-36	5/29/2013	C	28	24	36	ppm	98.09	50	YES			89.30	60	60	NO			101.60
C-SMLRY-28-36-48 C-SMLRY-29-0-12	5/29/2013 5/30/2013	с с	28 29	36 0	48 12	ppm	50 683.16	50 50	NO YES			40.07 688.24	60 578.37	60 60	NO YES			101.60 336.05
C-SMLRY-29-12-24	5/30/2013	c	29	12	24	ppm ppm	247.18	50	YES	171	YES	241.93	265.82	60	YES	134	YES	194.69
C-SMLRY-29-24-36	5/30/2013	c	29 29	24	24 36	ppm	50	50	NO			40.07	205.02 60	60 60	NO			101.60
C-SMLRY-29-36-48	5/30/2013	c	29	36	48	ppm	50 50	50 50	NO			40.07	93.4	60	YES			116.70
C-SMLRY-30-0-12	5/30/2013	č	30	0	40 12	ppm	1083.72	50 50	YES			1098.29	678	60 60	YES			381.12
C-SMLRY-30-12-24	5/30/2013	č	30	12	24	ppm	783.45	50	YES	455	YES	790.91	660.39	60	YES	776	YES	373.15
C-SMLRY-30-24-36	5/30/2013	č	30	24	36	ppm	50	50	NO			40.07	60	60	NO			101.60
C-SMLRY-30-36-48	5/30/2013	č	30	36	48	ppm	50	50	NO			40.07	60	60	NO			101.60
C-SMLRY-31-0-12	5/30/2013	č	31	0	12	ppm	1604.06	50	YES			1630.96	1846.22	60	YES			909.50
C-SMLRY-31-12-24	5/30/2013	č	31	12	24	ppm	1980.22	50	YES			2016.04	1544.14	60	YES			772.87
C-SMLRY-31-24-36	5/30/2013	č	31	24	36	ppm	63.02	50	YES			53.40	60	60	NO			101.60
C-SMLRY-31-36-48	5/30/2013	c	31	36	48	ppm	50	50	NO			40.07	60	60	NO			101.60
C-SMLRY-32-0-12	5/30/2013	č	32	0	12	ppm	504.56	50	YES			505.41	453.62	60	YES			279.63
C-SMLRY-32-12-24	5/30/2013	č	32	12	24	ppm	943.22	50	YES	528	YES	954.46	670.06	60	YES	429	YES	377.53
C-SMLRY-32-24-36	5/30/2013	C	32	24	36	ppm	54.16	50	YES			44.33	60	60	NO			101.60
C-SMLRY-32-36-48	5/30/2013	С	32	36	48	ppm	83.32	50	YES			74.18	60	60	NO			101.60
C-SMLRY-32-36-48*	5/30/2013	С	32	36	48	ppm	86	50	YES			76.93	60	60	NO			101.60
C-SMLRY-32-48-60	5/30/2013	С	32	48	60	ppm	157.46	50	YES			150.08	99.57	60	YES			119.49
C-SMLRY-33-0-12	5/30/2013	С	33	0	12	ppm	456.91	50	YES			456.63	1154.7	60	YES			596.73
C-SMLRY-33-24-36	5/30/2013	С	33	24	36	ppm	50	50	NO			40.07	60	60	NO			101.60
C-SMLRY-34-0-12	5/30/2013	С	34	0	12	ppm	178.31	50	YES	161	YES	171.42	270.14	60	YES	159	YES	196.64
C-SMLRY-34-12-24	5/30/2013	С	34	12	24	ppm	543.48	50	YES			545.25	404.92	60	YES			257.60
C-SMLRY-34-24-36	5/30/2013	С	34	24	36	ppm	180.27	50	YES			173.43	183.62	60	YES			157.51
C-SMLRY-34-36-48	5/30/2013	С	34	36	48	ppm	76.86	50	YES			67.57	71.73	60	YES			106.90
C-SMLRY-35-0-12	5/30/2013	С	35	0	12	ppm	933.67	50	YES	780	YES	944.69	800.05	60	YES	887	YES	436.32
C-SMLRY-35-12-24	5/30/2013	С	35	12	24	ppm	576.33	50	YES			578.88	477.96	60	YES			290.64
C-SMLRY-35-24-36	5/30/2013	С	35	24	36	ppm	50	50	NO			40.07	60	60	NO			101.60
C-SMLRY-35-36-48	5/30/2013	С	35	36	48	ppm	50	50	NO			40.07	60	60	NO			101.60
D-SMLRY-39-0-12	5/28/2013	D	39	0	12	ppm	471.68	50	YES	1290	YES	471.75	398.39	60	YES	1070	YES	254.65
D-SMLRY-39-12-24	5/28/2013	D	39	12	24	ppm	50	50	NO			40.07	60	60	NO			101.60
D-SMLRY-40-0-12	5/28/2013	D	40	0	12	ppm	111.66	50	YES			103.19	167.89	60	YES			150.39
D-SMLRY-40-12-24	5/28/2013	D	40	12	24	ppm	235.62	50	YES			230.09	312.03	60	YES			215.59
D-SMLRY-40-24-36	5/28/2013	D	40	24	36	ppm	50	50	NO			40.07	60	60	NO			101.60
D-SMLRY-40-36-48	5/28/2013	D	40	36	48	ppm	57.35	50	YES			47.60	60 60	60	NO			101.60
D-SMLRY-40-48-60	5/30/2013	2	40	48	60	ppm	50	50	NO			40.07	60 60	60	NO			101.60
D-SMLRY-40-60-72	5/30/2013	D D	40	60	72	ppm	50	50 50	NO YES		YES	40.07	60 1040 75	60	NO YES	1040	YES	101.60
D-SMLRY-41-0-12	5/28/2013	D	41	0	12	ppm	692.6			957		697.90	1040.75	60		1040		545.19
D-SMLRY-41-12-24 D-SMLRY-42-0-12	5/28/2013 5/28/2013	D	41 42	12 0	24 12	ppm	50 50	50 50	NO NO			40.07 40.07	60 205.66	60 60	NO YES			101.60 167.48
D-SMLRY-42-0-12 D-SMLRY-42-12-24	5/28/2013	D	42 42	0 12	12 24	ppm	50 50	50 50	NO			40.07	205.66 86.03	60 60	YES			167.48
D-SMLR Y-42-12-24 D-SMLRY-42-24-36	5/28/2013	D	42 42	12 24	24 36	ppm	50 50	50 50	NO			40.07	86.03 60	60 60	NO			113.37
D-SMLR Y-42-24-36 D-SMLRY-42-36-48	5/28/2013	D	42 42	24 36	36 48	ppm	50 50	50 50	NO			40.07	60 60	60 60	NO			101.60
	5/28/2013	D	42 43	0	40 12	ppm			NO				••	60 60				101.60
D-SMLRY-43-0-12						ppm	50	50				40.07	271.38		YES			

TABLE 4.3. ADJUSTED SOIL SAMPLE RESULTS SPRING MEADOW LAKE RESIDENTIAL AREAS, DESIGN PHASE, HELENA, MONTANA

									ARS	ENIC					LI	EAD		
								SSL=19.6			RSL=49.6 ¹			SS	L=140		RS	L=400
SAMPLE ID	DATE SAMPLED	PROPERT Y IDENTIFIE R		SAMPLE START DEPTH	SAMPL E END DEPTH	Units	XRF RESULT	XRF LIMIT	XRF DETECT	LAB RESULT	LAB DETECT	Adjusted ²	XRF RESULT	XRF LIMIT	-	LAB RESULT	LAB DETECT	
D-SMLRY-43-24-36	5/28/2013	D	43	24	36	ppm	50	50	NO			40.07	60	60	NO			101.60
D-SMLRY-43-36-48	5/28/2013	D	43	36	48	ppm	68.59	50	YES			59.10	60	60	NO			101.60
D-SMLRY-43-48-60	5/30/2013	D	43	48	60	ppm	50	50	NO			40.07	109.01	60	YES			123.76
D-SMLRY-45-0-12	5/28/2013	D	45	0	12	ppm	103.18	50	YES			94.51	79.12	60	YES			110.24
D-SMLRY-45-12-24	5/28/2013	D	45	12	24	ppm	59.16	50	YES			49.45	60	60	NO			101.60
D-SMLRY-45-24-36	5/30/2013	D	45	24	36	ppm	50	50	NO			40.07	60	60	NO			101.60
D-SMLRY-45-36-48 D-SMLRY-46-0-12	5/30/2013 5/28/2013	D D	45 46	36 0	48 12	ppm	50 239.26	50 50	NO YES	 87.3	YES	40.07 233.82	60 286.57	60 60	NO YES	110	YES	101.60 204.07
D-SMLRY-46-12-24	5/28/2013	D	40 46	12	24	ppm	239.20 50	50 50	NO			40.07	60	60 60	NO			101.60
D-SMLRY-40-12-24	5/28/2013	D	40	0	12	ppm	101.11	50 50	YES	75.4	YES	92.39	175.89	60 60	YES	105	YES	154.01
D-SMLRY-47-12-24	5/28/2013	D	47	12	24	ppm ppm	50	50	NO	73.4	123	40.07	60	60 60	NO	105		101.60
D-SMLRY-48-0-12	5/28/2013	D	48	0	12	ppm	521.42	50 50	YES	212	YES	522.67	1037.38	60 60	YES	512	YES	543.66
D-SMLRY-48-12-24	5/28/2013	D	48	12	24	ppm	50	50	NO			40.07	60	60 60	NO			101.60
D-SMLRY-54-0-12	5/28/2013	D		0	12	ppm	50	50	NO			40.07	70.88	60	YES			101.00
D-SMLRY-54-12-24	5/28/2013	D	54	12	24	ppm	50	50	NO			40.07	60	60	NO			100.52
D-SMLRY-55-0-12	5/28/2013	Ď	55	0	12	ppm	101.07	50	YES			92.35	60	60	NO			101.60
D-SMLRY-55-12-24	5/28/2013	D	55	12	24	ppm	50	50	NO			40.07	60	60	NO			101.60
D-SMLRY-56-0-12	5/28/2013	D	56	0	12	ppm	128.72	50	YES	142	YES	120.66	148.75	60	YES	156	YES	141.74
D-SMLRY-56-12-24	5/28/2013	D	56	12	24	ppm	50	50	NO			40.07	60	60	NO			101.60
D-SMLRY-57-0-12	5/28/2013	D	57	0	12	ppm	87.44	50	YES			78.40	60	60	NO			101.60
D-SMLRY-57-12-24	5/28/2013	D	57	12	24	ppm	50	50	NO			40.07	60	60	NO			101.60
D-SMLRY-58-0-12	5/28/2013	D	58	0	12	ppm	133.15	50	YES	161	YES	125.19	179.26	60	YES	188	YES	155.54
D-SMLRY-58-12-24	5/28/2013	D	58	12	24	ppm	70.02	50	YES			60.57	60	60	NO			101.60
D-SMLRY-58-24-36	5/30/2013	D	58	24	36	ppm	50	50	NO			40.07	60	60	NO			101.60
D-SMLRY-58-36-48	5/30/2013	D	58	36	48	ppm	50	50	NO			40.07	60	60	NO			101.60
E-SMLRY-10-0-12	5/29/2013	E	10	0	12	ppm	6495.01	50	YES	5030	YES	6637.83	2419.28	60	YES	3250	YES	1168.70
E-SMLRY-10-12-24	5/29/2013	E	10	12	24	ppm	57.14	50	YES			47.38	60	60	NO			101.60
E-SMLRY-10-24-36	5/29/2013	E	10	24	36	ppm	381.02	50	YES			378.94	171.22	60	YES			151.90
E-SMLRY-11-0-12	5/29/2013	E	11	0	12	ppm	167.53	50	YES	237	YES	160.39	129.72	60	YES	218	YES	133.13
E-SMLRY-13-0-12	5/29/2013	E	13	0	12	ppm	129.52	50	YES			121.48	60	60	NO			101.60
E-SMLRY-13-12-24	5/29/2013	E	13	12	24	ppm	251.35	50	YES			246.19	60	60	NO			101.60
E-SMLRY-13-24-36	5/29/2013	E	13	24	36	ppm	81.98	50	YES			72.81	60	60	NO			101.60
E-SMLRY-14-0-12	5/29/2013	E	14	0	12	ppm	2426.22	50	YES	3370	YES	2472.61	1569.34	60	YES	2320	YES	784.27
E-SMLRY-14-12-24	5/29/2013	E	14	12	24	ppm	50	50	NO			40.07	79.55	60	YES			110.44
E-SMLRY-15-0-12	5/29/2013	E	15	0	12	ppm	78.8	50	YES			69.56	94.96	60	YES			117.41
E-SMLRY-15-12-24	5/29/2013	E	15	12	24	ppm	322.96	50	YES	230	YES	319.50	274.41	60	YES	235	YES	198.57
E-SMLRY-16-0-12	5/29/2013	E	16	0	12	ppm	305.62	50	YES			301.75	81.97	60	YES			111.53
E-SMLRY-16-12-24	5/29/2013	E	16	12	24	ppm	102.25	50	YES			93.56	60	60	NO			101.60
E-SMLRY-16-24-36	5/29/2013	E	16	24	36	ppm	109.87	50	YES	75.7	YES	101.36	88.33	60	YES	40.9	YES	114.41
E-SMLRY-16-36-48	5/29/2013	E	16	36 0	48	ppm	50	50	NO			40.07	115.25	60	YES			126.59
E-SMLRY-17-0-12	5/29/2013	E	17 17	-	12	ppm	4117.96	50	YES YES	2690	YES	4204.44	2199.18 988.06	60 60	YES YES	2290	YES	1069.15
E-SMLRY-17-12-24	5/29/2013			12	24	ppm	226.86	50				221.12				726		521.36
E-SMLRY-17-24-36	5/29/2013	E	17	24 36	36	ppm	132.7	50	YES	965	YES	124.73	151.52	60	YES	736	YES	142.99
E-SMLRY-17-36-48 E-SMLRY-18-0-12	5/29/2013 5/29/2013	E	17 18	36	48 12	ppm	50 152.28	50 50	NO YES			40.07 144.78	60 130.66	60 60	NO YES			101.60 133.56
E-SMLRY-18-0-12 E-SMLRY-18-12-24	5/29/2013	E	18	12	12	ppm ppm	263.52	50 50	YES		-	144.78 258.65	95.44	60 60	YES	-		133.56
E-SMLRY-18-24-36	5/29/2013	Ē	18	24	24 36	ppm	203.52 50	50 50	NO			40.07	95.44 108.16	60 60	YES			123.38
E-SMLRY-18-36-48	5/29/2013 5/29/2013	Ē	18	36	48	ppm	325.63	50 50	YES			322.24	236.4	60 60	YES			123.30 181.38
E-SMLRY-19-0-12	5/29/2013	Ē	10	0	40 12	ppm	79.27	50	YES			70.04	230.4	60	NO			101.60
E-SMLRY-19-12-24	5/29/2013	E	19	12	24	ppm	396	50	YES	1200	YES	394.27	794.93	60	YES	 875	YES	434.00
E-SMLRY-19-24-36	5/29/2013	Ē	19	24	36	ppm	50	50	NO	1200		40.07	60	60 60	NO			101.60
E-SMLRY-20-0-12	5/29/2013	Ē	20	0	12	ppm	50	50	NO			40.07	60	60	NO			101.60
E-SMLRY-20-12-24	5/29/2013	Ē	20	12	24	ppm	1190.32	50	YES				1445.54	60 60	YES			728.28
_ JMENT 20 12-24	0/20/2010	-				66.0	1100.02		120			1201.42	. ++0.04					120.20

TABLE 4.3. ADJUSTED SOIL SAMPLE RESULTS SPRING MEADOW LAKE RESIDENTIAL AREAS, DESIGN PHASE, HELENA, MONTANA

									ARS	ENIC					LI	EAD		
								SSL=19.6			RSL=49.61			SS	L=140		RSI	_=400
SAMPLE ID	DATE SAMPLED	PROPERT Y IDENTIFIE R	SAMPLE NUMBER	SAMPLE START DEPTH	SAMPL E END DEPTH	Units	XRF RESULT	XRF LIMIT	XRF DETECT	LAB RESULT	LAB DETECT	Adjusted ²	XRF RESULT	XRF LIMIT	XRF DETECT	LAB RESULT	LAB DETECT	Adjusted ²
E-SMLRY-20-24-36	5/29/2013	E	20	24	36	ppm	50	50	NO	33.6	YES	40.07	60	60	NO	29.6	YES	101.60
E-SMLRY-20-36-48	5/29/2013	E	20	36	48	ppm	50	50	NO			40.07	60	60	NO			101.60
E-SMLRY-21-0-12	5/29/2013	E	21	0	12	ppm	216.5	50	YES	252	YES	210.52	120.48	60	YES	181	YES	128.95
E-SMLRY-21-12-24	5/29/2013	E	21	12	24	ppm	267.76	50	YES	440	YES	262.99	228.29	60	YES	246	YES	177.71
E-SMLRY-21-24-36	5/29/2013	E	21	24	36	ppm	301.23	50	YES			297.26	164.16	60	YES			148.71
E-SMLRY-21-36-48	5/29/2013	E	21	36	48	ppm	50	50	NO			40.07	109.63	60	YES			124.04
E-SMLRY-22-0-12	5/29/2013	E	22	0	12	ppm	558.53	50	YES			560.66	268.63	60	YES			195.96
E-SMLRY-22-12-24	5/29/2013	E	22	12	24	ppm	50	50	NO			40.07	73.74	60	YES			107.81
E-SMLRY-23-0-12	5/29/2013	Е	23	0	12	ppm	5055.88	50	YES	2240	YES	5164.59	2441.74	60	YES	1450	YES	1178.86
E-SMLRY-23-12-24	5/29/2013	E	23	12	24	ppm	90.31	50	YES			81.34	60	60	NO			101.60
E-SMLRY-23-24-36	5/30/2013	Е	23	24	36	ppm	79.52	50	YES			70.29	60	60	NO			101.60
E-SMLRY-23-36-48	5/30/2013	Е	23	36	48	ppm	50	50	NO			40.07	60	60	NO			101.60
E-SMLRY-24-0-12	5/29/2013	Ē	24	0	12	ppm	169.93	50	YES			162.85	60	60	NO			101.60
E-SMLRY-24-12-24	5/29/2013	Ē	24	12	24	ppm	561.37	50	YES			563.56	308.39	60	YES			213.94
E-SMLRY-24-24-36	5/29/2013	Ē	24	24	36	ppm	77.42	50	YES			68.14	60	60	NO			101.60
E-SMLRY-24-36-48	5/29/2013	Ē	24	36	48	ppm	81.01	50	YES			71.82	60	60	NO			101.60
E-SMLRY-24-48-60	5/30/2013	Ē	24	48	60	ppm	77.66	50	YES			68.39	60	60	NO			101.60
E-SMLRY-24-60-72	5/30/2013	Ē	24	60	72	ppm	50	50	NO			40.07	60	60	NO			101.60
E-SMLRY-25-0-12	5/29/2013	Ē	25	0	12	ppm	50	50	NO			40.07	82.57	60	YES			111.80
E-SMLRY-25-12-24	5/29/2013	E	25	12	24	ppm	690.54	50 50	YES	1060	YES	695.79	1431.63	60	YES	1620	YES	721.98
E-SMLRY-25-24-36	5/29/2013	Ē	25	24	36	ppm	93.72	50	YES	111	YES	84.83	74.94	60	YES	122	YES	108.35
E-SMLRY-25-36-48	5/29/2013	Ē	25	36	48	ppm	50	50	NO			40.07	60	60	NO			101.60
E-SMLRY-7-0-12	5/29/2013	E	7	0	40 12	ppm	130.17	50 50	YES	246	YES	122.14	209.13	60	YES	446	YES	169.05
E-SMLRY-8-0-12	5/29/2013	E	8	0	12	ppm	50	50	NO			40.07	126.27	60	YES			131.57
E-SMLRY-8-12-24	5/29/2013 5/29/2013	Ē	8	12	24		69.28	50 50	YES			40.07 59.81	60	60 60	NO			101.60
E-SMLR 1-0-12-24 E-SMLRY-9-0-12	5/29/2013	Ē	о 9	0	24 12	ppm	09.20 1126.75	50	YES	772	YES	1142.34	825.8	60 60	YES	 573	YES	447.97
E-SMLRY-9-12-24	5/29/2013	E	9	12	24	ppm	63.5	50	YES			53.89	625.6 60	60	NO	5/3		447.97
		Z	9	0	24 12	ppm		50 50	NO					60 60	YES			
Z-SMLRY-1-0-12	5/28/2013		1			ppm	50 50		NO			40.07 40.07	174.05 60	60 60	NO			153.18 101.60
Z-SMLRY-1-12-24	5/28/2013	Z	1	12	24	ppm		50										
Z-SMLRY-2-0-12	5/28/2013	Z	2	0	12	ppm	104.83	50	YES			96.20	142.81	60	YES			139.05
Z-SMLRY-2-12-24	5/28/2013	z	2	12	24	ppm	147.21	50	YES			139.59	194.52	60	YES			162.44
Z-SMLRY-2-24-36	5/28/2013	z	2	24	36	ppm	122.86	50	YES			114.66	60	60	NO			101.60
Z-SMLRY-3-0-12	5/28/2013	Z	3	0	12	ppm	136.64	50	YES	105	YES	128.77	295.11	60	YES	273	YES	207.94
Z-SMLRY-3-12-24	5/28/2013	Z	3	12	24	ppm	50	50	NO			40.07	60	60	NO			101.60
Z-SMLRY-4-0-12	5/28/2013	Z	4	0	12	ppm	50	50	NO			40.07	60	60	NO			101.60
Z-SMLRY-4-12-24	5/28/2013	Z	4	12	24	ppm	50	50	NO			40.07	60	60	NO			101.60
Z-SMLRY-5-0-12	5/28/2013	Z	5	0	12	ppm	50	50	NO			40.07	113.37	60	YES			125.74
Z-SMLRY-5-12-24	5/28/2013	Z	5	12	24	ppm	89.55	50	YES			80.56	60	60	NO			101.60
Z-SMLRY-5-24-36	5/28/2013	Z	5	24	36	ppm	50	50	NO			40.07	60	60	NO			101.60

Notes: 1) area-specific background value

2) calculated with values from correlation equation

Bolded values indicate samples that exceed arsenic and/or lead action levels

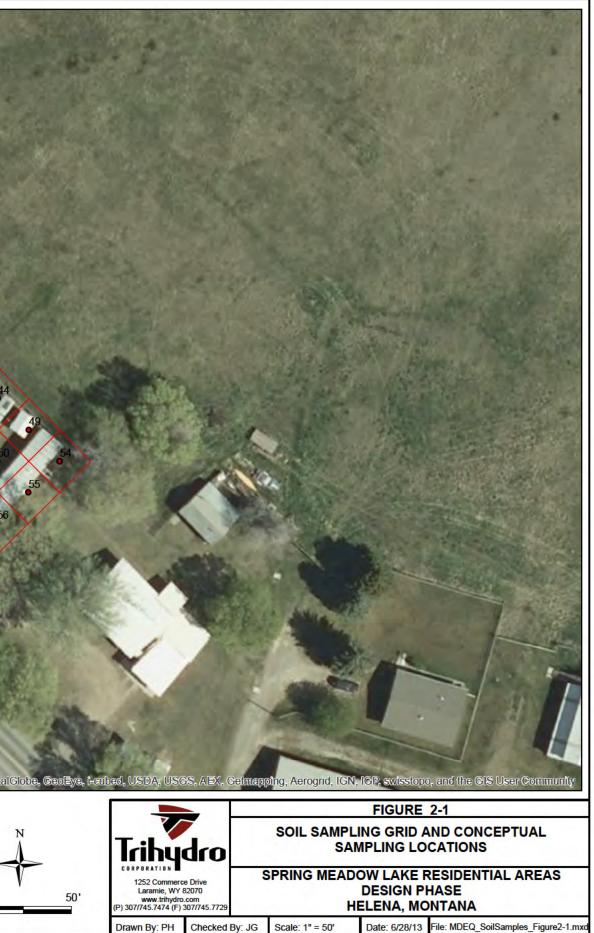
SSL=Soil Screening Level

RSL=Regional Screening Level

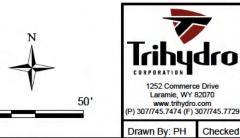
ppm=parts per million

TABLE 5.1. ESTIMATED SOIL VOLUMES TO BE EXCAVATED SPRING MEADOW LAKE RESIDENTIAL AREAS, DESIGN PHASE, HELENA, MONTANA

						N OPTION #1 by Grid) ²		N OPTION #2 2003) ³		N OPTION #3 NATION)
PROPERTY IDENTIFIER	SAMPLE NUMBER	EXCAVATION DEPTH (INCHES)	EXCAVATION DEPTH (FEET)	PORTION OF GRID EXCAVATED ¹	CUBIC FEET EXCAVATED	CUBIC YARDS EXCAVATED	CUBIC FEET EXCAVATED	CUBIC YARDS EXCAVATED	CUBIC FEET EXCAVATED	CUBIC YARDS EXCAVATED
Z	1	0	0	1	0	0.0	1150	42.6	0	0.0
z	2	36	3	1	1725	63.9	1150	42.6	1150	42.6
Z	3	12	1	1	575	21.3	1150	42.6	575	21.3
Z	4	0	0	1	0	0.0	1150	42.6	0	0.0
Z	5	24	2	1	1150	42.6	1150	42.6	1150	42.6
E	7	12	1	0.5	287.5	10.6	575	21.3	287.5	10.6
Ē	8	24	2	0.5	575	21.3	575	21.3	575	21.3
Ē	9	24	2	0.25	287.5	10.6	287.5	10.6	287.5	10.6
Ē	10	36	3	0.25	431.25	16.0	287.5	10.6	287.5	10.6
E	11	12	1	1	575	21.3	1150	42.6	575	21.3
Ē	13	36	3	0.5	862.5	31.9	575	21.3	575	21.3
E	14	12	1	0.5	287.5	10.6	575	21.3	287.5	10.6
E	15	24	2	1	1150	42.6	1150	42.6	1150	42.6
E	16	36	3	1	1725	63.9	1150	42.6	1150	42.6
E	17	36	3	0.5	862.5	31.9	575	21.3	575	21.3
E	18	48	4	0.5	1150	42.6	575	21.3	575	21.3
E	19	24	2	1	1150	42.6	1150	42.6	1150	42.6
E	20	24	2	0.5	575	21.3	575	21.3	575	21.3
E	20	36	3	1	1725	63.9	1150	42.6	1150	42.6
E	22	12	1	0.25	143.75	5.3	287.5	10.6	143.75	5.3
E	22	36	3	0.25	431.25	16.0	287.5	10.6	287.5	10.6
E	23	60	5	0.25	1437.5	53.2	575	21.3	575	21.3
E	24	36	3	0.5	862.5	31.9	575	21.3	575	21.3
C	25	48	4	1	2300	85.2	1150	42.6	1150	42.6
c	20	40	4	1			1150	42.6		
c	27	36	3	1	575	21.3	1150	42.6	575	21.3 42.6
c	28 29	30 24	3	1	1725 1150	63.9 42.6	1150	42.6	1150	42.6
c	29 30	24 24	2	0.75	862.5	42.6 31.9	862.5		1150	42.6 31.9
								31.9	862.5	
С	31	36	3	0.5	862.5	31.9	575	21.3	575	21.3
С	32	60	5	0.5	1437.5	53.2	575	21.3	575	21.3
С	33	12	1	0.5	287.5	10.6	575	21.3	287.5	10.6
С	34	48	4	0.5	1150	42.6	575	21.3	575	21.3
С	35	24	2	0.5	575	21.3	575	21.3	575	21.3
D	39	12	1	2	1150	42.6	2300	85.2	1150	42.6
D	40	24	2	1.25	1437.5	53.2	1437.5	53.2	1437.5	53.2
D	41	12	1	1.25	718.75	26.6	1437.5	53.2	718.75	26.6
D	42	0	0	0.5	0	0.0	575	21.3	0	0.0
D	43	60	5	0.5	1437.5	53.2	575	21.3	575	21.3
D	45	12	1	1.5	862.5	31.9	1725	63.9	862.5	31.9
D	46	12	1	1.5	862.5	31.9	1725	63.9	862.5	31.9
D	47	12	1	1.5	862.5	31.9	1725	63.9	862.5	31.9
D	48	12	1	1.5	862.5	31.9	1725	63.9	862.5	31.9
D	54	0	0	0.75	0	0.0	862.5	31.9	0	0.0
D	55	12	1	0.75	431.25	16.0	862.5	31.9	431.25	16.0
D	56	12	1	0.5	287.5	10.6	575	21.3	287.5	10.6
D	57	12	1	0.5	287.5	10.6	575	21.3	287.5	10.6
D	58	24	2	0.75	862.5	31.9	862.5	31.9	862.5	31.9
				TOTAL						
				FXCAVATION		1442.8		1597.2		1123.4


EXCAVATION (CU YDS) 1442.8 1597.2 1123.4 1) Estimate of prtion of grid available for excavation
2) Each grid excavated to individual depth of impact
3) All grids excavated to 2 ft depth (USEPA Superfund Lead-Contaminated Residential Sites Handbook) Notes:

FIGURES



EXPLANATION

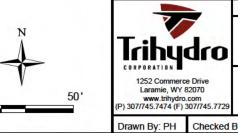
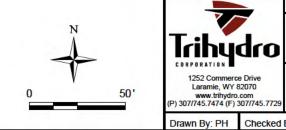

SOIL SAMPLE LOCATION

		FIGURE	2-2		
	ACTU	AL SAMPLE	LOCATIONS		
SPRING MEADOW LAKE RESIDENTIAL AREAS DESIGN PHASE HELENA, MONTANA					
d By: JG	Scale: 1" = 50'	Date: 6/27/13	File: MDEQ_SoilSamples_Figure2-2.mxd		

TCLP SAMPLE LOCATION

TCLP SAMPLE LOCATIONS							
SPRING MEADOW LAKE RESIDENTIAL AREAS DESIGN PHASE HELENA, MONTANA							
ed By: JG	Scale: 1" = 50'	Date: 6/28/13	File: MDEQ_SoilSamples_Figure2-3.mxd				



DEPTH OF IMPACT NO IMPACT 1 FOOT

2 FOOT

3 FOOT 4 FOOT

5 FOOT AND GREATER

		TIOUNE							
D	DEPTH OF IMPACT								
729		DOW LAKE F DESIGN P HELENA, MC							
(ed By: JG	Scale: 1" = 50'	Date: 6/28/13	File: MDEQ_SoilImpactsCont_Figure4-1.mxc						

APPENDIX A

UTILITY LOCATE RECORDS

To: TRIHYDRO CORPORATION Attn: JAMIE MONGOVEN Voice: 4065584848 Fax: Re: Message from CenturyLink Fax:
Message from CenturyLink
Ticket: 13034655 County: LEWIS AND CLARK Place: HELENA Address: 2466 COUNTRY CLUB AVE
QLNMT06: The described dig area of your locate request has been marked. CenturyLink Local Network facilities are present in the dig area. If you have any questions, please call CenturyLink at 800-283-4237 for former Qwest areas and 855-742-6062 for CenturyLink.
Message from CenturyLink

To:TRIHYDRO CORPORATIONAttn:JAMIE MONGOVENVoice:4065584848Fax:Re:Message from CenturyLink
Message from CenturyLink
Ticket: 13034653 County: LEWIS AND CLARK Place: HELENA Address: 2460 COUNTRY CLUB AVE
QLNMT06: The described dig area of your locate request has been marked. CenturyLink Local Network facilities are present in the dig area. If you have any questions, please call CenturyLink at 800-283-4237 for former Qwest areas and 855-742-6062 for CenturyLink.
Message from CenturyLink

To:TRIHYDRO CORPORATIONAttn:JAMIE MONGOVENVoice:4065584848Fax:Re:Message from CenturyLink
Message from CenturyLink
Ticket: 13034660 County: LEWIS AND CLARK Place: HELENA Address: 2510 COUNTRY CLUB AVE
QLNMT06: The described dig area of your locate request has been marked. CenturyLink Local Network facilities are present in the dig area. If you have any questions, please call CenturyLink at 800-283-4237 for former Qwest areas and 855-742-6062 for CenturyLink.
Message from CenturyLink

To: TRIHYDRO CORPORATION Attn: JAMIE MONGOVEN Voice: 4065584848 Fax: Re: Message from CenturyLink
Message from CenturyLink
Ticket: 13034657 County: LEWIS AND CLARK Place: HELENA Address: 2470 COUNTRY CLUB AVE
QLNMT06: The described dig area of your locate request has been marked. CenturyLink Local Network facilities are present in the dig area. If you have any questions, please call CenturyLink at 800-283-4237 for former Qwest areas and 855-742-6062 for CenturyLink.
Message from CenturyLink

From:	onecall@p66.com
To:	Jamie Mongoven
Subject:	Ticket: 13034653 has been completed
Date:	Tuesday, May 21, 2013 5:14:56 PM

Ticket: 13034653 has been completed

Company: TRIHYDRO CORPORATION Email: JMONGOVEN@TRIHYDRO.COM

Ticket Number: Work to Begin D	13034653 ate/Time: 05/28/2013 08:00:00 am
County:	LEWIS AND CLARK
City:	HELENA
Address:	2460 COUNTRY CLUB AVE
Contact:	JAMIE MONGOVEN
Phone:	(406)558-4848
Member Code	Facility Last Completion Date/Time

CONOCO02 GAS4 05/21/2013 05:07:35 pm ** Excavation Site Clear, ON SITE INSPECTION ** Remarks: ypl is clear, pipeline is 700 ft to the north west.

If you have problems with this report please contact: Phillips 66 OneCall Center (918)977-7816 Notes: PLEASE DO NOT REPLY TO THIS EMAIL/FAX. PLEASE CONTACT US IF YOU HAVE ANY

QUESTIONS. CONOCOPHILLIPS PIPELINE IS NOW PHILLIPS 66 PIPELINE LLC. IF YOU HAVE ANY AVE ANY QUESTIONS REGARDING THIS CHANGE PLEASE CALL US AT 918-977-7816. THANK YOU

From:	onecall@p66.com
To:	Jamie Mongoven
Subject:	Ticket: 13034655 has been completed
Date:	Tuesday, May 21, 2013 5:13:45 PM

Ticket: 13034655 has been completed

Company: TRIHYDRO CORPORATION Email: JMONGOVEN@TRIHYDRO.COM

Ticket Number:	13034655
Work to Begin D	ate/Time: 05/28/2013 12:00:00 am
County:	LEWIS AND CLARK
City:	HELENA
Address:	2466 COUNTRY CLUB AVE
Contact:	JAMIE MONGOVEN
Phone:	(406)558-4848
Member Code	Eacility Last Completion Date/Time
Member Code	Facility Last Completion Date/Time

CONOCO02 GAS4 05/21/2013 05:07:35 pm ** Excavation Site Clear, CLEARED BY MAP **

Remarks: ypl is clear, pipeline is 600 plus ft to the north west.

If you have problems with this report please contact: Phillips 66 OneCall Center (918)977-7816 Notes: PLEASE DO NOT REPLY TO THIS EMAIL/FAX. PLEASE CONTACT US IF YOU HAVE ANY

QUESTIONS. CONOCOPHILLIPS PIPELINE IS NOW PHILLIPS 66 PIPELINE LLC. IF YOU HAVE ANY AVE ANY QUESTIONS REGARDING THIS CHANGE PLEASE CALL US AT 918-977-7816. THANK YOU

From:	onecall@p66.com
To:	Jamie Mongoven
Subject:	Ticket: 13034657 has been completed
Date:	Tuesday, May 21, 2013 5:12:38 PM

Ticket: 13034657 has been completed

Company: TRIHYDRO CORPORATION Email: JMONGOVEN@TRIHYDRO.COM

	13034657 ate/Time: 05/23/2013 12:00:00 am	
County:	LEWIS AND CLARK	
City:	HELENA	
Address:	2470 COUNTRY CLUB AVE	
Contact:	JAMIE MONGOVEN	
Phone:	(406)558-4848	
Member Code	Facility Last Completion Date/Time	

CONOCO02 GAS4 05/21/2013 05:07:35 pm ** Excavation Site Clear, CLEARED BY MAP **

Remarks: ypl is clear, pipeline is 500 plus ft to the north.

If you have problems with this report please contact: Phillips 66 OneCall Center (918)977-7816 Notes: PLEASE DO NOT REPLY TO THIS EMAIL/FAX. PLEASE CONTACT US IF YOU HAVE ANY

QUESTIONS. CONOCOPHILLIPS PIPELINE IS NOW PHILLIPS 66 PIPELINE LLC. IF YOU HAVE ANY AVE ANY QUESTIONS REGARDING THIS CHANGE PLEASE CALL US AT 918-977-7816. THANK YOU

From:	onecall@p66.com
To:	Jamie Mongoven
Subject:	Ticket: 13034660 has been completed
Date:	Friday, May 24, 2013 8:27:11 AM

Ticket: 13034660 has been completed

Company: TRIHYDRO CORPORATION Email: JMONGOVEN@TRIHYDRO.COM _____ Ticket Number: 13034660 Work to Begin Date/Time: 05/28/2013 12:00:00 am County: LEWIS AND CLARK City: HELENA City: Address: 2510 COUNTRY CLUB AVE Contact: JAMIE MONGOVEN Phone: (406)558-4848 _____ Member Code Facility Last Completion Date/Time GAS4 05/24/2013 08:17:11 am CONOCO02 ** Excavation Site Clear, CALLED FOR CLARIFICATION ** Remarks: ypl is clear, pipeline is 400 ft to the north west from address. calle Jamie M ongoven for clarification at 406.558.4848. • ------If you have problems with this report please contact: Phillips 66 OneCall Center (918)977-7816 Notes:

PLEASE DO NOT REPLY TO THIS EMAIL/FAX. PLEASE CONTACT US IF YOU HAVE ANY QUESTIONS. CONOCOPHILLIPS PIPELINE IS NOW PHILLIPS 66 PIPELINE LLC. IF YOU HAVE ANY QUESTIONS REGARDING THIS CHANGE PLEASE CALL US AT 918-977-7816. THANK YOU

APPENDIX B

SAMPLING LOG

2	1		SUR		AMPLING F		RM 2 of 2		Trihydro
		25		 All inter 	Sampling Criteria f screened intervals bel vals screened within 28 screened intervals exce	0 and 400 ppm			
SCREEN DATE	SCREEN	LOCATION ID	SAMPLE	XRF - Ph 45 (ppm)	SCREEN DATE	SCREEN TIME	LOCATION ID	SAMPLE INTERVAL	XRF - Pb (ppm)
5.2/3	1100	D-58	2	ND COLUL	5-30-13	1300	Ter-1	1.0 - 1.0'	167/
			2-0-5:0	ND444				2.0 - 3.0'	ND LAS
TOTAL	DEPTH	48"	3.0 4.0		TUTAL	DEPTH	44"	3.0 - 4.0'	· .
5-30-/3	1115	ASCOS-5502 D-403	5-6 10-20'	109 ND 1 76	5-30-13	1	€.23	0.0 - 1.0	
		REFLISAL	2,0-3,0'					2.0 - 3.0'	NDC 51
TOTAL 5-30-13	DEPTH 1130	50'' D-40	3.0-4.0 4-5 0.0-10	Not 44	TotAL 5-90-13		48 E-24	5.0-4.0	ND CCS 78
5-50-15	(190	<i>p- 40</i>	5-6'	HOL 45	0			1-2.0	ND < 51/ND < 43
TOTAL	DGOTH	REFUSAL 72"	3,0-40		TOTAL D	SPTH -	72" Rófusi	30-40-	
	1145	D-45	_0.0_ <u>1:0</u> -					0.0 - 1.0'	
		P-72	1.0-2.0				111	1.0 - 2.0'	
9		REFUSAL	2.0 - 3.0'	NUC 44	•			2.0 - 3.0'	
TotAL	DEPTH	38"	3.0 - 4.0'	NOC 67 NDC 67				3.0 - 4.0'	
		ASC03-SS05	0.0 - 1.0'		-			0.0 - 1.0'	
		0	1.0 - 2.0'					1.0 - 2.0'	100 1000 Aur 1
			2.0 - 3.0'	1				2.0 - 3.0'	
			3.0 - 4.0'				-	3.D - 4.0'	
					Notes:				

				· 10% o · All inter	IF SCREENING LOCA Sampling Criteria f screened intervals be vals screened within 28 screened intervals exce	ow 280 ppm 0 and 400 ppm			
SCREEN DATE	SCREEN TIME	LOCATION ID	SAMPLE INTERVAL	XRF - Pb	SCREEN DATE	SCREEN TIME	LOCATION ID	SAMPLE INTERVAL	XRF - Pb (ppm)
5-29-3	1115	E-7	0.0 - 1.0'	261	5-29-13	1325	E-13	0.0 - 1.0	NOX 67/130
			1.0 - 2.0'					1.0 - 2.0'	ND160/251
			2.0 - 3.0'	14				2.0 - 3.0'	ND < 62/82
REFUS	AL C)2"	3.0 - 4.0		REFUSA	: e .	36"	3.0 - 4.0	/
	1130	E-8	0.0 - 1.0'	126	3.29-13	1350	E-17	0.0 - 1.0	90 / 227
			1.0 - 2.0'	ND(50				1.0 - 2.0'	2199/4118
			2.0 - 3.0'			1		2.0 - 3.0'	152/133
REF= 14	L E 2	2"	3.0 - 4.0'		TOTAL	DEF TH	€ 45'	3.0 - 4.0'	ND/57 /ND 453
5-29-13		E-9	0.0 - 1.0'	826	3/29/13	1415	E-16	0.0 - 1.0'	82/306
			1.0 - 2.0'	ND<57				1.0 - 2.0'	ND < 56 /102
			2.0 - 3.0'					2,0 - 3,0'	86 /110
REFUSA	re 2	4"	3.0 - 4.0'		Ri Fus	ce	42 11	3.0 - 4,0'	115/ND - 84/
5-29-13	1245	5-10	0.0 - 1.0'	2419				0.0 - 1.0'	
			1.0 - 2.0'	NDLY	7			1.0 - 2.0'	
			2.0 - 3.0'	171/381				2.0 - 3.0'	
REFUSAL	C 32"		3.0 - 4.0'					3.0 - 4.0'	
- 29-13		E=14	0.0 - 1.0'	1569/2424				0.0 - 1.0'	
			1.0 - 2.0'	80/ND (40				1.0 - 2.0'	
			2.0 - 3.0'					2.0 - 3.0'	
TOTAL	PERTH	24"	3.0 - 4.0'					3.0 - 4.0'	
					Notes:				

8

ę.,

N. 6

Trihydro SURFACE SOIL SAMPLING FIELD FORM 2 of 2 XRF SCREENING LOCATIONS Sampling Criteria 10% of screened intervals below 280 ppm All intervals screened within 280 and 400 ppm · 10% of screened intervals exceeding 400 ppm SCREEN SCREEN SAMPLE XRF - Pb **SCREEN** SCREEN XRF - Pb LOCATION ID LOCATION ID SAMPLE INTERVAL DATE TIME INTERVAL DATE TIME (ppm) 570 454 683 0.0 - 1.0' 5/30/13 0830 6-29 1005 (-3Z 0.0 - 1.0 503 5/30/13 266/247 670 1.0 - 2.0' 1.0 - 2.0 943 1015 ND4 48 54 2.0 - 3.0' 2.0 - 3.0 WETC 30" 10<5 78-60 93 Ľ 92 " Refuge NDK 3.0 - 4.0 83 3.0 - 4.0 TOTAL DEPTH 48 ND267 100/137 TOTAL DEPTH C-34 0.0 - 1.0 270 128 0.0 - 1.0' 1153 0840 C-33 13 045 405/543 ND 42 1.0 - 2.0' 1.0 - 2.0' VDK 34 134/180 2.0 - 3.0' 2.0 - 3.0 WET 77 đ 3.0 - 4.0 11 3.0 - 4.0 72" TOTAL DEPTH 24 DEPTH 800 124 0.0 - 1.0 0.0 - 1.0 13 0915 6-35 5/30 1.0 - 2.0' 478 1.0 - 2.0' 5 NOC 9 NDENDC Z.0 · 3.0' 2.0 - 3.0' 48" TOTAL DEDTO 3.0 - 4.0' 3.0 4.0 Noci 678 0.0 - 1.0 1684 0.0 - 1.0' 0920 C-30 460 1.0 - 2.0' 1.0 - 2.0' 787 10644 2.0 - 3.0 NOC44 2.0 - 3.0' NOCHT TOTAL DEPTH 48" 3.0 - 4.0' 3.0 - 4.0' 10H 1012 0946 L-31 0.0 - 1.0 60 0.0 - 1.0' 30 15 44 1.0 - 2.0' 1.0 - 2.0' NDC43 2.0 - 3.0' 2.0 - 3.0' TOTAL DEATH 48 WET 3.0 - 4.0 3.0 - 4.0' Notes: 18"-24" GEBLES DEPTH FROM ENCONTER w/ Low ZECOVERY - NGT @ 24' SILTY SANDS

	SCREEN	LOCATION ID	SAMPLE INTERVAL	XRF - Pb (ppm)	SCREEN DATE	SCREEN TIME	LOCATION ID	SAMPLE INTERVAL	XRF - Pb (ppm)
5-28-13	1330	A5602-5501	0.0 - 1.0'	79	5/28/13	1459	D-57	0.0 - 1.0'	ND(50) -
			1.0 - 2.0'	NO<57				1.0 - 2.0*	ND(63) \$
			2.0 - 3.0'					2.0 - 3.0"	
TOTA	DEPTH 2	4	3.0 - 4.0'		-1.71	al det	h 24"	3.0 - 4.0'	
5-28-13		-ASC03-5502	0.0 - 1.0'	287	5/18/13	1302	D-56	0.0 - 1.0	149
	1017	p-10	1.0 - 2.0'	ND LYB	4.10			1.0 - 2.0"	togs NOL6
			2.0 - 3.0'					2.0 - 3.0'	un ug i f
TOTAL DE	STH 24	11	3.0 - 4.0'		To	THE DEP	TH 24"	3.0 - 4.0'	
5-28:13		D = 41	0.0 - 1.0'	176	5/28/13	1505	D-55	0.0 - 1.0'	NDIGO
			1.0 - 2.0'	NDIY9				1.0 - 2.0'	NDI SI
			2.0 - 3.0'					2.0 - 3.0'	
TOTAL	- De. P. 74 1400	24"	3.0 - 4.0'		101	AL DEP	14 24"	3.0 - 4.0'	
5-28-13	1900	ASCO3 418	0.0 - 1.0'	1037	5/28/13	1520	b-54	0.0 - 1.0'	7/
		2	1.0 - 2.0'	NOSU				1.0 - 2.0'	10 (51
			2.0 - 3.0'					2.0 - 3.0'	
TOTAL	Difilt	, 21''	3.0 - 4.0'		TUTAL	DECTH	24 11	3.0 - 4.0'	
5-28-13	DifT//	ASC03-5505	0.0 - 1.0'	179				0.0 - 1.0'	
		Y 50	1.0 - 2.0'	NESGI				1.0 - 2.0'	
			2.0 - 3.0'					2.0 - 3.0'	
To-TAL	DESTU 21	-1'	3.0 - 4.0'					3.0 - 4.0'	
					Notes:				

0

Trihydro

XRF SCREENING LOCATIONS Sampling Criteria 10% of screened intervals below 280 ppm · All intervals screened within 280 and 400 ppm 10% of screened intervals exceeding 400 ppm XRF - Pb SCREEN SCREEN XRF - Pb **SCREEN** SCREEN SAMPLE LOCATION ID LOCATION ID SAMPLE INTERVAL DATE TIME INTERVAL (ppm) DATE TIME (ppm) 113 D-39 398 8:40 - ASC03-SS01 5/28/12 1110 0.0 - 1.0 5/20/13 0.0 - 1.0 Z-5 NIX(4) D-31 1.0 - 2.0 1.0 - 2.0 1417 ND (54) 2.5 2.0 - 3.0' 2.0 - 3.0' 33 CETURA! @ TOTAL DEPTH 24" 3.0 - 4.0' 3.0 - 4.0' 5123/13 9:07 163 0.0 - 1.0' ND(58) 5/27/13 1225 D-40 0.0 - 1.0 ABRUSTON 312 7-4 1.0 - 2.0 ND(54 1.0 - 2.0 ref 1/41 24" 2.0 - 3.0' 2.0 - 3.0' a NOC51 NOCLIG 3.0 - 4.0 3.0 - 4.0 TOTAL DEPTH 48 295 9:35 1041 5/23/77 - 49003-3303 0.0 - 1.0 5/28/13 0.0 - 1.0 D-41 1245 2.3 ND (64) 1.0 - 2.0' 1.0 - 2.0' ND < 52 241 Q retural 2.0 - 3.0' 2.0 - 3.0' 3.0 - 4.0 3.0 - 4.0' DEPTH 24" TOTAL 5/2-7/13 9:55 5/28/13 143 1255 0.0 - 1.0 206 A5LU3-5304 0.0 - 1.0 -42 195 dious To 48" 86 7-2 1.0 - 2.0' 1.0 - 2.0' snil rewerd 2-2 NDK54 2.0 - 3.0 2.0 - 3.0 NO(73) TO 36'-NDISO 3.0 - 4.0 3.0 - 4.0 5/28/13 1305 271 5/28/13 10:20 - ASCUS-SSUS 0.0 - 1.0' 174 0.0 - 1.0 D-43 2-1 284 ND(6) refush Twice 1.0 - 2.0' 1.0 - 2.0' @ 12" side-NO 157 2.0 - 3.0 2.0 - 3.0 STEPPOL. NOK 56 3.0 - 4.0' 3.0 - 4.0' Notes: 712 ** generally Gravel 5:1+1 n 0-12" 122 55013 sant

S.

Trihydro

6

XRF SCREENING LOCATIONS Sampling Criteria . • 10% of screened intervals below 280 ppm All intervals screened within 280 and 400 ppm 10% of screened intervals exceeding 400 ppm SCREEN SCREEN SAMPLE XRF - Pb SCREEN **SCREEN** XRF - Pb LOCATION ID LOCATION ID SAMPLE INTERVAL DATE * DATE TIME INTERVAL (ppm) TIME (ppm) 8-22 E-19 0.0 - 1.0' 5-29-13 0.0 - 1.0 269 NOLLet 1000 5-29-13 0835 74 1.0 - 2.0 795 10-20 2.0 - 3.0' 2.0 - 3.0' ND <51 . Ze u 24". ٠ TUTAL DEPTH 3.0 - 4.0 3.0 - 4.0 TOTAL DEPTH 0.0 - 1.0' 1005 E 21 0.0 - 1.0' 120 5-24 3 0850 E-20 5-27-13 NDKGG ZZ8 1.0 - 2.0' 1.0 - 2.0 1446 164 2,0 - 3,0' 2.0 - 3.0' ND <53 110 48° 48" 3.0 - 4.0 MO < 43 TOTAL DEPTH 3.0 - 4.0' TOTAL DEPTH 83 5-29-13 1040 0.0 - 1.0' E-)8 0.0 - 1.0 131 5-26-13 .0905 E.25 95 1.0 - 2.0' 1432 1.0 - 2.0' . 75 108 2.0 - 3.0 2.0 - 3.0' 1 TUTAL DEPTH/RETRIGHC 48" Z 36 48." ND 457 3.0 - 4.0' 3.0 - 4.0 TOTAL DEPTH 95 ADG65 5-29-13 1100 0.0 - 1.0 0.0 - 1.0 E-24 ≤-)5 5-29-13 0935 274. . 308 1.0 - 2,0' 1.0 - 2.0' NDS 53 2.0 - 3.0 2.0 - 3.0' 40" 20" REFUSAC C TO TAC DOMA NX50 3.0 - 4.0' 3.0 - 4.0' 5-24-13 110 130 2442 T-29-13 0950 E-H 0.0 - 1.0' 6.23 0.0 - 1.0 NDC55 1.0 - 2.0' 1.0 - 2.0' 2.0 - 3.0' Z.D - 3.0' 0 241 RE Fugge @ .12 TOTAL DEPTH 3.0 - 4.0 3.0 - 4.0' Notes:

di.

Trihydro XRF SCREENING LOCATIONS Sampling Criteria 10% of screened intervals below 280 ppm All intervals screened within 280 and 400 ppm 10% of screened intervals exceeding 400 ppm SCREEN SCREEN XRF - Pb (ppm) SCREEN SAMPLE XRF - Pb SCREEN LOCATION ID LOCATION ID SAMPLE INTERVAL DATE TIME INTERVAL (ppm) DATE TIME 193 0.0 - 1.0 173 0.0 - 1.0' 5-29-13 1510 C-28 87 l 1.0 - 2.0' 1.0 - 2.0' 11 60 ND <0 Z.0 · 3.0 Z.O - 3.0' 98 ND 4 TOTAL DEOTH 48" 3.0 - 4.0 3.0 - 4.0 AD 4 989 0.0 - 1.0 0.0 - 1.0' 5-29-13 1530 C-27 1148 ND est 1.0 - 2.0' 1.0 - 2.0' ND 44 2.0 - 3.0' 2.0 - 3.0 TUTAL DEPTH 24" 3.0 - 4.0' 3.0 - 4.0' 100 C-26 5.29.13 1546 0.0 - 1.0 145 0.0 - 1.0' 35 1.0 - 2.0' 1.0 - 2.0° 1316 2.0 - 3.0 2.0 - 3.0 251 3.0 - 4.0" 3.0 - 4.0' Réfashe e 48" 61 0.0 - 1.0' 0.0 - 1.0 1.0 - 2.0 1.0 - 2.0 2.0 - 3.0' 2.0 - 3.0 3.0 - 4.0 3.0 - 4.0 . . 0.0 - 1.0 0.0 - 1.0 1.0 - 2.0 1.0 - 2.0' 2.0 - 3.0' 2.0 - 3.0' 3.0 - 4.0 3.0 - 4.0' Notes:

SURFACE SOIL SAMPLING FIELD FORM 2 of 2

5/31/2013

,			
		1	
ORIGINAL	TELP NAME	XRF7L	XRF As
2.5 -2	TCL7-2- 0-36	197	/3/
2-2 -A	TCLP-3-0-36	104	ND < 80
E - 13	TCLP- 4 - 0- 36	243	525
E - 18	7667-5-0-418	305	
E -24	TCLF-6-0-72		461
C - 76	TCLP -7 - 0- 48	277	392
C - 28	TCLF-8-0-48	367 533	435
C - 31	TCLP-9-0-18		773
•	100-18	728	742
D - 40	TCLF - 10 - 0 - 72	108	169
D-43	TCLP-11-0-60	219	NOLLOC
D-45	TCL7 -12-0-42	84	NDL 69
			1
			at an
Мененици, _{стра}			
		-	5

Daily XRF Calibration Blank Check

Spring Meadow Lake Helena, Montana 776-020-001

-	27	XRF Model:	XL	37 600	2	XRF SN:	42	498		7	76-020-00
Trih	ydro	Date / Time 07 <i>3</i> 0 / 5-28		Date / Time	3 5	Date / Time /3./13 / 0717		Date / Time /	<u>ات ا</u>	Date / Time /	d.um
	Standard Concentration	XRF Reading 1	Calibrator	XRF Reading 2	Calibrator	XRF Reading 3	Calibrator	XRF Reading 4	Calibrator	XRF Reading 5	Calibrator
· · · · · · · · ·	(ppm)	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials
Lead	500	476	JM	460	Jim	473	Ju	1	1		1
Barium	NA	575		670	1	788	1	1	1.000		
Cadmium	500	489		514		512			1		-
Chromium	500	530		456		458		1	1.2.1		
Mercury	NA	NO < 42		NOL46		NO 6 42		1.00	1		1.00
Selenium	500	491	112.1	53(538			1.4	-	1
Silver	500	511		554		568		1	121		1
Arsenic	500	485		445	5	442					1
	1	Date / Time 6738 /5-26-2	a>	Date / Time 5-24-13 / 0246		Date / Time 5/30/13 / 07114		Date / Time /		Date / Time /	
	Blank Concentration	XRF Blank Reading 1		XRF Blank Reading 2	Calibrator	XRF Blank Reading 3	Calibrator	XRF Blank Reading 4	Calibrator	XRF Blank Reading S	Calibrator
	(ppm)	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials
Léad	NA	ND < ZG	JM	NO 6 31	Ja	NOL 31	Ju		123		
Barium	NA	ND < 223	Ĩ	ND 2246		ND 4 237	t pl.	1.	1		
Cadmium	NA	ND < 43		NDE 47		NOC 44	·		1		
Chromium	NA	NDK TO		ND (79	1212	NDC 77	· .	÷	1		
Mercury	NA	ND < 37		NDC 33		NDC 33					
Selenium	NA	ND & 18		NDC 15		NDS 17					
Silver	NA	ND 4 31		ND 4 35		NDC 32					1
Arsenic	NA	NDC 23	1	NOS 21	1	NDE 23	1		1.		

Reference standards and blank will be checked once each hour or every twenty samples whichever occurs first and also at the end of the period of operation. XRF daily calibration.xlsx

Projec	t / Client	SML /1	MDEQ		
(Lawy, s	PRINKLIN	16 . 55	r#-	
6800	GiPt	TM ON	PROP.	Z	
	STAKED	POINT	1-4 3:	5	
	POINTS	6-10	ARE NUT	SAN PLA	DUE To
	PLak 1 mg	Ty or se	WER MAIN	+ TREES	FRUE
0840	SAMPLED				
	TOA	16" SA	VOY SILT,		
		16-38"	GRAVEL ,	38" REP	4.5AL
0905	2-SMLRY		-	74	
0935	Z-SMLRY	-03 R	t FusAc	C 24"	
0955	I-SALRY	1.02 S	TOPPEDC	48" 60	AVER 18"
20			147		
w	2-SMLRY.	01 57	SPEN C.	24" GRA	186 8 12"
	Contraction (1976)		Sier C.	RY" GRA	UBL & 12"
OFF PR	oreaty 2	1050		24" (J.BA	UBK &]2"
0FF PR	OPERTY 2 C	1050 TY - D		«Y" (3RA	V& () Z *
0FF PR	N PROPER	2 1050 TY - D RAINAU	5		UBL &]Z"
0FF PR. 10.55 	N PROPER N PROPER STARTED D SMLRY	2 /050 TY - D RAINAL - 39 ST	б Горред С	24"	UBL & JZ"
0FF PR. 1055	D-SMLRY	2 1050 TY - D RAINAN - 39 57 - 40	g Forped C 4 8	24 '' 48 ''	UBL @]2"
0FF PR. 1055	D-SMLRY D-SMLRY D-SMLRY	2 /050 TY - D RAINAU - 39 ST - 40 - 41	G TOPPED C 4 8 4 8	24" 48" 24"	UBL @)2"
0FF PR 10.55 	D-SMLRY D-SMLRY D-SMLRY D-SMLRY	2 1050 TY - D RAINAL - 39 ST - 40 - 41 - 42	5 Forped C 4 8 11 E 11 E	24" 48" 24" 2 4"	UBL @]2"
0FF PR 	D-SMLRY D-SMLRY D-SMLRY D-SMLRY D-SMLRY D-SMLRY	2 1050 TY - D RAINAN - 39 ST - 40 - 41 - 42 - 43	5 TOPPED C 4 8 4 8 11 8 11 8 11 8 11 8 11 8 11 8 1	24" 48" 24" 24" 2 4" 2 4" 2 4" 2 4" 4 4" 4444444444444	UBL @]2"
0FF PR 0.55 	D-SMLRY D-SMLRY D-SMLRY D-SMLRY D-SMLRY D-SMLRY D-SMLRY	2 1050 TY - D RAINAN - 39 57 - 41 - 42 - 43 - 45	5 15 PP 65 C 4 8 1	24" 48" 24" 2 9" 38" 48" 2.4"	UBL @)2"
0FF PR 	D-SMLRY D-SMLRY D-SMLRY D-SMLRY D-SMLRY D-SMLRY D-SMLRY	-41 -43 -46 -44	G TOPPED C 4 6 4 6 4 6 4 6 4 6 6 6	24" 48" 24" 24" 2 4" 2 4" 2 4" 2 4" 4 4" 4444444444444	UBL @)2"

21 Location _ Date Project / Client P. 2 1445 D-SMLRY- 58 STAPSOE 24' 1450 D-SmLRY-57 1455 D-SMLRY-56 11 241 .1 24" C C 1505 D-SMLRY -55 11 24" " e 24" 1520 D-SMLRY-54 1945 Leaving D- 1st stfice. healed to 100

22 Locati	on <u>He</u>	LENA MT	-	Date 5	129/13
Projec	t / Client	SML / M	DEQ		
C	Londy - (Acm	53'	of - 63	4
		PROPERTY			
	E-SML			e 48"	
0 850	E-SMLR	Y-20	11	e 48"	
0905	E-SMLIZ	1-25	H	e 48"	
0935	E.SMLRY	- 24	11	C48'	
	G-SMLRY		21	e 24 *	
	E-SALAY -		10	e z"	REFUSAL
	E-SMLRY		**	e 45"	REFASAL
	E-5M 424 -			2 48"	REFUSA C
	E-SMLRY-			e 20"	REFUSAL
	E-SMLRY		11 0	2 12 "	REFUSAL
	- SMLRY			\$12"	REFLISAL
130 E	- SAILRY	-8		244	REFUSAL
	-SML RY -		и	24'	REFLSA:L
	-SMLRY-			32"	REFUSAL
	-SMLRY -		не	2 24"	
	-SMIRY -				LEF WSAL
	- SMLRY -1			48"	
	SMLRY.1				6.E. usAL
		EC 14			
		C 14	ur é	j.a.	- 4
	1	1			
	-			1	+_+

23 Date Project / Client PGZ 1510 C-SMLRY-28 TOTAL DEPTH 48" 1530 C-SMIRY-27 24" 41 1) " 48" REFERRAC 1540 C- SMALRY-26 = 1405 OFF STE SAMPLE POINTS 36, 37, 38 WERE NOT SAMPLED RETO PROXIMITY OF WTILLTIES. SAMPLE POINT & WAS NOT SAMPLED DUG TO PROSME OF SEWER MAIN, and BURYED TANK. SAMPLE POINT 12 WAS NOT SAMPLED DUE TO CONFLICT W/ House CONSAINS MAJORITY OF SAMPLE GRIA SAMPLE POINTS 44, 49,50, 51,52,53 WAS NOT SAMPLE DUE TO PROXIMITY OF LITILITIES BURGE GAS, TEL & POWER.

2	1		SUR		AMPLING F		RM 2 of 2		Trihydro
		25		 All inter 	Sampling Criteria f screened intervals bel vals screened within 28 screened intervals exce	0 and 400 ppm			
SCREEN DATE	SCREEN	LOCATION ID	SAMPLE	XRF - Ph 45 (ppm)	SCREEN DATE	SCREEN TIME	LOCATION ID	SAMPLE INTERVAL	XRF - Pb (ppm)
5.25-13	1100	D-58	2	ND COLUL	5-30-13	1300	Ter-1	1.0 - 1.0'	167/
			2-0-5:0	ND444				2.0 - 3.0'	ND LAS
TOTAL	DEPTH	48"	3.0 4.0		TUTAL	DEPTH	44"	3.0 - 4.0'	· .
5-30-/3	1115	ASCOS-5502 D-403	5-6 10-20'	109 ND 1 76	5.30.13	1	€.23	0.0 - 1.0	
		REFLISAL	2,0-3,0'					2.0 - 3.0'	NDC 51
TOTAL 5-30-13	DEPTH 1130	50'' D-40	3.0-4.0 4-5 0.0-10	Not 44	TotAL 5-90-13		48 E-24	5.0-4.0	ND CCS 78
5-50-15	(190	<i>p- 40</i>	5-6'	HOL 45	0			1-2.0	ND < 51/ND < 43
TOTAL	DGOTH	REFUSAL 72"	3,0-40		TOTAL D	SPTH -	72" Rófusi	30-40-	
	1145	D-45	_0.0_ <u>1:0</u> -					0.0 - 1.0'	
		P-72	1.0-2.0				111	1.0 - 2.0'	
9		REFUSAL	2.0 - 3.0'	NUC 44	•			2.0 - 3.0'	
TotAL	DEPTH	38"	3.0 - 4.0'	NOC 67 NDC 67				3.0 - 4.0'	
		ASC03-SS05	0.0 - 1.0'		-			0.0 - 1.0'	
		0	1.0 - 2.0'					1.0 - 2.0'	100 1000 Aur 1
			2.0 - 3.0'	1				2.0 - 3.0'	
			3.0 - 4.0'				-	3.D - 4.0'	
					Notes:				

				· 10% of All inter	RF SCREENING LOCA Sampling Criteria f screened intervals be vals screened within 28 screened intervals exce	ow 280 ppm 0 and 400 ppm			
SCREEN DATE	SCREEN TIME	LOCATION ID	SAMPLE INTERVAL	XRF - Pb	SCREEN DATE	SCREEN TIME	LOCATION ID	SAMPLE INTERVAL	XRF - Pb (ppm)
5-29-13	1115	E-7	0.0 - 1.0'	201	5-29-13	1325	E-13	0.0 - 1.0	NPX 67/130
			1.0 - 2.0'					1.0 - 2.0'	ND160/251
			2.0 - 3.0'	14				2.0 - 3.0'	ND<62/82
REFUS	AL C)2"	3.0 - 4.0		REFUSA	: e	36"	3.0 - 4.0	/
	1130	E-8	0.0 - 1.0'	126	3.29-13	1350	E-17	0.0 - 1.0'	90 / 227
			1.0 - 2.0'	ND(50				1.0 - 2.0'	2199/4118
			2.0 - 3.0'			1		2.0 - 3.0'	152/133
REFASAL @ 22"			3.0 - 4.0'		TOTAL	DEF TH	€ 45'	3.0 - 4.0'	ND/ST /ND 453
5-29-13		E-9	0.0 - 1.0*	826	3/20/13	1415	E-16	0.0 - 1.0'	82/306
			1.0 - 2.0'	ND<57				1.0 - 2.0'	ND < 56 /102
			2.0 - 3.0'					2,0 - 3,0'	86 /110
REFUSAL @ 24"			3.0 - 4.0'		Re Fus	c c	42 11	3.0 - 4,0'	115/ND - 84
5-29-13	1245	5-10	0.0 - 1.0'	2419				0.0 - 1.0'	
			1.0 - 2.0'	NDLY	-			1.0 - 2.0'	
			2.0 - 3.0'	171/381				2.0 - 3.0'	
REFUSAL	C 32"		3.0 - 4.0'					3.0 - 4.0'	
<- 29-13		E=14	0.0 - 1.0'	1569/2424				0.0 - 1.0'	
			1.0 - 2.0'	80/ND +60				1.0 - 2.0'	
			2.0 - 3.0'					2.0 - 3.0'	
TOTAL	PERTH	24 "	3.0 - 4.0'					3.0 - 4.0'	
					Notes:				

8

ę.,

N. 6

Trihydro SURFACE SOIL SAMPLING FIELD FORM 2 of 2 XRF SCREENING LOCATIONS Sampling Criteria 10% of screened intervals below 280 ppm All intervals screened within 280 and 400 ppm · 10% of screened intervals exceeding 400 ppm SCREEN SCREEN SAMPLE XRF - Pb **SCREEN** SCREEN XRF - Pb LOCATION ID LOCATION ID SAMPLE INTERVAL DATE TIME INTERVAL DATE TIME (ppm) 570 454 683 0.0 - 1.0' 5/30/13 0830 6-29 1005 (-3Z 0.0 - 1.0 503 5/30/13 266/247 670 1.0 - 2.0' 1.0 - 2.0 943 1015 ND4 48 54 2.0 - 3.0' 2.0 - 3.0 WETC 30" 10<5 78-60 93 Ľ 92 " Refuge NDK 3.0 - 4.0 83 3.0 - 4.0 TOTAL DEPTH 48 ND267 100/137 TOTAL DEPTH C-34 0.0 - 1.0' 270 128 0.0 - 1.0' 1153 0840 C-33 13 045 405/543 ND 42 1.0 - 2.0' 1.0 - 2.0' VDK 34 134/180 2.0 - 3.0' 2.0 - 3.0 WET 77 đ 3.0 - 4.0 11 3.0 - 4.0 72" TOTAL DEPTH 24 DEPTH 800 124 0.0 - 1.0 0.0 - 1.0 13 0915 6-35 5/30 1.0 - 2.0' 478 1.0 - 2.0' 5 NOC 9 NDENDC Z.0 · 3.0' 2.0 - 3.0' 48" TOTAL DEDTO 3.0 - 4.0' 3.0 4.0 Noci 678 0.0 - 1.0 1684 0.0 - 1.0' 0920 C-30 460 1.0 - 2.0' 1.0 - 2.0' 787 10644 2.0 - 3.0 NOC44 2.0 - 3.0' NOCHT TOTAL DEPTH 48" 3.0 - 4.0' 3.0 - 4.0' 10H 1012 0946 L-31 0.0 - 1.0 60 0.0 - 1.0' 30 15 44 1.0 - 2.0' 1.0 - 2.0' NDC43 2.0 - 3.0' 2.0 - 3.0' TOTAL DEATH 48 WET 3.0 - 4.0 3.0 - 4.0' Notes: 18"-24" GEBLES DEPTH FROM ENCONTER w/ Low ZECOVERY - NGT @ 24' SILTY SANDS

SCREEN DATE	SCREEN TIME	LOCATION ID	SAMPLE INTERVAL	XRF - Pb (ppm)	SCREEN DATE	SCREEN TIME	LOCATION ID	SAMPLE INTERVAL	XRF - Pb (ppm)
5-28-13	1330	ASE02-5501	0.0 - 1.0'	79	5/28/13	1459	D-57	0.0 - 1.0'	ND(50) -
			1.0 - 2.0'	NO<57				1.0 - 2.0'	ND(63) \$
			2.0 - 3.0'					2.0 - 3.0"	
TUTAL	DEPTH 2	y ^`	3.0 - 4.0'		-121	al det	h 24"	3.0 - 4.0'	
5-28-13		-ASCOS-5502	0.0 - 1.0'	287	5/18/13	1-202-645	D-56	0.0 - 1.0'	149
	1 - 0	2	1.0 - 2.0'	ND 448	7.40			1.0 - 2.0'	+98 NOL6
	1		2.0 - 3.0'					2.0 - 3.0'	
TOTAL DEPTH 24"			3.0 - 4.0'		To	THE DEP	711 24"	3.0 - 4.0'	
5-28-13		-ASC03-5503 D-41	0.0 - 1.0'	176	5/28/13	1505	D-55	0.0 - 1.0	NDIGO
			1.0 - 2.0'	NDK49				1.0 - 2.0'	NDI SI
			2.0 - 3.0'					2.0 - 3.0'	
TUTAL	- De:0,74	24"	3.0 - 4.0'		107	AL DEPT	14 24"	3.0 - 4.0'	
5-28-13	1355	ASCO3419	0.0 - 1.0'	1037	5/28/13	1520	D-54	0.0 - 1.0'	7/
		-	1.0 - 2.0'	NOSY				1.0 - 2.0'	ND (51
			2.0 - 3.0'					2.0 - 3.0'	
TOTAL	DiPilt	21''	3.0 - 4.0'		TUTAL	DEETH	24 11	3.0 - 4.0'	
<-28-13	DiPT// 14 500 45	ASC03-5505	0.0 - 1.0'	179	-			0.0 - 1.0'	
		<i>P</i> = 0	1.0 - 2.0'	NESGI				1.0 - 2.0'	
			2.0 - 3.0'					2.0 - 3.0'	
10-1A	l Dieth 21	-1'	3.0 - 4.0'	1				3.D - 4.0'	
					Notes:				

Trihydro

XRF SCREENING LOCATIONS Sampling Criteria 10% of screened intervals below 280 ppm · All intervals screened within 280 and 400 ppm 10% of screened intervals exceeding 400 ppm XRF - Pb SCREEN SCREEN XRF - Pb **SCREEN** SCREEN SAMPLE LOCATION ID LOCATION ID SAMPLE INTERVAL DATE TIME INTERVAL (ppm) DATE TIME (ppm) 113 D-39 398 8:40 - ASC03-SS01 5/28/12 1110 0.0 - 1.0 5/20/13 0.0 - 1.0 Z-5 NIX(4) D-31 1.0 - 2.0 1.0 - 2.0 (47 ND(54) 2.5 2.0 - 3.0' 2.0 - 3.0' 33 CETURA! @ TOTAL DEPTH 24" 3.0 - 4.0' 3.0 - 4.0' 5123/13 9:07 163 0.0 - 1.0' ND(58) 5/27/13 1225 D-40 0.0 - 1.0 ABRUSTON 312 7-4 1.0 - 2.0 ND(54 1.0 - 2.0 ref 1/41 24" 2.0 - 3.0' 2.0 - 3.0' a NOC51 NOCLIG 3.0 - 4.0 3.0 - 4.0 TOTAL DEPTH 48 295 9:35 1041 5/23/77 - 49003-3303 0.0 - 1.0 5/28/13 0.0 - 1.0 D-41 1245 2.3 ND (64) 1.0 - 2.0' 1.0 - 2.0' ND < 52 241 Q retural 2.0 - 3.0' 2.0 - 3.0' 3.0 - 4.0 3.0 - 4.0' DEPTH 24" TOTAL 5/2-7/13 9:55 5/28/13 143 1255 0.0 - 1.0 206 A5LU3-5304 0.0 - 1.0 -42 195 dious To 48" 86 7-2 1.0 - 2.0' 1.0 - 2.0' snil rewerd 2-2 NDK54 2.0 - 3.0 2.0 - 3.0 NO(73) TO 36'-NDISO 3.0 - 4.0 3.0 - 4.0 5/28/13 1305 271 5/28/13 10:20 - ASCUS-SSUS 0.0 - 1.0' 174 0.0 - 1.0 D-43 2-1 284 ND(6) refush Twice 1.0 - 2.0' 1.0 - 2.0' @ 12" side-NO 157 2.0 - 3.0 2.0 - 3.0 STEPPOL. NOK 56 3.0 - 4.0' 3.0 - 4.0' Notes: 712 ** generally Gravel 5:1+1 n 0-12" 122 55013 sant

S.

Trihydro

6

XRF SCREENING LOCATIONS Sampling Criteria . • 10% of screened intervals below 280 ppm All intervals screened within 280 and 400 ppm 10% of screened intervals exceeding 400 ppm SCREEN SCREEN SAMPLE XRF - Pb SCREEN **SCREEN** XRF - Pb LOCATION ID LOCATION ID SAMPLE INTERVAL DATE * DATE TIME INTERVAL (ppm) TIME (ppm) 8-22 E-19 0.0 - 1.0' 5-29-13 0.0 - 1.0 269 NOLLet 1000 5-29-13 0835 74 1.0 - 2.0 795 10-20 2.0 - 3.0' 2.0 - 3.0' ND <51 . Ze u 24". ٠ TOTAL DEPTH 3.0 - 4.0 3.0 - 4.0 TOTAL DEPTH 0.0 - 1.0' 1005 E 21 0.0 - 1.0' 120 5-24 3 0850 E-20 5-27-13 NDKGG ZZ8 1.0 - 2.0' 1.0 - 2.0' 1446 164 2,0 - 3,0' 2.0 - 3.0' ND <53 110 48° 48" 3.0 - 4.0 MO < 43 TOTAL DEPTH 3.0 - 4.0' TOTAL DEPTH 83 5-29-13 1040 0.0 - 1.0' E-)8 0.0 - 1.0 131 5-26-13 .0905 E.25 95 1.0 - 2.0' 1432 1.0 - 2.0' . 75 108 2.0 - 3.0 2.0 - 3.0' 1 TUTAL DEPTH/RETRIGHC 48" Z36 48." ND 457 3.0 - 4.0' 3.0 - 4.0 TOTAL DEPTH 95 ADG65 5-29-13 1100 0.0 - 1.0 0.0 - 1.0 E-24 ≤-)5 5-29-13 0935 274. . 308 1.0 - 2,0' 1.0 - 2.0' NDS 53 2.0 - 3.0 2.0 - 3.0' 40" 20" REFUSAC C TO TAC DOMA NX50 3.0 - 4.0' 3.0 - 4.0' 5-24-13 110 130 2442 T-29-13 0950 E-H 0.0 - 1.0' 6.23 0.0 - 1.0 NDC55 1.0 - 2.0' 1.0 - 2.0' 2.0 - 3.0' Z.D - 3.0' 0 241 RE Fugge @ .12 TOTAL DEPTH 3.0 - 4.0 3.0 - 4.0' Notes:

di.

Trihydro XRF SCREENING LOCATIONS Sampling Criteria 10% of screened intervals below 280 ppm All intervals screened within 280 and 400 ppm 10% of screened intervals exceeding 400 ppm SCREEN SCREEN XRF - Pb (ppm) SCREEN SAMPLE XRF - Pb SCREEN LOCATION ID LOCATION ID SAMPLE INTERVAL DATE TIME INTERVAL (ppm) DATE TIME 193 0.0 - 1.0 173 0.0 - 1.0' 5-29-13 1510 C-28 87 l 1.0 - 2.0' 1.0 - 2.0' 11 60 ND <0 Z.0 · 3.0 Z.O - 3.0' 98 ND 4 TOTAL DEOTH 48" 3.0 - 4.0 3.0 - 4.0 AD 4 989 0.0 - 1.0 0.0 - 1.0' 5-29-13 1530 C-27 1148 ND est 1.0 - 2.0' 1.0 - 2.0' ND 44 2.0 - 3.0' 2.0 - 3.0 TUTAL DEPTH 24" 3.0 - 4.0' 3.0 - 4.0' 100 C-26 5.29.13 1546 0.0 - 1.0 145 0.0 - 1.0' 35 1.0 - 2.0' 1.0 - 2.0° 1316 2.0 - 3.0 2.0 - 3.0 251 3.0 - 4.0" 3.0 - 4.0' Réfashe e 48" 61 0.0 - 1.0' 0.0 - 1.0 1.0 - 2.0 1.0 - 2.0 2.0 - 3.0' 2.0 - 3.0 3.0 - 4.0 3.0 - 4.0 . . 0.0 - 1.0 0.0 - 1.0 1.0 - 2.0 1.0 - 2.0' 2.0 - 3.0' 2.0 - 3.0' 3.0 - 4.0 3.0 - 4.0' Notes:

SURFACE SOIL SAMPLING FIELD FORM 2 of 2

5/31/2013

,			
		1	
ORIGINAL	TELP NAME	XRF7L	XRF As
2.5 -2	TCL7-2- 0-36	197	/3/
2-2 -A	TCLP-3-0-36	104	ND < 80
E - 13	TCLP- 4 - 0- 36	243	525
E - 18	7667-5-0-418	305	
E -24	TCLF-6-0-72		461
C - 76	TCLP -7 - 0- 48	277	392
C - 28	TCLF-8-0-48	367 533	435
C - 31	TCLP-9-0-18		773
•	100-18	728	742
D - 40	TCLF - 10 - 0 - 72	108	169
D-43	TCLP-11-0-60	219	NOLLOC
D-45	TCL7 -12-0- 42	84	NDL 69
			1
			at an
Мененици, _{стра}			
			5

Daily XRF Calibration Blank Check

Spring Meadow Lake Helena, Montana 776-020-001

-	27	XRF Model:	XL	37 600	2	XRF SN:	42	498		7	76-020-00
Trih	ydro	Date / Time 07 <i>3</i> 0 / 5-28		Date / Time	3 5	Date / Time /3./13 / 0717		Date / Time /	<u>ات ا</u>	Date / Time /	d.um
	Standard Concentration	XRF Reading 1	Calibrator	XRF Reading 2	Calibrator	XRF Reading 3	Calibrator	XRF Reading 4	Calibrator	XRF Reading 5	Calibrator
· · · · · · · · ·	(ppm)	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials
Lead	500	476	JM	460	Jim	473	Ju	1	1		1
Barium	NA	575		670	1	788	1	1	1.000		
Cadmium	500	489		514		512			1		-
Chromium	500	530		456		458		1	1.2.1		
Mercury	NA	NO < 42		NOL46		NO 6 42		1.00	1		1.00
Selenium	500	491	112.5	53(538			1.4	-	1
Silver	500	511		554		568		1	121		
Arsenic	500	485		445	5	442					1
	1	Date / Time 67.38 /5-26-2	a>	Date / Time 5-24-13 / 0246		Date / Time 5/30/13 / 0714		Date / Time /		Date / Time /	
	Blank Concentration	XRF Blank Reading 1		XRF Blank Reading 2	Calibrator	XRF Blank Reading 3	Calibrator	XRF Blank Reading 4	Calibrator	XRF Blank Reading S	Calibrator
	(ppm)	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials	(ppm)	Initials
Léad	NA	ND < ZG	JM	NO 6 31	Ja	NOL 31	Ju		123		
Barium	NA	ND < 223	Ĩ	ND 2246		ND 4 237	t pl.	1.	1		
Cadmium	NA	ND < 43		NDE 47		NOC 44	·		1		
Chromium	NA	NDK TO		ND (79	1212	NDC 77	· .	÷	1		
Mercury	NA	ND < 37		NDC 33		NDC 33					
Selenium	NA	ND & 18		NDC 15		NDS 17					
Silver	NA	ND 4 31		ND 4 35		NDC 32					1
Arsenic	NA	NDC 23	1	NOS 21	1	NDE 23	1		1.		

Reference standards and blank will be checked once each hour or every twenty samples whichever occurs first and also at the end of the period of operation. XRF daily calibration.xlsx

APPENDIX C

LABORATORY DATA PACKAGES

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section Required	A I Client Information:	Section Required		t Inforr	nation:						tion (ce Infi	C formati	on:													1	Page:	1	of	5	
Company	MDEQ	Report To:	Pet	obles	Opp					Atten	tion:	F	Pebble	es C	Opp	-										1					
Address:	1100 Last Chance Gulch	Copy To:	Jam	nes G	leason					Com	pany I	Name	M	DEQ)						RE	GUL	ATO	RYA	GEN	CY					
	Helena MT, 59601									Addr	ess:										Г	NP	DES	Г	GRO	UND	WAT	ER [DRINKING	WATER	-
Email To:	popp@mt.gov	Purchase	Order I	No.:							Quote										Г	US	т	V	RCR/	A		Г	OTHER		
Phone:	406-841-5028 Fax:	Project Na	me:	Spri	ng Meado	w Lake					Projec	a g	Sman	tha I	Rup	e					s	ite Lo	catio	n		-		711	1111	777	111
Request	ed Due Date/TAT: 5 Day RUSH	Project Nu	mber.	776-	-020-002					Mana Pace	ger: Profile	e#:			-				-	-	-		TATE		-				////	///	///
										-		-	_				T		Real	leste	d Ana		Carlos and	£	(Y/N)		Z	HH	++++	H	#
	Section D Valid Matrix (Codes	ŧ	0	-				1		1-						TNIA				T	Í	RF	T		T	1	////	////	111	
1	Required Client Information <u>MATRIX</u> DRINKING WATER	CODE	s to le	C=COMP)	-	COLL	ECTED		-	1.1		P	reser	vati	ves		14				-			-		+		////	////	111	111
	WATER WASTE WATER PRODUCT SOIL/SOLID OIL OIL OIL WIPE AR	WT WW P SL OL WP AR	E (see valid codes to left)	(G=GRAB	COMPO		COMPC END/G	RAB	AT COLLECTION	NERS							Test	Metals	Pp								orine (Y/N)				
ITEM#	(A-Z, U-9 /,-) OTHER Sample IDs MUST BE UNIQUE TISSUE	OT TS	MATRIX CODE	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP	# OF CONTAINERS	Unpreserved	H ₂ SO4	HCI .	NaOH	Na ₂ S ₂ O ₃	Other	alvsis	2	6010 As and Pb								Residual Chlorine (Y/N)	Pace	Project N	lo./ Lab	I.D.
1	Z-SMLRY-TCLP-1-0-20		F	С	5/30/13	13:00				1	x		11.		n			×					11		n d î	L I T					
2	Z-SMLRY-TCLP-2-0-36			с	5/28/13	8:40	1.1.1		l deg	1	x					0		×	10			3.44	H		[H]	11					
3	Z-SMLRY-TCLP-3-0-36	1		С	5/28/13	9:55				1	x			. 1	\mathbb{Z}^{1}			x			1							2			11
4	E-SMLRY-TCLP-4-0-36			С	5/29/13	13:25			1,2	1	x		1 1		2			×		1			32	30				(f			= 3)
5	E-SMLRY-TCLP-5-0-48			С	5/29/13	10:40				1	x		1	11				×								21	6 . S				
6	E-SMLRY-TCLP-6-0-72			С	5/29/13	9:35		1		1	x							×	1		11				103	111					
7	C-SMLRY-TCLP-7-0-48			с	5/29/13	15:40				1	x		11		14	D)		×	23		111	11			TO D	11 i		1			
8	C-SMLRY-TCLP-8-0-48			С	5/29/13	15:10				1	x		\mathbb{E}		21	1		×			111		EI E		$\mathbb{L}(\mathbb{I})$	11		0			- Û
9	C-SMLRY-TCLP-9-0-48		-	с	5/30/13	9:45				1	x		10	$\overline{\mathbf{N}}$	5	0		×		18. Ja	111		E.F.		10	1.2		1			
10	D-SMLRY-TCLP-10-0-72		-	C	5/28/13	12:25			÷	1	x			- 1				×	11	1	3.11					111					1.1
11	D-SMLRY-TCLP-11-0-60		-	С	5/28/13	13:00			1.5	1	x		1	12				×			111										
12	D-SMLRY-TCLP-12-0-48		17	С	5/28/13	13:30	-	-		1	x				54	1		×		17								1			
	ADDITIONAL COMMENTS		REL	INQUI	SHED BY /	AFFILIATI	ON	DAT	E	1	TIME	5		- 1	ACC	EPTE	D B	Y/A	FFILIA	TION		0	ATE		TIME			SAME	LE CONDIT	IONS	
		1																								-11					
								1					1									15				1		0.000			
-							-						-																		
-						-	-						-									-		1		+		1	1	-	
-		- l				SAMPLE	RNAME	AND SIGN	ATU	RE .		1									-	-		1		+	0	c	B (sct	-
							PRINT Nan	and the second	100	199	ANIT	DDI	ne -	-	-	-	-	-	-	-	-	-	-	-	-	-	Temp in °C	(N/A)	y Sea	S Inte	(N)
							SIGNATUR	1000		-	AINT	FRI	E							Signed D/YY):							Temp	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact	2

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section Require	n A d Client Information:	Section Required		t Inform	mation:						tion (ce Inf		tion:													Page	: 2	of	5
Compan	MDEQ	Report To): Pe	bbles	орр				_	Atten	ntion:		Pebb	les (Opp			_											
Address	1100 Last Chance Gulch	Copy To:	Jan	nes G	Bleason					Com	panyl	Name	e: N	DEG	2						RE	GULA	TORY	AGE	NCY	i.			
_	Helena MT, 59601								-	Addr	ess:		-	_	-						Г	NPD	S	□ G	ROUN	D WAT		DRINKING	WATER
Email To	popp@mt.gov	Purchase	Order	No.:							Quote								-		-	UST						OTHER	
Phone:	406-841-5028 Fax:	Project Na	ame:	Spri	ing Meado	w Lake				Pace	ence: Projec	ct	Sma	ntha	Rup	e					Sit	e Loca	ation	-	-		111	1111	7////
Request	ed Due Date/TAT: 5 Day Rush	Project N	umber:	776	-020-002					Mana Pace	ger: Profile	e#:	_				-	-	-	-			ATE:	1.		1.1	111	////	/////
		10.00					_	-			-						T	-	Requ	ested	Anal	100 100	1. m. 10	ed (Y/	N)	Z	111	444	HHH
	Section D Valid Matrix	Codes	ŧ	-	-		1.1.1.1		1	Г	1	-					TNIA	_			11	T				-12		////	/////
	Required Client Information MATRIX DRINKING WATE	CODE	s to le	C=COMP)	_	COLL	ECTED		-				Prese	rvati	ves	_	14	_			-		-	_	-	1	111	/////	//////
	WATER WASTE WATER PRODUCT SOL/SOLID OIL SAMPLE ID (A-Z, 0-9 / ,-) OTHER	WT P SL OL WP AR	DE (see valid codes to left)	(G=GRAB	COMP(STA)		COMPO END/GI	SITE RAB	P AT COLLECTION	VINERS	p						Test	A Metals	d Pb							Residual Chlorine (Y/N)			
ITEM#	Sample IDs MUST BE UNIQUE TISSUE	OT TS	MATRIX CODE	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP	# OF CONTAINERS	Unpreserve	H ₂ SO ₄	HN03	NaOH	Na ₂ S ₂ O ₃	Methanol	LAnalvsis	TCLP RCR	6010 As and Pb						1	Residual Ch	Pace	Project N	lo./ Lab I.D.
1	C-SMLRY-27-0-12			C	5/29/13	15:30				1	x		(i)		n		2		х					ЯD					
2	C-SMLRY-29-12-24			С	5/30/13	8:30	-			1	x			11					x								1		
3	C-SMLRY-30-12-24			С	5/30/13	9:20				1	x			1	\square				x		111						1		
4	C-SMLRY-32-12-24			C	5/30/13	10:05			1.2	1	x		3,11	1	3		4		х	-	12			22	12				
5	C-SMLRY-34-0-12		-	С	5/30/13	8:40				1	x								x										
6	C-SMLRY-35-0-12			С	5/30/13	9:15				1	x								x										
7	C-SMLRY-135-0-12			C	5/30/13					1	х								x								1		
8	Z-SMLRY-3-0-12		-	С	5/28/13	9:35	-		-	1	x					-	-		х										
9	SMLRY-EB-1			G	5/30/13	7:20		1.00		1		1	X				-	Ŀ.	х		1.1.1.				1	45,22			
10	SMLRY-EB-2		-	G	5/30/13	12:30			-	1			х				-	H	х								-		
11	SMLRY-EB-3		-	G	5/30/13	14:35	-		-	1	-		X	-		-	-		X			_		-		+			
12	ADDITIONAL COMMENTS	1	DEI	INCIL	ISHED BY /		ON	DAT	-	-	TIME	_	_	1	ACC	EDT	D D		FILIA		_	DAT		TIN	-		CAM	PLE CONDIT	IONE
-	ADDITIONAL COMMENTS	-	REL		ISHED BT (AFFILIATI	UN	UAI	F	-	TIME		-		ALL	EPIE	DB	T / Ar	TILIA			DA	E	1.11	IC .	<u> </u>	SAM	PLECONDIT	IONS
_			-		-				-	-	_	_	-	_				_	-	_	-		-	_	-	-	_	-	
-							-			-											_		-			_			ji
							1	1		-														1					
						SAMDLE	RNAME		ATU	DE	_	-	-		_	_			_	_		_	_	-				80	5
							and the second	and the second		37°	Time .	-		-	_		_	_	_							in °C	Received on Ice (Y/N)	Justody Sealed Cooler (Y/N)	Samples Intact (Y/N)
							PRINT Nan SIGNATUR	1000			ANT	PR	CE	-	_		-		ATE	Signed	-			_	- /	Temp in	loe (stody	mple (Y)

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section Require	n A ed Client Information:	Section B Required Pro	oject Info	mation:					Sect			tion:														Page	: 3	of	5
Compar	iy: MDEQ	Report To:	Pebble	s Opp					Atten	tion:	ł	Pebb	les (Opp	<										1				
Address	1100 Last Chance Gulch	Copy To: J	ames	Gleason	-				Comp	pany N	Name	e: M	DEC	5	_						REG	ULA	TORY	AGE	NCY	1			
1	Helena MT, 59601								Addre	285:										- 11		NPD	S	G	ROUN	D WA	TER	DRINKING	WATER
Email To	popp@mt.gov	Purchase Ord	der No.:	-				-	Pace (Refere		-											UST		x	RCRA			OTHER	
Phone:	406-841-5028 Fax:	Project Name	: Sp	ring Mead	ow Lake			- 7	Pace	Project		Sma	ntha	Rup	be	-		_			Site	Loca	tion	-	_		11/	1111	11111
Reques	ted Due Date/TAT: 5 Day Rush	Project Numb	per: 77	6-020-002		-			Manag Pace I	per: Profile :	#:	-		-	A		-	_	-			STA				-	///	////	/////
				1.1.1.1.1.1												-		Re	quest	ted /	Analy		Carlad	d (Y)	N)	V	44	444	4444
	Section D Valid Matrix C Required Client Information MATRIX	odes CODE	(NP)		COLL	ECTED		1			F	rese	rvat	ives			***		4403										
	DRINKIG WATER WATER WASTE WATER PRODUCT SOL/SOLID OIL OIL OIL WIPE AIR	P SL OL WP	(G=GRAB C=COMP)	COMP		COMPO END/GI	SITE RAB	AT COLLECTION	IERS		1					1	Matale	Metals								rine (Y/N)			
ITEM #	(A-Z, 0-9 /,-) OTHER Sample IDs MUST BE UNIQUE TISSUE	OT TS	MATRIX CODE SAMPLETYPE	DATE	ТІМЕ	DATE	ТІМЕ	SAMPLE TEMP AT	# OF CONTAINERS	Unpreserved	H ₂ SO4	HCI 3	NaOH	Na ₂ S ₂ O ₃	Methanol		TCI D DCD A	I CLP RURA Metals	DO IO AS AND					0		Residual Chlo	Pac	e Project N	o./ Lab I.D.
1	D-SMLRY-39-0-12	1	C	5/28/13	11:10		-	15	1	х		10		14			T	-	x	1		1.14	121		193	i i fi			11 I I I I I I I I I I I I I I I I I I
2	D-SMLRY-41-0-12		C	5/28/13	12:45			1	1	x	1.6	110		1.1	11				x	11			11			12			21
3	D-SMLRY-46-0-12		C	5/28/13	13:45		H.		1	х		11		1	11				х	11	1	1	H		101				1
4	D-SMLRY-47-0-12		C	5/28/13	13:55	1	1	1	1	x	15	110			11			1	x			51	H			1.			
5	D-SMLRY-48-0-12	- 40	C	5/28/13	14:00			1	1	х	14	1.0				-		1.)	х							14			
6	D-SMLRY-56-0-12		C	5/28/13	14:55	Manual 1	·	1	1	x		2.12			_				x			1				12	i		11
7	D-SMLRY-58-0-12		C	5/28/13	14:45				1	х		1				-		1	х	11	1.1					1	ļ		
8	D-SMLRY-158-0-12		c	5/28/13	. <u></u>	P	1		1	х	_	1.				-11			X		_	-		_					
9		- 1	111				-	1		\square		4				-		-		1								_	
10		-	-	-				-	-			-	-			-	÷	-	-	-	-	-				-	-		
11			-	-			-		-	H	-		+		-	-	÷		-			-		-		1.00	_		
12	ADDITIONAL COMMENTS			JISHED BY	AFERIAT	(ON	DATE	-	-	TIME	-	-	-	ACI	CEPT	ED B	YIA	FEII	IATIO	N	-	DAT	F	TIN	1E	1	SAM	PLE CONDITI	ONS
	ADDITIONAL COMMENTS	-	TLING	DISILLY DI	ATTICAT		DAIL	-		UML.	-	-		ALI	CLFI		11 A	a i fi	Ano		-	DA	-	- 110		-	JAM	T I	UN3
-						_		_			-	-	_	_				_			-	_	-	_	_	_	-	-	
1		1						_	1	_												-	-			_	1		
						-	Ç		10													1							
Č						-																			-				Ŧ
						ER NAME A	and the second sec				_															0.5	uo pe	Custody ealed Cooler (YN)	nples Intact (ΥΝ)
						PRINT Nam				ANT	PRI	CE						DAT	T Ci.							Temp In °C	Received on the (Y/N)	Custo (VN	(YAN
					1	SIGNATUR	E of SAMP	LER:											E Sign						-	₽ [®]	Re	Sea	Sam

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section Require	n A d Client Information:	Section B Required Pro	ject Info	rmation:						ion C	matio	n:													Page:	4	of	5
Compan	y: MDEQ	Report To: F	ebbles	s Opp				-	Attent	tion:	Pe	bble	s Op	р														
Address	1100 Last Chance Gulch	Copy To: Ja	ames (Gleason					Comp	any N	lame:	MD	EQ							REC	GULA	TOR	AGE	NCY				
	Helena MT, 59601								Addre	ess:					_		-				NPD	ES	G	ROUN	ND WAT	ER	DRINKING	WATER
Email To	popp@mt.gov	Purchase Ord	er No.:						Pace (Refere						_						UST		х	RCRA			OTHER	
Phone:	406-841-5028 Fax:	Project Name	Spr	ing Mead	ow Lake				Pace F	Project	Sr	nanth	na Ri	upe	1					Sit	e Loc	ation		The set	_	111.	1111	1111
Reques	ted Due Date/TAT: 5 Day Rush	Project Numb	er: 776	6-020-002				-	Manag Pace P	ger: Profile #	#:	-	-	1000			-	-	-			ATE:	12		1	///	////	/////
-							-	-	-	-	-	-	_				R	leque	sted	Ana		Filtere	ed (Y/	N)	Z	+++	444	+++++
	Section D Valid Matrix Required Client Information MATRIX	Codes CODE	C=COMP)	-	COLL	ECTED		Q.		1	Pre	eserv	ative	es		TNIA												
	DRINKING WATE WATER WASTE WATER PRODUCT SOIL/SOLID OIL SAMPLE ID AIR	P SL OL WP	(G=GRAB	COMP		COMPO END/G	RAB	AT COLLECTION	VERS							est1	Metals	Pb			ľ			1.	nine (Y/N)			
ITEM #	(A-Z, 0-9 /,-) OTHER Sample IDs MUST BE UNIQUE TISSUE	AR OT TS	SAMPLE TYPE	DATE	TIME	DATE	ТІМЕ	SAMPLE TEMP AT	# OF CONTAINERS	Unpreserved	H ₂ SO ₄ HNO ₃	HCI	Na S.O.	Methanol	Other	I Analysis T	TCLP RCRA	6010 As and Pb							Residual Chlorine (Y/N)	Pac	e Project M	lo./ Lab I.D.
1	E-SMLRY-10-0-12		с	5/29/13	12:45				1	х	30		11	1	11		11	x	4.23	. 1.			50					
2	E-SMLRY-11-0-12		с	5/29/13	11:10				1	х	3		11	111			11	х		1111		1.1						
3	E-SMLRY-121-0-12		с	5/29/13	is-i	1.000			1	х	24							x	1		617					-		
4	E-SMLRY-125-12-24	1	с	5/29/13		11	1		1	х				111				х	t [1]									
5	E-SMLRY-14-0-12		С	5/29/13	13:10	1			1	х	30			10				x	0				107					
6	E-SMLRY-15-12-24		с	5/29/13	11:00				1	x	80.	1.		1.0			11	x	0		010			11		-		
7	E-SMLRY-16-24-36		G	5/30/13	14:15				1	х	1101							x	0.2				101					
8	E-SMLRY-17-0-12		С	5/29/13	13:50	í			1	х	10		1	1				x										
9	E-SMLRY-17-24-36		C	5/29/13	13:50	1		1	1	х	1							x			121	12	2.3					
10	E-SMLRY-19-12-24		с	5/29/13	8:35	1		1	1	х	1			1				х										
11	E-SMLRY-20-24-36		с	5/29/13	8:50	1	·	6	1	х	-			1				х										
12	E-SMLRY-21-0-12	_	с	5/29/13	10:05	200			1	х	-		-					х					_			-		
	ADDITIONAL COMMENTS	R	ELINQU	ISHED BY /	AFFILIAT	ION	DATE	E	1	IME			A	CCE	PTEC	BY/	AFF	ILIATI	ÓN		DA	TE	TIN	IE		SAM	PLE CONDIT	IONS
								1	0.1												-					-		
									1		1																	
									1														1.1	1				
									6		1									- 4			t_					
					100000	The Address of the	AND SIGN/	S. State Law	-																S	uo p	Custody Sealed Cooler (Y/N)	ples Intact (Y/N)
					1119	PRINT Nam	ne of SAMP	LER:	GRA	NT F	RICE	5. L					_	-							Temp in	Received on Ice (Y/N)	Usto ed C (Y/N	ples (Y/N
						SIGNATUR	E of SAMP	LER:										TE Sig							te -	Rec	Seal	am

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section Require	n A d Client Information:	Section B Required Proj	ect Info	rmation:						tion C		on:	2											-I[Page:	5	of	5
Compar	y: MDEQ	Report To: P	ebbles	s Opp					Atten	tion:	P	Pebbl	es C	pp														
Address	1100 Last Chance Gulch	Copy To: Ja	mes G	Gleason				1	Com	pany N	lame:	M	DEQ	£					- 1	REC	GULA	TORY	AGE	NCY				
	Helena MT, 59601	-							Addre	ess:											NPD	ES	GF	ROUN	D WAT	ER	DRINKING	WATER
Email To	popp@mt.gov	Purchase Ord	er No.:					-		Quote	-		-	-						14	UST		XF	RCRA			OTHER	
Phone:	406-841-5028 Fax:	Project Name:	Spr	ing Meado	w Lake					Project	S	man	tha I	Rup	e	_	_			Sit	eloc	ation				111	1111	1111
Reques	ted Due Date/TAT: 5 Day Rush	Project Number	r. 776	-020-002	1.201			-	Mana Pace	ger: Profile	#:				· · · ·		-	-	-			ATE:				111	////	/////
-		1	1	1.12			-	-	-	-	-	-	_	-	-	1	1	Remue	ested	Anal		A COURT	ed (Y/N	n.	77	44	444	ННН
1	Section D Valid Matrix	Codes	1	1			-				-	-	-		-	7	_				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ŤΤ	-1/	111		/////
	Required Client Information MATRIX DRINKING WATE	CODE R DW	C=COMP)	4	COLL	ECTED				L	P	reser	vati	/es		NIA			1			_			1	111	1111	/////
	WATER WASTE WATE PRODUCT SOLINDUD OIL SAMPLE ID WIPE AIR	WT P SL OL WP	(G=GF	COMPO		COMPO END/G	RAB	AT COLLECTION	NERS							rest.		Pb						-	Chlorine (Y/N)			
ITEM #	(A-Z, 0-9 /,-) OTHER Sample IDs MUST BE UNIQUE TISSUE		SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HCI	NaOH	Na ₂ S ₂ O ₃	Other	Analysis 1	TCLP RCRA	6010 As and Pb							Residual Chl	Pace	e Project N	lo./ Lab I.D.
1	E-SMLRY-21-12-24		с	5/29/13	10:05		1	12	1	х	30	ŰĿ.		1	11		1	x	43				50 E					
2	E-SMLRY-23-0-12		с	5/29/13	9:50			-	1	х	210		11	П	10		1.1	x	4	111			11					
3	E-SMLRY-25-12-24		с	5/29/13	9:05		-		1	x		10					1.7	x										
4	E-SMLRY-25-24-36		C	5/29/13	9:05				1	x	36	12		1	818			x	t) []	1			DE					
5	E-SMLRY-7-0-12		c	5/29/13	11:15	1		11.	1	х	170	11		1	11			x	015				107					
6	E-SMLRY-9-0-12		c	5/29/13	12:30	0			1	x	140	11.	11		11			x	0.4		910		1011			-		
7									1	x	120	11	_		1.1			x	0.1				10					
8							1		1	х								х					1.1.					
9						-			1	х	1							x					2					
10				-	15.16	1	-	1	1	х				-				x	_									
11			-)=i	12.7	1		1	1	х	-		Ц	_	-			x					-			<u> </u>		
12	CONTRACTOR CONTRACTOR	-	-						1	х				-		-		x		1		-	_		ليلم	-		
-	ADDITIONAL COMMENTS	RI	LINQU	ISHED BY /	AFFILIATI	ION	DAT	E		TIME			1.1	ACC	EPTE	DBY	AF	FILIAT	ION		DA	TE	TIM	E		SAME	PLE CONDITI	ONS
								1	1	_									_							-	1	
1																					_		-					
							1		1.														1					
											l			_	_	_	_											
						ER NAME /	And A had been	S. Martin																	D°C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
						PRINT Nam	2000	5		ANTI	PRIC	E			_	-		ATE Si	aned	_	_			-	Temp in °C	ceive ce (Y	Custo aled C (Y/N	(Y/h
					1	SIGNATUR	E of SAMP	LER:																1.1	Ĕ	R -	8	San

Pace Analytical Services, Inc. 602 S 25th Street Billings, MT 591014549 (406)254-7226

June 10, 2013

Pebbles Opp Montana Dept. of Environmental 1100 N. Last Chance Gulch Helena, MT 59620

RE: Project: 776-020-002 SPRING MEADOW LAKE Pace Project No.: 10230552

Dear Pebbles Opp:

Enclosed are the analytical results for sample(s) received by the laboratory on June 01, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

martha Rupe

Samantha Rupe

samantha.rupe@pacelabs.com Project Manager

Enclosures

cc: Jim Gleason, Montana Dept. of Environmental Jamie Mongoven, Trihydro Accounts Payable, Montana Dept. of Environmental Accounts Payable, Montana Dept. of Environmental Quality

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

CERTIFICATIONS

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605 Georgia Certification #: 959 Hawaii Certification #Pace Idaho Certification #: MN00064 Illinois Certification #: 200011 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace

Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia/DCLS Certification #: 002521 Virginia/VELAP Certification #: 460163 Washington Certification #: C754 West Virginia Certification #: 382 Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No .:

10230552

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10230552001	Z-SMLRY-TCLP-1-0-20	Solid	05/30/13 13:00	06/01/13 09:53
10230552002	Z-SMLRY-TCLP-2-0-36	Solid	05/28/13 08:40	06/01/13 09:53
0230552003	Z-SMLRY-TCLP-3-0-36	Solid	05/28/13 09:55	06/01/13 09:53
0230552004	E-SMLRY-TCLP-4-0-36	Solid	05/29/13 13:25	06/01/13 09:53
0230552005	E-SMLRY-TCLP-5-0-48	Solid	05/29/13 10:40	06/01/13 09:53
0230552006	E-SMLRY-TCLP-6-0-72	Solid	05/29/13 09:35	06/01/13 09:53
0230552007	C-SMLRY-TCLP-7-0-48	Solid	05/29/13 15:40	06/01/13 09:53
230552008	C-SMLRY-TCLP-8-0-48	Solid	05/29/13 15:10	06/01/13 09:53
0230552009	C-SMLRY-TCLP-9-0-48	Solid	05/30/13 09:45	06/01/13 09:53
230552010	D-SMLRY-TCLP-10-0-72	Solid	05/28/13 12:25	06/01/13 09:53
0230552011	D-SMLRY-TCLP-11-0-60	Solid	05/28/13 13:00	06/01/13 09:53
0230552012	D-SMLRY-TCLP-12-0-48	Solid	05/28/13 13:30	06/01/13 09:53
0230552013	C-SMLRY-27-0-12	Solid	05/29/13 15:30	06/01/13 09:53
0230552014	C-SMLRY-29-12-24	Solid	05/30/13 08:30	06/01/13 09:53
0230552015	C-SMLRY-30-12-24	Solid	05/30/13 09:20	06/01/13 09:53
230552016	C-SMLRY-32-12-24	Solid	05/30/13 10:05	06/01/13 09:53
230552017	C-SMLRY-34-0-12	Solid	05/30/13 08:40	06/01/13 09:53
230552018	C-SMLRY-35-0-12	Solid	05/30/13 09:15	06/01/13 09:53
230552019	C-SMLRY-135-0-12	Solid	05/30/13 00:00	06/01/13 09:53
230552020	Z-SMLRY-3-0-12	Solid	05/28/13 09:35	06/01/13 09:53
230552021	SMLRY-EB-1	Water	05/30/13 07:20	06/01/13 09:53
230552022	SMLRY-EB-2	Water	05/30/13 12:30	06/01/13 09:53
230552023	SMLRY-EB-3	Water	05/30/13 14:35	06/01/13 09:53
230552024	D-SMLRY-39-0-12	Solid	05/28/13 11:10	06/01/13 09:53
230552025	D-SMLRY-41-0-12	Solid	05/28/13 12:45	06/01/13 09:53
0230552026	D-SMLRY-46-0-12	Solid	05/28/13 13:45	06/01/13 09:53
0230552027	D-SMLRY-47-0-12	Solid	05/28/13 13:55	06/01/13 09:53
230552028	D-SMLRY-48-0-12	Solid	05/28/13 14:00	06/01/13 09:53
230552029	D-SMLRY-56-0-12	Solid	05/28/13 14:55	06/01/13 09:53
0230552030	D-SMLRY-58-0-12	Solid	05/28/13 14:45	06/01/13 09:53
230552031	D-SMLRY-158-0-12	Solid	05/28/13 00:00	06/01/13 09:53
230552032	E-SMLRY-10-0-12	Solid	05/29/13 12:45	06/01/13 09:53
230552033	E-SMLRY-11-0-12	Solid	05/29/13 11:10	06/01/13 09:53
0230552034	E-SMLRY-121-0-12	Solid	05/29/13 00:00	06/01/13 09:53
0230552035	E-SMLRY-125-12-24	Solid	05/29/13 00:00	06/01/13 09:53
230552036	E-SMLRY-14-0-12	Solid	05/29/13 13:10	06/01/13 09:53
	E-SMLRY-15-12-24	Solid	05/29/13 11:00	06/01/13 09:53

SAMPLE SUMMARY

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10

10230552

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10230552038	E-SMLRY-16-24-36	Solid	05/30/13 14:15	06/01/13 09:53
10230552039	E-SMLRY-17-0-12	Solid	05/29/13 13:50	06/01/13 09:53
10230552040	E-SMLRY-17-24-36	Solid	05/29/13 13:50	06/01/13 09:53
10230552041	E-SMLRY-19-12-24	Solid	05/29/13 08:35	06/01/13 09:53
10230552042	E-SMLRY-20-24-36	Solid	05/29/13 08:50	06/01/13 09:53
10230552043	E-SMLRY-21-0-12	Solid	05/29/13 10:05	06/01/13 09:53
10230552044	E-SMLRY-21-12-24	Solid	05/29/13 10:05	06/01/13 09:53
10230552045	E-SMLRY-23-0-12	Solid	05/29/13 09:50	06/01/13 09:53
10230552046	E-SMLRY-25-12-24	Solid	05/29/13 09:05	06/01/13 09:53
10230552047	E-SMLRY-25-24-36	Solid	05/29/13 09:05	06/01/13 09:53
10230552048	E-SMLRY-7-0-12	Solid	05/29/13 11:15	06/01/13 09:53
10230552049	E-SMLRY-9-0-12	Solid	05/29/13 12:30	06/01/13 09:53

SAMPLE ANALYTE COUNT

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10230552001	Z-SMLRY-TCLP-1-0-20	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552002	Z-SMLRY-TCLP-2-0-36	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552003	Z-SMLRY-TCLP-3-0-36	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552004	E-SMLRY-TCLP-4-0-36	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552005	E-SMLRY-TCLP-5-0-48	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552006	E-SMLRY-TCLP-6-0-72	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552007	C-SMLRY-TCLP-7-0-48	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552008	C-SMLRY-TCLP-8-0-48	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552009	C-SMLRY-TCLP-9-0-48	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552010	D-SMLRY-TCLP-10-0-72	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552011	D-SMLRY-TCLP-11-0-60	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552012	D-SMLRY-TCLP-12-0-48	EPA 6010	IP	7
		EPA 7470	WBS	1
		ASTM D2974	JDL	1
0230552013	C-SMLRY-27-0-12	EPA 6010	IP	2

SAMPLE ANALYTE COUNT

 Project:
 776-020-002 SPRING MEADOW LAKE

 Pace Project No.:
 10230552

Lab ID	Sample ID	Method	Analysts	Analytes Reported	
		ASTM D2974	JDL	1	
10230552014	C-SMLRY-29-12-24	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552015	C-SMLRY-30-12-24	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552016	C-SMLRY-32-12-24	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552017	C-SMLRY-34-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552018	C-SMLRY-35-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552019	C-SMLRY-135-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552020	Z-SMLRY-3-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552021	SMLRY-EB-1	EPA 6010	IP	2	
10230552022	SMLRY-EB-2	EPA 6010	IP	2	
10230552023	SMLRY-EB-3	EPA 6010	IP	2	
10230552024	D-SMLRY-39-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552025	D-SMLRY-41-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552026	D-SMLRY-46-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552027	D-SMLRY-47-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552028	D-SMLRY-48-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552029	D-SMLRY-56-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552030	D-SMLRY-58-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552031	D-SMLRY-158-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552032	E-SMLRY-10-0-12	EPA 6010	IP	2	
		ASTM D2974	JDL	1	
10230552033	E-SMLRY-11-0-12	EPA 6010	IP	2	

SAMPLE ANALYTE COUNT

 Project:
 776-020-002 SPRING MEADOW LAKE

 Pace Project No.:
 10230552

ab ID	Sample ID	Method	Analysts	Analytes Reported
		ASTM D2974	JDL	1
230552034	E-SMLRY-121-0-12	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552035	E-SMLRY-125-12-24	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552036	E-SMLRY-14-0-12	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552037	E-SMLRY-15-12-24	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552038	E-SMLRY-16-24-36	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552039	E-SMLRY-17-0-12	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552040	E-SMLRY-17-24-36	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552041	E-SMLRY-19-12-24	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552042	E-SMLRY-20-24-36	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552043	E-SMLRY-21-0-12	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552044	E-SMLRY-21-12-24	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552045	E-SMLRY-23-0-12	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552046	E-SMLRY-25-12-24	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552047	E-SMLRY-25-24-36	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552048	E-SMLRY-7-0-12	EPA 6010	IP	2
		ASTM D2974	JDL	1
230552049	E-SMLRY-9-0-12	EPA 6010	IP	2
		ASTM D2974	JDL	1

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

10230552

Sample: Z-SMLRY-TCLP-1-0-20	Lab ID: 102305520	01 Collected: 05/30/	13 13:00	Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Results reported on a "dry-weight"	basis						
Parameters	Results Un	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, TCLP	Analytical Method: EF	A 6010 Preparation Met	hod: EP/	A 3010			
	Leachate Method/Dat	e: EPA 1311; 06/06/13 13	3:09				
Arsenic	ND mg/L	0.50	5	06/06/13 14:49	06/07/13 15:39	7440-38-2	
Barium	0.17 mg/L	0.050	5	06/06/13 14:49	06/07/13 15:39	7440-39-3	
Cadmium	ND mg/L	0.015	5	06/06/13 14:49	06/07/13 15:39	7440-43-9	
Chromium	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 15:39	7440-47-3	
Lead	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 15:39	7439-92-1	
Selenium	ND mg/L	0.10	5	06/06/13 14:49	06/07/13 15:39	7782-49-2	
Silver	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 15:39	7440-22-4	
7470 Mercury, TCLP	Analytical Method: EF	A 7470 Preparation Met	hod: EP/	A 7470			
	Leachate Method/Dat	: EPA 1311; 06/06/13 1	3:09				
Mercury	ND ug/L	0.60	1	06/06/13 15:40	06/07/13 11:00	7439-97-6	
Dry Weight	Analytical Method: AS	FM D2974					
Percent Moisture	11.4 %	0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: Z-SMLRY-TCLP-2-0-36 Collected: 05/28/13 08:40 Received: 06/01/13 09:53 Lab ID: 10230552002 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3010 Leachate Method/Date: EPA 1311; 06/06/13 13:09 Arsenic ND mg/L 0.50 5 06/06/13 14:49 06/07/13 16:08 7440-38-2 Barium 0.57 mg/L 0.050 5 06/06/13 14:49 06/07/13 16:08 7440-39-3 Cadmium ND mg/L 0.015 5 06/06/13 14:49 06/07/13 16:08 7440-43-9 Chromium ND mg/L 0.050 5 06/06/13 14:49 06/07/13 16:08 7440-47-3 Lead ND mg/L 0.050 06/06/13 14:49 06/07/13 16:08 7439-92-1 5 0.13 mg/L Selenium 06/06/13 14:49 06/07/13 16:08 7782-49-2 0.10 5 Silver ND mg/L 0.050 5 06/06/13 14:49 06/07/13 16:08 7440-22-4 7470 Mercury, TCLP Analytical Method: EPA 7470 Preparation Method: EPA 7470 Leachate Method/Date: EPA 1311; 06/06/13 13:09 Mercury ND ug/L 0.60 1 06/06/13 15:40 06/07/13 11:02 7439-97-6 **Dry Weight** Analytical Method: ASTM D2974 Percent Moisture 10 % 0.10 06/03/13 00:00 1

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: Z-SMLRY-TCLP-3-0-36 Collected: 05/28/13 09:55 Received: 06/01/13 09:53 Lab ID: 10230552003 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3010 Leachate Method/Date: EPA 1311; 06/06/13 13:09 Arsenic ND mg/L 0.50 5 06/06/13 14:49 06/07/13 16:15 7440-38-2 Barium 0.30 mg/L 0.050 5 06/06/13 14:49 06/07/13 16:15 7440-39-3 Cadmium ND mg/L 0.015 5 06/06/13 14:49 06/07/13 16:15 7440-43-9 Chromium ND mg/L 0.050 5 06/06/13 14:49 06/07/13 16:15 7440-47-3 Lead ND mg/L 0.050 06/06/13 14:49 06/07/13 16:15 7439-92-1 5 0.18 mg/L Selenium 06/06/13 14:49 06/07/13 16:15 7782-49-2 0.10 5 Silver ND mg/L 0.050 5 06/06/13 14:49 06/07/13 16:15 7440-22-4 7470 Mercury, TCLP Analytical Method: EPA 7470 Preparation Method: EPA 7470 Leachate Method/Date: EPA 1311; 06/06/13 13:09 Mercury ND ug/L 0.60 1 06/06/13 15:40 06/07/13 11:05 7439-97-6 **Dry Weight** Analytical Method: ASTM D2974 Percent Moisture 10.0 % 0.10 06/03/13 00:00 1

CAS No.

Qual

Analyzed

ANALYTICAL RESULTS

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-TCLP-4-0-36 Lab ID: 10230552004 Collected: 05/29/13 13:25 Received: 06/01/13 09:53 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3010 Leachate Method/Date: EPA 1311; 06/06/13 13:09 3 5 ma/l 0.50 06/06/13 14:49 06/07/13 16:22 7440-38-2 Arsonic 5

AISEIIIC	3.3 mg/L	0.50	5	00/00/13 14.49	00/07/13 10.22	7440-30-2
Barium	0.23 mg/L	0.050	5	06/06/13 14:49	06/07/13 16:22	7440-39-3
Cadmium	0.029 mg/L	0.015	5	06/06/13 14:49	06/07/13 16:22	7440-43-9
Chromium	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 16:22	7440-47-3
Lead	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 16:22	7439-92-1
Selenium	0.20 mg/L	0.10	5	06/06/13 14:49	06/07/13 16:22	7782-49-2
Silver	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 16:22	7440-22-4
7470 Mercury, TCLP	Analytical Method: EPA 7470 Prepar	ation Meth	od: EF	PA 7470		
	Leachate Method/Date: EPA 1311; 06	6/06/13 13:	09			
Mercury	ND ug/L	0.60	1	06/06/13 15:40	06/07/13 11:07	7439-97-6
Dry Weight	Analytical Method: ASTM D2974					
Percent Moisture	15.0 %	0.10	1		06/03/13 00:00	

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-TCLP-5-0-48 Collected: 05/29/13 10:40 Received: 06/01/13 09:53 Lab ID: 10230552005 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3010 Leachate Method/Date: EPA 1311; 06/06/13 13:09 Arsenic 1.8 mg/L 0.50 5 06/06/13 14:49 06/07/13 16:29 7440-38-2 Barium 0.25 mg/L 0.050 5 06/06/13 14:49 06/07/13 16:29 7440-39-3 Cadmium 0.016 mg/L 0.015 5 06/06/13 14:49 06/07/13 16:29 7440-43-9 Chromium ND mg/L 0.050 5 06/06/13 14:49 06/07/13 16:29 7440-47-3 Lead ND mg/L 0.050 06/06/13 14:49 06/07/13 16:29 7439-92-1 5 Selenium 0.20 mg/L 06/06/13 14:49 06/07/13 16:29 7782-49-2 0.10 5 Silver ND mg/L 0.050 5 06/06/13 14:49 06/07/13 16:29 7440-22-4 7470 Mercury, TCLP Analytical Method: EPA 7470 Preparation Method: EPA 7470 Leachate Method/Date: EPA 1311; 06/06/13 13:09 Mercury ND ug/L 0.60 1 06/06/13 15:40 06/07/13 11:09 7439-97-6 **Dry Weight** Analytical Method: ASTM D2974 Percent Moisture 13.1 % 0.10 06/03/13 00:00 1

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

10230552

Sample: E-SMLRY-TCLP-6-0-72	Lab ID: 1023055200	Collected: 05/29/	13 09:35	Received: 06	6/01/13 09:53 N	Matrix: Solid	
Results reported on a "dry-weight"	basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, TCLP	Analytical Method: EPA	6010 Preparation Met	hod: EP	A 3010			
	Leachate Method/Date:	EPA 1311; 06/06/13 13	3:09				
Arsenic	3.4 mg/L	0.50	5	06/06/13 14:49	06/07/13 16:36	7440-38-2	
Barium	0.47 mg/L	0.050	5	06/06/13 14:49	06/07/13 16:36	7440-39-3	
Cadmium	0.029 mg/L	0.015	5	06/06/13 14:49	06/07/13 16:36	7440-43-9	
Chromium	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 16:36	7440-47-3	
Lead	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 16:36	7439-92-1	
Selenium	0.24 mg/L	0.10	5	06/06/13 14:49	06/07/13 16:36	7782-49-2	
Silver	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 16:36	7440-22-4	
7470 Mercury, TCLP	Analytical Method: EPA	7470 Preparation Met	hod: EP	A 7470			
	Leachate Method/Date:	EPA 1311; 06/06/13 13	3:09				
Mercury	ND ug/L	0.60	1	06/06/13 15:40	06/07/13 11:11	7439-97-6	
Dry Weight	Analytical Method: ASTI	M D2974					
Percent Moisture	17.1 %	0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: C-SMLRY-TCLP-7-0-48	Lab ID: 1023	30552007	Collected:	05/29/1	3 15:40	Received: 06	6/01/13 09:53 N	latrix: Solid	
Results reported on a "dry-weight"	' basis								
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, TCLP	Analytical Meth	od: EPA 60	010 Preparatio	on Meth	nod: EPA	A 3010			
	Leachate Meth	od/Date: E	PA 1311; 06/0	6/13 13	:09				
Arsenic	2.9 mg	ı/L		0.50	5	06/06/13 14:49	06/07/13 16:41	7440-38-2	
Barium	0.35 mg	ı/L		0.050	5	06/06/13 14:49	06/07/13 16:41	7440-39-3	
Cadmium	0.056 mg	ı/L		0.015	5	06/06/13 14:49	06/07/13 16:41	7440-43-9	
Chromium	ND mg	ı/L		0.050	5	06/06/13 14:49	06/07/13 16:41	7440-47-3	
Lead	ND mg	ı/L		0.050	5	06/06/13 14:49	06/07/13 16:41	7439-92-1	
Selenium	0.23 mg	ı/L		0.10	5	06/06/13 14:49	06/07/13 16:41	7782-49-2	
Silver	ND mg	ı/L		0.050	5	06/06/13 14:49	06/07/13 16:41	7440-22-4	
7470 Mercury, TCLP	Analytical Meth	od: EPA 74	470 Preparati	on Meth	nod: EPA	A 7470			
	Leachate Meth	od/Date: E	PA 1311; 06/0	6/13 13	:09				
Mercury	ND ug/	′L		0.60	1	06/06/13 15:40	06/07/13 11:17	7439-97-6	
Dry Weight	Analytical Meth	od: ASTM	D2974						
Percent Moisture	14.3 %			0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

10230552

Sample: C-SMLRY-TCLP-8-0-48	Lab ID: 10230552	08 Collected: 05/29	/13 15:10	Received: 06	6/01/13 09:53 N	Matrix: Solid	
Results reported on a "dry-weight"	basis						
Parameters	ResultsU	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, TCLP	Analytical Method: El	A 6010 Preparation Me	thod: EP	A 3010			
	Leachate Method/Da	e: EPA 1311; 06/06/13 1	3:09				
Arsenic	2.5 mg/L	0.50	5	06/06/13 14:49	06/07/13 16:45	7440-38-2	
Barium	0.15 mg/L	0.050	5	06/06/13 14:49	06/07/13 16:45	7440-39-3	
Cadmium	0.031 mg/L	0.015	5	06/06/13 14:49	06/07/13 16:45	7440-43-9	
Chromium	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 16:45	7440-47-3	
Lead	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 16:45	7439-92-1	
Selenium	0.24 mg/L	0.10	5	06/06/13 14:49	06/07/13 16:45	7782-49-2	
Silver	ND mg/L	0.050	5	06/06/13 14:49	06/07/13 16:45	7440-22-4	
7470 Mercury, TCLP	Analytical Method: E	A 7470 Preparation Me	thod: EP	A 7470			
	Leachate Method/Da	e: EPA 1311; 06/06/13 1	3:09				
Mercury	ND ug/L	0.60	1	06/06/13 15:40	06/07/13 11:19	7439-97-6	
Dry Weight	Analytical Method: A	STM D2974					
Percent Moisture	12.5 %	0.10	1		06/03/13 00:00)	

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

10230552

Sample: C-SMLRY-TCLP-9-0-48	Lab ID: 1023055200	9 Collected: 05/30/	13 09:45	Received: 06	6/01/13 09:53 N	/latrix: Solid	
Results reported on a "dry-weight"	basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, TCLP	Analytical Method: EPA	6010 Preparation Met	hod: EP	A 3010			
	Leachate Method/Date:	EPA 1311; 06/06/13 13	3:09				
Arsenic	1.3 mg/L	0.50	5	06/06/13 14:49	06/09/13 12:44	7440-38-2	
Barium	0.12 mg/L	0.050	5	06/06/13 14:49	06/09/13 12:44	7440-39-3	
Cadmium	ND mg/L	0.015	5	06/06/13 14:49	06/09/13 12:44	7440-43-9	
Chromium	ND mg/L	0.050	5	06/06/13 14:49	06/09/13 12:44	7440-47-3	
Lead	ND mg/L	0.050	5	06/06/13 14:49	06/09/13 12:44	7439-92-1	
Selenium	0.25 mg/L	0.10	5	06/06/13 14:49	06/09/13 12:44	7782-49-2	
Silver	ND mg/L	0.050	5	06/06/13 14:49	06/09/13 12:44	7440-22-4	
7470 Mercury, TCLP	Analytical Method: EPA	7470 Preparation Met	hod: EP	A 7470			
	Leachate Method/Date:	EPA 1311; 06/06/13 13	3:09				
Mercury	ND ug/L	0.60	1	06/06/13 15:40	06/07/13 11:21	7439-97-6	
Dry Weight	Analytical Method: AST	M D2974					
Percent Moisture	21.8 %	0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-TCLP-10-0-72 Collected: 05/28/13 12:25 Received: 06/01/13 09:53 Lab ID: 10230552010 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3010 Leachate Method/Date: EPA 1311; 06/06/13 13:09 Arsenic 0.82 mg/L 0.50 5 06/06/13 14:49 06/09/13 12:49 7440-38-2 Barium 0.93 mg/L 0.050 5 06/06/13 14:49 06/09/13 12:49 7440-39-3 Cadmium ND mg/L 0.015 5 06/06/13 14:49 06/09/13 12:49 7440-43-9 Chromium ND mg/L 0.050 5 06/06/13 14:49 06/09/13 12:49 7440-47-3 Lead ND mg/L 0.050 06/06/13 14:49 06/09/13 12:49 7439-92-1 5 0.27 mg/L Selenium 06/06/13 14:49 06/09/13 12:49 7782-49-2 0.10 5 Silver ND mg/L 0.050 5 06/06/13 14:49 06/09/13 12:49 7440-22-4 7470 Mercury, TCLP Analytical Method: EPA 7470 Preparation Method: EPA 7470 Leachate Method/Date: EPA 1311; 06/06/13 13:09 06/06/13 15:41 06/07/13 11:23 7439-97-6 Mercury ND ug/L 0.60 1 **Dry Weight** Analytical Method: ASTM D2974 Percent Moisture 21.7 % 0.10 06/03/13 00:00 1

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-TCLP-11-0-60 Collected: 05/28/13 13:00 Received: 06/01/13 09:53 Lab ID: 10230552011 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3010 Leachate Method/Date: EPA 1311; 06/06/13 13:09 Arsenic ND mg/L 0.50 5 06/06/13 14:49 06/09/13 12:54 7440-38-2 Barium 0.15 mg/L 0.050 5 06/06/13 14:49 06/09/13 12:54 7440-39-3 Cadmium ND mg/L 0.015 5 06/06/13 14:49 06/09/13 12:54 7440-43-9 Chromium ND mg/L 0.050 5 06/06/13 14:49 06/09/13 12:54 7440-47-3 Lead ND mg/L 0.050 06/06/13 14:49 06/09/13 12:54 7439-92-1 5 0.25 mg/L Selenium 06/06/13 14:49 06/09/13 12:54 7782-49-2 0.10 5 Silver ND mg/L 0.050 5 06/06/13 14:49 06/09/13 12:54 7440-22-4 7470 Mercury, TCLP Analytical Method: EPA 7470 Preparation Method: EPA 7470 Leachate Method/Date: EPA 1311; 06/06/13 13:09 Mercury ND ug/L 0.60 1 06/06/13 15:41 06/07/13 11:25 7439-97-6 **Dry Weight** Analytical Method: ASTM D2974 Percent Moisture 17.6 % 0.10 06/03/13 00:00 1

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-TCLP-12-0-48 Collected: 05/28/13 13:30 Received: 06/01/13 09:53 Matrix: Solid Lab ID: 10230552012 Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3010 Leachate Method/Date: EPA 1311; 06/06/13 13:09 Arsenic 0.90 mg/L 0.50 5 06/06/13 14:49 06/09/13 12:58 7440-38-2 1.1 mg/L Barium 0.050 5 06/06/13 14:49 06/09/13 12:58 7440-39-3 Cadmium ND mg/L 0.015 5 06/06/13 14:49 06/09/13 12:58 7440-43-9 Chromium ND mg/L 0.050 5 06/06/13 14:49 06/09/13 12:58 7440-47-3 Lead ND mg/L 0.050 06/06/13 14:49 06/09/13 12:58 7439-92-1 5 Selenium 0.28 mg/L 06/06/13 14:49 06/09/13 12:58 7782-49-2 0.10 5 Silver ND mg/L 0.050 5 06/06/13 14:49 06/09/13 12:58 7440-22-4 7470 Mercury, TCLP Analytical Method: EPA 7470 Preparation Method: EPA 7470 Leachate Method/Date: EPA 1311; 06/06/13 13:09 06/06/13 15:41 06/07/13 11:27 7439-97-6 Mercury ND ug/L 0.60 1 **Dry Weight** Analytical Method: ASTM D2974 Percent Moisture 17.8 % 0.10 06/03/13 00:00 1

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: C-SMLRY-27-0-12	Lab ID: 102	30552013	Collected: 05/29/2	13 15:30	Received: 06	6/01/13 09:53 I	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60 ²	10 Preparation Met	hod: EP	A 3050			
Arsenic	1120 mg	g/kg	10.4	5	06/05/13 11:58	06/07/13 14:44	7440-38-2	M1
Lead	1030 mg	g/kg	5.2	5	06/05/13 11:58	06/07/13 14:44	7439-92-1	M1
Dry Weight	Analytical Meth	nod: ASTM E	02974					
Percent Moisture	15.8 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: C-SMLRY-29-12-24	Lab ID: 102	30552014	Collected: 05/30	13 08:3	0 Received: 06	6/01/13 09:53 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Me	thod: EF	PA 3050			
Arsenic	171 m	g/kg	2.0	1	06/05/13 11:58	06/07/13 15:03	3 7440-38-2	
Lead	134 m	g/kg	0.98	1	06/05/13 11:58	06/07/13 15:03	8 7439-92-1	
Dry Weight	Analytical Met	hod: ASTM I	D2974					
Percent Moisture	16.3 %		0.10	1		06/03/13 00:00)	

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: C-SMLRY-30-12-24 Results reported on a "dry-weight	Lab ID: 10230	5 52015 Co	ollected: 05/30/1	3 09:20	Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method	I: EPA 6010	Preparation Meth	nod: EP	A 3050			
Arsenic	455 mg/kg	g	9.1	5	06/05/13 11:58	06/07/13 15:50	7440-38-2	
Lead	776 mg/kg	g	4.6	5	06/05/13 11:58	06/07/13 15:50	7439-92-1	
Dry Weight	Analytical Method	I: ASTM D29	74					
Percent Moisture	20.5 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: C-SMLRY-32-12-24 Results reported on a "dry-weight	Lab ID: 1023	0552016	Collected: 05/30/1	3 10:05	Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Metho	od: EPA 601	0 Preparation Met	nod: EP	A 3050			
Arsenic	528 mg/	kg	2.0	1	06/05/13 11:58	06/07/13 15:28	7440-38-2	
Lead	429 mg/	kg	0.98	1	06/05/13 11:58	06/07/13 15:28	7439-92-1	
Dry Weight	Analytical Metho	od: ASTM D2	2974					
Percent Moisture	15.6 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: C-SMLRY-34-0-12	Lab ID: 102:	30552017	Collected: 05/30/1	13 08:40	Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 601	0 Preparation Met	hod: EP	A 3050			
Arsenic	161 mg	J/kg	1.7	1	06/05/13 11:58	06/07/13 15:34	7440-38-2	
Lead	159 mg	/kg	0.83	1	06/05/13 11:58	06/07/13 15:34	7439-92-1	
Dry Weight	Analytical Meth	od: ASTM D	2974					
Percent Moisture	12.0 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: C-SMLRY-35-0-12	Lab ID: 1023	80552018	Collected: 05/30/	13 09:15	5 Received: 06	6/01/13 09:53 I	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Met	hod: EP	A 3050			
Arsenic	780 mg	/kg	12.6	5	06/05/13 11:58	06/07/13 15:57	7440-38-2	
Lead	887 mg	/kg	6.3	5	06/05/13 11:58	06/07/13 15:57	7439-92-1	
Dry Weight	Analytical Meth	od: ASTM [02974					
Percent Moisture	20.7 %		0.10	1		06/03/13 00:00)	

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: C-SMLRY-135-0-12	Lab ID: 1023055201	9 Collected: 05/30/1	13 00:00	Received: 06	6/01/13 09:53 N	Matrix: Solid		
Results reported on a "dry-weight	" basis							
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Method: EPA	6010 Preparation Met	hod: EP/	A 3050				
Arsenic	1080 mg/kg	11.6	5	06/05/13 11:58	06/07/13 16:03	7440-38-2		
Lead	1020 mg/kg	5.8	5	06/05/13 11:58	06/07/13 16:03	7439-92-1		
Dry Weight	Analytical Method: ASTM D2974							
Percent Moisture	20.7 %	0.10	1		06/03/13 00:00			

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: Z-SMLRY-3-0-12	Lab ID: 102	30552020	Collected: 05/28/	13 09:35	5 Received: 06	6/01/13 09:53 I	Matrix: Solid	
Results reported on a "dry-weig	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60 ⁻	10 Preparation Met	hod: EP	A 3050			
Arsenic	105 mg/kg		11.5	5	06/05/13 11:58	06/07/13 16:10	7440-38-2	
Lead	273 mg/kg		5.7	5	06/05/13 11:58	06/07/13 16:10	7439-92-1	
Dry Weight	Analytical Method: ASTM D2974							
Percent Moisture	18.7 %		0.10	1	06/03/13 0			

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: SMLRY-EB-1	Lab ID: 10230552	2021 Collected: 05/30/	13 07:20	Received: 06	01/13 09:53 N	latrix: Water			
Parameters	ResultsL	Jnits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6010 MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3010									
Arsenic Lead	ND mg/L ND mg/L	0.010 0.010	-		06/06/13 22:27 06/06/13 22:27				

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: SMLRY-EB-2	Lab ID: 10230	552022	Collected: 05/30/1	13 12:30	Received: 06	/01/13 09:53 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Metho	d: EPA 6010	Preparation Met	hod: EPA	3010			
Arsenic Lead	ND mg/L ND mg/L		0.010 0.010	-		06/06/13 22:31 06/06/13 22:31		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: SMLRY-EB-3	Lab ID: 10230	552023 C	Collected: 05/30/1	13 14:35	Received: 06	/01/13 09:53 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method	d: EPA 6010	Preparation Met	hod: EPA	3010			
Arsenic Lead	ND mg/L ND mg/L		0.010 0.010	-		06/06/13 22:36 06/06/13 22:36		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-39-0-12	Lab ID: 1023	0552024	Collected: 05/28/1	3 11:10	Received: 06	6/01/13 09:53 N	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Metho	od: EPA 601	0 Preparation Met	nod: EP	A 3050			
Arsenic	1290 mg/	kg	12.5	5	06/05/13 11:58	06/07/13 16:17	7440-38-2	
Lead	1070 mg/	kg	6.2	5	06/05/13 11:58	06/07/13 16:17	7439-92-1	
Dry Weight	Analytical Metho	od: ASTM D	2974					
Percent Moisture	21.5 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-41-0-12	Lab ID: 10230	552025 C	Collected: 05/28/1	3 12:45	Received: 06	6/01/13 09:53 I	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method	1: EPA 6010	Preparation Meth	nod: EP	A 3050			
Arsenic	957 mg/k	g	12.6	5	06/05/13 11:58	06/07/13 16:23	3 7440-38-2	
Lead	1040 mg/k	g	6.3	5	06/05/13 11:58	06/07/13 16:23	8 7439-92-1	
Dry Weight	Analytical Method	: ASTM D2	974					
Percent Moisture	22.0 %		0.10	1		06/03/13 00:00)	

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-46-0-12	Lab ID: 1023	0552026	Collected: 05/28/	13 13:45	5 Received: 06	6/01/13 09:53 N	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method	od: EPA 601	0 Preparation Met	hod: EP	A 3050			
Arsenic	87.3 mg	/kg	9.6	5	06/05/13 11:58	06/07/13 16:30	7440-38-2	
Lead	110 mg	/kg	4.8	5	06/05/13 11:58	06/07/13 16:30	7439-92-1	
Dry Weight	Analytical Method	od: ASTM D	2974					
Percent Moisture	14.7 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-47-0-12	Lab ID: 102	30552027	Collected: 05/28	/13 13:5	5 Received: 06	6/01/13 09:53 N	/latrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Me	thod: EF	PA 3050			
Arsenic	75.4 m	g/kg	9.3	5	06/05/13 11:58	06/07/13 16:37	7440-38-2	
Lead	105 mg	g/kg	4.7	5	06/05/13 11:58	06/07/13 16:37	7439-92-1	
Dry Weight	Analytical Met	hod: ASTM [02974					
Percent Moisture	10.8 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-48-0-12	Lab ID: 1023	0552028	Collected: 05/28/	13 14:00	0 Received: 06	6/01/13 09:53 N	Matrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Methe	od: EPA 60	10 Preparation Met	hod: EF	PA 3050			
Arsenic	212 mg	/kg	10.6	5	06/05/13 11:58	06/07/13 16:44	7440-38-2	
Lead	512 mg	/kg	5.3	5	06/05/13 11:58	06/07/13 16:44	7439-92-1	
Dry Weight	Analytical Metho	od: ASTM [02974					
Percent Moisture	15.9 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-56-0-12	Lab ID: 102	30552029	Collected: 05/28/1	13 14:55	5 Received: 06	6/01/13 09:53 I	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Met	hod: EP	A 3050			
Arsenic	142 mg	g/kg	11.5	5	06/05/13 11:58	06/07/13 16:58	3 7440-38-2	
Lead	156 mg	g/kg	5.8	5	06/05/13 11:58	06/07/13 16:58	8 7439-92-1	
Dry Weight	Analytical Meth	nod: ASTM E	02974					
Percent Moisture	16.4 %		0.10	1		06/03/13 00:00)	

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-58-0-12	Lab ID: 1023	0552030	Collected: 05/28/1	13 14:45	Received: 06	6/01/13 09:53 I	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Metho	od: EPA 601	0 Preparation Met	hod: EP	A 3050			
Arsenic	161 mg/	/kg	10.4	5	06/05/13 11:58	06/07/13 17:05	7440-38-2	
Lead	188 mg/	/kg	5.2	5	06/05/13 11:58	06/07/13 17:05	7439-92-1	
Dry Weight	Analytical Metho	od: ASTM D	2974					
Percent Moisture	14.4 %		0.10	1		06/03/13 00:00)	

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: D-SMLRY-158-0-12	Lab ID: 102305	52031 Collected:	05/28/1	3 00:00	Received: 06	01/13 09:53 N	/atrix: Solid	
Results reported on a "dry-weight	Dasis							
Parameters	Results	Units Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method:	EPA 6010 Preparat	tion Meth	nod: EPA	A 3050			
Arsenic	165 mg/kg		10.9	5	06/05/13 11:58	06/07/13 17:12	7440-38-2	
Lead	188 mg/kg		5.5	5	06/05/13 11:58	06/07/13 17:12	7439-92-1	
Dry Weight	Analytical Method:	ASTM D2974						
Percent Moisture	14.4 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-10-0-12	Lab ID: 1023	80552032	Collected: 05/29/2	13 12:45	5 Received: 06	6/01/13 09:53 N	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Met	hod: EP	A 3050			
Arsenic	5030 mg	/kg	10.5	5	06/05/13 11:58	06/07/13 17:18	7440-38-2	
Lead	3250 mg	/kg	5.3	5	06/05/13 11:58	06/07/13 17:18	7439-92-1	
Dry Weight	Analytical Meth	od: ASTM E	02974					
Percent Moisture	20.2 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-11-0-12	Lab ID: 102	30552033	Collected: 05/29/	13 11:1	0 Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Me	thod: EF	PA 3050			
Arsenic	237 m	g/kg	9.1	5	06/05/13 11:58	06/07/13 17:24	7440-38-2	
Lead	218 m	g/kg	4.6	5	06/05/13 11:58	06/07/13 17:24	7439-92-1	
Dry Weight	Analytical Met	hod: ASTM [02974					
Percent Moisture	10.2 %	1	0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-121-0-12	Lab ID: 10230552	2034 Collected: 05/29/	13 00:00	Received: 06	6/01/13 09:53 I	Matrix: Solid	
Results reported on a "dry-weight	Dasis						
Parameters	Results U	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method: E	PA 6010 Preparation Met	hod: EP/	A 3050			
Arsenic	253 mg/kg	10.4	5	06/05/13 11:58	06/07/13 17:31	7440-38-2	
Lead	196 mg/kg	5.2	5	06/05/13 11:58	06/07/13 17:31	7439-92-1	
Dry Weight	Analytical Method: A	STM D2974					
Percent Moisture	10.6 %	0.10	1		06/03/13 00:00)	

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-125-12-24 Results reported on a "dry-weight"	Lab ID: 10230	552035 C	Collected: 05/29/1	13 00:00	Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method	d: EPA 6010	Preparation Met	hod: EP	A 3050			
Arsenic	1270 mg/k	g	11.9	5	06/05/13 11:58	06/07/13 17:37	7440-38-2	
Lead	2420 mg/k	g	5.9	5	06/05/13 11:58	06/07/13 17:37	7439-92-1	
Dry Weight	Analytical Method	: ASTM D29	974					
Percent Moisture	24.8 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-14-0-12	Lab ID: 1023	0552036	Collected: 05/29/	13 13:10	Received: 06	01/13 09:53 N	Aatrix: Solid	
Results reported on a "dry-weigh	it" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Metho	od: EPA 601	0 Preparation Met	hod: EP	A 3050			
Arsenic	3070 mg/	kg	11.0	5	06/05/13 14:03	06/07/13 18:06	7440-38-2	M1
Lead	2320 mg/	kg	5.5	5	06/05/13 14:03	06/07/13 18:06	7439-92-1	M1
Dry Weight	Analytical Metho	od: ASTM D	2974					
Percent Moisture	16.4 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-15-12-24	Lab ID: 102	30552037	Collected: 05/29/	13 11:00	0 Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60 ⁻	10 Preparation Met	hod: EF	PA 3050			
Arsenic	230 m	g/kg	10.4	5	06/05/13 14:03	06/07/13 18:24	7440-38-2	
Lead	235 m	g/kg	5.2	5	06/05/13 14:03	06/07/13 18:24	7439-92-1	
Dry Weight	Analytical Met	hod: ASTM E	02974					
Percent Moisture	5.4 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-16-24-36 Results reported on a "dry-weight	Lab ID: 102 " basis	30552038	Collected: 05/30/1	3 14:15	5 Received: 06	6/01/13 09:53 N	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60 ⁻	10 Preparation Met	nod: EP	A 3050			
Arsenic	75.7 mg	g/kg	10.9	5	06/05/13 14:03	06/07/13 18:31	7440-38-2	
Lead	40.9 mg	g/kg	5.4	5	06/05/13 14:03	06/07/13 18:31	7439-92-1	
Dry Weight	Analytical Meth	nod: ASTM E	02974					
Percent Moisture	14.7 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-17-0-12	Lab ID: 1023055	2039 Collected: 05/29/	13 13:50	Received: 06	6/01/13 09:53 N	/atrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results I	Jnits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method: I	EPA 6010 Preparation Met	hod: EP/	A 3050			
Arsenic	2690 mg/kg	12.5	5	06/05/13 14:03	06/07/13 18:38	7440-38-2	
Lead	2290 mg/kg	6.3	5	06/05/13 14:03	06/07/13 18:38	7439-92-1	
Dry Weight	Analytical Method:	ASTM D2974					
Percent Moisture	23.8 %	0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-17-24-36 Results reported on a "dry-weight	Lab ID: 10230	5 52040 Co	llected: 05/29/1	3 13:50	Received: 06	/01/13 09:53 N	latrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method	1: EPA 6010	Preparation Meth	nod: EP	A 3050			
Arsenic	965 mg/kg	g	9.5	5	06/05/13 14:03	06/07/13 18:43	7440-38-2	
Lead	736 mg/kg	9	4.8	5	06/05/13 14:03	06/07/13 18:43	7439-92-1	
Dry Weight	Analytical Method	: ASTM D29	74					
Percent Moisture	16.2 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-19-12-24 Results reported on a "dry-weight	Lab ID: 102	30552041	Collected: 05/29	13 08:3	5 Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
	Analytical Met	nod: EPA 60	10 Preparation Me	thod: EF	PA 3050			
Arsenic	1200 mg	g/kg	9.1	5	06/05/13 14:03	06/07/13 18:50	7440-38-2	
Lead	875 mg	g/kg	4.6	5	06/05/13 14:03	06/07/13 18:50	7439-92-1	
Dry Weight	Analytical Meth	nod: ASTM [02974					
Percent Moisture	14.4 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-20-24-36	Lab ID: 1023	0552042	Collected: 05/29/	13 08:50	0 Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Results reported on a "dry-weight	" Dasis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Methe	od: EPA 60 ⁻	10 Preparation Met	hod: EF	PA 3050			
Arsenic	33.6 mg	/kg	9.8	5	06/05/13 14:03	06/07/13 19:05	7440-38-2	
Lead	29.6 mg	/kg	4.9	5	06/05/13 14:03	06/07/13 19:05	7439-92-1	
Dry Weight	Analytical Methe	od: ASTM E	02974					
Percent Moisture	17.3 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-21-0-12	Lab ID: 102	30552043	Collected: 05/29/	13 10:0	5 Received: 06	6/01/13 09:53	Matrix: Solid	
Results reported on a "dry-weigh	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: EF	PA 3050			
Arsenic	252 m	g/kg	8.2	5	06/05/13 14:03	06/07/13 19:11	7440-38-2	
Lead	181 m	g/kg	4.1	5	06/05/13 14:03	06/07/13 19:11	7439-92-1	
Dry Weight	Analytical Met	hod: ASTM I	02974					
Percent Moisture	12.4 %		0.10	1		06/03/13 00:00)	

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-21-12-24	Lab ID: 1023	0552044	Collected: 05/29/1	13 10:05	5 Received: 06	01/13 09:53 N	Aatrix: Solid	
Results reported on a "dry-weight Parameters	Results	Units	Report Limit	DF	Prepared	Analvzed	CAS No.	Qual
6010 MET ICP	Analytical Metho	od: EPA 601	O Preparation Met	hod: EP				·
Arsenic	440 mg/	kg	7.9	5	06/05/13 14:03	06/07/13 19:18	7440-38-2	
Lead	246 mg/	kg	4.0	5	06/05/13 14:03	06/07/13 19:18	7439-92-1	
Dry Weight	Analytical Metho	d: ASTM D	2974					
Percent Moisture	8.7 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-23-0-12	Lab ID: 102	30552045	Collected: 05/29/	13 09:50	0 Received: 06	6/01/13 09:53 N	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: EF	PA 3050			
Arsenic	2240 m	g/kg	10.6	5	06/05/13 14:03	06/07/13 19:25	7440-38-2	
Lead	1450 m	g/kg	5.3	5	06/05/13 14:03	06/07/13 19:25	7439-92-1	
Dry Weight	Analytical Met	hod: ASTM [02974					
Percent Moisture	18.7 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-25-12-24 Results reported on a "dry-weight	Lab ID: 1023	0552046	Collected: 05/29/	13 09:05	5 Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Metho	od: EPA 601	0 Preparation Met	hod: EP	A 3050			
Arsenic	1060 mg/	kg	11.5	5	06/05/13 14:03	06/07/13 19:32	7440-38-2	
Lead	1620 mg/	kg	5.8	5	06/05/13 14:03	06/07/13 19:32	7439-92-1	
Dry Weight	Analytical Metho	od: ASTM D	2974					
Percent Moisture	25.7 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-25-24-36 Results reported on a "dry-weight	Lab ID: 1023 " basis	80552047	Collected: 05/29/	13 09:0	5 Received: 06	6/01/13 09:53 N	Aatrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60 ⁻	10 Preparation Met	hod: EF	PA 3050			
Arsenic	111 mg	/kg	11.4	5	06/05/13 14:03	06/07/13 19:37	7440-38-2	
Lead	122 mg	/kg	5.7	5	06/05/13 14:03	06/07/13 19:37	7439-92-1	
Dry Weight	Analytical Meth	od: ASTM E	02974					
Percent Moisture	18.1 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-7-0-12	Lab ID: 1023	0552048	Collected: 05/29/	13 11:15	5 Received: 06	01/13 09:53 N	/latrix: Solid	
Results reported on a "dry-weigh	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method	od: EPA 60 ⁻	10 Preparation Met	hod: EF	PA 3050			
Arsenic	246 mg/	/kg	10.5	5	06/05/13 14:03	06/07/13 19:44	7440-38-2	
Lead	446 mg/	/kg	5.2	5	06/05/13 14:03	06/07/13 19:44	7439-92-1	
Dry Weight	Analytical Method	od: ASTM E	02974					
Percent Moisture	16.1 %		0.10	1		06/03/13 00:00		

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Sample: E-SMLRY-9-0-12	Lab ID: 102	30552049	Collected: 05/29/2	13 12:30	Received: 06	6/01/13 09:53	Matrix: Solid	
Results reported on a "dry-weig	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: EP	A 3050			
Arsenic	772 m	g/kg	1.8	1	06/05/13 14:03	06/07/13 19:51	1 7440-38-2	
Lead	573 m	g/kg	0.91	1	06/05/13 14:03	06/07/13 19:51	1 7439-92-1	
Dry Weight	Analytical Met	hod: ASTM [02974					
Percent Moisture	13.8 %		0.10	1		06/03/13 00:00)	

Project:	776-020-002	SPRING ME	EADOW LAK	Œ									
Pace Project No.:	10230552												
QC Batch:	MERP/8608	3		Analysis	s Method:	l	EPA 7470						
QC Batch Method:	EPA 7470			Analysis	s Descripti	on:	7470 Mercury	TCLP					
Associated Lab Sam							10230552005 10230552012		2006, 1023	0552007,			
METHOD BLANK:	1449509			М	atrix: Wat	er							
Associated Lab Sam							10230552005 10230552012		2006, 1023	0552007,			
				Blank	Re	eporting							
Param	neter		Units	Result		Limit	Analyz	ed	Qualifiers				
Mercury		ug/L			ND	0.6	0 06/07/13	10:39					
LABORATORY CON	ITROL SAMPI	LE: 14495	510										
				Spike	LCS		LCS	% Rec	;				
Param	neter		Units	Conc.	Resu	t	% Rec	Limits	Qı	ualifiers			
Mercury		ug/L		15		14.7	98	80	-120		-		
MATRIX SPIKE & M	ATRIX SPIKE	DUPLICATE	E: 144951	1		1449512	<u>.</u>						
				MS	MSD								
		102	29796001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramet	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury		ug/L	ND	15	15	13.7	7 13.9	91	92	80-120	1	20	

Project:	776-020-002	SPRING	MEADOW LAK	Æ									
Pace Project No.:	10230552												
QC Batch:	MPRP/3960)5		Analysi	s Method	1:	EPA 6010						
QC Batch Method:	EPA 3050			Analysi	s Descrip	otion:	6010 MET						
Associated Lab San	1023	0552020,	10230552014, 10230552024, 10230552031,	102305520	025, 1023	30552026,	1023055202	7, 1023055	2028, 1023				
METHOD BLANK:	1446452			Μ	latrix: So	lid							
Associated Lab San	. 1023	0552020,	10230552014, 10230552024, 10230552031,	102305520 102305520	025, 1023 032, 1023	30552026, 30552033,	1023055202	7, 1023055	2028, 1023				
Paran	neter		Units	Blank Result		Reporting Limit	Analyz	her	Qualifiers				
Arsenic		mg/			 ND	2.			Quainero				
Lead		mg/	-		ND	1.							
LABORATORY CON	NTROL SAMP	LE: 144	6453										
Paran	actor		Units	Spike Conc.	LC: Res		LCS % Rec	% Rec Limits		ualifiers			
Arsenic				46.3		41.4	89		-120	uaimers	-		
Lead		mg/ mg/	0	46.3		41.4 43.8	89 95		-120 -120				
MATRIX SPIKE & M	IATRIX SPIKE		ATE: 144645	54		1446455	5						
				MS	MSD								
Paramet	er	1 Units	0230552013 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
				53	49.5			165	74 Nec				
Arsenic Lead		mg/kg mg/kg	1120 1030	53 53	49.5 49.5			165	74 9				

Project:	776-020-002	SPRING MI	EADOW LAK	ΚE									
Pace Project No.:	10230552												
QC Batch:	MPRP/3960)6		Analysi	s Method:	El	PA 6010						
QC Batch Method:	EPA 3050			Analysi	s Descript	tion: 60	010 MET						
Associated Lab Sar			0230552037, 0230552044,										
METHOD BLANK:	1446456			N	atrix: Soli	id							
Associated Lab Sar	•	,	0230552037, 0230552044,	·	045, 10230	,		,	,	,			
Parar	meter		Units	Result		Limit	Analyz	ed	Qualifiers				
					ND	1.9	06/07/13	17:58		_			
Arsenic		mg/kg											
Arsenic Lead		mg/kg mg/kg			ND	0.96	06/07/13 [·]	17:58					
		0 0				0.96	06/07/13 ⁻	17:58					
	NTROL SAMPI	mg/kg				0.96	06/07/13 -	17:58					
Lead	NTROL SAMPI	mg/kg		Spike			06/07/13	17:58 % Rec					
Lead		mg/kg		Spike Conc.	ND	3				ualifiers			
Lead		mg/kg	457 Units	•	ND	3	LCS	% Rec Limits		ualifiers	-		
Lead LABORATORY CO Parar		mg/kg	457 Units	Conc.	ND	S It	LCS % Rec	% Rec Limits 80	Q	ualifiers	-		
Lead LABORATORY CO Parar Arsenic Lead	meter	mg/kg LE: 14464 	457 Units	Conc. 49 49	ND	42.3 44.3	LCS % Rec 86	% Rec Limits 80	-120 Q	ualifiers			
Lead LABORATORY CO Parar Arsenic	meter	mg/kg LE: 14464 	457 Units	Conc. 49 49 58	ND LCS Resu	6 Ilt 42.3	LCS % Rec 86	% Rec Limits 80	-120 Q	ualifiers			
Lead LABORATORY CO Parar Arsenic Lead	meter	mg/kg LE: 14464 mg/kg mg/kg DUPLICAT	457 Units E: 144645	Conc. 49 49 58 MS	ND LCS Resu MSD	42.3 44.3 1446459	LCS % Rec 86 90	% Rec Limits 80 80	-120 -120		-	Max	
Lead LABORATORY CO Parar Arsenic Lead	meter MATRIX SPIKE	mg/kg LE: 14464 mg/kg mg/kg DUPLICAT	457 Units	Conc. 49 49 58	ND LCS Resu	42.3 44.3	LCS % Rec 86	% Rec Limits 80	-120 Q	ualifiers % Rec Limits	RPD	Max RPD	Qual
Lead LABORATORY CO Parar Arsenic Lead MATRIX SPIKE & N	meter MATRIX SPIKE tter	mg/kg LE: 14464 mg/kg mg/kg DUPLICAT	457 Units E: 144645	Conc. 49 49 58 MS Spike	ND LCS Resu MSD Spike	42.3 44.3 1446459 MS	LCS % Rec 86 90 MSD	% Rec Limits 80 80	-120 -120 -120 MSD	% Rec			

Project:	776-02	0-002 SPRING ME	ADOW LAKE	E				
Pace Project No.:	10230	552						
QC Batch:	MPR	P/39677		Analysis Meth	nod: E	PA 6010		
QC Batch Method:	EPA	3010		Analysis Dese	cription: 6	010 MET TCLP		
Associated Lab San	nples:	10230552001, 102 10230552008, 102	,	,	,	,	0552006, 102305520	07,
METHOD BLANK:	14495	17		Matrix:	Water			
Associated Lab San	nples:	10230552001, 102 10230552008, 102	,	,	,	· ·	0552006, 102305520	07,
Paran	neter	L	Jnits	Result	Limit	Analyzed	Qualifiers	
Arsenic		mg/L		ND	0.50	06/09/13 11:54	·	
Barium		mg/L		ND	0.050	06/09/13 11:54		
Cadmium		mg/L		ND	0.015	06/09/13 11:54		
Chromium		mg/L		ND	0.050	06/09/13 11:54		
Lead		mg/L		ND	0.050	06/09/13 11:54		
Selenium		mg/L		ND	0.10	06/09/13 11:54		
Silver		mg/L		ND	0.050	06/09/13 11:54		

LABORATORY CONTROL SAMPLE: 1449518

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	1	1.0	105	80-120	
Barium	mg/L	1	1.0	104	80-120	
Cadmium	mg/L	1	1.0	104	80-120	
Chromium	mg/L	1	1.0	101	80-120	
Lead	mg/L	1	1.0	101	80-120	
Selenium	mg/L	1	1.0	104	80-120	
Silver	mg/L	.5	0.51	101	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 14495	19		1449520							
			MS	MSD								
	102	230552001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	ND	1	1	1.1	1.1	98	99	75-125	.5	30	
Barium	mg/L	0.17	1	1	1.1	1.1	96	95	75-125	.5	30	
Cadmium	mg/L	ND	1	1	0.99	0.99	99	98	75-125	.6	30	
Chromium	mg/L	ND	1	1	0.97	0.96	96	96	75-125	.6	30	
Lead	mg/L	ND	1	1	0.92	0.93	92	93	75-125	1	30	
Selenium	mg/L	ND	1	1	1.1	1.1	98	100	75-125	2	30	
Silver	mg/L	ND	.5	.5	0.49	0.49	98	97	75-125	.7	30	

Project:		-002 SPRING ME	EADOW LAP	Έ									
Pace Project No.:	1023055	52											
QC Batch:	MPRP	/39612		Analys	sis Method:	E	PA 6010						
QC Batch Method:	EPA 30	010		Analys	sis Descript	ion: 6	010 MET						
Associated Lab Sa	mples:	10230552021, 10	230552022	10230552	2023								
METHOD BLANK:	1446760)		٩	Matrix: Wat	er							
Associated Lab Sa	mples:	10230552021, 10	230552022	10230552	2023								
				Blank	K R	eporting							
Para	meter		Units	Resu	lt	Limit	Analyz	ed	Qualifiers				
Arsenic		mg/L			ND	0.010	06/06/13	22:02		_			
Lead		mg/L			ND	0.010	06/06/13	22:02					
LABORATORY CO	NTROL S	AMPLE: 14467	'61										
				Spike	LCS		LCS	% Rec	;				
Para	meter		Units	Conc.	Resu	lt	% Rec	Limits	Qı	ualifiers			
Arsenic		mg/L		1		0.98	98	80	-120		-		
Lead		mg/L		1		1.0	101	80	-120				
MATRIX SPIKE & N	MATRIX S	PIKE DUPLICATI	E: 144676	62		1446763							
				MS	MSD								
_			30133001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	• •
Parame	eter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qual
Arsenic		mg/L	ND	1	1	1.0		100	99	75-125	.6	20	
Lead		mg/L	ND	1	1	1.0	1.0	100	99	75-125	.3	20	

Project: Pace Project No.:	776-020-002 SP 10230552	RING MEADOW L	AKE					
QC Batch:	MPRP/39602		Analysis Meth	od [.] AS	STM D2974			
QC Batch Method:	ASTM D2974		Analysis Desc		y Weight/Perce	ent Moisture		
Associated Lab Sam	1023055	52008, 1023055200	02, 10230552003, 10 09, 10230552010, 10 16, 10230552017, 10	230552011, 10	230552012, 10)230552013,	,	
SAMPLE DUPLICAT	TE: 1446220							
Param	neter	Units	10230552001 Result	Dup Result	RPD	Max RPD	Qualifiers	
Percent Moisture		<u>%</u>	11.4	11.5	<u>.</u>	9	30	_
SAMPLE DUPLICAT	TE: 1446221							
			10230552020	Dup		Max		
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%		15.8	1	7	30	

Project: Pace Project No.:	776-020-002 SPI 10230552	RING MEADOW LA	AKE					
QC Batch:	MPRP/39603		Analysis Method:		ASTM D2974			
QC Batch Method:	I: ASTM D2974		Analysis Description:		Dry Weight/Perc	ent Moisture		
Associated Lab San	1023055	2031, 1023055203	5, 10230552026, 10 2, 10230552033, 10 9, 10230552040, 10	230552034, 1	,	,	,	
SAMPLE DUPLICA	TE: 1446223							
			10230552041	Dup		Max		
Parameter		Units	Result	Result	RPD	RPD	Qualifier	ſS
Percent Moisture		%	14.4	14.7	7	3	30	
SAMPLE DUPLICA	TE: 1446311							
			10230552024	Dup		Max		
Parameter		Units	Result	Result	RPD	RPD	Qualifier	ſS
Percent Moisture		%	21.5	22.1	1	3	30	

Project:	776-020-002 SPRING MEADOW LAKE									
Pace Project No.:	10230552									
QC Batch:	MPRP/39604		Analysis Meth	od: AS	TM D2974					
QC Batch Method:	Batch Method: ASTM D2974		Analysis Desc	ription: Dry	Weight/Percent					
Associated Lab Sar	mples: 1023055 1023055	,	43, 10230552044, 10	230552045, 102	230552046, 102	30552047, 1	0230552048,			
SAMPLE DUPLICA	TE: 1446225									
			10230552042	Dup		Max				
Parameter		Units	Result	Result	RPD	RPD	Qualifiers	S		
Percent Moisture		%	17.3	15.9	8	:	30			
SAMPLE DUPLICA	TE: 1446226									
			10230491002	Dup		Max				
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers			
Percent Moisture		%	6.9	6.9	.8	:	30			

QUALIFIERS

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 776-020-002 SPRING MEADOW LAKE

Pace Project No.: 10230552

Analytical Lab ID Sample ID **QC Batch Method QC Batch Analytical Method** Batch ICP/16605 10230552013 C-SMLRY-27-0-12 EPA 3050 MPRP/39605 EPA 6010 10230552014 C-SMLRY-29-12-24 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 C-SMLRY-30-12-24 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552015 C-SMLRY-32-12-24 10230552016 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 C-SMLRY-34-0-12 10230552017 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 C-SMLRY-35-0-12 ICP/16605 10230552018 EPA 3050 MPRP/39605 EPA 6010 10230552019 C-SMLRY-135-0-12 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552020 Z-SMLRY-3-0-12 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 D-SMLRY-39-0-12 MPRP/39605 10230552024 EPA 3050 EPA 6010 ICP/16605 D-SMLRY-41-0-12 MPRP/39605 10230552025 EPA 3050 EPA 6010 ICP/16605 10230552026 D-SMLRY-46-0-12 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552027 D-SMLRY-47-0-12 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552028 D-SMLRY-48-0-12 FPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552029 D-SMI RY-56-0-12 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552030 D-SMLRY-58-0-12 MPRP/39605 EPA 6010 ICP/16605 EPA 3050 10230552031 D-SMLRY-158-0-12 FPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552032 E-SMLRY-10-0-12 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552033 E-SMLRY-11-0-12 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552034 E-SMLRY-121-0-12 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552035 E-SMLRY-125-12-24 EPA 3050 MPRP/39605 EPA 6010 ICP/16605 10230552036 E-SMLRY-14-0-12 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552037 E-SMLRY-15-12-24 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552038 E-SMLRY-16-24-36 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 E-SMLRY-17-0-12 EPA 3050 ICP/16606 10230552039 MPRP/39606 EPA 6010 10230552040 E-SMLRY-17-24-36 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552041 E-SMLRY-19-12-24 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552042 E-SMLRY-20-24-36 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 E-SMLRY-21-0-12 10230552043 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552044 E-SMLRY-21-12-24 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552045 E-SMLRY-23-0-12 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552046 E-SMLRY-25-12-24 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552047 E-SMLRY-25-24-36 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552048 E-SMLRY-7-0-12 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552049 E-SMLRY-9-0-12 EPA 3050 MPRP/39606 EPA 6010 ICP/16606 10230552001 Z-SMLRY-TCLP-1-0-20 EPA 3010 MPRP/39677 EPA 6010 ICP/16622 Z-SMLRY-TCLP-2-0-36 MPRP/39677 EPA 6010 10230552002 EPA 3010 ICP/16622 10230552003 EPA 3010 MPRP/39677 EPA 6010 ICP/16622 Z-SMLRY-TCLP-3-0-36 10230552004 E-SMLRY-TCLP-4-0-36 EPA 3010 MPRP/39677 EPA 6010 ICP/16622 10230552005 E-SMLRY-TCLP-5-0-48 EPA 3010 MPRP/39677 EPA 6010 ICP/16622 10230552006 E-SMLRY-TCLP-6-0-72 EPA 3010 MPRP/39677 EPA 6010 ICP/16622 10230552007 C-SMLRY-TCLP-7-0-48 EPA 3010 MPRP/39677 EPA 6010 ICP/16622 10230552008 C-SMLRY-TCLP-8-0-48 EPA 3010 MPRP/39677 FPA 6010 ICP/16622 10230552009 C-SMLRY-TCLP-9-0-48 EPA 3010 MPRP/39677 EPA 6010 ICP/16622 10230552010 D-SMLRY-TCLP-10-0-72 EPA 3010 MPRP/39677 EPA 6010 ICP/16622 10230552011 D-SMLRY-TCLP-11-0-60 EPA 3010 MPRP/39677 EPA 6010 ICP/16622 10230552012 D-SMLRY-TCLP-12-0-48 EPA 3010 MPRP/39677 EPA 6010 ICP/16622 10230552021 SMLRY-EB-1 EPA 3010 MPRP/39612 EPA 6010 ICP/16597

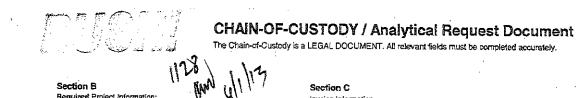
QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 776-020-002 SPRING MEADOW LAKE

10230552

Pace Project No.:

Analytical Lab ID Sample ID **QC Batch Method QC Batch Analytical Method** Batch MPRP/39612 EPA 6010 ICP/16597 10230552022 SMLRY-EB-2 EPA 3010 10230552023 SMLRY-EB-3 EPA 3010 MPRP/39612 EPA 6010 ICP/16597 Z-SMLRY-TCLP-1-0-20 EPA 7470 **MERP/8608** EPA 7470 10230552001 MFRC/9745 Z-SMLRY-TCLP-2-0-36 EPA 7470 EPA 7470 10230552002 MERP/8608 MERC/9745 Z-SMLRY-TCLP-3-0-36 EPA 7470 MERP/8608 EPA 7470 10230552003 MERC/9745 10230552004 E-SMLRY-TCLP-4-0-36 EPA 7470 MERP/8608 EPA 7470 MERC/9745 10230552005 E-SMLRY-TCLP-5-0-48 EPA 7470 MERP/8608 EPA 7470 MERC/9745 10230552006 E-SMLRY-TCLP-6-0-72 EPA 7470 MERP/8608 EPA 7470 MERC/9745 10230552007 C-SMLRY-TCLP-7-0-48 EPA 7470 **MERP/8608** EPA 7470 MERC/9745 10230552008 C-SMLRY-TCLP-8-0-48 EPA 7470 **MERP/8608** EPA 7470 MERC/9745 10230552009 C-SMLRY-TCLP-9-0-48 EPA 7470 **MERP/8608** EPA 7470 MERC/9745 10230552010 D-SMLRY-TCLP-10-0-72 EPA 7470 **MERP/8608** EPA 7470 MERC/9745 D-SMLRY-TCLP-11-0-60 EPA 7470 **MERP/8608** 10230552011 FPA 7470 MFRC/9745 10230552012 D-SMLRY-TCLP-12-0-48 EPA 7470 MERP/8608 MERC/9745 EPA 7470 10230552001 Z-SMLRY-TCLP-1-0-20 **ASTM D2974** MPRP/39602 10230552002 Z-SMLRY-TCLP-2-0-36 **ASTM D2974** MPRP/39602 10230552003 Z-SMLRY-TCLP-3-0-36 ASTM D2974 MPRP/39602 10230552004 E-SMLRY-TCLP-4-0-36 **ASTM D2974** MPRP/39602 10230552005 E-SMLRY-TCLP-5-0-48 **ASTM D2974** MPRP/39602 10230552006 E-SMLRY-TCLP-6-0-72 MPRP/39602 **ASTM D2974** 10230552007 C-SMLRY-TCLP-7-0-48 **ASTM D2974** MPRP/39602 10230552008 C-SMLRY-TCLP-8-0-48 **ASTM D2974** MPRP/39602 10230552009 C-SMLRY-TCLP-9-0-48 ASTM D2974 MPRP/39602 10230552010 D-SMLRY-TCLP-10-0-72 ASTM D2974 MPRP/39602 MPRP/39602 10230552011 D-SMLRY-TCLP-11-0-60 **ASTM D2974** 10230552012 D-SMLRY-TCLP-12-0-48 **ASTM D2974** MPRP/39602 10230552013 C-SMLRY-27-0-12 **ASTM D2974** MPRP/39602 10230552014 C-SMLRY-29-12-24 **ASTM D2974** MPRP/39602 10230552015 C-SMLRY-30-12-24 **ASTM D2974** MPRP/39602 10230552016 C-SMLRY-32-12-24 **ASTM D2974** MPRP/39602 10230552017 C-SMLRY-34-0-12 **ASTM D2974** MPRP/39602 10230552018 C-SMLRY-35-0-12 **ASTM D2974** MPRP/39602 10230552019 C-SMLRY-135-0-12 ASTM D2974 MPRP/39602 10230552020 Z-SMLRY-3-0-12 **ASTM D2974** MPRP/39602 10230552024 D-SMLRY-39-0-12 ASTM D2974 MPRP/39603 10230552025 D-SMLRY-41-0-12 **ASTM D2974** MPRP/39603 10230552026 D-SMLRY-46-0-12 **ASTM D2974** MPRP/39603 10230552027 D-SMLRY-47-0-12 **ASTM D2974** MPRP/39603 10230552028 D-SMLRY-48-0-12 **ASTM D2974** MPRP/39603 10230552029 D-SMLRY-56-0-12 **ASTM D2974** MPRP/39603 10230552030 D-SMLRY-58-0-12 ASTM D2974 MPRP/39603 10230552031 D-SMLRY-158-0-12 **ASTM D2974** MPRP/39603 10230552032 E-SMLRY-10-0-12 **ASTM D2974** MPRP/39603 10230552033 E-SMLRY-11-0-12 **ASTM D2974** MPRP/39603 E-SMLRY-121-0-12 10230552034 **ASTM D2974** MPRP/39603 ASTM D2974 E-SMLRY-125-12-24 10230552035 MPRP/39603 E-SMLRY-14-0-12 10230552036 **ASTM D2974** MPRP/39603


QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 776-020-002 SPRING MEADOW LAKE

 Pace Project No.:
 10230552

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10230552037	E-SMLRY-15-12-24	ASTM D2974	MPRP/39603		
10230552038	E-SMLRY-16-24-36	ASTM D2974	MPRP/39603		
10230552039	E-SMLRY-17-0-12	ASTM D2974	MPRP/39603		
10230552040	E-SMLRY-17-24-36	ASTM D2974	MPRP/39603		
10230552041	E-SMLRY-19-12-24	ASTM D2974	MPRP/39603		
10230552042	E-SMLRY-20-24-36	ASTM D2974	MPRP/39604		
10230552043	E-SMLRY-21-0-12	ASTM D2974	MPRP/39604		
10230552044	E-SMLRY-21-12-24	ASTM D2974	MPRP/39604		
10230552045	E-SMLRY-23-0-12	ASTM D2974	MPRP/39604		
10230552046	E-SMLRY-25-12-24	ASTM D2974	MPRP/39604		
10230552047	E-SMLRY-25-24-36	ASTM D2974	MPRP/39604		
10230552048	E-SMLRY-7-0-12	ASTM D2974	MPRP/39604		
10230552049	E-SMLRY-9-0-12	ASTM D2974	MPRP/39604		

Pace Analytical

10220552

Require	n A d Client Information:	Section B Required Pr		mation:	Ŵ	" ull	f_{i} ,			tion C celator	mation												F	Page:	1	ক	5	
Compar	y: MDEQ	Report To:	Pebble	s Opp					and the second second	ntion:		obles	Opp)					1									
Address	1100 Last Chance Gulch	Copy To: 、	James /	Gleason					Сот	pany N	ame:	MDE	Q	· ·	<u> </u>				REC	ULAT	ORY	AGEN	Y.					
	Helena MT, 59601		,	•					Áddr	ess:					-					NPDES	5 Г	GRC	UND	WAT		DRINK	ING WATE	R
Email To	× popp@mt.gov	Purchase Or	rder No.:						Pace	Quote										UST	~				F	OTHE		
Phone:	406-841-5028 Fax	Project Name	e: Sp	ring Mead	low Lake	-			Pace	Project	Sm	antha	a Ru	pe					Site	Locat	on							
Reques	ted Due Date/TAT: 5 Day RUSH	Project Numi	ber: 77	6-020-002	2	<u> </u>			Мала Расе	ger: Profile #	k .									STAT						. 1		
L		<u> </u>					_		Į						8	Ē	lean	ested.	<u>Δnab</u>	/sis Fil								
	Section D Valid Matrix C Required Client Information MATRIX DRukting WATER	CODE	codes to felt) C=COMP)		COLL	ECTED		a tanàna amin'ny faritr'i Angele	ļ		Pre	serva	tíves	3	1 N /A												*****.	
	WATER WASTE WATER WASTE WATER PRODUCT SOLUSOLD OL WIFE AIR (A-Z, 0-9 /) Sample IDS MUST BE UNIQUE TISSUE	WT WW P SL OL WP AB	MATRIX CODE (see valid codes to inf) SAMPLE TYPE (G=GRAB C=COMP)	STA	20511"2 4rt	COMPO	STE RAS	SAMPLE TEMP AT COLLECTION	CONTAINE	preserved	HNO ₃	HO	N82S2O3	Methanol Other	J Analysis Test	TCLP RCRA Metals	0 As and Pb	n en		and a second				Residual Chlorine (Y/N)	-			
ITEM			AM SAW	DATE	TIME	DATE	TIME	SAN	# 0F		Ê Î	HCI NaOH	Sa Sa	N N N	Υţ	1 <u>5</u>	601							Res	Pace	Project	No./ Lab I.	.D.
1	Z-SMLRY-TCLP-1-0-20		с	5/30/13	13:00			1	1	x			Γ			x								Π		00		
2	Z-SMLRY-TCLP-2-0-36		c	5/28/13	8:40				1	X			1			X										001		
3	Z-SMLRY-TCLP-3-0-36		c	5/28/13	9:55				1	x						x.					·					007		4
4	E-SMLRY-TCLP-4-0-36		c	5/29/13	13:25		ĺ		1	x]	x										OO		
5	E-SMLRY-TCLP-5-0-48		c	5/29/13	10:40		· ·		_1	x						X										00		
5	E-SMLRY-TCLP-6-0-72		·c	5/29/13	9:35				1	x					1	X										00		
7	C-SMLRY-TCLP-7-0-48		c	5/29/13	15:40				1	X						X										005		
8	C-SMLRY-TCLP-8-0-48		. c	5/29/13	15:10				1	x					1::	x										Ø	Ġ	
9	C-SMLRY-TCLP-9-0-48		ċ	5/30/13	9:45				1	x						X					_				-	Ø	3	
10:	D-SMLRY-TCLP-10-0-72		0	5/28/13	12:25				1	×					1:.	X										OI(0	
11	D-SMLRY-TCLP-11-0-60		С	5/28/13	13:00			1	1	x						x					· [OI		····
12	D-SMLRY-TCLP-12-0-48		С	5/28/13	13:30				1	X						X										Ota	2	
	ADDITIONAL COMMENTS	1	RELINQU	ISHED BY	AFFILIAT	ON	DATE			IME				CEPTE	D BY	/ AFF	FILLIAT	ION	÷	DATE	:	TIME	cipacionets		SAMF	PLE CONDI	TIONS	
	· · · ·											m	Ø	R	K	~			ŀ	c/1	6	453	: . <	9	Ч	U	U	
											1	r# V									1		T	\neg				
	· · · · · · · · · · · · · · · · · · ·																	·			1		Ī				1	
																							-	+				
<u>u i </u>		<u>i</u>			SAMPLE	R NAME A	ND SIGNAT	IURI	Ĺ <u>.</u>	i s	1			с ¹ 1			. : .		·]			· · ·	.	-+			5	
	-				1	RINT Name	of SAMPL	EB:	GRA		RICE		<u>.</u>							•			l o ui		(N/A	Seal	s inta	.
						SIGNATURE			200	\bigcirc		P				DA' (M)	TE Si	gned	5/2	1/1	3		Temptin	411.5	Received on Ice (Y/N)	Custody Sealed Coder (Y/N)	Samples Irkact {V/N)	ļ

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

[التق		در تدر مع	گذند د ا	P) Wh	1.14																			10:	1303	わひ
Sectio	n A ad Client Information:	Section				1	W (11117		Sec	tion	C														Page		of	
Compar		Require Report T									ice Ir ntion:	nforma •	-		0				_							rage	~ 2		J
Address	1100 Last Chance Gulch													bles		,													
			Jai	nes (Bleason		_			TCOR	npany	/ Nam	e:	NDE	Q						RE	GULAT	ORY	AGEI	NCY		•		
L	Helena MT, 59601									Add	rəss:										Г	NPDES	5 F	Gf	ROUN	ID WA	TER 🗔	DRINK	NG WATER
Email T	1 11	Purchas				_		-			Quot											UST	V	B0	CRA		.	OTHE	R
Phone:	406-841-5028 Fax	Project I	lame:	Spr	ring Mead	low Lake					ager:	act	Sma	intha	a Ru	pe					Sil	e Locati	ion						
Reques	ted Due Date/TAT: 5 Day Rush	Project N	lumber	776	5-020-002						Profi	le #:										STAT	r=-						29 J. H
ž		<u> </u>							· · · · · ·	<u> </u>							and the second	ļ	Reau	ested	Anal	ysis Fil		(VA	n				
	Section D Valid Matri Required Client Information MATRIX	CODE	io left)	(AW		COLL	ECTED		•			į ł	Pres	erva	tives	5	TNIA										* *		
	SAMPLE ID	WYT P SL CL WP	(see valid codes to left)	(G=GRAB C=COMP)	COMP STA	IOSITE IRT	COMP(END/G	DSITE R4B	T COLLECTION	ERS		· · · · · · · · · · · · · · · · · · ·					Test	Vietais	Pb							ine (Y/N)			
)TEM #	(A-Z, 0-9 / -) OTHER Sample IDs MUST BE UNIQUE TISSUE	AR OT TS	MATRIX CODE	SAMPLE TYPE	DATE .	TIME	DATE	TIME	SAMPLE TEMP AT	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HNO	NaOH	Na ₂ S ₂ O ₃	Methanol	1 Analysis Te	TCLP RCHA Metals	6010 As and F							Residual Chlorine	Pac	e Project	No./ Lab I.D.
1 : ·	C-SMLRY-27-0-12	_		c	5/29/33	15:30				.1	x	ł							X							lagare of		NB	
2	C-SMLRY-29-12-24		,	c	5/30/13	8:30	•			1	x								x					Π				014	
3	C-SMLRY-30-12-24			c	5/30/13	9:20				1	x								X							and a second		OB	
4	C-SMLRY-32-12-24			c	5/30/13	10:05			<u> </u>	1	X								x									016	
<u> </u>	C-SMLHY-34-0-12			o'	5/30/13	8:40	<u> </u>	<u> </u>		1	X					·		L	X					İ			•	017	
6	C-SMLRY-35-0-12	· .	1	c	5/30/13	9:15				1	X						Contraction of the local data		x			:						018	
7	C-SMLRY-135-0-12			<u>c</u>	5/30/13					1	X						_		X									0A	
8	Z-SMLRY-3-0-12			c	5/28/13	9:35				1	х					·			x						,			OTO	
9.	SMLRY-EB-1			G	5/30/13	7:20				1	<u> </u>		x					-	x								· ·	021	
10	SMLRY-EB-2			G.	5/30/13	12:30	l	1		1			x	<u> </u>				1	X							_		012	
11	SMLRY-EB-3			G	5/30/13	14:35				1			<u>x</u>		1				x							-		07	>
12 .						<u> </u>																ŀ	·						
	ADDITIONAL COMMENTS		REL	INQU	ISHED BY /	AFFILLATI	ON .	DAT	Ε	ĺ .	ТΙΜΈ				AC	CEPTI	ED BY	' / AF	FILIA	FION	ļ	DATE		TIME			SAM	IPLE CONDI	NONS
										[1/A	an!	1	DH	C	5				Coli	0	95	3	9	U	U	4
								<u> </u>		Í		1	//			7-7-7		-			\neg							1	1
																					$ \uparrow $				<u> </u>				
			· · · · · · · · · · · · · · · · · · ·												· · · · · ·							•••••••			. 			<u> </u>	<u> </u>
						SAMPLE	R NAME AL	ND SIGNA	TURE			÷		•	·	titu.			-		·								5
						F	RINT Name	of SAMP	LER:	GRA	NT	PRIC	Æ						•						-	Temp in °C	ved o V/N)	/ Sea	s ⊒uf £
							SIGNATURE			~	5	2		Pe	2			DA (M	TE SI	gned YYh:	5/	31/	13			Tem	Received on Ice (Y/N)	Juslody Sealed Coder (Y/N)	samples Intact (Y/N)

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

10230552

	Section B			, M	e iller			Section	on C												ÎΡ	Page:	3	of .	5
ction A quired Client Information:	Required Pro							Invoice				_			··										
mpany: MDEQ	Report To: P	ebbles	Орр					Attentio			bles														
dress: 1100 Last Chance Gulch	Сору То: Ја	mes G	ileason					Compa	ілу Na	me: [MDE(ב					REC	ULAT	DRY	AGENC	Υ				
Helena MT, 59601								Addres	ŝ				:					NPDES	3	GRO	UND	WATE	R	DRINKIN	G WATER
nai To: popp@mt.gov	Purchase Ord	or No.:	·····					Pace Q Referer										UST		X RC	RA			OTHEI	
one: 406-841-5028 Fax:	Project Name:	Spri	ng Meado	w Lake				Pace Pi Manago		Sma	intha	Rup	je –		· ·		Sit	e Locat	юп	• •					(spectra)
quested Due Date/TAT: 5 Day Rush	Project Numb	r: 776	-020-002					Pace Pi									1	STAT	re:		_	_ 1			
													· · ·		I	lequeste	d Anal	ysis Fi	tere	d (Y/N)					
Section D Valid Marrie	Codes							· .						<u>Ví N</u>	_										
Required Client Information MATRIX	<u>CODE</u> a DW	OMP	ļ	COLL	ECTED					Pres	erva	tives	; r	Ň	<u> </u>	<u> </u>					-				
DRINIONS WATE WATER WASTE WATE	WT 🔤	C=COMP)	COMPO	SNE	ссмро	SITE	COLLECTION			1	ļ	İ			(January 1997)		- i				1		,		
PRCPUCT	P	(G∞GRAB	গ্রাম	IT.	CCMPC END/GI	RAB	Ш.							÷.	l≊							Residual Chlorine (Y/N)			
CANDIE ID. WPE	OL WP	Bad					õ	RS						Test	Aete	e E						Ю			
(A-Z, 0-S / ,-) QTHER	AR U 07 U 16 Ú	14					P AT	AINE						Te	Į.	E E						hlor			
Sample IOs MUST BÉ UNIQUE	18	TYPI		-			TEN	INC	eve			2	ō	Vsis	<u>c</u> l.	2 81						alo			
* 5		SAMPLE TYPE					SAMPLE TEMP AT	# OF CONTAINERS	a c	ľő	-le	Na ₂ S ₂ O ₃	Methanol	L Analysis	TCLP RCRA Metals	6010 As and			-			sidu			
* 5 U		SAM	DATE	TIME	DATE	TIME	SAN	÷	51	HNO3	ЯS	Na	Metha Other		12	8						Ĕ	Pace		o./ Lab I.D.
1 D-SMLRY-39-0-12		С	5/28/13	11:10				1	x						L	x								024	
2 D-SMLRY-41-0-12		С	5/28/13	12:45			ĺ	1	x						L	x								de	
3. D-SMLRY-46-0-12	·	. c	5/28/13	13:45				1	x			<u> </u>		_ ·		×					_	11		ou	>
4 D-SMLRY-47-0-12		c	5/28/13	. 13:55				1	x			<u> </u>	Ŀ		_	X .		·				<u> </u>		027	, <u> </u>
5 D-SMLRY-48-0-12		c	5/28/13	14:00	<u> </u>		<u> </u>	1	x			_		- ·		x								OB	
6 D-SMLRY-56-0-12		<u>'c</u>	5/28/13	14:55			<u> </u>	1	<u>x</u>			 			L	X								<u>OIA</u>	
7 D-SMLRY-58-0-12	:	с	5/28/13	i4:45	<u> </u>	<u></u>	<u> </u>	1	<u>x</u>		_	ļ		_	ŀ	<u> </u>								020	
8 D-SMLRY-158-0-12		c	5/28/13	<u> </u>				1	X		·			<u>.</u>	_	X	_				_			031	
9			<u> </u>	ļ	<u></u>	÷	ļ	ļ		+				_[-		_				+-				
10			ļ	<u> </u>		 	 			+		+		_	_						+	+			•
<u>t7</u>				ļ	<u> </u>		1				_		++	_	1			_		╺╋┥╋	+	+			
12			<u>,</u>	<u> </u>	<u> </u>										<u> </u>			DAT		TIME			CALIC	LE CONDIT	INS
ADDITIONAL CONMENTS	: <u>,;</u> R	LINCU	ISHED BY /	AFFILIAT	ION	DATE		<u> </u>	いた	<u> </u>	1	AG	CEPTS	081 717	() A3	FILIATION					_	198 (r	· · ·
								<u> </u>	•	<u> </u>	ЩĄ	<u>V</u>		1	Ó	2		(0)	1:	095	3.	. 9	<u> </u>	4	<u> </u>
																							·)		. <u>.</u>
																						_			
· · · · · · · · · · · · · · · · · · ·	· · ·					1		1		1															
• ,	<u> </u>			SAMPLE	R NAME /	ND SIGN/	TUR	l RE		· ·	2			_	•	· ·			ł		┥		E	- Le	act
				ſ	PFANT Nam				100					•							-	Temp in °C	Received an Ice (Y/N)	Custedy . Sealed Conter (YN)	Samples Intact (Y/N)
				1												ATE Signe					_	Eľ		. ၁ ల 🖵 🛛	a∻

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

10230552

/ -	usere.	pačei	lab:	\$.C	om.	m)	1.1.	4.																		00	609	52
Section		Section					Nes / 1/	1			tion C													Paç	ge:	4	of	5
Required Company	d Client Information:	Required Report To	,							Atten	ce Info tion:		: bbles	Opp	>					a.			1	L				
Address		Copy To:			•••					Com	pany N	ame:	MDE	Q.	. <u></u>					REG		ORY	AGENCY	, ,		· · ·	1	· · · ·
	Helena MT, 59601	1								Addr	ess:									 	NPDES		GROU			8	DRINKI	NG WATER
mail To	-	Purchase	Order 1	No.:							Quote									-{	UST		X.RCR			.,	OTHE	
	406-841-5028 Fax:				ng Meado	wiake		<u> </u>		Refer Pace	ence: Project	Sn	antha	a Bu	De			··		<u> </u>	Locati	ion				9777777		
	ed Due Date/TAT: 5 Day Rush	1		·	-020-002					Mana Pace	ger: Profile f									- 3110	STAT	. 1						
																T		Dege	artad	Anoh		1	d (Y/N)					
			-	1	1					1	1					-			Calcu	- Minerig		1010					conta de la contra	
	Section D Valid Matrix (Required Client Information <u>MATRIX</u>	CODE	(see valid codes to feft)	(dW		COLL	ECTED					Pre	serva	tive	s		₹N/λ		•									
		WT	odes	C=COMP)	COMP				NOI		•					101-101						1						
	WASTE WATER PRODUCT SOL/SOLD	WW P Si	/ald c		STAL		COMPO END/GI	RAB .	SAMPLE TEMP AT COLLECTION							enter et		<u>s</u>				1			ŝ			
		SL OL WP	686	(G=GHAB		+	ļ		00	НS							Test	OLP HUHA Metals				t			Residual Chlorine (Y/N)			
	(A-7 ()-9 /) OTHER	AR OT	Щ	}					ΡAT	NE NE	P						Ê le								ilori			
	Sample IDs MUST BE UNIQUE	13	MATHIX CODE	SAMPLE TYPE					TEM	# OF CONTAINERS	Unpreserved				-		/818	As and				ļ			al Cl			
₽ V			THIX	PLE					APLE	L D	bres	HNO ₃	HCH.	Na ₂ S ₂ O ₃	Methanol	ler	Analysi								sidu			
ITEM			Ŵ	SAL	DATE	TIME	DATE	TIME	8AA	0 ₩	۱ <u>ټ</u>	ΞŦ	R	Na Na	ŝ	Other	¢ ₽	6010							Ť	Pace		No./ Lab I.D.
1	E-SMLRY-10-0-12			С	-5/29/13	12:45				1	х						***	x									080	
2	E-SMLRY-11-0-12			С	5/29/13	11:10	L		·	1	X	· .				_		x									037	>
3	E-SMLRY-121-0-12			c	5/29/13	·			Ĺ	1	×					_		×		<u></u>				ЦĻ	_		034	
4	E-SMLRY-125-12-24			0	5/29/13					1	х					_		x				_					04	<u> </u>
5	E-SMLRY-14-0-12		_	<u>ic</u>	5/29/13	13:10		-		1	X			_		_	· [_	×		1-1-	_				· [<u>OH</u>	<u> </u>
6	E-SMLRY-15-12-24			C	5/29/13	11:00	ļ			1	X	_	┝┯┝	_	+		Ļ	X		+	+			⊢	 _		03	
7	E-SMLRY-16-24-36			G	5/30/13	14:15	ļ	<u> </u>		1	X	_	$\left \right $	-	+	_		×		++				H	_		025	
8	E-SMLRY-17-0-12			c	5/29/13	13:50	<u> </u>	[····	1	<u>t</u>	X	_		_		_	Ļ	<u>×</u>		++		-+		┝┤	+	<u> </u>	<u>D</u>	
9	E-SMLRY-17-24-36			<u> c</u>	5/29/13	13:50			<u> </u>		×		\square	+	+		┢	×		++			<u>_</u>	╞┼			OH OH	
10	E-SMLRY-19-12-24		-	c	5/29/13	8:35		1	+	1	×	_	\square	+			-	X		+		-+		┢╋	÷	÷	Out.	
11	E-SMLRY-20-24-36		-	C	5/29/13	8:50		<u> </u>	+	1	X				+		ł	x		++				+	-		00	
12	E-SMLRY-21-0-12			C	5/29/13	10:05	L	DAT	 'F	Ť. · ·	IAI TRAE		<u> </u>			<u>.</u> 	BY/A		TION	+			TIME	1		SAM	LE CONDI	· · ·
	ADDRIKANJE COSKMENIS	<u> </u>				AL T NUMBER							lke e	a /	<u> </u>		سنستنسخ				, t.		1007		1	10	2.0	4
					•			<u> </u>				-	ĮM	<u>¶ </u>		4	HC	ŧ/			\mathcal{U}		0953	197	â	-7-	4	
								ļ		_														Ļ	11		ļ	<u> </u>
												T														`.		
		l				SAMPLI	RINAME	ND SIGN	ATU	₹E				•		÷				. `				0	<u> </u>	5	lier	aot
							PRINT Nam	e of SAME	LER	GR/	ANT F	RICE	:				<u> </u>			· · · ·				Temp In "C		Received on Ice (Y/N)	Custody Sealed Cooter (Y/N)	Samples Intact (Y/N)
							SIGNATUR				\sim	5-		2	6			DATE S (MM/DI		5,	31	1	13	Ten		Reor	Seale (Samp
																	. <u> </u>					,		<u>.</u>	!			•

Page 72 of 74

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

10230552

ection		Section)		4 1u7		120	n. Olli			Secti															Pa	ge:	5	of	5	
equired ompany	Client Information:	Required Report To:		_						Attent		matio Pe	n: bbles	: Opg	>					٦				1						
idress:		Copy To:			•••					Comp	any N	lame:	MDE	Q						REC	GUL	ATOR	Y AG	ENCY	<u>,</u>			· · ·		
	Helena MT, 59601									Addre	55:									1	NPE			GROU		VATE	R	DRINI	(ING V	VATER
nail To:		Purchase	Order I	No.:						Pace (······								\neg	US1	-		RCR		., =		OTH		
	406-841-5028 Fax:				ng Meado	wlake					Project	Sr	nanth	a Ru	pe					Sit		cation	8					Millit		
	ed Dise Date/TAT: 5 Day Rush	1		· ·	020-002					Manaç Pace f		#;								-			_			_				
цисы																		Reau	iester	i Ana			i red.()	(N).	-					
	Section D Valid Matrix C			· · · · ·	,						1						t n x	1					I. I							
	Required Client Information MATRIX	CODE	to lat	c=coMP)		COLLE	ECTED				ļ	Pr	serv	ative	\$	1	>					_								<u> Malaka</u>
	DRIMONG WATER WATER WASTE WATER	DW WT . WW	(see velid codes to left)	C=C	COMPO		COMPO END/GF	эте	COLLECTION		.					and the second														
	FRODUCT SCIL/SOLD	P SL	valid	RAB	STAF	n	END/GP	AB	ILLEC								وا م	2								E				
		OL . WP	(set	(G=GRAB		·			001	ERS							Lesta A Mata	P 4								ríne				
	(A-Z, 0-9 / -) OTHER	AR OT TS	ЦЩ	1					ΝΡ	IAINI	g			-		- <u>\$</u> ;	8 6 7 7	and							-	Chlo				
	Sample IDs MUST BE UNIQUE		U V V	ΤX				۰.	ETE	NO	Serv			6	ē	a concernance		Asa								ual (
ITEM #	· · ·		MATRIX CODE	SAMPLE TYPE					SAMPLE TEMP AT	# OF CONTAINERS	Unpreserved	ပ္စိုပ္ခ်	HCI	NaUH Na ₂ S ₂ O ₃	Methanuf	Other	\$ Analyels. Lest \$ TCL P BCBA Matals	6010 J								Residual Chlorine (Y/N)				
Ë			Ž	8	DATE	TRME	DATE	TIME	13		1 1	Ξ	I			<u>_</u>	* }			_			+			<u>a 1</u>	Pace	Projec	inos F4	Labill
1:	E-SMLRY-21-12-24			<u> c</u> _	5/29/13	10:05				1.	X					4	-	<u>×</u>		+		-						04		
2	E-SMLRY-23-0-12		4	c	5/29/13	9:50				1	X	+	\square	_		-	-	X		+	$\left - \right $		$\left \right $	+				00	<u>.</u>	
3	E-SMLRY-25-12-24		-	<u> c</u>	5/29/13	9:05				1	X			-		4	-	×					╆╌╋					00		
4	E-SMLRY-25-24-36			<u> c</u>	5/29/13	9:05				1	X X	-					-	$\frac{x}{x}$					+					00		
5	E-SMLRY-7-0-12		+	<u>c</u>	5/29/13	11:15 12:30			<u> </u>	1	X			+				x										00	19	
6	E-SMLRY-9-0-12			<u> c</u>	5/29/13	12,00				1	x		11	1	\dagger		- F	x				1					,,			
7				-							Â					and the second	. [X												
8											x				11	1		x												
9				┢						1	x							X												
11						· ·				1	x			÷	·		L	x						_						
12										1	x							X								·				
,	ADDITIONAL COMMENTS		REL	Non	Shed by /	AFRUAT	ion .	DATE	1		TIME			A(CCEPI	TED #	BY / A	UFFILI/	TION.		D,	ATE				. 6	SAM	PLE CON		
	······································	ŀ											1/m	4	P	M	Æ	· _			U	1	0	153	9		<u> </u>	4		Ц
								<u> </u>		1		Τ			,		0					,					ł	1		•
									-																					
								1				\top									1				1		•	1	-	
							·	<u> </u>		<u> </u>											<u> </u>		<u> </u>						+	5
							R NAME /	5				•••						•••			1				0		Received on Ice (Y/N)	dy foole	-	Samples Intact (Y/N)
						I	PRINT Nam	e of SAMP	ER:	GR/	ANT I	PRIC	Ξ		•				Signed			31/1			Tenn in "C		elve Selve	Custody Sealed Coole		sejd

Page 73 of 74

Pace Analytical"	Sample Co	Document Indition U Document -MN-L-21	pon Rece nt No.:	pt Form		ls	nt Revised: 28Ja Page 1 of 1 suing Authority: nnesota Quality		
Sample Condition Upon Receipt Courier: XFed Ex UPS Courier: SESS UT96 991	DEQ USPS Other:		Project #			:10	2305: 		
Custody Seal on Cooler/Box Present? 🛛 🔍 Yes	No	Seals In	tact? 💆	ĮYes []Ńo []	Optional:	Proj. Due Dat	e: Proj	. Name:
Packing Material: ZBubble Wrap Bubble	Bags 🗌 No	one	Other:			7 -	Temp Blank?	V es	□No
]72337080 т np Corrected (' n Factor:	°C):C	2	∏ßlue e and initi	Biolog	ical Tissu son Exam	lining Contents:	Դ. ։-	No
Chain of Custodi Brosont?	Yes	No		1.			Comments:	17804	
Chain of Custody Present?	Yes			 2.					
Chain of Custody Filled Out?	Yes	No		3.					
Chain of Custody Relinquished?	Lives Xives			•					
Sampler Name and/or Signature on COC?				<u>4.</u> e					·····
Samples Arrived within Hold Time?	K Yes	No No		5.			•		
Short Hold Time Analysis (<72 hr)?	Ves 🖂	No		<u>6.</u>		· · · · · · · · · · · · · · · · · · ·			
Rush Turn Around Time Requested?	Yes			7.					
Sufficient Volume?	Yes	No		8.					
Correct Containers Used?	Yes	[]]No		9.					
-Pace Containers Used?	Yes	No	N/A					······	······
Containers Intact?	Yes	1181	hften/A	10.	· · · · ·				
Filtered Volume Received for Dissolved Tests?	Yes		KIN/A	11.					···
Sample Labels Match COC?	XYes	No	∐N/A	12.					
-Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been checked? Noncompliances are noted in 13. All containers needing preservation are found to be compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCi<2; NaOH>12)	KYes	∏No ∏No	□n/a	13. Sample#		ZHNO3	∏H₂SO4	Пі́́́№аОН	Пнсі
Exceptions: VOA, Collform, TOC, Oil and Grease, WI-DRO (water)	[]]Yes	X No	-	initial wh	EB-3 en comple	ted: M	Lot # of preserva		
Headspace in VOA Vials (>6mm)?	[]Yes	No .	XÍN/A	14.		•			
Trip Blank Present?	Yes	[]No	KIN/A	15.					
Trip Blank Custody Seals Present? Pace Trip Blank Lot # (If purchased):	Yes	No	X ÍN/A				•		
CLIENT NOTIFICATION/RESOLUTION	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	-		<i>fr</i> :			ata Required?		
Person Contacted: Comments/Resolution:				Date/Time:	•				
Project Manager Review: Additional Additiona	rolina complianc			Đ	ate:	6-J	-13 Carolina DEHNR	Certification C	Office (i.e. ou

APPENDIX D

DATA VALIDATION

Client: Montana Department of Environmental Quality (MDEQ)	Laboratory: Pace Analytical Services, Inc.
Project Name: Spring Meadow Lake Design Phase	Sample Matrix: Soil and Water
Project Number: 776-020-002	Sample Start Date: 05/28/2013
Date Validated: 06/11/2013	Sample End Date: 05/30/2013
Parameters Included: Total and Toxicity Characteristic Leaching Agency (EPA) Method 6010B; TCLP Mercury by EPA Method 74 Testing and Materials (ASTM) Method D2974	
Laboratory Project ID: 10230552	
Data Validator: Kyle Power, Environmental Chemist	

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Pace Analytical Services, Inc., evaluating samples from the MDEQ site, located in Helena, Montana.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values of samples from field duplicate pairs; laboratory duplicate pairs; and matrix spike (MS) and matrix spike duplicate (MSD) pairs. Laboratory accuracy was established by reviewing the demonstrated percent recoveries of MS/MSD samples and laboratory control samples (LCS), and percent recoveries (%Rs) of organic system monitoring compounds (surrogates) to verify that data are not biased. Field accuracy was established by collecting equipment blank samples to monitor for possible ambient or cross contamination during sampling and transportation. Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, and the LCS percent recoveries against method-specific requirements. Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for inorganic analyses, or by the appropriate method if not covered in the National Functional Guidelines. Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA 540R-10-011, January 2010. Review of field duplicates is conducted according to the USEPA Region 1 Laboratory Data Validation Functional Guidelines for Evaluation of Organic Analysis, December 1996.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
Z-SMLRY-TCLP-1-0-20	10230552001
Z-SMLRY-TCLP-2-0-36	10230552002
Z-SMLRY-TCLP-3-0-36	10230552003
E-SMLRY-TCLP-4-0-36	10230552004
E-SMLRY-TCLP-5-0-48	10230552005
E-SMLRY-TCLP-6-0-72	10230552006
C-SMLRY-TCLP-7-0-48	10230552007
C-SMLRY-TCLP-8-0-48	10230552008
C-SMLRY-TCLP-9-0-48	10230552009
D-SMLRY-TCLP-10-0-72	10230552010
D-SMLRY-TCLP-11-0-60	10230552011
D-SMLRY-TCLP-12-0-48	10230552012
C-SMLRY-27-0-12	10230552013
C-SMLRY-29-12-24	10230552014
C-SMLRY-30-12-24	10230552015
C-SMLRY-32-12-24	10230552016
C-SMLRY-34-0-12	10230552017
C-SMLRY-35-0-12	10230552018
C-SMLRY-135-0-12	10230552019
Z-SMLRY-3-0-12	10230552020
SMLRY-EB-1	10230552021
SMLRY-EB-2	10230552022
SMLRY-EB-3	10230552023
D-SMLRY-39-0-12	10230552024
D-SMLRY-41-0-12	10230552025
D-SMLRY-46-0-12	10230552026
D-SMLRY-47-0-12	10230552027
D-SMLRY-48-0-12	10230552028
D-SMLRY-56-0-12	10230552029
D-SMLRY-58-0-12	10230552030
D-SMLRY-158-0-12	10230552031
E-SMLRY-10-0-12	10230552032
E-SMLRY-11-0-12	10230552033

Client Sample ID	Laboratory Sample Number
E-SMLRY-121-0-12	10230552034
E-SMLRY-125-12-24	10230552035
E-SMLRY-14-0-12	10230552036
E-SMLRY-15-12-24	10230552037
E-SMLRY-16-24-36	10230552038
E-SMLRY-17-0-12	10230552039
E-SMLRY-17-24-36	10230552040
E-SMLRY-19-12-24	10230552041
E-SMLRY-20-24-36	10230552042
E-SMLRY-21-0-12	10230552043
E-SMLRY-21-12-24	10230552044
E-SMLRY-23-0-12	10230552045
E-SMLRY-25-12-24	10230552046
E-SMLRY-25-24-36	10230552047
E-SMLRY-7-0-12	10230552048
E-SMLRY-9-0-12	10230552049

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. A null symbol (\emptyset) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ⊗ CoC Documentation
- ✓ Holding Times and Preservation
- ✓ Laboratory Blanks
- Ø System Monitoring Compounds (i.e., Surrogates)
- ✓ LCS
- ✓ MS/MSD
- Ø Initial and Continuing Calibrations
- ✓ Field Duplicates
- ✓ Laboratory Duplicates
- ✓ Equipment Blanks

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Data Validation Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. There were no data that were qualified during this data validation review.

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly. The complete data package consisted of 210 data points excluding the equipment blank samples. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

VALIDATION CRITERIA CHECKLIST	
1. Was the report free of non-conformances identified by the laboratory?	Yes
Comments: The laboratory did not note non-conformances regarding the analytical data.	
 Were the data free of data qualification flags and/or notes used by the laboratory? If no, define. 	No
Comments: The laboratory used the following data qualification flags with this data set.	
M1 – Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (I	_CS) recovery.
3. Were sample CoC forms complete?	No
Comments: The CoC records from field to laboratory were complete and custody was maintained as e and laboratory personnel signatures, dates, and times of receipt, with the following exception.	videnced by field
The 'Relinquished By' box was not signed on the CoC. The project team was contacted and cor confirmation that Grant Price relinquished the CoC on 05/31/2013 at 16:00 to Pace Analytical Se CoC confirmation is included as Attachment A at the end of the report.	
4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?	Yes
Comments: The detection limits appear to be acceptable. The following dilutions were applied.	
Method 6010B: Dilutions of 5 times were applied for the TCLP metal analyses.	
5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Were any analytes reported by more than one method?	Yes
Comments: The reported analytical methods were in compliance with the CoC and the laboratory repo constituents in accordance with the CoC.	rted the requested
Method 7470A is used for water matrix samples, whereas Method 7471A is used for soil matrix sample correctly used Method 7471A to analyze the samples, but labeled it incorrectly in the laboratory report. was necessary.	-
6. Were samples received in good condition within method-specified requirements?	No
Comments: Samples were received on ice, in good condition, with the cooler temperature outside the remperature range of 4°C +/- 2°C at 0.9°C as noted on the Sample Condition Upon Receipt Form. The that was below 2°C was judged as acceptable since the samples were not reported to be frozen upon relaboratory and the sample containers were reported to be intact. The laboratory noted that the shipping sealed and custody seals were present.	e cooler temperature receipt at the
7. Were samples extracted and/or analyzed within method-specified or technical holding times?	Yes
Comments: The samples were extracted and analyzed within method-specific holding times.	
8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)?	Yes
Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg), milligram incrograms per liter (μ g/L), and percentage (%), which were acceptable for the sample matrix and the sample matr	
9. Was there indication from the laboratory that the initial or continuing calibration verification results were within acceptable limits?	N/A
Comments: Initial and continuing calibration data were not included as part of this data set; however, the assumed to be acceptable as the laboratory did not note that any calibration verification results were on limits.	

		VALIDATIO	N CRITERIA CH	ECKLIST	
10. Was the total number of a		•			Yes
		•		equal to at least 5% of the oisture analyses by Method	
11. Were laboratory bla	nk samples	reported to be free	e of target analyte	contamination?	Yes
Comments: Laboratory	blank samp	les were reported t	to be free of targe	t analyte contamination.	
12. Was the total number of samples				of the total	Yes
				ual to at least 5% of the tota set has been indicated belo	
	Method	<u>Analytes</u>	Batch	MS Sample Source	
	7471A	TCLP Mercury	MERP/8608	Not Associated	
	6010B	Total Metals	MPRP/39605	C-SMLRY-27-0-12	
	6010B	Total Metals	MPRP/39606	E-SMLRY-14-0-12	
	6010B	TCLP Metals	MPRP/39677	Z-SMLRY-TCLP-1-0-20	
	6010B	Total Metals	MPRP/39612	Not Associated	
Not Associated – The MS s					
Matrix spike samples we	ere not requ	ired for the percent	t moisture analyse	s by Method D2974.	
13. Were MS/MSD perc control (QC) limits?		ies and MS/MSD F	RPDs within data	validation quality	No
Comments: The MS/MS the parent sample conce				a validation QC limits or we	re not applicable since
Recoveries and RPDs for on these results since m				were considered but data v uaranteed.	vere not qualified based
14. Was the total numbers samples or analyzed		• •	at least 5% of the	total number of	Yes
			-	least 5% of the total numbe nalyses by Method D2974.	er of samples.
15. Were LCS percent r	recoveries v	vithin data validatic	on or laboratory Q	C limits?	Yes
Comments: The LCS pe	ercent recov	veries were within o	lata validation or I	aboratory QC limits.	
16. Were surrogate reco	overies with	in laboratory QC li	mits?		N/A
Comments: Surrogates	were not re	quired for the anal	yses by Methods	6010B, 7471A, and D2974.	
17. Were the number of collected equal to a project guidelines, C	t least 10%	of the total number		•	No
				as not equal to at least 10% and SMLRY-EB-3, were co	
18. Were the trip blank, of target analyte co			blank samples re	ported to be free	Yes
Comments: The equipm	nent blank s	amples were repor	ted to be free of ta	arget analyte contamination.	

VALIDATION CRITERIA CHECKLIST

19. Was the number of field duplicates collected equal to at least 10% of the total No number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Comments: The number of field duplicates collected was not equal to at least 10% of the number of samples. Sample C-SMLRY-135-0-12 was collected as a field duplicate of sample C-SMLRY-35-0-12, sample D-SMLRY-158-0-12 was collected as a field duplicate of sample D-SMLRY-58-0-12, sample E-SMLRY-121-0-12 was collected as a field duplicate of sample E-SMLRY-125-12-24 was collected as a field duplicate of sample E-SMLRY-21-0-12, and sample E-SMLRY-125-12-24 was collected as a field duplicate of sample E-SMLRY-21-0-12.

20. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?

Comments: As indicated in the Field Duplicate Summary Table at the end of this report, field duplicate RPD values were within data validation QC limits of 0-50% for soil samples.

21. Were laboratory duplicate RPD values within laboratory QC limits?

Yes

Yes

Comments: Laboratory duplicates prepared for these analyses and laboratory duplicate sample sources are summarized in the following table.

Method	Analytes	<u>Batch</u>	Laboratory Duplicate Sample Source
D2974	Percent moisture	MPRP/39602	Z-SMLRY-TCLP-1-0-20 and Z-SMLRY-3-0-12
D2974	Percent moisture	MPRP/39603	E-SMLRY-19-12-24 and D-SMLRY-39-0-12
D2974	Percent moisture	MPRP/39604	E-SMLRY-20-24-36 and Not Associated

Not Associated – The laboratory duplicate sample source was not associated with this project.

Laboratory duplicate RPDs were within data validation or laboratory QC limits.

The RPD values for laboratory duplicate samples prepared from non-project samples were considered but data were not qualified based on these results since matrix similarity to project samples could not be guaranteed.

FIELD DUPLICATE SUMMARY

Client Sample ID: C-SMLRY-35-0-12 Field Duplicate Sample ID: C-SMLRY-135-0-12					
Analyte Method Laboratory Result Duplicate Result Relative Per Difference (
Arsenic	6010B	780 mg/kg	1080 mg/kg	32.3%	
Lead	6010B	887 mg/kg	1020 mg/kg	13.9%	
Percent Moisture	D2974	20.7%	20.7%	0.0%	

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA Region 1 Laboratory Data Validation Function Guidelines for Evaluation of Organic Analysis, December 1996.

Client Sample ID: D-SMLRY-58-0-12 Field Duplicate Sample ID: D-SMLRY-158-0-12						
Analyte Method Laboratory Result Duplicate Result Difference (RF						
Arsenic	6010B	161 mg/kg	165 mg/kg	2.5%		
Lead	6010B	188 mg/kg	188 mg/kg	0.0%		
Percent Moisture	D2974	14.4%	14.4%	0.0%		

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA Region 1 Laboratory Data Validation Function Guidelines for Evaluation of Organic Analysis, December 1996.

Client Sample ID: E-SMLRY-21-0-12 Field Duplicate Sample ID: E-SMLRY-121-0-12					
Analyte Method Laboratory Result Duplicate Result Relative Percer					
Arsenic	6010B	252 mg/kg	253 mg/kg	0.4%	
Lead	6010B	181 mg/kg	196 mg/kg	8.0%	
Percent Moisture	D2974	12.4%	10.6%	15.7%	

Validation Function Guidelines for Evaluation of Organic Analysis, December 1996.

Client Sample ID: E-SMLRY-25-12-24 Field Duplicate Sample ID: E-SMLRY-125-12-24					
Analyte Method Laboratory Result Duplicate Result Relative Perc					
Arsenic	6010B	1060 mg/kg	1270 mg/kg	18.0%	
Lead	6010B	1620 mg/kg	2420 mg/kg	39.6%	
Percent Moisture	D2974	25.7%	24.8%	3.6%	

Validation Function Guidelines for Evaluation of Organic Analysis, December 1996.

ATTACHMENT A COC CONFIRMATION LETTER

06/11/2013

Grant Price Trihydro Corporation 2707 Broadwater Avenue Helena, Montana 59601

Chain of Custody Confirmation

I, Grant Price, representing the Montana Department of Environmental Quality of Helena, MT, Spring Meadow Lake Design Phase, do confirm the following information provided with data set 10230552. In addition, I do confirm that the soil and water samples were provided to the laboratory in the proper, method-referenced, containers and were properly preserved (chemically and physically). Finally, samples were relinquished from my custody to Pace Analytical Services, Inc. on 05/31/2013 at 16:00.

To the best of my knowledge, the above information is correct.

GRANT PRICE

DATE

This CoC confirmation is an amendment to the chain-of-custody accompanying the Spring Meadow Lake Design Plan, Pace Analytical Services, Inc. data set 10230552.

APPENDIX E

XRF LABORATORY CORRELATION

APP-E-1. LINEAR REGRESSION - XRF VS LABORATORY TOTAL ARSENIC (ppm)

The REG Procedure Model: MODEL1 Dependent Variable: LAB_As

Number	of	Observations	Read			31
Number	of	Observations	Used			30
Number	of	Observations	with	Missing	Values	1

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	30318839	30318839	120.15	<.0001
Error	28	7065460	252338		
Corrected Total	29	37384299			

Root MSE	502.33240	R-Square	0.8110
Dependent Mean	839.90000	Adj R-Sq	0.8043
Coeff Var	59.80860		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	218.65024	107.81215	2.03	0.0522
XRF_As	1	0.65491	0.05975	10.96	<.0001

APP-E-1. LINEAR REGRESSION - XRF VS LABORATORY TOTAL ARSENIC (ppm)

The REG Procedure Model: MODEL1 Dependent Variable: LAB_As

	Dependent	Predicted	Std Error		Std Error	Student
0bs	Variable	Value	Mean Predict	Residual	Residual	Residual
1	1120	970.5655	92.4844	149.4345	493.7	0.303
2	171.0000	380.5309	100.8342			-0.426
3	455.0000	731.7394	92.2422	-276.7394	493.8	-0.560
4	528.0000	836.3744	91.7135	-308.3744	493.9	-0.624
5	161.0000	335.4272	102.6126	-174.4272	491.7	-0.355
6	780.0000	830.1200				-0.101
7	1290	527.5582	96.0376	762.4418	493.1	1.546
8	957.0000	672.2409	92.9796	284.7591	493.7	0.577
9	87.3000	375.3440	101.0318	-288.0440	492.1	-0.585
10	75.4000	284.8682	104.7625	-209.4682	491.3	-0.426
11	212.0000	560.1334	95.1981	-348.1334	493.2	-0.706
12	142.0000	302.9502	103.9752	-160.9502	491.5	-0.327
13	161.0000	305.8515	103.8508	-144.8515	491.5	-0.295
14	5030	4472	343.8385	557.7031	366.2	1.523
15	237.0000	328.3673	102.9031	-91.3673	491.7	-0.186
16		303.4742	103.9527			
17	3370	1808	127.2996	1562	485.9	3.215
18	230.0000	430.1600	99.0381	-200.1600	492.5	-0.406
19	75.7000	290.6052	104.5106	-214.9052	491.3	-0.437
20	2690	2916	210.4005	-225.5432	456.1	-0.494
21	965.0000	305.5568	103.8634	659.4432	491.5	1.342
22	1200	477.9946	97.4748	722.0054	492.8	1.465
23	33.6000	251.3957	106.2721	-217.7957	491.0	-0.444
24	252.0000	360.4382	101.6097	-108.4382	491.9	-0.220
25	440.0000	394.0089	100.3294	45.9911	492.2	0.0934
26	2240	3530	261.9757	- 1290	428.6	-3.009
27	1060	670.8918	93.0000	389.1082	493.6	0.788
28	111.0000	280.0284	104.9766	-169.0284	491.2	-0.344
29	246.0000	303.8999	103.9345	-57.8999	491.5	-0.118
30	772.0000	956.5700	92.3285	-184.5700	493.8	-0.374

			Cook's
0bs	-2-1 0 1 2		D
1			0.002
2			0.004
3	*		0.005
4	*		0.007
5			0.003
6			0.000
7	***		0.045
8	*		0.006
9	*		0.007
10			0.004
11	*	I	0.009

APP-E-1. LINEAR REGRESSION - XRF VS LABORATORY TOTAL ARSENIC (ppm)

The REG Procedure Model: MODEL1 Dependent Variable: LAB_As

			(Cook's
0bs	-2-1 (012		D
10	I	I	1	0 000
12	1			0.002
13				0.002
14		* * *		1.022
15				0.001
16				
17		*****		0.355
18				0.003
19				0.004
20				0.026
21		* *		0.040
22		* *		0.042
23				0.005
24				0.001
25				0.000
26	*****			1.692
27		*		0.011
28				0.003
29				0.000
30				0.002
31			I	0.004

Sum of Residuals	0
Sum of Squared Residuals	7065460
Predicted Residual SS (PRESS)	9912549

APP-E-1. LINEAR REGRESSION - XRF VS LABORATORY TOTAL ARSENIC (ppm)

0bs	sample_id	st_depth
1	C-SMLRY-34-0-12	0
2	D-SMLRY-47-0-12	0
3	D-SMLRY-56-0-12	0
4	D-SMLRY-58-0-12	0
5	E-SMLRY-13-0-12	0
6	E-SMLRY-16-24-36	24
7	E-SMLRY-20-24-36	24
8	E-SMLRY-25-24-36	24
9	Z-SMLRY-3-0-12	0

Obs	end_depth	XRF_As
1	12	178.31
2	12	101.11
3	12	128.72
4	12	133.15
5	12	129.52
6	36	109.87
7	36	50
8	36	93.72
9	12	136.64

	XRF_		LAB_
0bs	As_DET	LAB_As	As_DET
1	Y	161	Y
2	Y	75.4	Y
3	Y	142	Y
4	Y	161	Y
5	Y		
6	Y	75.7	Y
7	Ν	33.6	Y
8	Y	111	Y
9	Y	105	Y

APP-E-3. LINEAR REGRESSION - XRF VS LABORATORY TOTAL ARSENIC WITH EXTREME VALUES REMOVED (ppm)

The REG Procedure Model: MODEL1 Dependent Variable: LAB_As

Number of Observations Read	9
Number of Observations Used	8
Number of Observations with Missing Values	1

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	10348	10348	15.20	0.0080
Error	6	4085.19883	680.86647		
Corrected Total	7	14433			

Root MSE	26.09342	R-Square	0.7170
Dependent Mean	108.08750	Adj R-Sq	0.6698
Coeff Var	24.14101		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-11.11179	31.93694	-0.35	0.7398
XRF_As	1	1.02370	0.26259	3.90	0.0080

APP-E-3. LINEAR REGRESSION - XRF VS LABORATORY TOTAL ARSENIC WITH EXTREME VALUES REMOVED (ppm)

The REG Procedure Model: MODEL1 Dependent Variable: LAB_As

Output Statistics

	Dependent	Predicted	Std Error		Std Error	Student
0bs	Variable	Value	Mean Predict	Residual	Residual	Residual
1	161.0000	171.4236	18.6828	-10.4236	18.216	-0.572
2	75.4000	92.3942	10.0654	-16.9942	24.074	-0.706
3	142.0000	120.6585	9.7727	21.3415	24.194	0.882
4	161.0000	125.1935	10.2157	35.8065	24.011	1.491
5		121.4775	9.8440			
6	75.7000	101.3618	9.3853	-25.6618	24.347	-1.054
7	33.6000	40.0731	19.7352	-6.4731	17.070	-0.379
8	111.0000	84.8291	10.9864	26.1709	23.668	1.106
9	105.0000	128.7662	10.6416	-23.7662	23.825	-0.998

		Cook's
0bs	-2-1 0 1 2	D
1	*	0.172
2	*	0.044
3	*	0.063
4	**	0.201
5		
6	**	0.083
7	I	0.096
8	**	0.132
9	*	0.099

Sum of Residuals	0
Sum of Squared Residuals	4085.19883
Predicted Residual SS (PRESS)	6182.68973

APP-E-2. LINEAR REGRESSION - XRF VS LABORATORY TOTAL LEAD (ppm)

The REG Procedure Model: MODEL1 Dependent Variable: LAB_Pb

Number	of	Observations	Read			31
Number	of	Observations	Used			30
Number	of	Observations	with	Missing	Values	1

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	14287931	14287931	111.48	<.0001
Error	28	3588611	128165		
Corrected Total	29	17876543			

Root MSE	358.00096	R-Square	0.7993
Dependent Mean	716.71667	Adj R-Sq	0.7921
Coeff Var	49.95014		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	42.20645	91.39609	0.46	0.6478
XRF_Pb	1	0.99995	0.09471	10.56	<.0001

APP-E-2. LINEAR REGRESSION - XRF VS LABORATORY TOTAL LEAD (ppm)

The REG Procedure Model: MODEL1 Dependent Variable: LAB_Pb

	Dependent	Predicted	Std Error		Std Error	Student	
0bs	Variable	Value	Mean Predict	Residual	Residual	Residual	
1	1030	1031	71.8248	-1.1113	350.7	-0.0032	
2	134.0000	308.0143	75.9638	-174.0143	349.8	-0.497	
3	776.0000	702.5663	65.3755	73.4337	352.0	0.209	
4	429.0000	712.2359	65.3631	-283.2359	352.0	-0.805	
5	159.0000	312.3341	75.7562	-153.3341	349.9	-0.438	
6	887.0000	842.2199	66.4338	44.7801	351.8	0.127	
7	1070	440.5783	70.3999	629.4217	351.0	1.793	
8	1040	1083	73.9934	-42.9090	350.3	-0.123	
9	110.0000	328.7634	74.9815	-218.7634	350.1	-0.625	
10	105.0000	218.0884	80.6375	-113.0884	348.8	-0.324	
11	512.0000	1080	73.8443	-567.5391	350.3	-1.620	
12	156.0000	190.9497	82.1692	-34.9497	348.4	-0.100	
13	188.0000	221.4583	80.4510	-33.4583	348.8	-0.0959	
14	3250	2461	177.6958	788.6240	310.8	2.538	
15	218.0000	171.9205	83.2738	46.0795	348.2	0.132	
16		102.2037	87.5187				
17	2320	1611	107.0214	708.5252	341.6	2.074	
18	235.0000	316.6039	75.5525	-81.6039	349.9	-0.233	
19	40.9000	130.5324	85.7578	-89.6324	347.6	-0.258	
20	2290	2241	158.4978	48.7139	321.0	0.152	
21	736.0000	193.7195	82.0105	542.2805	348.5	1.556	
22	875.0000	837.1002	66.3487	37.8998	351.8	0.108	
23	29.6000	102.2037	87.5187	-72.6037	347.1	-0.209	
24	181.0000	162.6810	83.8188	18.3190	348.1	0.0526	
25	246.0000	270.4860	77.8351	-24.4860	349.4	-0.0701	
26	1450	2484	179.6754	- 1034	309.6	-3.339	
27	1620	1474	97.0218	146.2289	344.6	0.424	
28	122.0000	117.1430	86.5842	4.8570	347.4	0.0140	
29	446.0000	251.3269	78.8351	194.6731	349.2	0.557	
30	573.0000	867.9688	66.9131	-294.9688	351.7	-0.839	

		Cook's
0bs	-2-1 0 1 2	D
1		0.000
2		0.006
3		0.001
4	*	0.011
5		0.005
6		0.000
7	***	0.065
8		0.000
9	*	0.009
10		0.003
11	***	0.058

APP-E-2. LINEAR REGRESSION - XRF VS LABORATORY TOTAL LEAD (ppm)

The REG Procedure Model: MODEL1 Dependent Variable: LAB_Pb

			Соо	k's
0bs	-2-1 0	12		D
12			1	000
13			0.	000
14		****	1.	052
15			0.	001
16				
17		* * * *	0.	211
18			0.	001
19			0.	002
20			0.	003
21		* * *	0.	067
22			0.	000
23			0.	001
24			0.	000
25			0.	000
26	*****		1.	877
27			0.	007
28			0.	000
29		*	0.	800
30	*		0.	013
31			0.	001

Sum of Residuals	0
Sum of Squared Residuals	3588611
Predicted Residual SS (PRESS)	5137258

APP-E-4. LINEAR REGRESSION - XRF VS LABORATORY TOTAL LEAD WITH EXTREME VALUES REMOVED (ppm)

The REG Procedure Model: MODEL1 Dependent Variable: LAB_Pb

Number of Observations Read	17
Number of Observations Used	16
Number of Observations with Missing Va	alues 1

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	192408	192408	51.63	<.0001
Error	14	52170	3726.43537		
Corrected Total	15	244579			

Root MSE	61.04454	R-Square	0.7867
Dependent Mean	196.15625	Adj R-Sq	0.7715
Coeff Var	31.12036		

Parameter Estimates

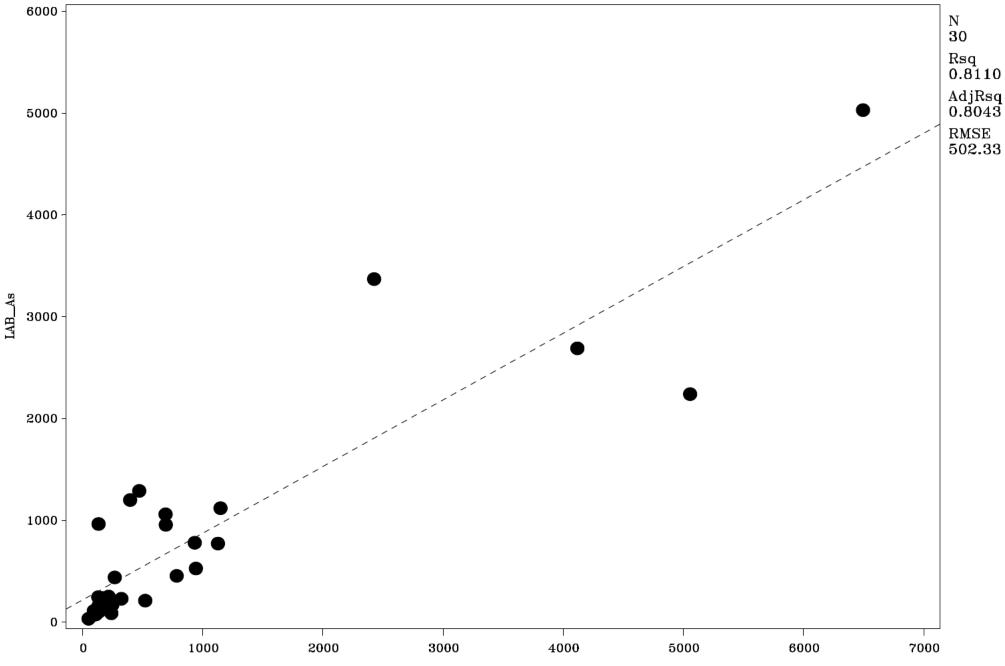
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	74.45767	22.79787	3.27	0.0056
XRF_Pb	1	0.45229	0.06294	7.19	<.0001

APP-E-4. LINEAR REGRESSION - XRF VS LABORATORY TOTAL LEAD WITH EXTREME VALUES REMOVED (ppm)

The REG Procedure Model: MODEL1 Dependent Variable: LAB_Pb

Output Statistics

0bs	Dependent Variable		Std Error Mean Predict	Residual	Std Error Residual	
1	134.0000	194.6855	15.2625	-60.6855	59.106	-1.027
2	429.0000	377.5193	29.4948	51.4807	53.446	0.963
3	159.0000	196.6394	15.2613	-37.6394	59.106	-0.637
4	110.0000	204.0705	15.3008	-94.0705	59.096	-1.592
5	105.0000	154.0110	16.3494	-49.0110	58.814	-0.833
6	512.0000	543.6545	50.7110	-31.6545	33.983	-0.931
7	156.0000	141.7358	17.0370	14.2642	58.619	0.243
8	188.0000	155.5352	16.2745	32.4648	58.835	0.552
9	218.0000	133.1288	17.6022	84.8712	58.452	1.452
10		101.5951	20.1515			
11	235.0000	198.5706	15.2648	36.4294	59.105	0.616
12	40.9000	114.4085	19.0349	-73.5085	58.001	-1.267
13	29.6000	101.5951	20.1515	-71.9951	57.623	-1.249
14	181.0000	128.9496	17.8991	52.0504	58.361	0.892
15	246.0000	177.7110	15.4755	68.2890	59.050	1.156
16	122.0000	108.3523	19.5503	13.6477	57.829	0.236
17	273.0000	207.9330	15.3489	65.0670	59.083	1.101


			Cook's
0bs		-2-1 0 1 2	D
1		* *	0.035
2		*	0.141
3		*	0.014
4		***	0.085
5		*	0.027
6		*	0.966
7	Ι		0.003

8			*	I	0.012
9	Ι		**		0.096
10					
11	Ι		*		0.013
12		* *			0.086
13		* *			0.095
14			*		0.037
15			**		0.046
16	Ι				0.003
17			**		0.041

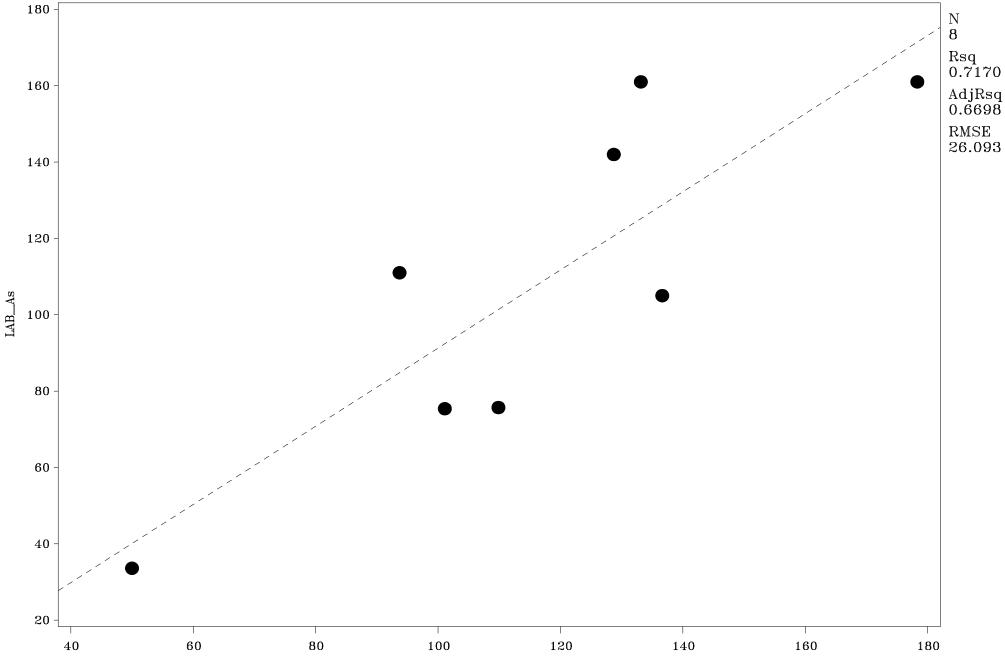
Sum of Residuals	0
Sum of Squared Residuals	52170
Predicted Residual SS (PRESS)	71932

APP-E-1. LINEAR REGRESSION - XRF VS LABORATORY TOTAL ARSENIC (ppm)


$LAB_As = 218.65 + 0.6549 XRF_As$

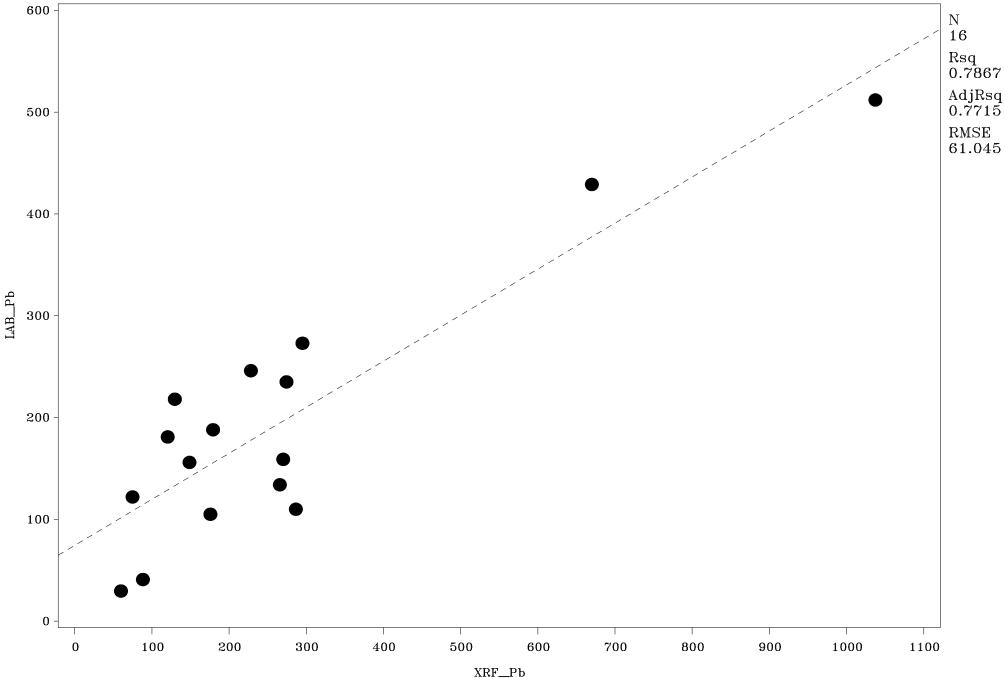
XRF_As

APP-E-2. LINEAR REGRESSION - XRF VS LABORATORY TOTAL LEAD (ppm)



XRF_Pb

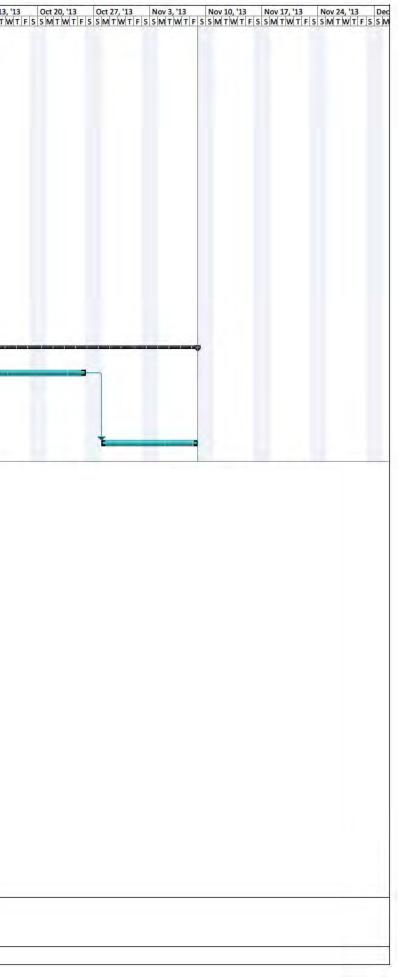
APP-E-3. LINEAR REGRESSION - XRF VS LABORATORY TOTAL ARSENIC WITH EXTREME VALUES REMOVED (ppm)


 $LAB_As = -11.112 + 1.0237 XRF_As$

XRF_As

APP-E-4. LINEAR REGRESSION - XRF VS LABORATORY TOTAL LEAD WITH EXTREME VALUES REMOVED (ppm)

 $LAB_Pb = 74.458 + 0.4523 XRF_Pb$



APPENDIX F

TIMELINE

1	Design Phase Report Finalized	1 day	Wed 7/10/13	Wed 7/10/1					3 3 141 1 44 1 1 3 3 141 1 44 1 1 3	5 MI I W I F 5 5 MI	25, '13 Sep 1, '13 TWTFSSMTWTFS	SMIWIFSS	MIWIFSSN		
2	Design Phase Report Finalized	1 day	wed //10/13	wed //10/1	3										
						-		_							
	Reclamation		Thu 7/11/13												
	Engineering Design		Thu 7/11/13			£	11 II.	1							
5	Review	5 days	Mon 8/12/13	Fri 8/16/13					£						
6	Finalize	5 days	Mon 8/19/13	Fri 8/23/13						t					
7					-					- 1					
8															
)	Bid Process	25 days?	Mon 8/26/13	Fri 9/27/13						-					
0	Advertise	15 days	Mon 8/26/13	Fri 9/13/13						ŧ	a. 1. a.		1		
1	Contractor Bonding/Insurance	10 days	Mon 9/16/13	Fri 9/27/13										-	
2					-										
3	Dig and Haul	30 days	Mon 9/30/13	Fri 11/8/13											
4	Structure removal, excavation, backfill	20 days	Mon 9/30/13	Fri 10/25/13	l.									4	 0 0
15	Revegetation, restorarion	10 days	Mon 10/28/1	3Fri 11/8/13											
5	Revegetation, restorarion	10 days	Mon 10/28/1	3Fri 11/8/13											
5	Revegetation, restorarion	10 days	Mon 10/28/1	3Fri 11/8/13											
5	Revegetation, restorarion	10 days	Mon 10/28/1	3Fri 11/8/13											
	Revegetation, restorarion	10 days	Mon 10/28/1	3Fri 11/8/13											
	Revegetation, restorarion	10 days	Mon 10/28/1	3Fri 11/8/13											
	Revegetation, restorarion	10 days	Mon 10/28/1	3Fri 11/8/13											
	Revegetation, restorarion	10 days	Mon 10/28/1	3Fri 11/8/13											
	Revegetation, restorarion	10 days	Mon 10/28/13	3Fri 11/8/13											
			Mon 10/28/13		Summary		External Milest	one I	Inactive Summary		Manual Summary Rollup		Finish-only	2	
open	dix F. ESTIMATED PROJECT :: SPRING MEADOW LAKE Spli	īk			Summary Project Summary External Tasks		External Milest		Inactive Summary Manual Task Duration-only		Manual Summary Rollup Manual Summary Start-only			3	

