
SAND COULEE WATER DISTRICT WATER SUPPLY ASSESSMENT

Prepared for:

Tom Henderson Remediation Division Montana Department of Environmental Quality P.O. Box 200901 Helena, MT 59620-0901

Prepared by:

Hydrometrics, Inc. 3020 Bozeman Avenue Helena, MT 59601

January 2011

LIST OF TABLES	.iii
LIST OF FIGURES	.iii
LIST OF APPENDICES	.iv
1.0 INTRODUCTION	.1-1
1.1 PURPOSE AND SCOPE	.1-1
1.2 PROJECT BACKGROUND	.1-3
1.3 TOPOGRAPHIC AND HYDROGEOLOGIC SETTING	.1-7
1.4 WATER DISTRICT WATER SUPPLY WELLS	.1-11
1.4.1 Well Construction and Well Yields	.1-11
1.4.2 Source of Declining Well Yields	.1-14
1.5 WATER SUPPLY DEMAND	.1-22
1.6 WATER RIGHTS	.1-23
2.0 WATER SUPPLY ALTERNATIVES	.2-1
2.1 OPTION 1 - CONVENTIONAL WELLS IN THE KOOTENAI	
FORMATION	.2-1
2.1.1 Well Design Modifications	.2-1
2.1.2 Well Testing and Maintenance	.2-2
2.1.3 Number and Location of Additional Wells	.2-3
2.1.4 Public Water Supply Permitting	.2-4
2.1.5 Water Rights Permitting	.2-5
2.2 OPTION 2 - HORIZONTAL WELL IN THE KOOTENAI FORMATION	2-6
2.2.1 Well Design and Yield	.2-7
2.2.2 Well Testing and Maintenance Issues	.2-9
2.2.3 DEQ Public Water Supply Permitting	.2-9
2.2.4 DNRC Water Rights Permitting	.2-9
2.3 OPTION 3 - MADISON AQUIFER DEEP WELL (S)	.2-10
2.3.1 Potential Depth and Yield of a Madison Well	.2-10
2.3.2 Well Testing and Maintenance	.2-12
2.3.3 DEQ Public Water Supply Permitting	.2-12

TABLE OF CONTENTS

2.3.4 DNRC Water Rights Permitting	.2-13
3.0 COST ASSESSMENT	.3-1
4.0 CONCLUSIONS AND RECOMMENDATIONS	.4-1
5.0 REFERENCES	.5-1

LIST OF TABLES

1-12	WELL CONSTRUCTION SUMMARY	TABLE 1-1.
	ANALYTICAL RESULTS FOR SOLIDS	TABLE 1-2.
1-19	RECOVERED FROM WELL NO. 2	
1-20	WELL NO. 3 WATER QUALITY RESULTS	TABLE 1-3.
1-23	WATER DISTRICT WATER RIGHTS	TABLE 1-4.
3-1	COST COMPARISON SUMMARY	TABLE 3-1.

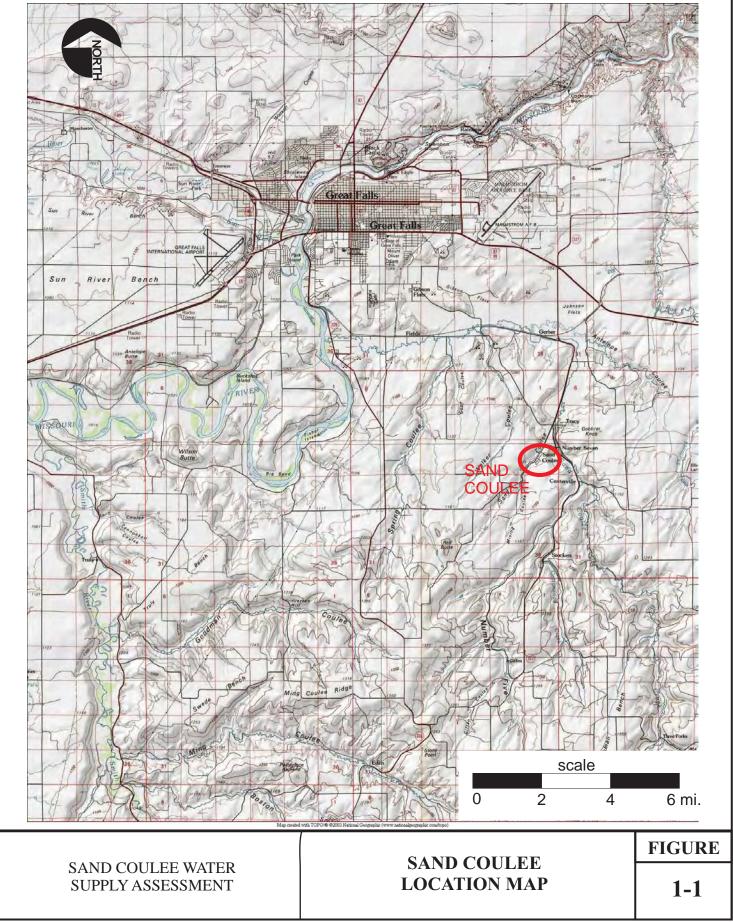
LIST OF FIGURES

FIGURE 1-1.	SAND COULEE LOCATION MAP	1-2
FIGURE 1-2.	COAL MINES AND MAPPED UNDERGROUND WORKINGS I	N
	THE SAND COULEE AREA	1-5
FIGURE 1-3.	SAND COULEE WATER DISTRICT WELL FIELD AND	
	STORAGE TANK LOCATIONS	1-6
FIGURE 1-4.	GEOLOGIC MAP	1-8
FIGURE 1-5.	GENERALIZED STRATIGRAPHIC CROSS SECTION OF THE	
	SAND COULEE DRAINAGE	1-9
FIGURE 1-6.	WELL NO. 2 DOWNHOLE VIDEO IMAGES	1-16
FIGURE 1-7.	WELL NO. 4 DOWNHOLE VIDEO IMAGES	1-18
FIGURE 2-1.	DIRECTED DRILLING TECHNOLOGIES PAONIA PROJECT	
	РНОТОЅ	2-8

LIST OF APPENDICES

APPENDIX A	WELL LOGS AND WATER RIGHTS ABSTRACTS
APPENDIX B	LABORATORY ANALYTICAL REPORTS
APPENDIX C	WELL NO. 3 PHREEQCI MODEL INPUT AND OUTPUT
APPENDIX D	GWIC DATABASE FOR MADISON WELLS

SAND COULEE WATER DISTRICT WATER SUPPLY ASSESSMENT


1.0 INTRODUCTION

The town of Sand Coulee is located about eight miles southeast of Great Falls in Cascade County, Montana (Figure 1-1). The town lies within the Sand Coulee drainage and within an area of extensive historic coal mining activities. The town relies on a network of water supply wells for their community water system, and has experienced a decline in well yields raising concerns about the adequacy and reliability of the current system as a community water supply. At the request of the Montana Department of Environmental Quality (DEQ), Hydrometrics conducted an evaluation of the current community water supply system, potential reasons for the documented reductions in well yields, and options for improving the quantity and reliability of the Sand Coulee municipal groundwater supply. This report presents the methods and results of the Sand Coulee water supply evaluation, and options for developing a more reliable source of potable water for the Sand Coulee Water District (Water District).

1.1 PURPOSE AND SCOPE

The Water District presently relies on groundwater wells completed in lower Kootenai Formation sandstone and upper Morrison Formation coal as the sole water source for the community water supply system. The wells, however, are subject to severe mineral encrustation that results in well deterioration and recurring problems with declining production rates.

Potential water sources for a public water supply are limited in the Sand Coulee area due to impacts to surface water and shallow groundwater from acid mine drainage (AMD). Mine drainage has also dewatered much of the overlying Kootenai formation, which under normal conditions is a common source aquifer for groundwater development in the area.

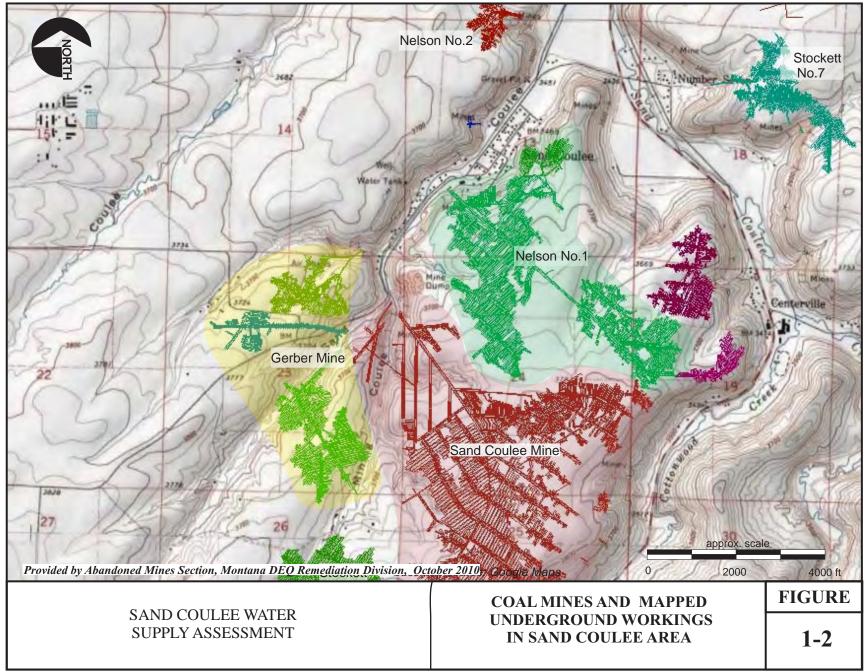
K:\PROJECT\10039\FIG 1-1 LOCATION MAP.CDR

The purpose of this report is to assess three specific water supply options that were identified in the initial scoping process for this project, which include the following:

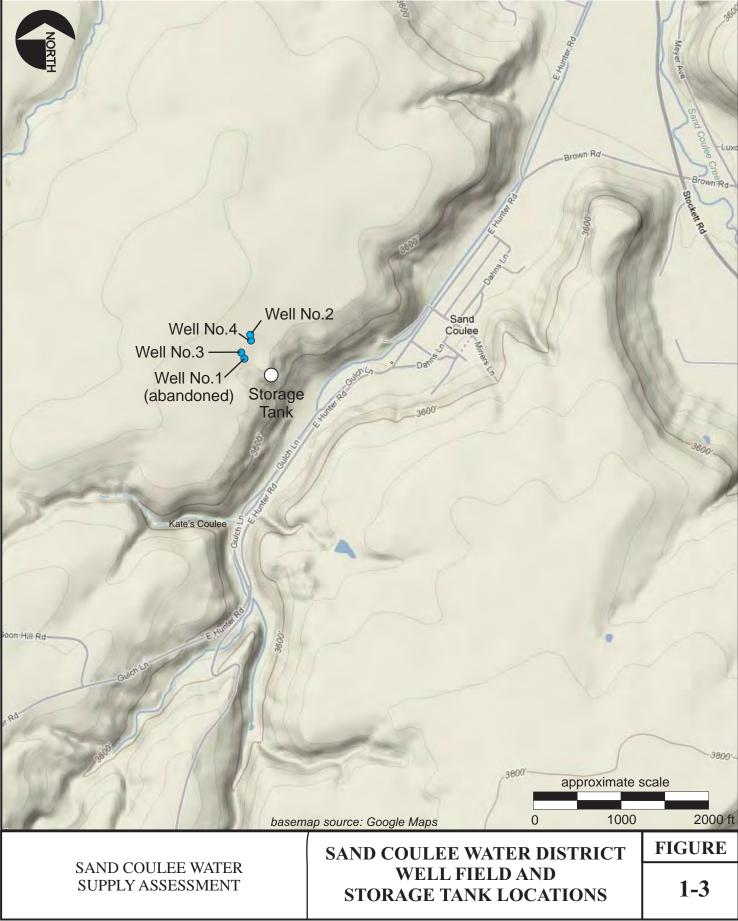
- 1. Development of additional conventional wells in the Kootenai Formation with an assessment of measures necessary to address encrustation problems and minimize associated production losses.
- 2. Installation of a horizontal well in the Kootenai Formation to obtain higher production yields and minimize conditions conducive to encrustation.
- 3. Development of one or more deep wells in the Madison Formation.

This report provides a detailed assessment of each of these options including an evaluation of both the technical and regulatory issues required for implementation, and a preliminary estimate of implementation costs. The technical assessment examines drilling and well construction requirements, potential yields, and potential operational and maintenance issues. The regulatory assessment evaluates permitting issues associated with each option including water rights permitting through the Department of Natural Resources and Conservation (DNRC), and public water supply permitting through the DEQ. The cost assessment provides a preliminary evaluation of potential costs for implementation of each alternative. The primary purpose of the cost assessment is to aid in the selection of a preferred alternative. Projected costs for the preferred alternative will ultimately be established based on final design considerations and actual bids from drilling and construction contractors.

1.2 PROJECT BACKGROUND


Sand Coulee is a small unincorporated residential community of about 180 people located approximately eight miles southeast of Great Falls, Montana (Figure 1-1). Sand Coulee was founded as a coal mining town in the late 1800s and became one of the central hubs for coal mining activity in the Great Falls Coal Field. By the turn of the century the coal reserves in the Sand Coulee Mine were largely mined out in the immediate vicinity of Sand Coulee and

mining activity began to shift to outlying areas. In 1904 the Sand Coulee Mine was shut down. Mining continued in the nearby Nelson and Gerber mines through the 1930's (Figure 1-2), but by the 1940's all of the large-scale mines had ceased operations (RTI, 2009) leaving the town surrounded by an extensive network of abandoned underground workings.


Groundwater percolating into the mines from the overlying Kootenai Formation partially flooded the underground workings and produced AMD contaminating area surface waters (Sand Coulee, Mining Coulee and Sand Coulee Creek, Figure 1-2) and shallow groundwater within Sand Coulee drainage. Despite extensive reclamation efforts, AMD from these abandoned mines continues to contaminate the creeks and shallow aquifer.

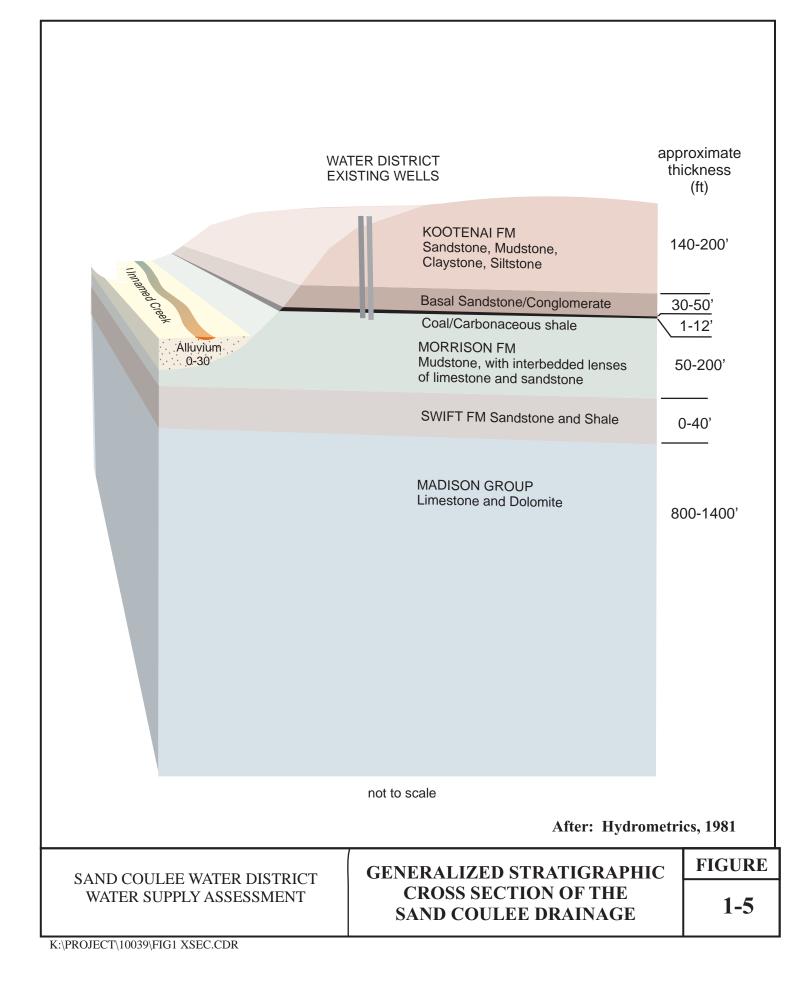
Because of the difficulty of siting and maintaining adequate wells within the coulee, a group of residents formed the Sand Coulee Water Users Association in 1959 to develop a community water supply system that would meet their water supply needs. The water users association sold water bonds and constructed their first well on the terrace outside of town. They also constructed a storage tank and a distribution main (DEQ, 2000; NCI, 2010). In late 2009, the water users association formed the Sand Coulee Water District (NCI, 2010).

Most of the original infrastructure installed in 1959 for the Sand Coulee Water Users Association is still in use by the Water District with the exception of the well installed in 1960, which collapsed in 1996 and was abandoned in 2000. The water users association attempted several times to expand the capacity of the community water supply by installing additional wells, but mineral encrustation problems resulted in declining production rates over time and progressive deterioration of the wells. Of the four wells installed by the association between 1960 and 2008, only the two most recent wells are still in operation, with one well taken out of use and a second well abandoned. The wells are located outside on a terrace above the coulee floor immediately west of the town (Figure 1-3). The construction and operational characteristics of these wells are discussed in detail in Section 1.4 of this report.

K:\PROJECT\10039\FIG Coal Mine Workings.cdr

K:\PROJECT\10039\FIG1 XSEC.CDR

1.3 TOPOGRAPHIC AND HYDROGEOLOGIC SETTING


The topography in the Sand Coulee region is characterized by broad upland terraces sloping gently northward from the base of the Little Belt Mountains. These terraces are incised by narrow, steep sided coulees, which generally contain ephemeral streams. At Sand Coulee, the relief between the bottom of the coulee and the surrounding upland area is on the order of 200 to 250 feet. The creek that flows through Sand Coulee, referred to as the "Rusty Ditch", is an un-named tributary to Sand Coulee Creek. The creek at Sand Coulee originates about six miles southwest of town and joins the main stem of Sand Coulee Creek at Tracy approximately one mile downstream. The creek is spring fed and reportedly has little flow until it begins to receive recharge from abandoned mine drainage beginning about one mile upstream of Sand Coulee (WESTECH/Hydrometrics, 1982). Streamflow is ephemeral and typically ranges from 0 to 3 cubic feet per second (cfs) in the vicinity of the town. The stream quality is heavily impacted by acid mine drainage.

The geology of the area (shown on Figure 1-4) consists of a relatively flat lying sequence of Paleozoic sedimentary rocks that are exposed along the walls of the incised coulees. The formations slope gently to the north and west in the Sand Coulee area, which exposes progressively older formations in the upstream drainages to the south. The general stratigraphy in the Sand Coulee area is shown in Figure 1-5 and described below.

The Kootenai Formation underlies the upland terraces surrounding Sand Coulee and is exposed in outcrop on the steep sidewalls of the coulee. The Kootenai Formation is calcareous, cemented sandstone with alternating layers of mudstone and is generally between 350 and 400 feet thick in the Great Falls area (Wilke, 1983). The upper portion of the Kootenai Formation has been eroded in the Sand Coulee area, resulting in a thickness of approximately 180 feet in the well field area. The basal member of the Kootenai Formation is coarser-grained, cross-bedded sandstone with beds of conglomeratic pebble sandstone.

The Kootenai Formation generally yields moderate amounts of groundwater (5 to 50 gallons per minute [gpm]) and is widely used as a water source for domestic and stock wells in the

Ogt Kks Kk	CKks Qgt	Qgt			
Qgt KJm Kk4 Kk4		Kk4			
Kk2 6 Kks 10 6 Kks 10 10 10 10 10 10 10 10 10 10	Kks	01			
II66 8 Source: Montana Bures Qal ALLUVIUM (Holocene) Qac ALLUVIUM AND COLLUVIUM, Undivided (Holocene) Qls LANDSLIDE DEPOSIT (Holocene and Pleistocene) Qgt GLACIAL TILL (Pleistocene)	au of Mines and Geology Open File Report Mi approx. s 0 2000 400	cale			
 KOOTENAI FM Pale-reddish-brown to light-brownish gray medium-bedded sandstone interbedded with very dark-reddish-brown mudstone Light-yellowish-brown-weathered, well sorted, well cemented, resistant quartz sandstone Kk2 Fine-grained planar-bedded light-gray sandstone with red or purple mottling Cross-bedded, moderately well-sorted quartz sandstone with coarse-grained sandstone, or chert-pebble conglomerate at the base. KJm MORRISON FM Subbituminous coal bed and dark-gray carbonaceous shale at top of formation grading to greenish gray mudstone with interbedded lenses of calcaneous sandstone JSW SWIFT FM Orangish-brown, gray or tan, calcareous, sandstone and interbeds of gray-weathered shale. Mmc MADISON GROUP - MISSION CANYON LIMESTONE 					
Sand Coulee Water District Water Supply Assessment	GEOLOGIC MAP	FIGURE 1-4			

Great Falls area (Wilke, 1983). The Sand Coulee Water Supply District wells receive groundwater inflow in part from the lower Kootenai Formation, which has about 25 feet of saturated thickness in the well field area. Since the Kootenai Formation is stratigraphically above the area mine workings, it is not impacted by mine drainage.

The Morrison Formation underlies the Kootenai and is generally between 120 and 180 feet thick in the Great Falls area (Wilke, 1983). The Morrison Formation has a coal seam and dark gray carbonaceous shale at the upper contact with the Kootenai Formation. The coal seam and carbonaceous shale are exposed in outcrop at discrete locations along the west slope of Sand Coulee. The coal seam receives recharge from the overlying Kootenai Formation and can yield moderate amounts of groundwater. The Sand Coulee Water District wells are completed in this coal unit of the upper Morrison and the coal appears to be one of the sources of groundwater inflow to the wells.

Light gray limestone and low permeability grey-green mudstone/shale make up the lower Morrison. The lower Morrison also reportedly contains some sandstone lenses that are tapped by a few wells in the Sand Coulee area that produce limited yields (WESTECH/Hydrometrics, 1982).

The Morrison Formation is underlain by the Swift Formation, a calcareous, coarse- to finegrained sandstone with interbeds of shale ranging from 0 to 40 feet thick in the Sand Coulee area (WESTECH/Hydrometrics, 1982). Few wells are completed in the Swift formation in the project area. Goers (1968) concluded that recharge to the Swift Formation is limited by the low permeability shale beds in the overlying Morrison Formation and by updip truncation of the Swift Formation along the little Belt Mountains.

The Swift Formation is underlain by the Madison group Mission Canyon and Lodgepole Formations, which are generally referred to together as the Madison Limestone. The thickness of the Madison Limestone in the Great Falls area ranges from 1,200 to 1,700 feet (Smith, 2008) and consists of massive to thick-bedded limestone with thin, chert interbeds transitioning downward into thinner-bedded limestone and mudstone.

Groundwater is present in the Madison where fractures or solution cavities have developed. The Madison is widely used as a water source for domestic, stock and irrigation wells in the Great Falls area and further south towards the Little Belt Mountains (Smith, 2008). Well yields from wells completed in the Madison average 30 gpm in this area (see Section 2.3), however, yields up to 1,000 gpm are reported in some wells and the Madison is believed to be a primary source of recharge to Giant Springs, one of the largest freshwater springs in the United States (Wilke, 1983; Smith, 2008).

1.4 WATER DISTRICT WATER SUPPLY WELLS

1.4.1 Well Construction and Well Yields

Sand Coulee Water User Association has installed four water supply wells on the terrace west of Sand Coulee between 1960 and 2008 (Figure 1-3). Well construction information for each of the wells is summarized in Table 1-1. The first well was drilled in February 1960 and was completed to a depth of 210 feet below ground surface (bgs). The upper 34 feet of the hole was cased with 6-inch steel and the remainder of the borehole was left uncased to the completion depth of 210 feet. The well log (Appendix A) indicates that Well No. 1 produced 45 gpm at the time of completion. Water was produced during drilling in the sandstone between 138 feet and 192 feet, and from 198 feet to 210 feet. Although the well is deep enough to penetrate the upper Morrison, there is no record in the well log of encountering the coal seam that is typically present at the upper contact with the Morrison Formation.

Well Name:	Well No. 1	Well No. 2	Well No. 3	Well No. 4
Installation Date	2/4/1960	10/11/1973	8/2/1999	3/1/2008
Operational Status	Abandoned 5/5/2000	Taken out of use Feb 2010	In use	In use
Drilling Contractor	Soennichsen Drilling Co.	Pat Byrne	Pat Byrne	Pat Byrne
GWIC Well ID	31883	2254	177478	241877
DNRC Water Right No.	C005057-00	C006174-00	G070692-00	C005057-00
Elevation	3680	3670	3670	
Reported Yield at time of installation	45 GPM	60 GPM	50 GPM	30 GPM
Current Yield		5 GPM	18 GPM	20 GPM
Aquifer/Formation	Kootenai Sandstone & Morrison Coal	Kootenai Sandstone & Morrison Coal	Kootenai Sandstone & Morrison Coal	Kootenai Sandstone & Morrison Coal
Total Depth (TD)	210 feet	210 feet	181 feet	212 feet
Static Water Level (SWL) depth at time of installation	134 feet	150feet	150.5 feet	154.5
Casing	6-inch steel to 34 feet Open hole 34-210 feet	8-inch steel to 31 feet 5-inch PVC from 11- 210 feet	6-inch steel to 38 feet 5-inch PVC from 11- 181 feet	6-inch steel to 139' Open hole to 139-212 feet
Screened Interval	Open Hole: 34-210'	Slotted casing but no data on interval Open ended casing	Slotted 165-173', open ended casing?	Open hole: 139-212 feet

TABLE 1-1. WELL CONSTRUCTION SUMMARY

Well locations shown on Figure 1-3

The water rights records (Appendix A) refer to the 1960 well as the No. 2 well, and make reference to an earlier well installed in 1920 to a depth of 194 feet as the No. 1 well. However, no well log or other information was found for the earlier well and the 1960 well is now commonly referred to as Well No. 1.

A second well (referred to as Well No. 2 in all current documents) was installed in October 1973, also to a depth of 210 ft. The construction of Well No. 2 was similar to Well No. 1, with 8-inch diameter steel casing set to a depth of 34 ft and the remainder of the borehole left uncased to the completion depth of 210 feet. The well log for the Well No. 2 (Appendix A) indicates the well produced 60 gpm at the time of completion. Water was encountered during drilling in sandstone and coal from 184 to 187 feet, and from black clay and shale

from 187 feet to 210 feet. The primary water production appears to come from the coal seam at the top of the Morrison and the sandstone at the lower contact of the Kootenai.

Although the exact date of installation is not known, PVC casing was installed in Well No. 2 some time after completion (possibly when Well No. 3 was installed in 1999). Well 2 currently has 5-inch PVC casing extending from 11 feet to 210 feet below ground surface (bgs), with vertical saw-cut slots and an open bottom. Although the exact purpose is not known, the PVC may have been installed to avoid the borehole caving problem encountered at Well No. 1. Whatever the purpose, the well yield at Well No. 2 declined over time and the well was taken out of production in February 2010. Preliminary testing of this well by Hydrometrics in June 2010 indicated water level drawdown from the static water level of 156 feet bgs to the pump intake at 173 feet in less than three minutes of pumping at 10 gpm. The current yield of the No. 2 well based on recovery rates from the preliminary test appears to be on the order of 5 gpm, or less than 10% of its original yield.

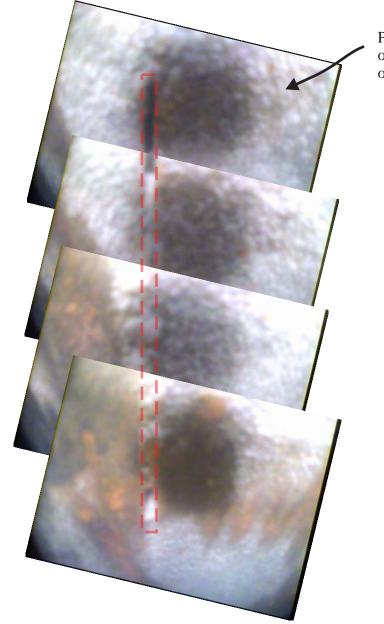
The borehole in Well No. 1 reportedly collapsed in July 1996 and a replacement well (Well No. 3) was drilled in August 1999 (DEQ, 2000). Well No. 3 was completed to a depth of 181 feet with 6-inch steel casing to 38 feet and 5-inch PVC casing from a depth of 11 feet to 181 feet. The PVC casing has saw-cut slots from 165 feet to 173 feet (see Table 1-1 and well log in Appendix A for well completion details). The well log indicates that the well produced 50 gpm at the time of completion. Minor water was encountered during drilling in sandstone layers between 150 feet and 160 feet, approximately 15 gpm from sandstone between 160 feet and 170 feet, and minor water from the coal seam at 170 to 175 feet. No water production was described from the black shale encountered from 175 feet to 181 feet. According to the water system operators, Well No. 3 is currently producing about 12 gpm, which is about 25% of its original reported yield.

The Water Users Association installed a fourth well in March of 2008 to make up for declining production rates at the existing wells. Well No. 4 was constructed with 6-inch steel casing set to a depth of 139 feet and the remainder of the borehole left uncased to the

completion depth of 212 feet. The well log for Well No. 4 (Appendix A) indicates the well produced 30 gpm at the time of completion. According to the well log, water was encountered during drilling in sandstone at the base of the Kootenai Formation and in "black shale" from 179.5 to 180, which represents the top of the Morrison Formation. Muddy gray shale is described from 180 to 210 feet. The primary water-producing zone appears to be the base of the Kootenai and the top of the Morrison.

The driller reported 18.7 feet of water level drawdown in Well No. 4 after 50 hours of pumping at a rate of 30 gpm. The specific capacity of the well based on this data is 1.6 gpm per foot of drawdown. The estimated aquifer transmissivity based on this specific capacity is $430 \text{ ft}^2/\text{day}$ (Driscoll, 1986), which represents a moderate aquifer transmissivity.

The current yield of Well No. 4 was briefly tested by Hydrometrics during a field visit in July 2010. The well yield was approximately 20 gpm at that time. The static water level in the well was 154 feet bgs and the pumping water level was 175 feet bgs. The calculated specific capacity (yield per foot of drawdown) was 0.9 gpm/foot. This specific capacity represents a 44% decline since the well was installed only two years earlier. The well was subsequently redeveloped by a local driller using an air rotary drill rig, with no significant improvements in well yield noted.


1.4.2 Source of Declining Well Yields

According to driller's notes (Well No. 4 well log-Appendix A) and discussions with the water system operators, declines in yield at the Sand Coulee Water District wells are believed to be related to mineral encrustation in the wells, which reduces the permeability of the well bore over time. However, no specific investigations have been conducted to characterize the problem or assess the causes. The Water Users Association has made periodic attempts to restore well yields through redevelopment and acidification; however, these measures have proven ineffective at preventing an overall decline in production rates.

Mineral encrustation is typically caused by precipitation of carbonate scale and/or microbial oxidation of iron, manganese and silica. These processes are promoted by high flow velocities where water enters the well, or if there is entrainment of oxygen in the water due to excessive drawdown and turbulence in the well. Hydrometrics conducted additional testing to evaluate the potential for mineral encrustation within the wells to be the cause of observed declines in the sustainable yields of the Water District wells.

Measurement of Operational Water Levels - Hydrometrics was able to measure water levels during pumping at Well No. 2, but initial attempts to get operational water level measurements from Well No. 3 and Well No. 4 were unsuccessful due to access problems. A stilling tube was later installed in Well No. 4 that allowed accurate drawdown measurements to be recorded during well operation. During subsequent testing, water levels in Well No. 2 dropped from 156 feet bgs to 173 feet bgs (the level of the pump intake) within minutes of switching the well on at a pumping rate of 10 gpm. Drawdown to the pump intake results in aeration and turbulence within the well that is conducive to scaling and encrustation. The initial testing at Well No. 4 also showed water level drawdown to the pump intake (184 feet) at the operational pumping rate of 24 gpm. The discharge rate was reduced to approximately 20 gpm, which raised the water level to approximately 175 feet.

Downhole Video of Well No. 2 and Well No. 4 -The pumps were pulled from Well No. 2 and Well No. 4 and a downhole video camera was used to inspect the condition of the wells. Copies of the downhole videos are included in the attached DVD. Well No. 2 is cased with 5-inch diameter slotted PVC (saw-cut) and Well No. 4 is uncased below a depth of 141 feet. Both wells showed evidence of heavy mineral encrustation over portions of the well. The video of Well No. 2 shows only light mineral scale to a depth of 184 feet. Below 184 feet there is a heavy accumulation of platey dark grey/orange scale on the sides of the casing that almost completely seals off the saw cut casing slots (Figure 1-6). According to the drilling log, this depth appears to correspond to the contact between the Kootenai and Morrison formations, which was identified as a water-producing interval. Below a depth of 190 feet the scale becomes light gray and less platey in appearance. There is little scale development

Photos of encrusted slot at depth of 189 feet. Red dashed line shows original dimension of slot. Small openings at top and bottom of slot remain open. Gray/orange scale coats the sides of the white PVC well casing.

Photo of white precipitate accumulated at bottom of well (210 feet). Lower edge of PVC casing that is visible at top of photo shows no scale at this depth.

SAND COULEE WATER DISTRICT WATER SUPPLY ASSESSMENT

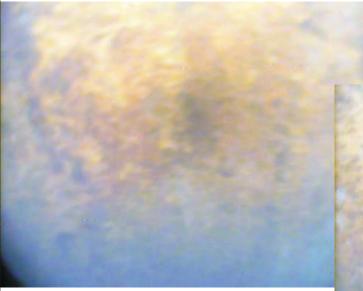
WELL NO.2 DOWNHOLE VIDEO IMAGES FIGURE

1-6

below 195 feet, however there appears to be a fine white precipitate in the bottom of the well at 210 feet (Figure 1-6).

In Well No. 4, the downhole video shows heavy accumulations of orange-to light grey scale developing on the sides of the borehole below 160 feet (Figure 1-7). The contact with the Morrison Formation is evident at 180 feet and there are accumulations of a white snow-like precipitate on rock surfaces at the contact (Figure 1-7). The mineral encrustation decreases in the lower portion of the borehole and there is a gradual color change to a paler gray scale. There is a loose accumulation of the coarser platey mineral scale in the bottom of the well (Figure 1-7).

Water samples were collected from Well No. 3 and scale/solids from Well No. 2 to evaluate the relative chemistries. The scale material was collected by using a 4-inch bailer to repeatedly retrieve water and suspended solids over the length of the borehole. Suspended solids in the collected water were settled and the water was decanted off to retrieve the solids fraction from the sample. The solids were composed of hard platey scale fragments, brown/grey clayey fragments and finer brown/gray mud. The following samples of Well No. 2 scale were submitted to Energy Laboratory in Helena, Montana for analysis of scale.


Sample 2A – suspended solids still in solution after decanting off most of the water. The sample was filtered by Energy Labs using a 0.45-micron filter and analyses were conducted on the solids fraction.

Sample 2B – solid fragments of clayey material retrieved from the bottom of the well

Sample 2C – hard platey mineral scale that appears to coat the sides on the PVC casing at and above the pump depth.

The laboratory analytical reports are included in Appendix B. The results are summarized in Table 1-2.

Orange mineral encrusted bedrock borehole at 160 feet.

Orange mineral encrusted bedrock borehole at 176 feet.

White mineral precipitate at upper contact with Morrison at 181 feet.

Accumlated hard mineral scale at bottom of borehole at 208 feet.

SAND COULEE WATER DISTRICT WATER SUPPLY ASSESSMENT

WELL NO.4 DOWNHOLE VIDEO IMAGES FIGURE

1-7

Parameter	No. 2a	No. 2b	No. 2c	Units	
Moisture	78.8	8.7	7.3	wt%	
Loss on Ignition at 550C	79.7	15.8	15.9	wt%	
Chloride (Qualitative)	Trace	Trace	Trace		
Sulfate (Qualitative)	Absent	Absent	Absent		
Sulfide (Qualitative)	Absent	Absent	Absent		
Carbonate (Qualitative)	Absent	Absent	Present		
Lime as Ca(OH)2	Not analyzed	Not analyzed	2.29	wt%	
Lime as CaCO3	Not analyzed	Not analyzed	3.1	wt%	
Sulfur (Total)	0.08	0.19	0.25	wt%	
Carbon (Total)	0.28	2.0	1.0	wt%	
Aluminum (Total HF Digestion)	1.7	0.9	6.5	wt%	
Barium (Total HF Digestion)	< 0.1	< 0.1	< 0.1	wt%	
Calcium (Total HF Digestion)	< 0.1	0.3	0.2	wt%	
Iron (Total HF Digestion)	0.3	37.2	7.8	wt%	
Magnesium (Total HF					
Digestion)	< 0.1	0.2	0.3	wt%	
Manganese (Total HF Digestion)	< 0.1	0.2	< 0.1	wt%	
Silicon (Total HF Digestion)	6.1	4.3	26.0	wt%	

TABLE 1-2. ANALYTICAL RESULTS FOR SOLIDS

RECOVERED FROM WELL NO. 2

The suspended solids sample, No. 2a, is composed predominantly of aluminum and silicon with large amounts of water, which is a common composition for clay minerals. Sample 2b, in contrast, is predominantly iron which the lab analyst believed is an iron oxide (John Hager, personal communication 10/28/2010). Results for sample 2C, which represents the hard mineral scale on the casing walls, represents a more complex mixture of carbonate, iron, aluminum and silicon. The carbonate in this sample dissolved readily when fresh scale surfaces were exposed to acid. The outer surface of the scale was significantly less reactive to acid.

The water sample from Well 3 was obtained after a period of sustained pumping. The analytical results (Appendix B, Table 1-3) show the water to be a magnesium-bicarbonate type, with near-neutral pH and moderate total dissolved solids (TDS) concentration. TDS concentrations in the July 2010 sample and an October 2000 sample collected by the Montana Bureau of Mines and Geology (MBMG) (also shown in Table 1-3) were 536 and

501 mg/L, respectively. The low concentration of silica compared with bicarbonate in the MBMG sample indicates preferential dissolution of carbonate rather than silicate minerals from the aquifer matrix (as expected based on the local geology), and the relative concentrations of magnesium and calcium may also indicate weathering of dolomite and/or precipitation of calcite (or exchange of calcium for sodium). Trace metal concentrations are low, but detectable concentrations of iron, manganese, and zinc are present.

Parameter	MBMG Sample Concentration (Well 3 10/16/2000)	Hydrometrics Sample Concentration (Well 3 7/12/2010)
pH (lab)	7.03 s.u.	7.2 s.u.
conductivity (lab)	895 µmhos/cm	912 µmhos/cm
Calcium	60.2 mg/L	57 mg/L
Magnesium	74.6 mg/L	76 mg/L
Sodium	21.0 mg/L	21 mg/L
Potassium	3.64 mg/L	4.0 mg/L
Chloride	11.3 mg/L	11 mg/L
Sulfate	90.4 mg/L	120 mg/L
Bicarbonate (as HCO3)	472 mg/L	450 mg/L
Total alkalinity (as CaCO ₃)	387 mg/L	370 mg/L
Iron	0.139 mg/L	0.16 mg/L
Manganese	0.066 mg/L	0.09 mg/L
Silica (SiO ₂)	6.89 mg/L	not analyzed

TABLE 1-3. WELL NO. 3 WATER QUALITY RESULTS

In order to further evaluate the possible causes of scale formation within the Sand Coulee water supply wells from a geochemical perspective, water chemistry results for the Well No. 3 sample were reviewed using the speciation/modeling program PHREEQCI (USGS, 2002). Among other capabilities, the PHREEQCI program calculates speciation of solution components, as well as saturation indices for possible solid species (precipitates) that might be expected to form under equilibrium conditions given the solution water chemistry. Data obtained from the MBMG sample (Table 1-3) was used as input for the model. As shown in Table 1-3, the chemical composition of the October 2000 and July 2010

samples is very similar; however, the October 2000 analytical results include additional parameters of interest for geochemical modeling (such as silica). Based on the similarity of the two samples, the results of the PHREEQCI model, should be applicable to current well conditions.

The input and output files for the PHREEQCI model are included in Appendix C. Of particular interest for the Well No. 3 geochemistry is an examination of the calculated saturation indices. The saturation index (SI) is calculated from the ratio of concentrations observed in the solution to the solubility product constant for the mineral, and is a measure of whether a solution is undersaturated, oversaturated, or near saturation with respect to the solubility of a particular mineral species. If SI < 0, the mineral is undersaturated, if SI >0, the mineral is oversaturated, and an SI = 0 indicates a thermodynamic equilibrium condition. In general, SI values relatively close to 0 (about ± 0.5 to 1.0) suggest the possible presence of the mineral.

A review of the speciation output file for the Well No. 3 samples shows that a number of carbonate-bearing species are near saturation in the groundwater, including calcite (CaCO₃, SI = -0.14), dolomite (CaMg(CO₃)₂), SI = -0.01), and magnesite (MgCO₃, SI = -0.63). In addition, a mixed ferric/ferrous hydroxide (Fe₃(OH)₈), SI = -0.23), jarosite (KFe₃(SO₄)₂(OH)₆, SI = -0.74) and several forms of silica (chalcedony, SI = -0.24, cristobalite, SI = -0.44, quartz, SI = 0.23) are near saturation as well. Iron carbonate (siderite), another potential solid species, shows an SI of -1.70 in the Well No. 3 sample, indicating clear undersaturation compared with the other species listed. The speciation calculation results suggest that it is possible that mixing of carbonate-bearing groundwater (perhaps in equilibrium with dolomite) with reduced iron-bearing groundwater (perhaps from a coal-bearing layer) within the well bore is producing iron hydroxide precipitate. Aeration and oxidation of reduced iron and precipitation of iron hydroxide minerals.

While geochemical equilibrium modeling may provide useful information on possible solid phases based on measured water chemistry, the results should be viewed with caution. Field and laboratory analysis of some of the solid scale material indicated carbonate phases are present (i.e., sample evolved CO2 on addition of hydrochloric acid). Other potential scale/precipitate material was not considered in the geochemical modeling, including aluminum hydroxides, since solution aluminum concentrations were below detection limits. Finally, the simple equilibrium model prepared for this analysis does not account for reaction kinetics, or some of the potential complexities inherent to the situation at the well such as redox effects from repeated drawdown and recharge, variable inflow rates from fractures with variable water chemistry from the different producing zones would help clarify whether mixing of different waters is contributing to scaling problems in the wells. Mineralogical analyses of scale samples may also provide more definitive results, but these analyses were beyond the scope of the current investigation.

1.5 WATER SUPPLY DEMAND

NCI (2010) recently completed a report estimating current and projected water supply demands for the Sand Coulee Water District. According to NCI, the Sand Coulee Water District serves 73 single family residences on a year-round basis with an estimated average daily demand of 18,100 gallons per day (19 gpm based on a 16-hour demand-day) and a calculated peak day demand of 72,400 gallons per day (76 gpm based on 16-hour demand-day). The average daily demand calculated by NCI to accommodate future population growth is 22,500 gpd (24 gpm based upon a 16-hour demand-day) with a maximum daily demand of 90,000 gpd (96 gpm based upon a 16-hour demand-day).

NCI compared these estimated demands to the actual yield of the Water District wells. The two existing wells were reportedly producing approximately 66,240 gpd (46 gpm with both wells pumping continuously) at the time of the NCI investigation. That flow rate is less than half of the flow rate estimated for the projected maximum day demand. NCI notes that the 96 gpm maximum day demand does not consider DEQ requirements for back-up supply.

DEQ specifies that the total developed groundwater source capacity for public water supply systems must equal or exceed the design maximum day demand with the largest producing well out of service (Circular DEQ-1). The Sand Coulee Water District therefore would need a fourfold increase in yield from their well field to bring their system into compliance with DEQ public water supply standards.

1.6 WATER RIGHTS

The Department of Natural Resources and Conservation website has six water rights listings for the Sand Coulee Water District. These water rights are associated with the District's wells; however, they do not all represent separate water rights. Some of the rights are duplicative and some have been transferred between wells. The water rights are shown with their associated wells in Table 1-4 and the water right abstracts are presented with the well logs in Appendix A.

Well Name	Installation Date	Operational Status	DNRC Water Right No.	WR Priority Date	Max Flow Rate	Max Volume
No.1 (original)	12/31/1918	Presumed Abandoned	41QJ-5056-00 41QJ-5057-00	12/31/1918	35 GPM 35 GPM	3.0 AC-FT 76 AC-FT
No.2 (original) Well No.1 (current)	2/4/1960	Abandoned 5/5/2000	41QJ-5058-00 41QJ-213044	12/31/1959 7/5/1960	32 GPM 32 GPM	83.0 AC-FT 45,15 AC-FT
Well No.2 (current)	10/11/1973	Taken out of use Feb 2010	41QJ-6174-00	8/1/1975	60 GPM	Actual up to 10 AC-FT
Well No.3 replaced No.1 (current)	8/2/1999	In use	41QJ-70692-00	12/20/1988	40 GPM	40.33 AC-FT
Well No.4 (replaced original No.1)	3/1/2008	In use	41QJ-5057-00 version 2	12/31/1918	30 GPM	48.3 AC-FT

TABLE 1-4. WATER DISTRICT WATER RIGHTS-

There is some confusion in the records related to the well numbering, which has changed over time. There are two separate water rights (5056 & 5057) listed with a priority date of December 31, 1919 and a flow rate of 35 gpm, which were claimed by the Sand Coulee Water Users Association when it was formed in 1959 for an existing well described as the

No. 1 well. The Sand Coulee Water Users Association also filed a separate claim (5058) with a priority date of December 31, 1959 and a flow rate of 32 gpm for the new well that was in the process of being installed at that time. Another duplicate claim (213044) with the same flow rate was filed in July 1960 when the new well was actually completed and put into use. The original filing on this well referred to it as the No. 2 well. As described in Section 1.4.1 however, this well has since been referred to as Well No. 1, creating some confusion in the record with subsequent water right filings.

A new water right (6164) of 60 gpm was filed in August 1975 for Well No. 2 installed by the Sand Coulee Water Users Association in October 1973. The Water District has an additional water right (70692) with a priority date of December 20, 1988. All of the information listed on the Abstract for this water right (well depth, static water level and casing diameter) matches the completion information for the District's Well No. 3; however, Well No. 3 was not installed until 1999 as a replacement well for the current Well No. 1. It is not clear what the original filing on this water right was for or when it was transferred to Well No. 3.

When Well No. 4 was installed in 2008, the original Well No. 1 water right (5057) was transferred to Well No. 4. There appears to be two versions of the 5057 abstract on the DNRC website, showing the original abstract and the updated version.

Because some of the water rights are duplicative and some represent water right transfers it is difficult to ascertain the total water right held by the District, but it appears to be on the order of 130 gpm and close to 100 acre-feet per year. This would be sufficient to meet the projected needs identified by NCI, however, DNRC may require quantification of historical use prior to approving a transfer of these existing water rights unless it is for a simple replacement well application. Water rights permitting issues for each of the specific source development options are discussed in Section 2.

2.0 WATER SUPPLY ALTERNATIVES

As described in Section 1, a key objective of the Sand Coulee water supply evaluation was to assess and compare three distinct options for improving the quantity and reliability of the current community water supply system. The three options include: 1) completing additional conventional wells in the Kootenai Formation; 2) completing a horizontal well in the Kootenai Formation (which would reduce/eliminate pumping requirements and may alleviate the current scaling issue); and 3) completing a deeper well in the Madison Limestone. These options are assessed below based on technical feasibility, regulatory feasibility and relative costs for development. Information gained through the abbreviated well testing and water/scale analyses and modeling, as described in Section 1.4, was instrumental in evaluating the various options.

2.1 OPTION 1 - CONVENTIONAL WELLS IN THE KOOTENAI FORMATION

One alternative for improving the Water District's water supply is to install additional wells in the Kootenai Formation and implement both design modifications and more aggressive maintenance measures to reduce the potential for scaling and mineral encrustation in the wells.

2.1.1 Well Design Modifications

Several design modifications are recommended to minimize the potential for mineral encrustation:

• Any new wells should not be completed across two separate formations with varying water quality. The wells should be screened in either the lower Kootenai sandstone or the Morrison coal, but not in both. This may reduce the available yield of the wells, but improve the scaling characteristics.

- The upper portion of the saturated zone (to a depth of approximately 170 feet, should be cased off to prevent water from cascading into the well in the drawdown interval when the well is pumped.
- The pumping rates should be limited to approximately 20 gpm to minimize drawdown related aeration and turbulence in the well.
- Finally, all of the wells should have stilling tubes installed to facilitate water level monitoring in the wells.

Final decisions regarding well completion requirements and optimum pumping rates would need to be made on individual wells at the time of drilling. Decisions would be based on an evaluation of the major producing zones in each borehole and the specific capacity of any new well(s) as determined through appropriate testing as described below.

2.1.2 Well Testing and Maintenance

While design modifications may significantly reduce rates of mineral encrustation, they are unlikely to completely eliminate the problem. Therefore, an active program of testing and maintenance is critical to limit or prevent continued deterioration of the wells over time. Step drawdown tests should be conducted on any new wells after completion to document the relationship between drawdown and well yield (specific capacity), and well loss verses formational loss (well efficiency). Periodic measurements (i.e. at least semi-annually) of static and operational water levels should be taken to identify any significant decrease in the operational efficiency of the wells over time. These results should be reviewed annually and decisions made regarding the need for preventative maintenance and/or rehabilitation.

Prior to rehabilitating a well, a down-hole video is recommended to determine where scale and mineral encrustations are forming. Recent redevelopment of Well No. 4 by surging the lower section of the well with air resulted in no improvement in yields. The hard mineral scale shown in downhole images filling the screen slots and formational fractures will require more aggressive treatment methods applied directly to the area of scale formation.

Testing of the hard mineral scale showed that acid is capable of breaking down the scale; however, the outer surfaces of the scale were much less reactive. A combination of mechanical and chemical rehabilitation techniques would therefore be most successful in removing these hard mineral encrustations. Mechanical tools, such as wire brushes, disk swabs or surge blocks would need to be combined with airlift pumping and chemical treatment of the well. For chemical treatment, there are a number of granular acid treatments on the market that are safe to handle that are designed to clean iron, magnesium, and calcium carbonate scale from wells (i.e. Cotey Chemical's Liquid Acid Descaler; CETCO Drilling Product's DPA). These products also contain chelating agents that suspend mineral scale once it has been dislodged so that it can be pumped out of the well. Step drawdown tests should be performed after completing rehabilitation to document the well efficiency and effectiveness of rehabilitation efforts.

2.1.3 Number and Location of Additional Wells

In order to meet the minimum design flow rate of 96 gpm identified by NCI, the Water District would need to install at least four and probably five conventional wells in the Kootenai or Morrison Formations. The increased number of wells reflects the additional yield constraints discussed above.

Any new wells should be spaced at greater distances than provided by the existing wells. Based on a Theis analysis of distance-drawdown relationships for the local Kootenai Formation aquifer, well spacings of less than about 200 feet could result in significant interference drawdown effects (greater than 10 feet of interference drawdown) during periods of extended pumping. These cumulative drawdown effects would not only contribute to excessive drawdown, reduced well yield and higher pumping costs, but could also contribute to mineral encrustation due to greater groundwater aeration rates within the well. Limitations imposed on well spacing by the Water District's current easement area should be considered when evaluating the option of additional conventional wells within the Kootenai Formation.

2.1.4 Public Water Supply Permitting

Installation of new water supply wells would require review and approval by the DEQ Public Water Supply Bureau. For groundwater development, well permitting for a public water supply involves the following multistep process:

- Well design A proposed design for a well (or in this case multiple wells) would need to be prepared showing, among other things, proposed casing type and thickness, anticipated depths, screens or perforated intervals, pump types and elevations, surface collars, testing criteria and other details. DEQ generally takes a month or less to review and approve these relatively simple designs.
- 2. Updated Source Water Delineation and Assessment Report (SWDAR) DEQ would require an updated SWDAR documenting that there are no immediate hazards that would threaten water quality at the proposed well locations.
- 3. Well installation and testing –The wells can only be installed and tested after receiving DEQ approval for the designs and locations. Once installed, they need to be tested for yield and drawdown. The general requirement for demonstrating adequate yield in a public water supply well is a 24-hour pumping test at 1.5 times the proposed design flow rate with 8 hours of drawdown stabilization. In discussions with the department (Denver Frazier, personal communication 10/29/10) the Department indicated they may accept one 24-hour test at 1.5 times the design yield combined with shorter tests (8 hours) at the remaining wells depending on their stabilization characteristics. If the yield and drawdown appear reasonable, water samples for analysis of organics, inorganics, nutrients, synthetic organic compounds (SOCs), volatile organic compounds (VOCs), radionucleides and nutrients would need to be collected and submitted for analysis.

- 4. Delivery system design After well yield and drawdown are known, plans and specifications for the system to deliver water from the well or wells to the distribution system would need to be prepared and submitted to DEQ for approval. In Sand Coulee's case, this design would consist of buried pipe from the well sites to the existing storage tank. For relatively simple systems like this, DEQ generally has been reviewing and approving plans within a few weeks.
- 5. Delivery system construction Following approval of plans and specifications, the delivery system could be constructed. This would be done by a contractor selected by a competitive bid process. Once completed, as-built plans would need to be submitted to DEQ verifying that construction was completed according to the approved plans and specifications.
- 6. Delivery system testing the completed delivery system must be pressure tested and chlorinated as final steps in the construction and permitting process.
- 7. Final testing Upon completion, a final sample is required for bacteriological analyses. If no bacteria are detected in the system, the new well or wells can be put into production.

2.1.5 Water Rights Permitting

DNRC has a simplified water rights filing process for installation of a replacement well (Replacement Well Notice Form 634); however, the department has indicated that a replacement well application would not apply to any additional points of diversion beyond the currently permitted number (Doug Mann, Personal Communication). Under Option 1 there would be more wells than there are with the current system, although each well would be pumping at a lower rate. Installation of more wells than the existing number would trigger more comprehensive permitting requirements including a detailed quantification of historical use, an evaluation of physical and legal availability, a hydrologic assessment of

potential impacts to surface water, and development of a mitigation plan to address any adverse effects (see Section 2.3.4). This more comprehensive filing could take a year or more to complete.

The DNRC also requires pumping tests to be conducted to document aquifer characteristics and demonstrate adequate yield. For multiple wells this would normally consist of one extended pumping test (72 hours) and shorter (8 hours) tests on the individual wells.

2.2 OPTION 2 - HORIZONTAL WELL IN THE KOOTENAI FORMATION

As previously discussed, the potential for encrustation of a well can be kept to a minimum by having the greatest screen length possible to reduce groundwater entrance velocities, and by minimizing drawdown in the well to prevent turbulence and aeration of the water column in the well. It is difficult to achieve these design goals at Sand Coulee with a conventional well design because the saturated thickness of the formation is limited and the yields produced by the Kootenai Formation are already comparatively low. However, a well or wells drilled horizontally into the base of the Kootenai would make it possible to utilize a much longer screen length, and the screen would be less susceptible to dewatering/aeration because the horizontal orientation of the well screen would maximize the head over the screen and spread the stress to the aquifer over a larger area. A horizontal well also would not require a submersible pump. Instead it would gravity drain, which would further minimize turbulence in the well.

Horizontal wells, however, have some disadvantages and limitations. A horizontal well would be significantly more expensive to drill than a conventional well and it would require the right aquifer conditions to produce adequate yields. In addition, there are no local drillers that have horizontal well drilling capability.

Well drilling companies that install horizontal wells include Directed Technologies Drilling, Inc. of Port Orchard, Washington and Layne Christiansen of Denver, Colorado. Directed Drilling provided information on a similar water supply project that they completed. They installed two horizontal wells into a hillside for a community water supply in Paonia, Colorado. The wells on that project were constructed of 2-inch stainless steel and were 250 feet and 280 feet long. The first 180 feet of the borehole was unsaturated, so the completion included screens approximately 70 and 100 feet in length. The drilling rig used on that job is approx. 22 feet long by 5 feet wide on steel tracks. An air hammer with a direct push pressure of 24,000 lbs is used to drive the casing. The cost to install the wells on the Paonia project was approximately \$120,000 and the town used a grant to cover the costs. Photos of the project provided by Directed Drilling Technologies are shown in Figure 2-1.

Layne Christiansen out of Denver indicated that they also have a broad range of experience installing horizontal wells in the northwest for water supply projects. All of the examples they discussed with us were for much higher flow volumes than the Sand Coulee project.

2.2.1 Well Design and Yield

For purposes of this assessment, we have assumed a 4-inch diameter, 500-foot long horizontal well installed into the Kootenai Formation near the base of the coulee wall. Alternately, the well could be installed on top of the bluff using directional drilling techniques, but the costs would be several times greater.

The calculated steady-state yield from a 500-foot horizontal well using the transmissivity characteristics at Well No. 4 is only 60 gpm, however, this is based on the estimated transmissivity for the lowest yielding of the four Water District well sites. Yield of a horizontal well would also be influenced by fracture orientation and the vertical distribution of fractures in the formation. Horizontal fractures may be difficult to intercept with a horizontal well. It is therefore important to establish the fracture characteristics and aquifer properties in the proposed well location prior to proceeding with this option. Test wells have been included for this purpose as described in Section 2.2.2.

DIRECTED DRILLING TECHNOLOGIES PAONIA PROJECT PHOTOS

FIGURE

2-1

SAND COULEE WATER DISTRICT WATER SUPPLY ASSESSMENT

2.2.2 Well Testing and Maintenance Issues

The target formation and elevation of the well cannot be determined without additional testing. To properly design and evaluate a horizontal well, we have included costs (Section 3) for installing and testing two conventional monitoring wells in the area of the proposed well to more fully characterize producing zones and identify target depths in either the Kootenai or the Morrison Formations.

If a horizontal well is ultimately installed, the free flowing yield of the well should be tested periodically (i.e. semi-annually) to establish whether there is any decline in yield due to encrustation. Because a horizontal well would be free flowing, down-hole video and well maintenance would be much more difficult to perform if encrustation were to develop.

2.2.3 DEQ Public Water Supply Permitting

Public Water Supply permitting would entail similar procedures as Option 1. The DEQ does not have established standards for completion and testing of a horizontal well, and they therefore have indicated it may require some deviations from established procedures for a conventional well (Denver Frazier, personal communication), although they did not provide specifics. Because of the uncertainties associated with permitting and design of a non-conventional well, the time frame for permitting approval would probably be greater. Installation of a single horizontal well would not bring the system into compliance with DEQ requirements for back-up source capacity. DEQ design requirements stipulate that the system be capable of meeting the maximum day demand with the largest producing well out of service (DEQ Circular 1, Section 3.2.1.1). This would require either an additional horizontal well or additional conventional wells in the Kootenai as a back-up contingency.

2.2.4 DNRC Water Rights Permitting

As with Option 1, DNRC would require pumping tests to be conducted to establish aquifer characteristics, establish that there is adequate yield and provide information necessary to assess the potential for adverse effects to existing water rights. DEQ does not have specific

protocol for testing of horizontal wells and therefore a specific plan of testing would need to be developed and reviewed with DNRC staff prior to testing.

Although in theory, it would be possible to file for a water right change as a replacement well, it is not clear whether the DNRC would accept this or whether a change in point of diversion would need to be filed with more comprehensive supporting analyses. DNRC staff could not provide a definitive answer on this issue (Doug Mann, Personal Communication) and indicated that they would need to look into this question further before providing a definitive answer. If a horizontal well could not be permitted as a replacement well, it is likely that quantification of historical use could be required as part of the change application. In that case, the permitted rate and volume would be limited to what could be demonstrated as historical use. Increased use would trigger a new appropriation request, which is a much more detailed permitting process (see description in Section 2.3.4).

2.3 OPTION 3 - MADISON AQUIFER DEEP WELL (S)

Another alternative for improving the water districts water supply would be to complete one or more deep wells into the Madison aquifer. Madison Group limestone is present at an estimated depth of approximately 400 feet below the ground surface at the Water District's well field location (Smith, 2008).

2.3.1 Potential Depth and Yield of a Madison Well

Madison wells in the Sand Coulee, Stockett and Centerville area yield between 5 and 100 gpm. Most of these wells are completed 100 feet to 300 feet into the Madison limestone. There is only one deep Madison well on record in this area at the nearby Big Stone Colony, where a gas exploration well was completed to the base of the Madison that was subsequently converted to a water well. The Big Stone Colony well is listed on the GWIC database as 1,400 feet deep and reportedly yields in excess of 150 gpm (unverified estimate).

To further assess the potential to complete a higher yielding well in the Madison aquifer, Hydrometrics compiled available information from the Montana Bureau of Mines and Geology GWIC database on Madison wells completed within a 4-mile radius of the site. The well locations, total well depths (TD), static water level depths (SWL) and reported well yields (in gpm) for these wells are shown on Exhibit 1.

There are 116 wells listed as completed in the Madison aquifer within four miles of the site. GWIC statistics for these wells including reported yields and depths are tabulated in Appendix D. The wells have an average reported yield of approximately 30 gpm. Twenty-five of the wells have reported yields of 50 gpm or greater (21% of the total). There are 60 Madison wells shown in the immediate Sand Coulee, Stockett, Centerville and Tracy area. Of these wells, nine report yields in excess of 50 gpm (15% of the total). While these statistics provide a general indication of the potential for achieving higher yields in the Madison, several factors should be considered when evaluating the results. Wells completed for domestic water supply typically stop drilling when sufficient yields are encountered. As a result very few of the domestic wells penetrate more than 200 to 300 feet into the Madison or yield more than 30 gpm; however there are some deeper wells (up to 500 feet) that still report minimal yields (<10 gpm).

The GWIC records for the Madison aquifer confirm that higher yielding conditions (greater than 50 gpm) are present at least locally in many areas, but there is no assurance that these higher yields can be achieved at this site without completing and testing a deep well. Because the depth to the Madison is greater than 400 feet at the site, we have assumed a drilling depth of 800 to 1,000 feet for a Madison well. The actual depth may be less if sufficient water is encountered at a higher elevation; however, since the Water District would benefit from a high producing well it is likely a deeper well would be necessary to fully establish the potential yield of the Madison aquifer at this location. Depending on the yield, one or more wells may ultimately be needed to meet water supply demands. Presumably the existing wells could remain as a back-up alternative, however the flow rates of the existing wells are not sufficient to meet DEQ's requirement for a back-up water supply. DEQ design requirements stipulate that the system be capable of meeting the maximum day demand with the largest producing well out of service. To bring the current system into full compliance

with DEQ's design standards would therefore require completion of at least two Madison wells.

2.3.2 Well Testing and Maintenance

The Madison aquifer does not contain the same chemistry as the Kootenai/Morrison aquifer, which should reduce the likelihood of the encrustation problem that afflicts the current Water District wells. Since the water is derived from a calcium carbonate aquifer at considerable depth, scaling is possible and similar monitoring and control measures described above should be performed on the well. This includes testing the baseline well efficiency and yield through a step-drawdown test and periodic operational discharge/drawdown measurements to verify there are no efficiency losses over time. If there are efficiency losses related to build-up of calcium carbonate scale, the well should be amenable to acid treatments similar to those described for Option 1.

2.3.3 DEQ Public Water Supply Permitting

Public water supply permitting through DEQ for this option would be similar to the requirements described under Option 1, which include:

- 1. Submittal of a well design and an updated SWDAR to DEQ for review;
- 2. Installation and testing of the well (24-hour pumping test at 1.5 times the design yield);
- 3. Water quality sampling;
- 4. Delivery system design, installation and testing; and
- 5. Final pressure testing, chlorination, and analysis for bacteria.

2.3.4 DNRC Water Rights Permitting

As with Option 1, DNRC would require pumping tests to be conducted to determine aquifer characteristics, establish adequate yield and provide information necessary to assess the potential for adverse effects to existing water rights. Because the well would be completed in a different aquifer than the original wells it does not appear that it would be possible to file a simple replacement well application to transfer water rights from the existing wells. Instead it would be necessary to file for a change in the point of diversion on the existing water rights and a new appropriation for any expanded use. A new appropriation filing would be required since a change in the water right fixes that water right at historical use rates. Since Sand Coulee has no documentation of historical pumping rates, an analysis would need to be completed based on the number of service connections and the amount of irrigation under the current system. Under these circumstances the proposed design yield of 96 gpm would likely be considered an expansion of use.

An expansion of the existing use would trigger an additional permitting requirement related to the fact that Sand Coulee lies in a basin closed to surface water appropriations. In a basin closed to surface water appropriations, a detailed assessment is required on new appropriations to demonstrate that there will not be depletion of surface water due to groundwater withdrawals. The Department assumes virtually all withdrawals ultimately result in a direct depletion of recharge to downgradient surface waters, therefore new appropriations typically require either a mitigation plan to be developed that results in increased groundwater recharge, or retirement of another existing water right to offset the amount of depletion in time and place.

These permitting requirements are much more complex than a replacement well application. The Department estimates that the processing time for an application that is correct and complete is 210 days; however, the process more commonly takes a year or more to complete depending on the complexity of the issues identified during the review. The application process entails the following:

2-13

- Completing and filing an Application for a Beneficial Water Use Permit. This requires information on the intended use, place of use, point of diversion, source of supply, amount of water to be used, diversion facilities, and other particulars of the proposed appropriation.
- Preparing a Criteria Addendum to the application demonstrating that water is physically available at the proposed point of diversion, legally available in the amount and for the period requested, that water rights of a prior appropriator will not be adversely affected, and that the proposed means of diversion is adequate.
- Preparing a Hydrologic Assessment Report if the site is in a basin closed to surface water appropriations. The report must include among other things, an analysis of net depletion and adverse effects to surface water. A mitigation plan or change request on an existing water right is required to address adverse effects.
- After receiving this information DNRC will conduct a completeness review and ask the applicant to respond to any deficiencies. DNRC typically requests additional information depending on the complexity of the application.
- Once the application is determined to be complete the Department will issue a Preliminary Determination to grant or deny the application (within 120 days of determining the application is correct and complete).
- An environmental review is also made to determine whether the proposed project will have significant environmental impacts and whether an environmental impact statement is needed.
- Public Notice is made of the application by posting information in a newspaper. DNRC also may contact or send notice to nearby water rights holders.

- Existing water users may file objections to the application. If objections are found to have a basis and cannot be resolved, an administrative hearing is held. The hearings examiner then considers all the information in the record and issues a decision.
- Once the well is completed and the water is put to use, the owner submits a Notice of Completion of Groundwater Development to the DNRC

Addressing the closed basin surface water depletion issues would likely be the most challenging and complex part of this process. The Department has indicated that the Water District could potentially offset a portion of their withdrawal by discontinuing pumping from their existing Kootenai wells (Doug Mann, personal communication; Russ Levens, personal communication). The remaining difference between the historical use and the proposed withdrawal rate would still require mitigation. The simplest way to address this requirement would be to purchase a contract for water from the Canyon Ferry reservoir equal to the amount of mitigation water still required to address the stream depletion. According to Mark Beattie at the Bureau of Reclamation (personal communication 11/4/2010), mitigation water from the reservoir would cost approximately \$35 per acre-foot to purchase, plus 30 to 40 cents an acre-foot for operation and maintenance costs. Sand Coulee could need 10 to 30 acre-feet of water per year for mitigation under this scenario. The actual amount would need to be determined based on a detailed assessment of current use.

3.0 COST ASSESSMENT

Comparative costs have been assessed for the design, permitting, installation and testing of each of the source options. These costs represent rough estimates intended for comparison purposes only, and are not intended for budgeting purposes. Final cost estimates will need to be developed on the selected alternative based on final designs with direct input from contractors. Cost estimates for each option are summarized in Table 3-1.

TASK	Option 1	Option 2	Option 3
Public Water Supply Well Engineering Design and Updated SWDAR	\$4,000	\$4,500	\$4,000
Monitoring Well Installation & Pumping Tests		\$21,150	
Water Supply Well Installation	\$91,200	\$164,000	\$67,300
Aquifer Testing	\$32,200	\$6,100	\$10,000
Water Rights Application	\$17,500	\$5,000	\$17,500
Delivery System, Pumphouse, Pump Controls Design, Installation and			
Testing	\$80,050	\$39,700	\$37,800
Install Pumps, Final Testing, Survey & As-Builts	\$47,000	\$16,200	\$42,200
TOTAL	\$271,950	\$256,650	\$178,800
Back-up Source Capacity Contingency*		\$416,650	\$300,000

 TABLE 3-1.
 COST COMPARISON SUMMARY

* Total cost if a second well is included to meet DEQ back-up source capacity requirement

The assumptions used in developing costs for each option are as follows:

- Option 1 assumes installation and testing of five 180-foot deep, steel cased wells with stainless steel well screens completed in the Kootenai Aquifer.
- Option 2 assumes installation and testing of one 500-foot long horizontal well and two 180-foot deep monitoring wells. Costs for water rights permitting assume DNRC would allow the wells to be permitted as a replacement well; however, DNRC has not provided confirmation of this. If DNRC requires permitting as either a new source or new point of diversion costs would be similar to Options 1 and 3. Additional costs are shown for installation and permitting of a second well to bring the system into compliance with DEQ source capacity requirements.

• Option 3 assumes installation and testing of one 1,000-foot deep steel-cased well, however, total costs are also shown that include installation and permitting of a second well to bring the system into compliance with current DEQ source capacity requirements.

The costs for Option 1 are comparatively high due to the greater number of wells, which translates into additional testing and capital costs for pumps and piping. Water rights permitting costs assume the permitting cannot be accomplished through replacement well applications. Option 1 costs do not include the purchase of additional land to site the wells and well head protection areas, which would likely be required for this alternative.

Option 2 has the highest drilling costs and will require additional monitoring wells and testing prior to installation of the well. Option 2 also assumes water rights permitting can be accomplished through replacement well applications. Option 2 costs do not include purchase of land at the base of the bluff for the well and well house.

Option 3 has the lowest drilling costs despite the fact that it represents slightly more drilling footage than Option 1 because it has less required surface casing and well screen. If the objective is simply to increase the yield of the existing system to meet current demands, it may be possible to accomplish this with a single Madison well, however, at least two wells would be necessary to meet DEQ requirements for back-up capacity. Option 3 has the highest permitting costs and assumes filing will be required for a Change in the Point of Diversion, a New Appropriation, a Basin Closure Hydrologic Assessment and a Mitigation Plan.

These costs do not include operation and maintenance (O&M) costs. Option 1 would have the highest maintenance costs due to the number of wells and the likelihood that active testing and maintenance will be required on an annual basis to prevent scaling and encrustation of the well screens. Option 2 would have the lowest costs if the well design is successful in limiting scale development, however, the rate of scale development can't be readily established and preventative maintenance for scaling and encrustation would be difficult on this well design. Option 3 may have estimated mitigation costs of \$700 to \$1,000 per year that will add to ongoing O&M costs.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Option 1 has a number of disadvantages, which include significantly higher O&M costs due to the greater number of wells, the likely need for additional property to adequately space the wells, and potential for ongoing problems with scaling and mineral encrustation. The cost to implement Option 1 is lower than the other options if contingencies for installation of back-up wells are included.

Option 2 has distinct advantages in terms of minimizing the potential for scale encrustation but is the most expensive to implement. There is also a relatively high degree of uncertainty with Option 2 regarding the potential yield of a horizontal well. Although well design and lack of pumping are expected to reduce the potential for scaling and reduced well yield with time, the long-term potential for scaling and mineral encrustation cannot be completely ruled out.

Option 3 is the most likely to minimize future problems with scaling and mineral encrustation, but the yield of the Madison cannot be established without installation of a deep, expensive well. Permitting is also most complex for this option and would likely require purchase of mitigation water from Canyon Ferry Reservoir on a long-term basis to offset the increase in use compared to historical use.

Based on this analysis we believe the third option, which calls for completion of a deep well in the Madison is likely to provide the most reliable water source for the Water District wells over the long-term. It should be realized however, that all options have an associated risk. For this option, the yield of the Madison has not been established. However, even the average yield for wells completed in the Madison aquifer in this region (30 gpm) would nearly double the current capacity of the system and would be less prone to the rapid deterioration in yield as would existing or additional wells completed within the shallower Kootenai/Morrison wells.

5.0 REFERENCES

- DEQ, 2000, Source Water Delineation and Assessment Report. Sand Coulee Water Users Association Public Water System PWSID # MT0000325. April 13, 2000.
- Driscoll, F.G. 1986, Groundwater and Wells, 2nd Edition, Johnson Screens, St. Paul Minnesota. p.572.
- Goers, J. W., 1968. Geology and Groundwater Resources, Stockett-Smith River Area, Montana: Unpub. M.S. Thesis, University of Montana.
- NCI, 2010, Sand Coulee Water District Water PER.
- RTI, 2009. Great Falls Coal Field: Historical Overview. Prepared by Renewable Technologies Incorporated for the Mine Waste Clean-up Bureau, Montana Department of Environmental Quality, June 2009.
- Smith, L.N, 2008. Montana Bureau of Mines and Geology, Groundwater Atlas 7, Part B Map 3. Open File-Version September 2008.
- USGS, 2002, PHREEQCI -- A Graphical User Interface for the Geochemical Computer Program PHREEQC. Version 2.17.5-4799, September 7, 2010. Available at http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqci/.
- WESTECH, Hydrometrics, Inc., 1982. Investigation of Acid Drainage from Abandoned Coal Mines and Assessment of Potential Methods of Impact Abatement. February 19, 1982.
- Wilke, K.R. 1983, Appraisal of water in Bedrock Aquifers, Northern Cascade County, Montana. Montana Bureau of Mines and Geology Memoir 54.

APPENDIX A

WELL LOGS AND WATER RIGHTS ABSTRACTS

Taken MP Original Well No.1 (020938 013 19N R 4E Phis No. TRIPLICATE County. STATE OF MONTANA ADMINISTRATOR OF GROUNDWATER CODE OFFICE OF STATE ENGINEER Ele V. 3680 Declaration of Vested Groundwater Rights alasta da carof 217 KOTN Mines and Geology (Under Chapter 237, Montana Session Laws, 1961) 244 03401979 Sand Coules Water Users Associationof Sand Coules (Name of Appropriator) (Address) County of..... Cascade (Town) have appropriated groundwater according to the Montana laws in effect prior to January 1, 1962, as fol-State of Montagen The beneficial use on which the claim is based supplying water to the Sand Coulse area residences 23. Date or approximate date of earliest beneficial use; and how continuous the use has been No. 1 Well 1920 Town water No. 2 Well July 5, 1960. Daily use of residence: 54 Е . 4. The amount of groundwater claimed (in miner's inches or gallons per minute) No. 1 Well 12 gals. per min. No. 2 Well 45 gals. per min. (Current Well/No.1) If used for irrigation, give the acreage and description of the lands to which water has been applied and name of the owner Sec. 1.4 T/2NR 4 $3/_A$ Indicate point of ppropriation B. and place of use, if possible. 6. The means of withdrawing such water from the ground and the Each small square represents 10 location of each well or other means of withdrawal Wells. acres. Two wells located on EdsEl) Sec. 14, Twp. 19 N., Rge 4 E., M.P.M., Cascade County, Mont. BR The date of commencement and completion of the construction of the well, wells, or other works for withdrawal of groundwater No 1 Well 1920 No. 2 Well, drilling begun 2-4-60. Pumping begun July, 5, 1960. The depth of water table No. 1 Well unknown. No. 2 Well 134 feet. 盘 So far as it may be available, the type, size and depth of each well or the general specifications of any other works for the withdrawal of groundwater. No. 1 Well, drilled well, 6 inch casing to depth of 15 feet. Well 194 feet deep. No. 2 Well, drilled well, 6 inch casing to depthof 34 feet. Well 210 feet 10. The estimated amount of groundwater withdrawn each year 1,505,625 gals. The log of formations encountered in the drilling of each well if available No. 1 Well unavailable. 11. Well, Log available from State Board of Health, 12 Such other information of a similar nature as may be useful in carrying out the policy of this act, including reference to book and page of any county record Easement Rental Agreement with Edward Ingman & Josephine Ingman, Oct. 1, 1959---Book 15 Page 507 Recorders Office. Basement Deed with Edward Ingman & Josephine Ingman, Oct. 6, 1959---Book 293, Fage 9 Recorders Office. SAND COULEE WATER Sec. Treas. USERS ASSOCIATION SAND COULEE, MONTANA 1-15-62 Three copies to be filed by the owner with the County Clerk and Recorder of the county in which the well is located. Please answer all questions. If not applicable, so state, otherwise the form will be returned. Original to the County Clerk and Recorder; duplicate to the State Engineer; Triplicate to the School of Mines and Quadruplicate for the Appropriator. 31994

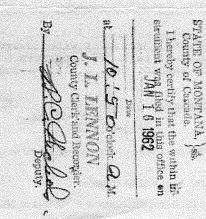
M No. 603 New 7-73	CURRENT I STATE	WELL NO.2 OF MONTANA		CODED ""	e No
NOV 4 1 1975)	* WELL U	OG REPORT			0956 ER
State law requires that this pleted by him on and after J	form be filed uly 1, 1973 wi	by the wo thin eixti	ter vell (60) da	driller on any w ye after completio	iter well com- m of the well
. WELL OWNER: Name	and the second second second	Address		ALLAN TANK IN	
. WELL LOCATION: County	AQ	<u>pr</u> i i	<u>∛</u> ∡, Sec	, TwpN	<u>-s, Rg. / E</u>
. PROPOSED USE: Domestic Irrigation	StockMu Other (if	nicipal other, spe	Indust ecify)_@	rielLawn and _/	Garden
. METHOD DRILLED:Cable Forward RotaryRevers JettedOther (<i>if othe</i>	e Rotary	8. WELL Depth From	(ft.)	Formatic	217 KOTN
. WELL CONSTRUCTION: Diameter of holeinches, Casing:SteelPlastic ThreadedWeldedG apecify) Pipe Weight:Dia.: From: Ib/ftinchesfe Ib/ftinchesfe Ib/ftinchesfe Ib/ftinchesfe Ib/ftinchesfe Mas perforated pipe used? Length of pipe perforated Was a well screen installed? Materialfe Sizeset fromfe Sizeset fromfe Sizeset fromfe Sizeset fromfe Was a packer or seal used? If so, what material Well type:Straight scree Vas the well areuted?	Concrete Concrete To: To: To: To: To: To: To: Teet Yes N Yes N Yes N Yes N Dia. inche etc.) slots hole et to fee et to fee Yes N Cree	c, o t o s s t t t t t t t t d		INV: OGI	01997
Was the well grouted? To what depth? Material used in grouting Well head completion: Pitles 12" above gradeOther (If other, apscify) Was the well disinfected? 6. WATER LEVEL: Static water levelft.bel If flowing: closed-in pressu GPM flow through Controlled by: Valve Other, specify 7. WELL TEST DATA:PumpBe (If other, specify) Pumping level below land su	fee s adapterYesN YesN YesN N 	t 10. DAT 10. DAT 11. WAS If 10 12. DRI Thi and si kno be rs Dri er	E COMPLET WELL PLI so, how LLER'S CI s well wi this rej wledge. <i>Uler's o</i>	and the second	ny jurisdiction ne best of my

FORM E. S. 252500 TRIP5-55	, ° •	4E 14 [11 No.2, Curr	ent Well No	0.1			
(Elev. above sea leve Top of Ground	el.3725)		ANA STATE sion of Envi				
	· · · ·	DIVI		a, Montan			
# # Dwell			WELL DRII	LLER'S I	REPORT		
- in				Driller'	s Registrat	lion No	
	DrillerSoennichsen Drilling Co. AddressGreat Falls, Mont.						
	Owner	of WellSand	oulee Mate	er Users	.Associa	tion	4
	Exact I	ocation of We	II.E ¹ SE ¹ .of.	Sec. 1)	. foimshi	p. 19 N	lange. h
		Post Office.Sa	nd.Coulee,	"Mont.	County.	Cascade.	
	Water 1	o be Used for.	City Wate	r.Supply	(* /		********
	Drilling	Begun2-1	<u> </u>	W	lell Finishe	ed2 , 18 , 4	\$0
 0 to 8ft. Surface 8ft. to 10 ft Sands 10ft. to 13ft. Shal 13ft to 16 ft. Sand 	stone strata i e etc. Sh	ndicate on the net with in dr ow depth at v r-bearing strat	diagram the illing, such which water	characte as soil, c	er and thic lay, shale, ntered, thi	kness of the gravel, roc	e different k or sand, character
- 16ft. to 28ft. Shal 28ft. to 52ft. Sand	Le		Cas	ing Reco	d	BB	-
52ft. to 68ft. Shal	Le Size	Kind and Weight of	From	To	1	PERFORATION	
- 68ft. to 70ft. Sand 70ft. to 76ft. Shal	Le	Material Used	(Feet)	(Feet)	Kind Size	From (Fect)	To (Feet)
76ft. to 81ft. Sand 81ft. to 83ft. Shal	le 6"0,D.	Iron	0	ᅫ	00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		
83ft. to 120ft. San 120ft. to 133ft. Sh	hale				a de la constante de la constan	\sim	
- 133ft. to 192ft. "a 192ft. to 195ft. Sh	andstone (water)			1	15		
195ft. to 198ft. Cl - 198ft. to 210ft. Sa	lay	11		~ \	\mathcal{N}^{ω}		
	THOSCORG (Marcer	LE		0°	*		
	31110	Par	AP	v.			
Water Level		NO V					
					<u> </u>		•
	Descril	be the type of j	oints in casi	ngFir 6	he. Thread	Coupling	
	well was p	Jagged	-on-drad	jondio	الملطين	TZ partly	
- lite mus	56 sades of	be any screens	used 4	lone	chips,	1 June	K-B
- every	2 sacks all	re the b	trater &		<u>en Uiu-</u>	Ll'el	***************************************
I N WINK	Capaci	ty of Well_h	gal. Per	.Minute. (1= G	illons or Barr	rela)	
	HZIQ HOW I)etermined	ByPump		ر موري دور	·····	2414469851789819
I Successor mon 1074	5750	4	Signed <i>Li</i>	(Pump,	Bailer, Welr.	mich	lent 39
			Date		8. 1960		
					an the second		
Show exact dept		ICATE - TO BE	HVEN TO CUS	LURER	6A 1	11 an	> •@• '
				$\begin{array}{cccc} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ (\gamma_1) & & & & & & & \\ (\gamma_2) & & & & & & & \\ \end{array}$: IXI.;	31883	S i

STATE OF HONTANA SS: COUNTY OF CASCADE

George Mittal , having been first duly sworn, deposes and says:

That he is an officer, to-wit: The <u>Secretary-Treasurer</u> of the SAND COULEE WATER USERS ASSOCIATION, a Montana corporation, and is of lawful age; that said SAND COULEE WATER USERS ASSOCIATION is the appropriator and claimant of the order and water right mentioned in the foregoing declaration of vested ground water rights and is the corporation whose name is subscribed and seal is affixed thereto as the appropriator and claimant, and that be knows the contents of the said foregoing notice and that the matters and things stated therein are true.


Hend 1mg Ch

SUBSCRIBED and SWORN to before me this 15 th day of January,

1962.

(NOTAR IAL SEAL)

Notary Public for the State of Montana Reaiding at: My commission expires: 200.2.13.62

à

	MONTANA WEL	2.14	田		ACH	<u> </u>	
	MONTAÑA WEL	LLOG	i kep	URI	Well ID#	Well No.:	
Xr.	This log reports the activities of a licensed Montana well driller and serves as the amount of water encountered. <u>This form is to be completed by the drill</u> Acquiring Water Rights is the well owner's responsibility and is not accounted by the driller well log information is stored in the Groundwater Information Center at the Montana activity of the Rights Rights Rights and the Montana activity of the Rights and the Montana activity of the Rights and the Montana activity of the Rights activity of the	he official er and file mplished ontana Bur	record of w d with DN by the filin eau of Min	Nork done within 6 IRC within 6 Ing of this re les and Geol	ogy (Butte) a	ind water right in	formation is
	For fields that are not applicable, enter NA. Optional fields have a gray	ed backgro	ound, Reco	ord additiona	I information	in the REMARK	S section.
	1. WELL OWNER: Name Sand Could a Water Usus Mailing address Sand Couler, MT 59472	Test - Dr Al Ti	1 hour min awdown is I depth me me of reco ir test*	imum the amount easurements overy is hour	t water level shall be from rs/minutes si	is lowered below n the top of the nce pumping sto	/ static level. well casing. opped.
•	2. WELL LOCATION: List 1/4 from smallest to largest	-	(pm with dril	I stem set at	ft. for lecovery water l	hours
nec	A NG 18 14 NE 14 SK 14, Section 14		ailer test*			ICCOVERY WATER I	5VEI IL.
	Township 1905 Range 4 €M County	TI OR P D	gpi ime of rec ump test* epth pump opm p	n with overy o set for test ump rate with	$\underline{ / 10}_{\text{ft. of d}}$	own after Recovery water I rawdown after 2 Recovery water	evel ft.
-	Horizontal datum II NAD27 II WGS84	1	lowing Ar				
:	 3. PROPOSED USE: Domestic Stock Irrigation Fublic water supply Monitoring Well Other: 4. TYPE OF WORK: Mew well Deepen existing well Abandon existing well Method: Cable Rotary Other: 	F *During not be t well cas	low contro the well test the sustainable	_ gpm for illed by	te shali be as u	rs - iiform as possible. Th rield does not include	is rate may or may the resevoir of the
1	5. WELL CONSTRUCTION DETAILS:		n, Feet	I	<u> </u>	Material	
	Borehole: in. from 0 ft. to 38 ft. Dia.	From	To			scriptor (example water, or brown/sa	
	Casing:Steel:Wall thicknessDia. 4 4 4 Dia. 4						
•	Plastic: Pressure Rating //o Ibs. Threaded Welded Dia fit. from fit. to fit. to fit. to fit. to Perforations/Slotted Pipe: fit. to fit. to fit. to fit. to Size of perforations/slots //g in. by in. Z_7 no. of perforations/slots from fit. to ift. to			2 A	TTAC	H2D	SHEET
	Screens: Ses		1				·
ж.	Material Slot size from ft. to ft.						
-	Dia Slot size from ft. to ft. Gravel Packed:						
	Gravel placed fromft. toft.						
:	Type Shull In on Depth(s) 140	1		HEETS ATTAC		109	
:	Grout: Material used Mithum Bentionstechin Depth fromft. toft. OR □ Continuous feed	CONTRACTOR AND A CONTRACTOR	ARKS:	OMPLETED	·	<u> </u>	-
•	6. WELL TEST DATA: A well test is required for all wells. (See details on well log report cover.)				S CERTIFIC	ATION: I log is in complia	2000 with the
:	 Static water level <u>150</u>. St. below top of casing or Closed-in artesian pressurepsi. 	Montan knowled	a weli con: Ige.	struction star	ndards. This BYRNE	DRILLING,	he best of my
3	How was test flow measured: bucket/stopwatch weir, flume, flowmeter, etc	Name, f		poration (pri	nt) 245 Ge Great Falk	rber Road MT 59405	
	Yellowstone groundwater closure area only - Water Temperature °F	Signatu	and the second	so t	13	4~~~~	
		Date _	9/2/	99 (License		3
	Montana DNRC P.O. BOX 201601	HELENA,	MT 5962	0-1601 444	-6610		ивма ід# 478

ł

DEPARTMENT-BUREAU COPY

Sand Coulee Water Users Assoc. Well Log: # 1 Replacement Well

- 0 8 Top soil, floating sandstone rock, shaly
- 8 11 Brown sandstone
- 11 13 Gray sandstone
- 13 17 Hard gray and brown sandstone
- 17 23 Gray and rusty brown shale
- 23 25 Red shale

نن ا

- 25 28 Gray shale
- 28 28 Yellow lense
- 28 30 Gray shale
- 30 34 Hard gray sandstone
- 34 35 Verigated shale
- 35 45 Gray and rusty brown sandstone
- 45 60 Verigated sandy shale
- 60 73 Dark gray shale
- 73 87 Dark gray sandstone / sandy shale
- 87 116 Rusty brown and gray sandstone soft
- 116 145 Gray sandstone w/ some rusty brown turning to light brown sugary sandstone then gray sugary sandstone
 145 150 No return, very fractured

C Comen "

dest.

1

- 150 160 Gray sandstone (small returns)
- 160 170 Darker gray sandstone (encountered water, air lifting about 10-15gpm)
- 170 175 Coal (small returns)
- 175 181 Dark gray to black shale

Montana's Ground-Water Information C...

Well No.4

MONTANA WELL LOG REPORT	Other Options						
This well log reports the activities of a licensed Montana well driller, serves as the official record of work done within the borehole and casing, and describes the amount of water encountered. This report is complied electronically from the contents of the Ground-Water Information Center (GWIC) database for this site. Acquiring water rights is the well owner's responsibility and is NOT accomplished by the filing of this report.							
Site Name: SAND COULEE WATER USERS #4 GWIC Id: 241877	Section 7: Well Test Data						
DNRC Water Right: C005057-00	Total Depth: 212 Static Water Level: 154.5						
Section 1: Well Owner	Water Temperature:						
Owner Name							
SAND COULEE WATER USERS #4	Pump Test *						
Mailing Address							
SAND COULEE POST OFFICE	Depth pump set for test <u>182</u> feet.						
City State Zip Code	30 gpm pump rate with <u>18.7</u> feet of drawdown after <u>50.5</u>						
SAND COULEE MT 59472	hours of pumping. Time of recovery 0.17 hours.						
Section 2: Location	Recovery water level 155 feet.						
Township Range Section Quarter Sections	Pumping water levelfeet.						
19N 04E 14 NE% NE% SE%							
County Geocode	* During the well test the discharge rate shall be security and						
CASCADE	* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of						
Latitude Longitude Geomethod Datum	the well. Sustainable yield does not include the reservoir of the						
47.3981 111.1771 NAV-GPS NAD83	well casing.						
Altitude Method Datum Date							
Addition Block Lot Section 3: Proposed Use of Water PUBLIC WATER SUPPLY (1)	Section 8: Remarks CASING IS CEMENTED INTO CONSOLIDATED SANDSTONE MEMBER THAT CARRIES WATER. THE HISTORY OF THE TOWNS WELLS IS THAT THEY ENCRUST AND NEED TO BE REDEVELOPED. WE HAVE COMPLETED THIS WELL "OPEN HOLE" TO FACILITATE THE FUTURE REDEVELOPEMENT OF THE WATER ZONE						
Section 4: Type of Work Drilling Method: ROTARY	Section 9: Well Log Geologic Source						
Continue Et Mall Completion Date	217KOTN - KOOTENAI FORMATION From To Description						
Section 5: Well Completion Date Date w ell completed: Saturday, March 01, 2008	From To Description 0 2 TOP SOIL AND RED CLAY						
	RED GRAY YELLOW WEATERED SHALES AND						
Section 6: Well Construction Details Borehole dimensions	2 ⁹ BROKEN SANDSTONES						
From To Diameter	9 13 GRAY SANDSTONE						
0 150 10	13 15 RED AND GRAY SHALE						
150 212 6	15 RUSTY TO GRAY TO BROWN SANDSTONE SMALL WATER ENCOUNTERED AT 25						
Casing	25 40 GRAY SHALE						
Wall Pressure	40 58 GRAY SANDSTONE SOME RUSTY						
From To Diameter Thickness Rating Joint Type	58 72 RED AND GRAY SANDY SHALE						
-2 139 6.6 0.28 WELDED A53B STEE	72 102 DARK GRAY SHALE W/ SOME HARD SEAMS						
There are no completion records assigned to this well. Annular Space (Seal/Grout/Packer)	102 103 GRAY SANDSTONE W/ PYRITE						
Cont.	103 107 RED AND GRAY SHALE / DRILLED W/ RUSTY MUD COLOR						
From To Description Fed?	107 122 RUSTY BROWN SANDSTONE						
0 150 CEMENT	122 179.5 GRAY / DARK GRAY AND BROWN SANDSTONE WATER ENCOUNTERED AT BOTTOM OFSECTION						
	179.5 181 BLACK SHALE / SOME WATER						

...mtech.edu/.../SiteSummary.asp?gwici...

Montana's Ground-Water Information C...

181 212 DARK GRAY AND MUDDY GRAY SHALE

Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.

Name: PAT BYRNE Company: PAT BYRNE DRILLING INC License No: WWC-318 Date 3/1/2008 Completed:

Water Right Abstract STATE OF MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION 1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

GENERAL ABSTRACT

Water Right Number:	41QJ 213044 00 STATEMENT OF CLAIM Version: POST DECREE Version Status: ACTIVE					
	Late Claim: B					
Owners:	SAND COULEE WATER DISTRICT PO BOX 97 SAND COULEE, MT 59472 0097					
Priority Date:	July 5, 1960					
-	ty Date: June 30, 1973					
Type of Historical Right:	FILED					
	CLAIM FILED LATE 12/20/88 . AS MANDATED BY SECTION 85-2-221(3), MCA, THIS CLAIM IS SUBORDINATE, AND THEREFORE JUNIOR, TO ALL INDIAN AND FEDERAL RESERVED WATER RIGHTS AND ALL VALID TIMELY FILED CLAIMS BASED ON STATE LAW.					
Purpose (use):	MUNICIPAL					
Maximum Flow Rate:	32 GPM					
Maximum Volume:	45.15 AC-FT					
Source Name: Source Type:	GROUNDWATER GROUNDWATER					
Points of Diversion and M	leans of Diversion:					
<u>ID</u> 1	<u>Govt Lot</u> <u>Qtr Sec</u> <u>Sec</u> <u>Twp</u> <u>Rge</u> <u>County</u> SENESE 14 19N 4E CASCADE					
Period of Diversion: Diversion Means:	JANUARY 1 to DECEMBER 31 WELL					
Period of Use:	JANUARY 1 TO DECEMBER 31					
Purpose (use): Place of Use: (1 tot	MUNICIPAL records)					
$\frac{\mathbf{ID}}{1} \qquad \frac{\mathbf{Acres}}{1}$	<u>Govt Lot</u> <u>Qtr Sec Sec Twp Rge County</u> SENESE 14 19N 4E CASCADE					

Geocodes/Valid:

Remarks:

STARTING IN 2008, PERIOD OF DIVERSION WAS ADDED TO MOST CLAIM ABSTRACTS, INCLUDING THIS ONE.

OWNERSHIP UPDATE RECEIVED

OWNERSHIP UPDATE TYPE 608 # 80290 RECEIVED September 8, 2010

Water Right Abstract STATE OF MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION 1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

GENERAL ABSTRACT

Water Right Number: 41QJ 213044 00 STATEMENT OF CLAIM Version: -- POST DECREE

Version Status: ACTIVE

Late Claim: B

- Owners: SAND COULEE WATER DISTRICT PO BOX 97 SAND COULEE, MT 59472 0097
- Priority Date: July 5, 1960 Enforceable Priority Date: June 30, 1973

Type of Historical Right: FILED

CLAIM FILED LATE 12/20/88 . AS MANDATED BY SECTION 85-2-221(3), MCA, THIS CLAIM IS SUBORDINATE, AND THEREFORE JUNIOR, TO ALL INDIAN AND FEDERAL RESERVED WATER RIGHTS AND ALL VALID TIMELY FILED CLAIMS BASED ON STATE LAW.

- Purpose (use): MUNICIPAL
- Maximum Flow Rate: 32 GPM
- Maximum Volume: 45.15 AC-FT
- Source Name: GROUNDWATER Source Type: GROUNDWATER

Points of Diversion and Means of Diversion:

D	<u>Govt Lot</u>	<u>Qtr Sec</u>	Sec	<u>Twp</u>	Rge	<u>County</u>
1		SENESE	14	19N	4E	CASCADE
Period of Diversion:	JANUARY [·]	to DECEMBI	ER 31			
Diversion Means:	WELL					
Period of Use:	JANUARY	1 TO DECEME	3ER 31			
Purpose (use):	MUNICIPA	_				
Place of Use: (1 tot	al records)					

11000 0							
Ð	<u>Acres</u>	Govt Lot	<u>Qtr Sec</u>	Sec	Twp	Rge	<u>County</u>
1			SENESE	14	19N	4E	CASCADE

Geocodes/Valid:

Remarks:

STARTING IN 2008, PERIOD OF DIVERSION WAS ADDED TO MOST CLAIM ABSTRACTS, INCLUDING THIS ONE.

OWNERSHIP UPDATE RECEIVED

OWNERSHIP UPDATE TYPE 608 # 80290 RECEIVED September 8, 2010

Water Right Abstract STATE OF MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION 1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

GENERAL ABSTRACT

Water Right Number:	41QJ 5056 00 STATEMENT OF CLAIM Version: POST DECREE Version Status: ACTIVE						
Owners:	SAND COULEE WATER DISTRICT PO BOX 97 SAND COULEE, MT 59472 0097						
Priority Date: Enforceable Priorit	December 31, 1918 y Date: December 31, 1918						
Type of Historical Right:	USE						
Purpose (use):	MULTIPLE DOMESTIC						
Maximum Flow Rate:	35 GPM						
Maximum Volume: Households:	3.00 AC-FT 2						
Maximum Acres:	0.50						
Source Name: Source Type:	WELL GROUNDWATER						
Points of Diversion and M	leans of Diversion:						
<u>ID</u> 1	Govt Lot Qtr Sec Sec Twp Rge County						
1 Period of Diversion: Diversion Means:							
Period of Use:	JANUARY 1 TO DECEMBER 31						
Purpose (use):	MULTIPLE DOMESTIC						
Place of Use: (1 tota							
ID Acres 1 0.50 Total: 0.50	Govt LotQtr SecSecTwpRgeCountySENESE1419N4ECASCADE						

Geocodes/Valid:

Remarks:

THE WATER RIGHTS LISTED FOLLOWING THIS STATEMENT ARE MULTIPLE USES OF THE SAME RIGHT. THE USE OF THIS RIGHT FOR SEVERAL PURPOSES DOES NOT INCREASE THE EXTENT OF THE WATER RIGHT. RATHER IT DECREES THE RIGHT TO ALTERNATE AND EXCHANGE THE USE (PURPOSE) OF THE WATER IN ACCORD WITH HISTORICAL PRACTICES. 5056-00 5057-00

STARTING IN 2008, PERIOD OF DIVERSION WAS ADDED TO MOST CLAIM ABSTRACTS, INCLUDING THIS ONE. nris.mt.gov/dnrc/.../FindProxy2.aspx?W...

Water Right Number:

Water Right Abstract STATE OF MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION 1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

GENERAL ABSTRACT

5		POST DECF						
Owners:	PO BOX 97	SAND COULEE WATER DISTRICT PO BOX 97 SAND COULEE, MT 59472 0097						
Priority Date: Enforceable Priori		December 31, 1959 y Date: December 31, 1959						
Type of Historical Right:	USE							
Purpose (use):	MUNICIPAL							
Maximum Flow Rate:	32 GPM	32 GPM						
Maximum Volume:	83.00 AC-F	83.00 AC-FT						
Source Name: Source Type:		GROUNDWATER GROUNDWATER						
Points of Diversion and N	deans of Diver	sion:						
<u>ID</u> 1 Period of Diversion: Diversion Means:	<u>Govt Lot</u> JANUARY 1 WELL	<u>Qtr Sec</u> SWNESE to DECEMBI	<u>Sec</u> 13 ER 31	<u>Тwp</u> 19N	<u>Rge</u> 4E	<u>County</u> CASCADE		
Period of Use:	JANUARY 1 TO DECEMBER 31							
Purpose (use): Place of Use: (1 tot	MUNICIPAL tal records)							
<u>ID</u> <u>Acres</u> 1	Govt Lot	<u>Qtr Sec</u> SENESE	<u>Sec</u> 13	<u>Тwp</u> 19N	<u>Rge</u> 4E	<u>County</u> CASCADE		

41QJ 5058 00 STATEMENT OF CLAIM

Geocodes/Valid:

Remarks:

STARTING IN 2008, PERIOD OF DIVERSION WAS ADDED TO MOST CLAIM ABSTRACTS, INCLUDING THIS ONE.

WHENEVER THE WATER RIGHTS FOLLOWING THIS STATEMENT ARE COMBINED TO SUPPLY WATER FOR THE CLAIMED PURPOSE, EACH IS LIMITED TO THE HISTORICAL FLOW RATE AND PLACE OF USE OF THAT INDIVIDUAL RIGHT. THE SUM TOTAL VOLUME OF THESE WATER RIGHTS SHALL NOT EXCEED THE AMOUNT PUT TO HISTORICAL AND BENEFICIAL USE. 5058-00, 5057-00.

OWNERSHIP UPDATE RECEIVED

OWNERSHIP UPDATE TYPE 608 # 63723 RECEIVED October 28, 2008

OWNERSHIP UPDATE TYPE 608 # 80290 RECEIVED September 8, 2010

nris.mt.gov/dnrc/.../FindProxy2.aspx?W...

Water Right Abstract STATE OF MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION 1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

GENERAL ABSTRACT

Water Right Number:	41QJ 5058 00 STATEMENT OF CLAIM Version: POST DECREE							
	Version Status: ACTIVE							
Owners:	SAND COULEE WATER DISTRICT PO BOX 97 SAND COULEE, MT 59472 0097							
Priority Date: Enforceable Priori	December 31, 1959 y Date: December 31, 1959							
Type of Historical Right:	USE							
Purpose (use):	MUNICIPAL							
Maximum Flow Rate:	32 GPM							
Maximum Volume:	83.00 AC-FT							
Source Name: Source Type:	GROUNDWATER GROUNDWATER							
Points of Diversion and M	eans of Diversion:							
<u>m</u> 1	Govt LotQtr SecSecTwpRgeCountySWNESE1319N4ECASCADE							
Period of Diversion: Diversion Means:	JANUARY 1 to DECEMBER 31 WELL							
Period of Use:	JANUARY 1 TO DECEMBER 31							
Purpose (use): Place of Use: (1 tot	MUNICIPAL al records)							
ID <u>Acres</u> 1	Govt LotQtr SecSecTwpRgeCountySENESE1319N4ECASCADE							

Geocodes/Valid:

Remarks:

STARTING IN 2008, PERIOD OF DIVERSION WAS ADDED TO MOST CLAIM ABSTRACTS, INCLUDING THIS ONE.

WHENEVER THE WATER RIGHTS FOLLOWING THIS STATEMENT ARE COMBINED TO SUPPLY WATER FOR THE CLAIMED PURPOSE, EACH IS LIMITED TO THE HISTORICAL FLOW RATE AND PLACE OF USE OF THAT INDIVIDUAL RIGHT. THE SUM TOTAL VOLUME OF THESE WATER RIGHTS SHALL NOT EXCEED THE AMOUNT PUT TO HISTORICAL AND BENEFICIAL USE. 5058-00, 5057-00.

OWNERSHIP UPDATE RECEIVED

OWNERSHIP UPDATE TYPE 608 # 63723 RECEIVED October 28, 2008

OWNERSHIP UPDATE TYPE 608 # 80290 RECEIVED September 8, 2010

nris.mt.gov/dnrc/.../FindProxy2.aspx?W...

Water Right Abstract STATE OF MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION 1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

GENERAL ABSTRACT

Water Right Number:	41QJ 6174 00 GROUND WATER CERTIFICATE Version: ORIGINAL RIGHT Version Status: ACTIVE							
Owners:	PO BOX 97	SAND COULEE WATER DISTRICT PO BOX 97 SAND COULEE, MT 59472 0097						
Priority Date: Enforceable Priori	-	975 at 13:00 just 1, 1975 a		'M				
Purpose (use):	MUNICIPAL	MUNICIPAL						
Maximum Flow Rate:	60 GPM	60 GPM						
Maximum Volume:	THIS RIGHT IS LIMITED TO THE ACTUAL AMOUNT USED UP TO 10 ACRE-FEET							
Source Name: Source Type:	GROUNDW GROUN	/ater Dwater						
Points of Diversion and N	Means of Dive	rsion:						
<u>ID</u> 1	<u>Govt Lot</u>	<u>Qtr Sec</u> E2SE	<u>Sec</u> 14	<u>Тwp</u> 19N	<u>Rge</u> 4E	<u>County</u> CASCADE		
Period of Diversion: Diversion Means: Well Depth: Static Water Level: Pump Size:	JANUARY 1 WELL 210 FEET 150 FEET 5	to DECEMB	ER 31					
Purpose (use):	MUNICIPAL							
Period of Use:	JANUARY	TO DECEM	BER 31					
Place of Use: (1 to	tal records)							
<u>ID</u> <u>Acres</u> 1	<u>Govt Lot</u>	<u>Qtr Sec</u> E2SE	<u>Sec</u> 14	<u>Тwp</u> 19N	<u>Rge</u> 4E	<u>County</u> CASCADE		
Geocodes/Valid:								

Remarks:

OWNERSHIP UPDATE RECEIVED OWNERSHIP UPDATE TYPE 608 # 80290 RECEIVED September 8, 2010 **APPENDIX B**

LABORATORY ANALYTICAL REPORTS

ANALYTICAL SUMMARY REPORT

August 06, 2010

Hydrometrics Inc 3020 Bozeman Ave Helena, MT 59601

Workorder No.: H10070205

Project Name: 10039 Sand Coulee

Energy Laboratories Inc received the following 1 sample for Hydrometrics Inc on 7/14/2010 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
H10070205-001	Well 3	07/12/10 14:40 07/14/10	Drinking Water	Metals by ICP/ICPMS, Dissolved Metals by ICP/ICPMS, Drinking Water Alkalinity Anion - Cation Balance Conductivity Hardness as CaCO3 Anions by Ion Chromatography Nitrogen, Nitrate + Nitrite pH Metals Digestion by EPA 200.2 Preparation for TDS Solids, Total Dissolved

This report was prepared by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By: Wanda Johnson

Login Supervisor

Digitally signed by Wanda Johnson Date: 2010.08.06 10:04:57 -06:00

	www.energylab.com Analytical Excellence Since 1952	Helena, MT 877-472-0711 * Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 866-686-7175 * Rapid City, SD 888-672-1225 * College Station, TX 888-690-2218
CLIENT:	Hydrometrics Inc	
Project:	10039 Sand Coulee	Report Date: 08/06/10

Sample Delivery Group: H10070205

CASE NARRATIVE

DOMESTIC WATER ANALYSIS EXPLANATIONS:

Alkalinity-is a measure of the water's capacity to neutralize acid. Water with a high alkalinity (above 300 mg/L), when boiled for an extended period of time, may form a deposit or develop an unpleasant taste. Water with a very low alkalinity (below 30 mg/L) corrodes pipes and plumbing.

Bicarbonate- is a buffer ion in water, derived from carbonate rocks and atmospheric CO2. Water with pH 7.8 will be 60-90% buffered by bicarbonate. If water is heated, bicarbonate can combine with calcium or magnesium to form scale which can clog pipes and precipitate in sinks and laundry.

Calcium-is an essential human nutrient for bones and teeth. Excessive calcium with magnesium produces hard water, which causes taste problems, scale in pipes, tubs, and sinks and excessive soap consumption. Water softeners remove calcium but replace it with sodium, which may be harmful to people on low sodium diets.

Carbonate-along with bicarbonate, this ion accounts for the buffering capacity of waters with a pH greater than 9. It is most often present as salts (CaCO3, MgCO3) which precipitate at a high pH.

Chloride-less than 250 mg/L is recommended to prevent unpleasant taste. The normal range for drinking water is 5-20 mg/L. High values may be an early indicator of contamination. Chloride also makes water more corrosive towards the distribution system.

Conductivity (Specific Conductance)- a measure of the water's ability to conduct an electrical current, it increases as the amount of dissolved minerals increase. Conductivity is used as a check on the total dissolved solids in the water.

Hardness-caused mainly by calcium and magnesium, it produces incrustation on pipes, kitchen utensils, and tubs as well as excessive soap consumption. Upon heating, hard water may form scale deposits, alternately, soft water may result in a corrosion of water pipes. In general, 80-100 mg/L is considered acceptable, 200-500 mg/L is considered tolerable, and greater than 500 mg/L is considered unacceptable.

Iron- the level of 0.3 mg/L is a general guideline based on aesthetics and taste. It is an essential human nutrient; however, at levels greater than 0.3 mg/L, it stains laundry and plumbing fixtures, and causes undesirable taste in beverages. When exposed to air, iron precipitates causing a reddish-brown color.

Magnesium-is an essential human nutrient for the heart and nervous system. Greater than 50 mg/L may have a laxative effect on first time users. Guidelines are often based on aesthetics (taste). Along with calcium, magnesium contributes to water hardness.

Nitrate + nitrite as N- 10 mg/L maximum contaminant level. Acutely toxic in infants under 6 months of age, nitrate produces a blood disorder called methemoglobinemia (blue baby syndrome), which limits the amount of oxygen the bloodstream can carry.

pH- is an aesthetic parameter. Low pH may cause corrosion of water pipes-while high pH may cause incrustation of pipes.

Potassium-is an essential human nutrient. It is necessary for nerve impulses. Moderate concentrations are acceptable, but greater than 2000 mg/L may be harmful to nervous and digestive systems.

Sodium-is an essential human nutrient necessary for nerve impulses. If a water softener is used to remove hardness, calcium is replaced by sodium. People on low sodium diets using water softeners should have the sodium level of their water checked and consult a physician. Less than 20 mg/L is ideal.

Sulfate-is recommended to be below 500 mg/L for health and aesthetic reasons. The major physiological effects when exceeded are catharsis (laxative effect) and gastrointestinal irritation. Sulfate may produce noticeable taste.

Total dissolved solids- represents the dissolved minerals in water. High values- above 1500 mg/l - may cause taste, corrosion, scaling and a laxative effect.

LABORATORY ANALYTICAL REPORT

Client:Hydrometrics IncProject:10039 Sand CouleeLab ID:H10070205-001Client Sample IDWell 3

Report Date:08/06/10Collection Date:07/12/10 14:40DateReceived:07/14/10Matrix:Drinking Water

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
pН	7.2	s.u.		0.1		A4500-H B	07/14/10 16:56 / zeg
Conductivity	912	umhos/cm		1		A2510 B	07/15/10 16:16 / zeg
Solids, Total Dissolved TDS @ 180 C	536	mg/L		10		A2540 C	07/16/10 16:25 / zeg
INORGANICS							
A/C Balance (± 5)	-2.67	%		0.01		A1030 E	07/28/10 15:20 / hm
Alkalinity, Total as CaCO3	370	mg/L		4		A2320 B	07/16/10 13:28 / zeg
Bicarbonate as HCO3	450	mg/L		4		A2320 B	07/16/10 13:28 / zeg
Carbonate as CO3	ND	mg/L		4		A2320 B	07/16/10 13:28 / zeg
Chloride	11	mg/L		1		E300.0	07/17/10 18:23 / hm
Sulfate	120	mg/L	D	2		E300.0	07/17/10 18:23 / hm
Hardness as CaCO3	455	mg/L		1		A2340 B	07/29/10 15:04 / sld
NUTRIENTS							
Nitrogen, Nitrate+Nitrite as N	4.43	mg/L		0.05	10	E353.2	07/19/10 12:24 / stp
METALS, DISSOLVED							
Aluminum	ND	mg/L		0.1		E200.8	07/28/10 16:41 / dck
Arsenic	ND	mg/L		0.005		E200.8	07/28/10 16:41 / dck
Cadmium	ND	mg/L		0.001		E200.8	07/28/10 16:41 / dck
Calcium	57	mg/L		1		E200.7	07/20/10 15:34 / sld
Copper	ND	mg/L		0.01		E200.8	07/28/10 16:41 / dck
Iron	0.16	mg/L		0.03		E200.7	07/20/10 15:34 / sld
Lead	ND	mg/L		0.01		E200.8	07/28/10 16:41 / dck
Magnesium	76	mg/L		1		E200.7	07/20/10 15:34 / sld
Manganese	0.09	mg/L		0.01		E200.8	07/28/10 16:41 / dck
Potassium	4	mg/L		1		E200.7	07/20/10 15:34 / sld
Sodium	21	mg/L		1		E200.7	07/20/10 15:34 / sld
Zinc	0.04	mg/L		0.01		E200.8	07/28/10 16:41 / dck
METALS, TOTAL (CONTRACT LAB	AT00945)						
Iron	0.20	mg/L		0.03		E200.7	07/28/10 17:03 / sld

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B							********	В	atch: 100716	A-ALK-W
Sample ID: MBLK1_100716A	Met	thod Blank				Run: TITTR	_100716A		07/16	/10 11:43
Alkalinity, Total as CaCO3		2	mg/L	0.9						
Sample ID: LCS1_100716A	Lab	oratory Con	trol Sample			Run: TITTR	_100716A		07/16	/10 11:51
Alkalinity, Total as CaCO3		620	mg/L	4.0	102	90	110			
Sample ID: H10070185-002AMS Sample Matrix Sp		Spike		Run: TITTR_100716A			07/16/10 12:43			
Alkalinity, Total as CaCO3		720	mg/L	4.0	96	90	110			

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2510 B								Analytical	Run: COND	_100715/
Sample ID: ICV_100715A	Initial Calibration Verification Standard							07/15	/10 16:11	
Conductivity		1000	umhos/cm	1.0	101	90	110			
Method: A2510 B							B	atch: 1007	15A-COND-F	PROBE-V
Sample ID: LCS2_100715A	Lab	oratory Con	trol Sample		Run: COND_100715A 07/1			07/15	5/10 16:12	
Conductivity		1410	umhos/cm	1.0	100	90	110			
Sample ID: H10070205-001ADUP	9 Sar	mple Duplica	ate		Run: COND 100715A		_100715A		07/15	5/10 16:19
Conductivity		912	umhos/cm	1.0				0.1	10	

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 C							545- ¹ - ¹		Ba	atch: 925
Sample ID: MB-9257	Me	thod Blank				Run: ACCU	-124 (14410200))_100716	07/16	/10 16:24
Solids, Total Dissolved TDS @ 180) C	4	mg/L	1						
Sample ID: LCS-9257	Lat	ooratory Con	trol Sample			Run: ACCU	-124 (14410200))_100716	07/16	/10 16:25
Solids, Total Dissolved TDS @ 180) C	1000	mg/L	10	100	90	110			
Sample ID: H10070247-002ADUP	Sa	mple Duplica	ate			Run: ACCU	-124 (14410200))100716	07/16	/10 16:27
Solids, Total Dissolved TDS @ 180) C	130	mg/L	10					5	
Sample ID: H10070247-005AMS	Sa	mple Matrix :	Spike			Run: ACCU	-124 (14410200))_100716	07/16	/10 16:29
Solids, Total Dissolved TDS @ 180) C	1060	mg/L	10	93	80	120			

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10

Work Order: H10070205

Analyte C	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A4500-H B								Batch: 100714	4A-PH-W
Sample ID: ICV1_100714A	Laboratory Control Sample				Run: PH_10	07/14/10 16:5			
рН	7.00	s.u.	0.10	100	99	101			
Sample ID: H10070205-001ADUP	Sample Duplicate				Run: PH_10	0714B		07/14/	/10 16:57
pH	7.16	s.u.	0.10				0.1	2	

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method: E200.7			***			Ar	alytical Run: ICP1-HE	_100720A
Sample ID: ICV	5 Initial Calibratio	n Verification	Standard				07/20)/10 12:51
Calcium	38.1	mg/L	1.0	95	95	105		
Iron	4.04	mg/L	0.030	101	95	105		
Magnesium	40.1	mg/L	1.0	100	95	105		
Potassium	38.4	mg/L	1.0	96	95	105		
Sodium	41.8	mg/L	1.0	104	95	105		
Sample ID: ICSA	5 Interference Ch	eck Sample A	i				07/20)/10 13:22
Calcium	463	mg/L	1.0	93	80	120		
Iron	190	mg/L	0.030	95	80	120		
Magnesium	534	mg/L	1.0	107	80	120		
Potassium	0.0149	mg/L	1.0		0	0		
Sodium	0.0334	mg/L	1.0		0	0		
Sample ID: ICSAB	5 Interference Ch	ieck Sample A	В				07/20)/10 13:25
Calcium	505	mg/L	1.0	101	80	120		
Iron	189	mg/L	0.030	94	80	120		
Magnesium	555	mg/L	1.0	111	80	120		
Potassium	21.2	mg/L	1.0	106	80	120		
Sodium	21.9	mg/L	1.0	109	80	120		
Sample ID: CCV	5 Continuing Cali	bration Verific	ation Standard				07/20)/10 15:18
Calcium	24.7	mg/L	1.0	99	90	110		
Iron	2.46	mg/L	0.030	98	90	110		
Magnesium	23.4	mg/L	1.0	93	90	110		
Potassium	25.2	mg/L	1.0	101	90	110		
Sodium	26.0	mg/L	1.0	104	90	110		
Sample ID: ICSA	5 Interference Ch	ieck Sample A					07/20)/10 17:28
Calcium	458	mg/L	1.0	92	80	120		
Iron	176	mg/L	0.030	88	80	120		
Magnesium	513	mg/L	1.0	103	80	120		
Potassium	0.0164	mg/L	1.0		0	0		
Sodium	0.0327	mg/L	1.0		0	0		
Sample ID: ICSAB	5 Interference Ch	eck Sample A	В				07/20	/10 17:31
Calcium	487	mg/L	1.0	97	80	120		
Iron	181	mg/L	0.030	90	80	120		
Magnesium	534	mg/L	1.0	107	80	120		
Potassium	20.5	mg/L	1.0	102	80	120		
Sodium	20.9	mg/L	1.0	104	80	120		
Method: E200.7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Batc	h: R63848
Sample ID: ICB	5 Method Blank				Run: ICP1-H	IE_100720A	07/20	/10 13:35
Calcium	ND	mg/L	0.1					
Iron	ND	mg/L	0.002					
Magnesium	ND	mg/L	0.02					

Qualifiers:

RL - Analyte reporting limit.

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.7				<u> </u>					Batc	h: R63848
Sample ID:	ICB	5 Me	thod Blank				Run: ICP1-H	HE_100720A		07/20	/10 13:35
Potassium			ND	mg/L	0.04						
Sodium			ND	mg/L	0.1						
Sample ID:	LFB	5 Lat	ooratory Fort	ified Blank			Run: ICP1-I	HE_100720A		07/20)/10 13:38
Calcium			9.27	mg/L	1.0	93	85	115			
Iron			0.990	mg/L	0.030	99	85	115			
Magnesium			9.88	mg/L	1.0	99	85	115			
Potassium			10.3	mg/L	1.0	103	85	115			
Sodium			10.3	mg/L	1.0	103	85	115			
Sample ID:	LFB	5 Lat	poratory Fort	ified Blank			Run: ICP1-I	HE_100720A		07/20)/10 14:57
Calcium			9.54	mg/L	1.0	95	85	115			
Iron			0.977	mg/L	0.030	98	85	115			
Magnesium			9.65	mg/L	1.0	97	85	115			
Potassium			10.2	mg/L	1.0	102	85	115			
Sodium			10.0	mg/L	1.0	100	85	115			
Sample ID:	H10070133-004BMS2	2 5 Sa	mple Matrix :	Spike			Run: ICP1-I	HE_100720A		07/20)/10 15:12
Calcium			50.5	mg/L	1.0	103	70	130			
Iron			1.90	mg/L	0.040	95	70	130			
Magnesium			26.0	mg/L	1.0	95	70	130			
Potassium			22.3	mg/L	1.0	98	70	130			
Sodium			32.4	mg/L	1.0	95	70	130			
Sample ID:	H10070133-004BMS	5 5 Sa	mple Matrix	Spike Duplicate			Run: ICP1-	HE_100720A		07/20	0/10 15:15
Calcium			53.0	mg/L	1.0	115	70	130	4.8	20	
Iron			2.06	mg/L	0.040	103	70	130	7.8	20	
Magnesium			27.7	mg/L	1.0	103	70	130	6.2	20	
Potassium			22.0	mg/L	1.0	96	70	130	1.4	20	
Sodium			31.5	mg/L	1.0	91	70	130	2.8	20	
Sample ID:	LFB	5 Lal	ooratory Fort	ified Blank			Run: ICP1-	HE_100720A		07/20	0/10 16:42
Calcium			9.15	mg/L	1.0	92	85	115			
Iron			0.936	mg/L	0.030	94	85	115			
Magnesium			9.39	mg/L	1.0	94	85	115			
Potassium			10.2	mg/L	1.0	102	85	115			
Sodium			9.94	mg/L	1.0	99	85	115			

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.7							Ar	alytical R	un: ICP1-HE	1007280
Sample ID: 1	CV	Initi	al Calibratio	n Verification St	andard					07/28	/10 13:56
Iron			3.88	mg/L	0.030	97	95	105			
Sample ID: I	CSA	Inte	erference Ch	ieck Sample A						07/28	/10 14:11
Iron			187	mg/L	0.030	93	80	120			
Sample ID: 1	CSAB	Inte	erference Ch	eck Sample AB						07/28	/10 14:14
Iron			197	mg/L	0.030	99	80	120			
Sample ID: (ccv	Co	ntinuing Cali	bration Verificati	ion Standard					07/28	/10 16:48
Iron			2.48	mg/L	0.030	99	90	110			
Sample ID: 1	CSA	Inte	erference Ch	eck Sample A						07/28	/10 19:50
Iron			195	mg/L	0.030	98	80	120			
Sample ID: 1	CSAB	Inte	erference Ch	eck Sample AB						07/28	/10 19:53
Iron			194	mg/L	0.030	97	80	120			
Method:	E200.7									Batch	n: R6407(
Sample ID: 1	СВ	Me	thod Blank				Run: ICP1-H	HE_100728C		07/28	/10 16:57
Iron			ND	mg/L	0.002						
Sample ID: 1	FB	Lab	oratory Fort	ified Blank			Run: ICP1-H	HE_100728C		07/28	/10 17:00
Iron			1.01	mg/L	0.030	101	85	115			
Sample ID: H	110070205-001CMS2	Sar	nple Matrix	Spike			Run: ICP1-H	IE_100728C		07/28	/10 17:07
Iron			2.36	mg/L	0.040	108	70	130			
Sample ID: H	110070205-001CMSD	2 Sar	nple Matrix	Spike Duplicate			Run: ICP1-H	HE_100728C		07/28	/10 17:10
Iron			2.22	mg/L	0.040	101	70	130	6.1	20	
Sample ID: L	_FB	Lab	oratory Fort	ified Blank			Run: ICP1-F	IE_100728C		07/28	/10 18:45
Iron			0.991	mg/L	0.030	99	85	115			

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte	Count R	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLin	it Qual
Method: E200.8							Analyti	cal Run: ICPMS20	4-B_100728A
Sample ID: ICV STD	7 Initial C	alibratior	Verification	Standard				07	//28/10 14:36
Aluminum		0.248	mg/L	0.10	99	90	110		
Arsenic	C).0492	mg/L	0.0050	98	90	110		
Cadmium	C	0.0255	mg/L	0.0010	102	90	110		
Copper	C	0.0508	mg/L	0.010	102	90	110		
Lead	C).0467	mg/L	0.010	93	90	110		
Manganese		0.242	mg/L	0.010	97	90	110		
Zinc	C).0504	mg/L	0.010	101	90	110		
Sample ID: ICSA	7 Interfer	ence Ch	eck Sample /	A				07	//28/10 14:43
Aluminum		44.5	mg/L	0.10	111	70	130		
Arsenic	0.0	00166	mg/L	0.0050					
Cadmium	0.0	00473	mg/L	0.0010					
Copper	0.	00163	mg/L	0.010					
Lead	0.0	00100	mg/L	0.010					
Manganese	0.	00261	mg/L	0.010					
Zinc	0.	00141	mg/L	0.010					
Sample ID: ICSAB	7 Interfer	ence Ch	eck Sample /	AB				0'	7/28/10 14:49
Aluminum		44.7	mg/L	0.10	112	70	130		
Arsenic	(0.0116	mg/L	0.0050	116	70	130		
Cadmium	(0.0116	mg/L	0.0010	116	70	130		
Copper	(0.0243	mg/L	0.010	122	70	130		
Lead	8.9	0E-05	mg/L	0.010		0	0		
Manganese	(0.0255	mg/L	0.010	127	70	130		
Zinc	(0.0125	mg/L	0.010	125	70	130		
Sample ID: ICV STD	7 Initial C	Calibration	n Verification	Standard				0	7/28/10 15:10
Aluminum		0.268	mg/L	0.10	107	90	110		
Arsenic	(0.0524	mg/L	0.0050	105	90	110		
Cadmium	(0.0275	mg/L	0.0010	110	90	110		
Copper	(0.0543	mg/L	0.010	109	90	110		
Lead	(0.0495	mg/L	0.010	99	90	110		
Manganese		0.260	mg/L	0.010	104	90	110		
Zinc	(0.0543	mg/L	0.010	109	90	110		
Sample ID: ICSA	7 Interfer	rence Ch	eck Sample /	٩				0	7/28/10 15:16
Aluminum		44.3	mg/L	0.10	111	70	130		
Arsenic	0.0	00167	mg/L	0.0050					
Cadmium		00407	mg/L	0.0010					
Copper		.00141	mg/L	0.010					
Lead	9.7	0E-05	mg/L	0.010					
Manganese		.00271	mg/L	0.010					
Zinc		.00142	mg/L	0.010					
Sample ID: ICSAB	7 Interfer	rence Ch	eck Sample /	AB				0	7/28/10 15:40
Aluminum		45.5	mg/L	0.10	114	70	130	0	

Qualifiers:

RL - Analyte reporting limit.

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD RPI	OLimit	Qual
Method: E200.8	Andrew Control of Cont		······			Analyti	cal Run: ICPM	S204-B	_100728A
Sample ID: ICSAB	7 Interference	Check Sample A	ιB					07/28	3/10 15:40
Arsenic	0.0118	mg/L	0.0050	118	70	130			
Cadmium	0.0117	mg/L	0.0010	117	70	130			
Copper	0.0239	mg/L	0.010	119	70	130			
Lead	8.20E-05	mg/L	0.010		0	0			
Manganese	0.0259	mg/L	0.010	130	70	130			
Zinc	0.0126	mg/L	0.010	126	70	130			
Sample ID: ICV STD	7 Initial Calibra	tion Verification	Standard					07/28	3/10 20:08
Aluminum	0.261	mg/L	0.10	104	90	110			
Arsenic	0.0501	mg/L	0.0050	100	90	110			
Cadmium	0.0262	mg/L	0.0010	105	90	110			
Copper	0.0503	mg/L	0.010	101	90	110			
Lead	0.0475	mg/L	0.010	95	90	110			
Manganese	0.251	mg/L	0.010	100	90	110			
Zinc	0.0498	mg/L	0.010	100	90	110			
Sample ID: ICSA	7 Interference	Check Sample A	١					07/29	9/10 10:09
Aluminum	45.0	mg/L	0.10	112	70	130			
Arsenic	0.000152	mg/L	0.0050						
Cadmium	0.000370	mg/L	0.0010						
Copper	0.00145	mg/L	0.010						
Lead	9.90E-05	mg/L	0.010						
Manganese	0.00240	mg/L	0.010						
Zinc	0.00164	mg/L	0.010						
Sample ID: ICSAB	7 Interference	Check Sample A	B					07/29)/10 10:16
Aluminum	45.1	mg/L	0.10	113	70	130			
Arsenic	0.0117	mg/L	0.0050	117	70	130			
Cadmium	0.0116	mg/L	0.0010	116	70	130			
Copper	0.0235	mg/L	0.010	117	70	130			
Lead	9.50E-05	mg/L	0.010		0	0			
Manganese	0.0255	mg/L	0.010	128	70	130			
Zinc	0.0121	mg/L	0.010	121	70	130			
Method: E200.8							<u> </u>	Batc	h: R64068
Sample ID: ICB	7 Method Blank	τ.			Run: ICPMS	204-B_100728	٩	07/28	8/10 16:21
Aluminum	ND	mg/L	0.0002			_			
Arsenic	ND	mg/L	3E-05						
Cadmium	ND	mg/L	1E-05						
Copper	ND	mg/L	3E-05						
Lead	ND	-	1E-05						
Manganese	0.0002		2E-05						
Zinc	ND		0.0006						
Sample ID: LFB	7 Laboratory Fo	rtified Blank			Run: ICPMS	204-B_100728	4	07/28	/10 16:28
Aluminum	0.0503		0.10	101	85	115	-	0.,	

Qualifiers:

RL - Analyte reporting limit.

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8									Batch	n: R64068
Sample ID: LFB	7 Lab	oratory Forti	fied Blank			Run: ICPMS	S204-B_100728A		07/28	/10 16:28
Arsenic		0.0505	mg/L	0.0050	101	85	115			
Cadmium		0.0504	mg/L	0.0010	101	85	115			
Copper		0.0494	mg/L	0.010	99	85	115			
Lead		0.0506	mg/L	0.010	101	85	115			
Manganese		0.0512	mg/L	0.010	102	85	115			
Zinc		0.0522	mg/L	0.010	104	85	115			
Sample ID: H10070205-001BMS	7 Sar	mple Matrix \$	Spike			Run: ICPMS	S204-B_100728A		07/28	/10 16:48
Aluminum		0.134	mg/L	0.10	100	70	130			
Arsenic		0.0510	mg/L	0.0050	101	70	130			
Cadmium		0.0504	mg/L	0.0010	100	70	130			
Copper		0.0495	mg/L	0.010	97	70	130			
Lead		0.0510	mg/L	0.010	102	70	130			
Manganese		0.136	mg/L	0.010	100	70	130			
Zinc		0.0920	mg/L	0.010	94	70	130			
Sample ID: H10070205-001BMSE) 7 Sai	mple Matrix \$	Spike Duplicate			Run: ICPMS	S204-B_100728A		07/28	/10 16:54
Aluminum		0.135	mg/L	0.10	102	70	130	0.7	20	
Arsenic		0.0506	mg/L	0.0050	101	70	130	0.8	20	
Cadmium		0.0503	mg/L	0.0010	100	70	130	0	20	
Copper		0.0494	mg/L	0.010	97	70	130	0.3	20	
Lead		0.0505	mg/L	0.010	101	70	130	0.9	20	
Manganese		0.136	mg/L	0.010	101	70	130	0.4	20	
Zinc		0.0912	mg/L	0.010	93	70	130	0.9	20	

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E300.0								Analytical F	lun: IC101-H	_100716A
Sample ID: ICV071610-12	2 Init	tial Calibration	n Verification S	tandard					07/16	/10 18:49
Chloride		12	mg/L	1.0	97	90	110			
Sulfate		51	mg/L	1.0	102	90	110			
Sample ID: CCV071610-86	2 Co	ntinuing Calil	oration Verifica	tion Standard					07/17	/10 17:00
Chloride		24	mg/L	1.0	96	90	110			
Sulfate		50	mg/L	1.0	100	90	110			
Method: E300.0		······································					· · · · ·		Batcl	h: R63760
Sample ID: ICB071610-13	2 Me	thod Blank				Run: IC101-	H_100716A		07/16	/10 19:05
Chloride		ND	mg/L	0.5						
Sulfate		ND	mg/L	1						
Sample ID: LFB071610-14	2 Lal	boratory Forti	fied Blank			Run: IC101-	H_100716A		07/16	/10 19:21
Chloride		24	mg/L	1.0	96	90	110			
Sulfate		50	mg/L	1.2	99	90	110			
Sample ID: H10070214-002AMS	2 Sa	mple Matrix S	Spike			Run: IC101-	H_100716A		07/17	/10 19:12
Chloride		29	mg/L	1.0	97	90	110			
Sulfate		280	mg/L	1.2		90	110			А
Sample ID: H10070214-002AMS	D 2 Sa	mple Matrix S	Spike Duplicate	•		Run: IC101-	H_100716A		07/17	/10 19:28
Chloride		29	mg/L	1.0	98	90	110	0.1	20	
Sulfate		280	mg/L	1.2		90	110	0.5	20	А

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Client: Hydrometrics Inc

Project: 10039 Sand Coulee

Report Date: 08/06/10 Work Order: H10070205

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2						Analytic	al Run: I	NUTRIENTS	_100719B
Sample ID: ICV-1	Initial Calibration	on Verification St	andard					07/19	/10 11:07
Nitrogen, Nitrate+Nitrite as N	1.04	mg/L	0.050	104	90	110			
Sample ID: ICB	Initial Calibration	on Blank, Instrum	nent Blank					07/19	/10 11:18
Nitrogen, Nitrate+Nitrite as N	-0.0100	mg/L	0.050		0	0			
Sample ID: CCV-34	Continuing Ca	ibration Verificat	ion Standard					07/19	/10 12:14
Nitrogen, Nitrate+Nitrite as N	0.520	mg/L	0.050	104	90	110			
Method: E353.2						E	Batch: A2	2010-07-19_5	5_NO3_01
Sample ID: LCS-2	Laboratory Co	ntrol Sample			Run: NUTR	IENTS_100719E	}	07/19	/10 11:09
Nitrogen, Nitrate+Nitrite as N	18.2	mg/L	0.10	99	90	110			
Sample ID: LFB-3	Laboratory For	tified Blank			Run: NUTR	IENTS_100719E	3	07/19	/10 11:11
Nitrogen, Nitrate+Nitrite as N	1.06	mg/L	0.050	106	90	110			
Sample ID: MBLK-7	Method Blank				Run: NUTR	IENTS_100719E	3	07/19	/10 11:20
Nitrogen, Nitrate+Nitrite as N	ND	mg/L	0.01						
Sample ID: H10070214-001CMS	Sample Matrix	Spike			Run: NUTR	IENTS_100719E	3	07/19	/10 12:27
Nitrogen, Nitrate+Nitrite as N	1.13	mg/L	0.050	105	90	110			
Sample ID: H10070214-001CMS	D Sample Matrix	Spike Duplicate			Run: NUTR	IENTS_100719E	3	07/19	/10 12:30
Nitrogen, Nitrate+Nitrite as N	1.14	mg/L	0.050	106	90	110	0.9	20	

ENERGY E www.energylab.com LABORATORIES			0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 apid City, SD 888-672-1225 • College Station, TX 888-690-2218
Workorder Receipt Cheo	cklist		
Hydrometrics Inc			H10070205
Login completed by: Wanda Johnson		Date	Received: 7/14/2010
Reviewed by: BL2000\ablackburn		Re	eceived by: TLL
Reviewed Date: 7/20/2010		Ca	rrier name: Hand Del
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🔲	Not Present 🔽
Custody seals intact on sample bottles?	Yes 🔲	No 🔲	Not Present 📝
Chain of custody present?	Yes 🗹	No 🔲	
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌	٤
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌	
Samples in proper container/bottle?	Yes 🗹	No 🔲	
Sample containers intact?	Yes 🗸	No 🔲	3
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌	
All samples received within holding time?	Yes 🖌	No 🗌	
Container/Temp Blank temperature:	5.9°C		
Water - VOA vials have zero headspace?	Yes	No 🔲	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🗌	No 🗹	Not Applicable

Contact and Corrective Action Comments:

Sample poured off from unpreserved sample & preserved with 2mls of Sulfuric Acid for Nutrients. Sample poured off from unpreserved sample & preserved with 2mls of Nitric Acid for metals sample. Wj

ANALYTICAL SUMMARY REPORT

November 12, 2010

MT DEQ PO Box 200901 Helena, MT 59620-0901

Workorder No.: H10100078

Project Name: Sand Coulee

Energy Laboratories Inc received the following 4 samples for MT DEQ on 10/4/2010 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
H10100078-001	Well No. 2a	09/30/10 16:30 10/04/10	Aqueous	Metals by ICP/ICPMS, Dissolved Metals by ICP/ICPMS, Total Alkalinity Conductivity Anions by Ion Chromatography pH Metals Digestion by EPA 200.2 Preparation, Dissolved Filtration
H10100078-002	Well No. 2a	09/30/10 16:30 10/04/10	Solid	Metals by ICP/ICPMS, Total Total Carbon Loss on Ignition at 550 Moisture, % Dry Basis HF Digestion, Total Metals Qualitative Analyses Report Total Sulfur
H10100078-003	Well No. 2b	09/30/10 16:30 10/04/10	Solid	Same As Above
H10100078-004	Well No. 2c	09/30/10 16:30 10/04/10	Solid	Metals by ICP/ICPMS, Total Total Carbon Lime as CaCO3, % Loss on Ignition at 550 Moisture, % Dry Basis HF Digestion, Total Metals Lime Percentage Qualitative Analyses Report Total Sulfur

This report was prepared by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Assistant Laboratory Manager - Helena

Digitally signed by Jon Hager Date: 2010.11.13 13:03:29 -07:00

ENERGY LABORATORIES	www.energylab.com Analytical Excellence Since 1952	Helena, MT 877-472-0711 * Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 866-686-7175 * Rapid City, SD 888-672-1225 * College Station, TX 888-690-2218
CLIENT:	MT DEQ	Revised Date: 11/12/10
Project:	Sand Coulee	Report Date: 10/27/10

Sample Delivery Group: H10100078

CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Client:MT DEQProject:Sand CouleeLab ID:H10100078-001Client Sample IDWell No. 2a

 Revised Date:
 11/12/10

 Report Date:
 10/27/10

 Collection Date:
 09/30/10 16:30

 DateReceived:
 10/04/10

 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
рН	8.4	s.u.		0.1		A4500-H B	10/11/10 18:37 / zeg
INORGANICS							
Alkalinity, Total as CaCO3	380	mg/L		4		A2320 B	10/11/10 18:37 / zeg
Chloride	5	mg/L		1		E300.0	10/20/10 18:09 / abb
Sulfate	35	mg/L		1		E300.0	10/20/10 18:09 / abb
METALS, DISSOLVED							
Aluminum	ND	mg/L		0.1		E200.8	11/03/10 22:53 / dck
Calcium	27	mg/L		1		E200.7	11/02/10 13:04 / sld
Iron	ND	mg/L		0.03		E200.7	11/02/10 13:04 / sld
Magnesium	72	mg/L		1		E200.7	11/02/10 13:04 / sld
Manganese	ND	mg/L		0.01		E200.8	11/03/10 22:53 / dck
Potassium	3	mg/L		1		E200.8	11/03/10 22:53 / dck
Silicon	2.0	mg/L		0.1		E200.8	11/03/10 22:53 / dck
Silica	4.4	mg/L		0.2		E200.8	11/03/10 22:53 / dck
Sodium	23	mg/L		1		E200.7	11/02/10 13:04 / sld
METALS, TOTAL							
Aluminum	8.3	mg/L		0.1		E200.8	10/18/10 14:05 / dck
Calcium	51	mg/L		1		E200.8	10/18/10 14:05 / dck
Iron	5.16	mg/L		0.03		E200.8	10/18/10 14:05 / dck
Magnesium	83	mg/L		1		E200.8	10/18/10 14:05 / dck
Manganese	0.31	mg/L		0.01		E200.8	10/18/10 14:05 / dck
Potassium	8	- mg/L		1		E200.8	10/18/10 14:05 / dck
Silicon	18.9	mg/L		0.1		E200.8	10/18/10 14:05 / dck
Silica	40.4	mg/L		0.2		E200.8	10/18/10 14:05 / dck
Sodium	28	mg/L		1		E200.8	10/18/10 14:05 / dck

ReportRL - AnaDefinitions:OCL - Q

RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.

Client: MT DEQ **Project:** Sand Coulee Lab ID: H10100078-002 Client Sample ID Well No. 2a

Revised Date: 11/12/10 Report Date: 10/27/10 Collection Date: 09/30/10 16:30 DateReceived: 10/04/10 Matrix: Solid

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Moisture	78.8	wt%		0.2		A2540 G	10/14/10 12:00 / eli-b
Loss on Ignition at 550C	79.7	wt%		0.01		A2540 G	10/14/10 12:00 / eli-b
QUALITATIVE ANALYSES							
Carbonate	Absent					Qualitative	10/15/10 13:30 / eli-b
Chloride	Trace					Qualitative	10/15/10 13:30 / eli-b
Sulfate	Absent					Qualitative	10/15/10 13:30 / eli-b
Sulfide	Absent					Qualitative	10/15/10 13:30 / eli-b
CHEMICAL CHARACTERISTICS							
Sulfur, Total	0.08	wt%		0.01		Leco	10/18/10 12:21 / eli-b
METALS, TOTAL HF DIGESTION							
Aluminum	1.7	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Antimony	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Arsenic	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Barium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Beryllium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Cadmium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Calcium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Chromium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Cobalt	ND ND	wt%		0.1 0.1		SW6010B	10/16/10 04:17 / eli-b
Copper Gold	ND	wt% wt%		0.1		SW6010B SW6010B	10/16/10 04:17 / eli-b 10/16/10 04:17 / eli-b
Iron	0.3	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Lead	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Lithium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Magnesium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Manganese	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Molybdenum	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Nickel	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Phosphorus	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Potassium	0.4	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Selenium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Silicon	6.1	wt%	В	0.1		SW6010B	10/16/10 04:17 / eli-b
Silver	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Sodium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Strontium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Thallium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Tin	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Titanium	0.1	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Vanadium	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b
Zinc	ND	wt%		0.1		SW6010B	10/16/10 04:17 / eli-b

Report RL - Analyte reporting limit. Definitions:

QCL - Quality control limit.

B - The analyte was detected in the method blank.

MCL - Maximum contaminant level.

		Revised Date:	11/12/10
Client:	MT DEQ	Report Date:	10/27/10
Project:	Sand Coulee	Collection Date:	09/30/10 16:30
Lab ID:	H10100078-002	DateReceived:	10/04/10
Client Sample ID	Well No. 2a	Matrix:	Solid

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By

METALS, TOTAL HF DIGESTION

REMARKS

Sample Appearance and Analyst Comments 10/22/10 13:00 / eli-b -The sample was a thin, brown sludge. The sample was dried at 105C before carbon and sulfur analysis. Besides water, it appears to be composed predominantly of silicon, which indicates the presence of soil or rock.

Report RL - Analyte reporting limit. Definitions: QCL - Quality control limit.

Client:MT DEQProject:Sand CouleeLab ID:H10100078-003Client Sample IDWell No. 2b

 Revised Date:
 11/12/10

 Report Date:
 10/27/10

 Collection Date:
 09/30/10 16:30

 DateReceived:
 10/04/10

 Matrix:
 Solid

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Moisture	8.7	wt%		0.2		A2540 G	10/14/10 12:00 / eli-b
Loss on Ignition at 550C	15.8	wt%		0.01		A2540 G	10/14/10 12:00 / eli-b
QUALITATIVE ANALYSES							
Carbonate	Absent					Qualitative	10/15/10 13:30 / eli-b
Chloride	Trace					Qualitative	10/15/10 13:30 / eli-b
Sulfate	Absent					Qualitative	10/15/10 13:30 / eli-b
Sulfide	Absent					Qualitative	10/15/10 13:30 / eli-b
CHEMICAL CHARACTERISTICS							
Sulfur, Total	0.19	wt%		0.01		Leco	10/18/10 12:21 / eli-b
METALS, TOTAL HF DIGESTION							
Aluminum	0.9	wt%		0.1		SW6010B	10/16/10 04:21 / eli-b
Barium	ND	wt%		0.1		SW6010B	10/16/10 04:21 / eli-b
Calcium	0.3	wt%		0.1		SW6010B	10/16/10 04:21 / eli-b
Iron	37.2	wt%		0.1		SW6010B	10/16/10 04:21 / eli-b
Magnesium	0.2	wt%		0.1		SW6010B	10/16/10 04:21 / eli-b
Manganese	0.2	wt%		0.1		SW6010B	10/16/10 04:21 / eli-b
Silicon	4.3	wt%	В	0.1		SW6010B	10/16/10 04:21 / eli-b

REMARKS

Sample Appearance and Analyst Comments

10/22/10 13:00 / eli-b

The sample was a moist, brown solid. Besides water, it appears to be comosed predominantly of an iron compound and carbon. Silicon indicates the presence of soil or rock.

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

B - The analyte was detected in the method blank.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Client:MT DEQProject:Sand CouleeLab ID:H10100078-004Client Sample IDWell No. 2c

 Revised Date:
 11/12/10

 Report Date:
 10/27/10

 Collection Date:
 09/30/10 16:30

 DateReceived:
 10/04/10

 Matrix:
 Solid

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Moisture	7.3	wt%		0.2		A2540 G	10/14/10 12:00 / eli-b
Loss on Ignition at 550C	15.9	wt%		0.01		A2540 G	10/14/10 12:00 / eli-b
CHEMICAL CHARACTERISTICS							
Lime as Ca(OH)2	2.29	%	*	0.07	0.1	USDA23c	10/22/10 08:54 / eli-b
Lime as CaCO3	3.1	%		0.1		USDA23c	10/22/10 08:54 / eli-b
QUALITATIVE ANALYSES							
Carbonate	Present					Qualitative	10/15/10 13:30 / eli-b
Chloride	Trace					Qualitative	10/15/10 13:30 / eli-b
Sulfate	Absent					Qualitative	10/15/10 13:30 / eli-b
Sulfide	Absent					Qualitative	10/15/10 13:30 / eli-b
CHEMICAL CHARACTERISTICS							
Sulfur, Total	0.25	wt%		0.01		Leco	10/18/10 12:21 / eli-b
METALS, TOTAL HF DIGESTION							
Aluminum	6.5	wt%		0.1		SW6010B	10/16/10 04:25 / eli-b
Barium	ND	wt%		0.1		SW6010B	10/16/10 04:25 / eli-b
Calcium	0.2	wt%		0.1		SW6010B	10/16/10 04:25 / eli-b
Iron	7.8	wt%		0.1		SW6010B	10/16/10 04:25 / eli-b
Magnesium	0.3	wt%		0.1		SW6010B	10/16/10 04:25 / eli-b
Manganese	ND	wt%		0.1		SW6010B	10/16/10 04:25 / eli-b
Silicon	26.0	wt%	В	0.1		SW6010B	10/16/10 04:25 / eli-b

REMARKS

Sample Appearance and Analyst Comments

10/22/10 13:00 / eli-b

The sample was a brown solid. It appears to be composed predominantly of silicon, which indicates the presence of soil or rock. The other major constituents found were aluminum and an iron compound.

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. * - The result exceeds the MCL. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

B - The analyte was detected in the method blank.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B									Batcl	n: R66054
Sample ID: MBLK	Met	thod Blank				Run: MAN-7	ECH_101011A		10/11	/10 18:12
Alkalinity, Total as CaCO3		2	mg/L	0.3						
Sample ID: LCS-83110	Lab	oratory Con	trol Sample			Run: MAN-1	ECH_101011A		10/11	/10 18:22
Alkalinity, Total as CaCO3		620	mg/L	4.0	103	90	110			
Sample ID: H10090482-008AMS	Sar	nple Matrix (Spike			Run: MAN-1	ECH_101011A		. 10/11	/10 20:44
Alkalinity, Total as CaCO3		730	mg/L	4.0	90	90	110			

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A4500-H B							Analy	tical Run:	MAN-TECH	_101011A
Sample ID: ICV-1632	Initia	al Calibration	N Verification	Standard					10/11	/10 18:03
рН		7.00	s.u.	0.10	100	99	101			

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
	200.7							A	nalytical Run: ICP1-HE	_101102A
Sample ID: IC	SV .	4 Initi	al Calibratio	n Verification	Standard				11/02	2/10 10:45
Calcium			39.3	mg/L	1.0	98	95	105		
Iron			4.06	mg/L	0.030	101	95	105		
Magnesium			39.7	mg/L	1.0	99	95	105		
Sodium			39.7	mg/L	1.0	99	95	105		
Sample ID: CO	CV-1	4 Cor	tinuing Cali	oration Verific	ation Standard				11/02	2/10 10:51
Calcium			25.4	mg/L	1.0	102	95	105		
Iron			2.55	mg/L	0.030	102	95	105		
Magnesium			25.1	mg/L	1.0	100	95	105		
Sodium			24.7	mg/L	1.0	99	95	105		
Sample ID: IC	SA	4 Inte	rference Ch	eck Sample /	A				11/02	2/10 11:02
Calcium			486	mg/L	1.0	97	80	120		
Iron			186	mg/L	0.030	93	80	120		
Magnesium			536	mg/L	1.0	107	80	120		
Sodium			0.0160	mg/L	1.0		0	0		
Sample ID: IC	SAB	4 Inte	rference Ch	eck Sample /	٨B				11/02	2/10 11:05
Calcium			480	mg/L	1.0	96	80	120		
Iron			184	mg/L	0.030	92	80	120		
Magnesium			526	mg/L	1.0	105	80	120		
Sodium			20.0	mg/L	1.0	100	80	120		
Sample ID: CO	cv	4 Cor	tinuing Cali	oration Verific	ation Standard				11/02	2/10 12:45
Calcium			24.2	mg/L	1.0	97	90	110		
Iron			2.47	mg/L	0.030	99	90	110		
Magnesium			24.2	mg/L	1.0	97	90	110		
Sodium			23.8	mg/L	1.0	95	90	110		
Sample ID: IC	SA	4 Inte	rference Ch	eck Sample A	A				11/02	2/10 15:31
Calcium			468	mg/L	1.0	94	80	120		
Iron			178	mg/L	0.030	89	80	120		
Magnesium			515	mg/L	1.0	103	80	120		
Sodium			0.0162	mg/L	1.0		0	0		
Sample ID: IC	SAB	4 Inte	rference Ch	eck Sample A	λB				11/02	2/10 15:34
Calcium			476	mg/L	1.0	95	80	120		
Iron			183	mg/L	0.030	91	80	120		
Magnesium			506	mg/L	1.0	101	80	120		
Sodium			19.6	mg/L	1.0	98	80	120		
Method: E	200.7								Bato	h: R66763
Sample ID: IC	в	4 Met	hod Blank				Run: ICP1-H	HE_101102A	11/02	2/10 11:37
Calcium			ND	mg/L	0.1					
Iron			0.005	mg/L	0.002					
Magnesium			0.03	mg/L	0.02					

Qualifiers:

RL - Analyte reporting limit.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.7		• • •							Batcl	h: R66763
Sample ID:	ICB	4 Me	thod Blank				Run: ICP1-H	HE_101102A		11/02	/10 11:37
Sodium			ND	mg/L	0.1						
Sample ID:	LFB	4 Lat	ooratory Forti	fied Blank			Run: ICP1-ł	HE_101102A		11/02	/10 11:40
Calcium			9.70	mg/L	1.0	97	85	115			
Iron			0.994	mg/L	0.030	99	85	115			
Magnesium			9.75	mg/L	1.0	97	85	115			
Sodium			9.63	mg/L	1.0	96	85	115			
Sample ID:	H10110013-003AMS2	2 4 Sa	mple Matrix S	Spike			Run: ICP1-I	HE_101102A		11/02	/10 12:27
Calcium			73.1	mg/L	1.0	103	70	130			
Iron			2.05	mg/L	0.040	101	70	130			
Magnesium			40.2	mg/L	1.0	99	70	130			
Sodium			27.4	mg/L	1.0	95	70	130			
Sample ID:	H10110013-003AMSE)2 4 Sa	mple Matrix §	Spike Duplicate			Run: ICP1-I	HE_101102A		11/02	/10 12:30
Calcium			71.2	mg/L	1.0	93	70	130	2.6	20	
Iron			2.00	mg/L	0.040	99	70	130	2.4	20	
Magnesium			39.1	mg/L	1.0	94	70	130	2.6	20	
Sodium			27.7	mg/L	1.0	97	70	130	1.2	20	

Qualifiers: RL - Analyte reporting limit.

•

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method: E200.8							Analyti	cal Run: ICPMS204-I	3_1010174
Sample ID: ICV STD	8 Initial	Calibratio	n Verification	Standard				10/1	7/10 17:22
Aluminum		0.251	mg/L	0.10	100	90	110		
Calcium		2.62	mg/L	0.50	105	90	110		
Iron		0.248	mg/L	0.030	97	90	110		
Magnesium		2.63	mg/L	0.50	105	90	110		
Manganese		0.247	mg/L	0.010	99	90	110		
Potassium		2.63	mg/L	0.50	105	90	110		
Silicon		0.492	mg/L	0.10	98	90	110		
Sodium		2.58	mg/L	0.50	103	90	110		
Sample ID: ICSA	8 Interfe	erence Ch	eck Sample /	4				10/1	7/10 17:30
Aluminum		39.8	mg/L	0.10	100	70	130		
Calcium		118	mg/L	0.50					
Iron		97.4	mg/L	0.030	97	70	130		
Magnesium		41.4	mg/L	0.50					
Manganese	(0.00214	mg/L	0.010					
Potassium		40.3	mg/L	0.50				•	
Silicon	(0.00199	mg/L	0.10		0	0		
Sodium		104	mg/L	0.50					
Sample ID: ICSAB	8 Interfe	erence Ch	eck Sample /	AB				10/1	7/10 17:50
Aluminum		39.8	mg/L	0.10	99	70	130		
Calcium		116	mg/L	0.50	96	70	130		
Iron		98.6	mg/L	0.030	99	70	130		
Magnesium		41.4	mg/L	0.50	103	70	130		
Manganese		0.0226	mg/L	0.010	113	70	130		
Potassium		40.1	mg/L	0.50	100	70	130		
Silicon	().00185	mg/L	0.10		0	0		
Sodium		104	mg/L	0.50	104	70	130		
Sample ID: ICV STD	8 Initial	Calibratio	n Verification	Standard				10/1	8/10 00:44
Aluminum		0.250	mg/L	0.10	100	90	110		
Calcium		2.62	mg/L	0.50	105	90	110		
Iron		0.251	mg/L	0.030	98	90	110		
Magnesium		2.64	mg/L	0.50	106	90	110		
Manganese		0.248	mg/L	0.010	99	90	110		
Potassium		2.63	mg/L	0.50	105	90	110		
Silicon		0.487	mg/L	0.10	97	90	110		
Sodium		2.57	mg/L	0.50	103	90	110		
Sample ID: ICSA	8 Interfe	erence Ch	eck Sample /	٩				10/1	8/10 00:51
Aluminum		40.3	mg/L	0.10	101	70	130		
Calcium		120	mg/L	0.50					
Iron		98.7	mg/L	0.030	99	70	130		
Magnesium		40.7	mg/L	0.50					
Manganese	(0.00178	mg/L	0.010					

Qualifiers:

RL - Analyte reporting limit.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method: E200.8						Analyti	cal Run: ICPMS204-E	3_101017/
Sample ID: ICSA	8 Interference C	heck Sample A					10/1	8/10 00:51
Potassium	41.2	mg/L	0.50					
Silicon	0.00212	mg/L	0.10		0	0		
Sodium	102	mg/L	0.50					
Sample ID: ICSAB	8 Interference C	heck Sample A	В				10/1	8/10 00:57
Aluminum	39.9	mg/L	0.10	100	70	130		
Calcium	118	mg/L	0.50	98	70	130		
Iron	98.2	mg/L	0.030	98	70	130		
Magnesium	40.5	mg/L	0.50	101	70	130		
Manganese	0.0225	mg/L	0.010	113	70	130		
Potassium	40.6	mg/L	0.50	101	70	130		
Silicon	0.00174	mg/L	0.10		0	0		
Sodium	102	mg/L	0.50	102	70	130		
Sample ID: ICV STD	8 Initial Calibration	on Verification S	Standard				10/1	8/10 12:43
Aluminum	0.252	mg/L	0.10	101	90	110		
Calcium	2.64	mg/L	0.50	105	90	110		
Iron	0.251	mg/L	0.030	98	90	110		
Magnesium	2.63	mg/L	0.50	105	90	110		
Manganese	0.250	mg/L	0.010	100	90	110		
Potassium	2.67	mg/L	0.50	107	90	110		
Silicon	0.494	mg/L	0.10	99	90	110		
Sodium	2.63	mg/L	0.50	105	90	110		
Sample ID: ICSA	8 Interference C	heck Sample A					10/1	8/10 12:50
Aluminum	40.8	mg/L	0.10	102	70	130		
Calcium	120	mg/L	0.50					
Iron	99.9	mg/L	0.030	100	70	130		
Magnesium	40.7	mg/L	0.50					
Manganese	0.00207	mg/L	0.010					
Potassium	40.8	mg/L	0.50					
Silicon	0.00211	mg/L	0.10		0	0		
Sodium	102	mg/L	0.50					
Sample ID: ICSAB	8 Interference C	heck Sample A	В				10/1	8/10 12:57
Aluminum	40.6	mg/L	0.10	101	70	130		
Calcium	119	mg/L	0.50	99	70	130		
Iron	100	mg/L	0.030	100	70	130		
Magnesium	40.7	mg/L	0.50	102	70	130		
Manganese	0.0225	mg/L	0.010	113	70	130		
Potassium	41.2	mg/L	0.50	103	70	130		
Silicon	0.00196	mg/L	0.10		0	0		
Sodium	104	mg/L	0.50	104	70	130		
Sample ID: ICV STD	8 Initial Calibration	on Verification S	Standard				10/1	9/10 01:56
Aluminum	0.254	mg/L	0.10	102	90	110		

Qualifiers:

RL - Analyte reporting limit.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPD	Limit	Qual
Method: E200.8							Analytic	cal Run: ICPM	S204-E	_101017A
Sample ID: ICV STD	8 Initial	Calibratio	n Verification	Standard					10/19	9/10 01:56
Calcium		2.66	mg/L	0.50	107	90	110			
Iron		0.260	mg/L	0.030	102	90	110			
Magnesium		2.60	mg/L	0.50	104	90	110			
Manganese		0.248	mg/L	0.010	99	90	110			
Potassium		2.68	mg/L	0.50	107	90	110			
Silicon		0.493	mg/L	0.10	99	90	110			
Sodium		2.58	mg/L	0.50	103	90	110			
Sample ID: ICSA	8 Interfe	erence Ch	eck Sample A	N N					10/19	9/10 02:03
Aluminum		40.4	mg/L	0.10	101	70	130			
Calcium		119	mg/L	0.50						
Iron		99.7	mg/L	0.030	100	70	130			
Magnesium		40.5	mg/L	0.50						
Manganese	().00222	mg/L	0.010						
Potassium		41.0	mg/L	0.50						
Silicon	(0.00266	mg/L	0.10		0	0			
Sodium		102	mg/L	0.50		,				
Sample ID: ICSAB	8 Interfe	erence Ch	eck Sample A	NВ					10/19)/10 02:10
Aluminum		39.9	mg/L	0.10	100	70	130			
Calcium		119	mg/L	0.50	99	70	130			
Iron		99.8	mg/L	0.030	100	70	130			
Magnesium		40.1	mg/L	0.50	100	70	130			
Manganese		0.0232	mg/L	0.010	116	70	130			
Potassium		41.1	mg/L	0.50	103	70	130			
Silicon	(0.00252	mg/L	0.10		0	0			
Sodium		102	mg/L	0.50	102	70	130			
Method: E200.8									Ba	tch: 10269
Sample ID: MB-10269	9 Metho	od Blank				Run: ICPMS	204-B_101017/	4	10/18	3/10 13:38
Aluminum		8000.0	mg/L	0.0008						
Calcium		0.01	mg/L	0.01						
Iron		0.001	mg/L	0.0009						
Magnesium		ND	mg/L	0.006						
Manganese		ND	mg/L	3E-05						
Potassium		0.09	mg/L	0.04						
Silicon		0.002	mg/L	0.001						
Sodium		0.2	mg/L	0.02						
Silica		0.005	mg/L	0.003						
Sample ID: LCS-10269	9 Labor	atory Con	trol Sample			Run: ICPMS	204-B_101017/	4	10/18	3/10 13:45
Aluminum		2.50	mg/L	0.10	100	85	115			
Calcium		27.6	mg/L	1.0	110	85	115			
Iron		2.58	mg/L	0.030	103	85	115			
Magnesium		25.9	mg/L	1.0	104	85	115			

Qualifiers:

RL - Analyte reporting limit.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Bat	ch: 10269
Sample ID:	LCS-10269	9 Lat	poratory Con	trol Sample			Run: ICPMS	204-B_101017A		10/18	/10 13:45
Manganese	I Contraction of the second		2.50	mg/L	0.010	100	85	115			
Potassium			26.4	mg/L	1.0	105	85	115			
Silicon			4.90	mg/L	0.10	98	85	115			
Sodium			26.7	mg/L	1.0	106	85	115			
Silica			10.5	mg/L	0.21	98	85	115			
Sample ID:	H10100078-001BMS3	3 9 Sa	mple Matrix	Spike			Run: ICPMS	S204-B_101017A		10/18	/10 14:12
Aluminum			36.1	mg/L	0.10	222	70	130			S
Calcium			190	mg/L	1.0	111	70	130			
Iron			20.5	mg/L	0.030	123	70	130			
Magnesium	I		212	mg/L	1.0	103	70	130			
Manganese	!		12.8	mg/L	0.010	100	70	130			
Potassium			143	mg/L	1.0	107	70	130			
Silicon			64.8	mg/L	0.10	183	70	130			S
Sodium			159	mg/L	1.0	105	70	130			
Silica			139	mg/L	0.21	183	70	130			S
Sample ID:	H10100078-001BMS)3 9 Sa	mple Matrix	Spike Duplicate			Run: ICPMS	S204-B_101017A		10/18	3/10 14:18
Aluminum			35.2	mg/L	0.10	215	70	130	2.5	20	S
Calcium			188	mg/L	1.0	110	70	130	1.1	20	
Iron			20.0	mg/L	0.030	119	70	130	2.8	20	
Magnesium	I		210	mg/L	1.0	102	70	130	1	20	
Manganese	1		12.6	mg/L	0.010	98	70	130	1.6	20	
Potassium			142	mg/L	1.0	107	70	130	0.8	20	
Silicon			62.2	mg/L	0.10	173	70	130	4	20	S
Sodium			158	mg/L	1.0	104	70	130 [′]	0.5	20	
Silica			133	mg/L	0.21	173	70	130	4	20	S

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count Resul	t Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method: E200.8						Analyti	cal Run: ICPMS204-B	3_101103/
Sample ID: ICV STD	4 Initial Calibra	ation Verification	Standard				11/03	3/10 20:44
Aluminum	0.24	7 mg/L	0.10	99	90	110		
Manganese	0.24	4 mg/L	0.010	98	90	110		
Potassium	2.5	8 mg/L	0.50	103	90	110		
Silicon	0.48	2 mg/L	0.10	96	90	110		
Sample ID: ICSA	4 Interference	Check Sample A	١				11/03	3/10 20:48
Aluminum	38.	5 mg/L	0.10	96	70	130		
Manganese	0.0021	6 mg/L	0.010					
Potassium	39.	2 mg/L	0.50					
Silicon	0.0023	3 mg/L	0.10		0	0		
Sample ID: ICSAB	4 Interference	Check Sample A	B				11/03	3/10 20:53
Aluminum	37.	7 mg/L	0.10	94	70	130		
Manganese	0.021	7 mg/L	0.010	109	70	130		
Potassium	38.	8 mg/L	0.50	97	70	130		
Silicon	0.0019	7 mg/L	0.10		0	0		
Sample ID: ICV STD	4 Initial Calibra	ation Verification	Standard				11/04	1/10 03:13
Aluminum	0.25	0 mg/L	0.10	100	90	110		
Manganese	0.25	0 mg/L	0.010	100	90	110		
Potassium	2.4	9 mg/L	0.50	100	90	110		
Silicon	0.47	7 mg/L	0.10	95	90	110		
Sample ID: ICSA	4 Interference	Check Sample A	N				11/04	1/10 03:17
Aluminum	38.	2 mg/L	0.10	96	70	130		
Manganese	0.0021	1 mg/L	0.010					
Potassium	39.	5 mg/L	0.50					
Silicon	0.0024	0 mg/L	0.10		0	0		
Sample ID: ICSAB	4 Interference	Check Sample A	B				11/04	I/10 03:22
Aluminum	38.	0 mg/L	0.10	95	70	130		
Manganese	0.021	7 mg/L	0.010	108	70	130		
Potassium	39.1	2 mg/L	0.50	98	70	130		
Silicon	0.0020	3 mg/L	0.10		0	0		
Sample ID: ICV STD	4 Initial Calibra	ation Verification	Standard				11/04	1/10 20:16
Aluminum	0.24	9 mg/L	0.10	100	90	110		
Manganese	0.24	3 mg/L	0.010	97	90	110		
Potassium	2.5	2 mg/L	0.50	101	90	110		
Silicon	0.48	1 mg/L	0.10	96	90	110		
Sample ID: ICSA	4 Interference	Check Sample A	۱.				11/04	1/10 20:20
Aluminum	37.	5 mg/L	0.10	94	70	130		
Manganese	0.0020	6 mg/L	0.010					
Potassium	39.:	2 mg/L	0.50					
Silicon	0.0024	7 mg/L	0.10		0	0		

Qualifiers:

RL - Analyte reporting limit.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8							Analytic	al Run: I	ICPMS204-B	_101103A
Sample ID: ICSAB	4 Int	erference Ch	eck Sample AB						11/04	/10 20:25
Aluminum		37.3	mg/L	0.10	93	70	130			
Manganese		0.0213	mg/L	0.010	107	70	130			
Potassium		38.8	mg/L	0.50	97	70	130			
Silicon		0.00249	mg/L	0.10		0	0			
Sample ID: ICSA	4 Int	erference Ch	ieck Sample A						11/05	5/10 08:28
Aluminum		37.7	mg/L	0.10	94	70	130			
Manganese		0.00195	mg/L	0.010						
Potassium		39.8	mg/L	0.50						
Silicon		0.00250	mg/L	0.10		0	0			
Sample ID: ICSAB	4 Int	erference Ch	eck Sample AB						11/05	5/10 08:32
Aluminum		37.8	mg/L	0.10	95	70	130			
Manganese		0.0212	mg/L	0.010	106	70	130			
Potassium		40.8	mg/L	0.50	102	70	130			
Silicon		0.00222	mg/L	0.10		0	0			
Method: E200.8	·								Bato	h: R66830
Sample ID: ICB	4 Me	thod Blank				Run: ICPM	S204-B_101103A	۱	11/03	3/10 21:20
Aluminum		0.0007	mg/L	0.0002						
Manganese		3E-05	mg/L	2E-05						
Potassium		ND	mg/L	0.02						
Silicon		ND	mg/L	0.0002						
Sample ID: LFB	4 La	boratory Fort	ified Blank			Run: ICPM	S204-B_101103A	λ	11/0	3/10 21:24
Aluminum		0.0494	mg/L	0.10	97	85	115			
Manganese		0.0490	mg/L	0.010	98	85	115			
Potassium		49.8	mg/L	0.50	100	85	115			
Silicon		0.200	mg/L	0.10	100	85	115			
Sample ID: H10110013-006AMS	4 Sa	mple Matrix	Spike			Run: ICPM	S204-B_101103A	4	11/04	4/10 00:40
Aluminum		0.0498	mg/L	0.10	98	70	130			
Manganese		0.925	mg/L	0.010		70	130			А
Potassium		4.41	mg/L	1.0		70	130			S
Silicon		8.95	mg/L	0.10		70	130			Α
Sample ID: H10110013-006AMSI	D 4 Sa	mple Matrix	Spike Duplicate			Run: ICPM	S204-B_101103/	4	11/0	4/10 00:45
Aluminum		0.0507	mg/L	0.10	100	70	130		20	
Manganese		0.924	mg/L	0.010		70	130	0.2	20	А
Potassium		4.47	mg/L	1.0		70	130	1.4	20	S
Silicon		8.92	mg/L	0.10		70	130	0.4	20	Α

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

S - Spike recovery outside of advisory limits.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E300.0								Analytical F	un: IC101-H	_101020A
Sample ID: ICV102010-12	2 Init	ial Calibratio	n Verification S	tandard					10/20	/10 09:40
Chloride		26	mg/L	1.0	103	90	110			
Sulfate		110	mg/L	1.0	106	90	110			
Sample ID: CCV-102010-30	2 Co	ntinuing Cali	bration Verifical	tion Standard					10/20	/10 14:36
Chloride		26	mg/L	1.0	105	90	110			
Sulfate		100	mg/L	1.0	102	90	110			
Method: E300.0							·		Batcl	h: R66331
Sample ID: ICB102010-13	2 Me	thod Blank				Run: IC101-	H_101020A		10/20	/10 09:57
Chloride		ND	mg/L	0.2						
Sulfate		ND	mg/L	0.5						
Sample ID: LFB102010-14	2 Lat	ooratory Forti	fied Blank			Run: IC101	H_101020A		10/20	/10 10:13
Chloride		26	mg/L	1.0	103	90	110			
Sulfate		100	mg/L	1.1	103	90	110			
Sample ID: H10100051-003AMS	2 Sa	mple Matrix \$	Spike			Run: IC101	H_101020A		10/20	/10 16:31
Chloride		26	mg/L	1.0	103	90	110			
Sulfate		100	mg/L	1.1	100	90	110			
Sample ID: H10100051-003AMS	D 2 Sa	mple Matrix (Spike Duplicate			Run: IC101-	H_101020A		10/20	/10 16:47
Chloride		26	mg/L	1.0	104	90	110	0.6	20	
Sulfate		100	mg/L	1.1	103	90	110	3.1	20	

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD F	RPDLimit	Qual
Method: SW6010B							Analytica	l Run: SUE	3-B15566
Sample ID: QCS	29 Initial Calibration	on Verification	n Standard					10/15	5/10 10:33
Selenium	0.80	mg/L	0.10	100	89.5	110.5			
Silicon	7.8	mg/L	0.050	98	89.5	110.5			
Aluminum	3.9	mg/L	0.10	98	89.5	110.5			
Antimony	0.78	mg/L	0.029	98	89.5	110.5			
Arsenic	0.78	mg/L	0.10	98	89.5	110.5			
Barium	0.77	mg/L	0.10	96	89.5	110.5			
Beryllium	0.38	mg/L	0.010	94	89.5	110.5			
Cadmium	0.39	mg/L	0.010	97	89.5	110.5			
Calcium	39	mg/L	1.0	96	89.5	110.5			
Chromium	0.78	mg/L	0.050	97	89.5	110.5			
Cobalt	0.78	mg/L	0.020	97	89.5	110.5			
Copper	0.78	mg/L	0.010	98	89.5	110.5			
Iron	4.0	mg/L	0.030	99	89.5	110.5			
Lead	0.77	mg/L	0.050	97	89.5	110.5			
Lithium	0.82	mg/L	0.10	102	89.5	110.5			
Magnesium	37	mg/L	1.0	93	89.5	110.5			
Manganese	3.9	mg/L	0.010	97	89.5	110.5			
Molybdenum	0.78	mg/L	0.10	98	89.5	110.5			
Nickel	0.78	mg/L	0.050	97	89.5	110.5			
Phosphorus	7.8	mg/L	0.10	98	89.5	110.5			
Potassium	38	mg/L	1.0	94	89.5	110.5			
Silver	0.40	mg/L	0.010	101	89.5	110.5			
Sodium	39	mg/L	1.0	97	89.5	110.5			
Strontium	0.78	mg/L	0.10	98	89.5	110.5			
Thallium	0.80	mg/L	0.018	100	89.5	110.5			
Tin	0.79	mg/L	0.011	99	89.5	110.5			
Titanium	0.80	mg/L	0.00062	100	89.5	110.5			
Vanadium	0.78	mg/L	0.10	97	89.5	110.5			
Zinc	0.78	mg/L	0.010	97	89.5	110.5			
Sample ID: ICSA	29 Interference C	heck Sample	A					10/1	5/10 10:48
Selenium	-0.038	mg/L	0.10		0	0			
Silicon	0.0020	mg/L	0.050		0	0			
Aluminum	520	mg/L	0.10	103	80	120			
Antimony	-0.040	mg/L	0.029		0	0			
Arsenic	0.018	mg/L	0.10		0	0			
Barium	0.0024	mg/L	0.10		0	0			
Beryllium	6.0E-05	mg/L	0.010		0	0			
Cadmium	0.0060	mg/L	0.010		0	0			
Calcium	450	mg/L	1.0	90	80	120			
Chromium	0.0074	mg/L	0.050		0	0			
Cobalt	-0.0031	mg/L	0.020		0	0			
Copper	0.0038	mg/L	0.010		0	0			
Iron	200	mg/L	0.096	102	80	120			

Qualifiers:

RL - Analyte reporting limit.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit		RPDLimit	Qual
Method: SW6010B							Analytic	al Run: SUE	B-B15566
Sample ID: ICSA	29 Interference C	heck Sample /	4					10/15	/10 10:48
Lead	-0.14	mg/L	0.050		0	0 ·			
Lithium	0.0036	mg/L	0.10		0	0			
Magnesium	500	mg/L	1.0	101	80	120			
Manganese	-0.0062	mg/L	0.010		0	0			
Molybdenum	-0.014	mg/L	0.10		0	0			
Nickel	-0.0024	mg/L	0.050		0	0			
Phosphorus	0.030	mg/L	0.10		0	0			
Potassium	0.062	mg/L	1.0		0	0			
Silver	0.00057	mg/L	0.010		0	0			
Sodium	0.068	mg/L	1.0		0	0			
Strontium	0.021	mg/L	0.10		0	0			
Thallium	0.013	mg/L	0.018		0	0			
Tin	-0.025	mg/L	0.011		0	0			
Titanium	-0.0089	mg/L	0.00062		0	0			
Vanadium	-0.0025	mg/L	0.10		0	0			
Zinc	-0.057	mg/L	0.010		0	0			
Sample ID: ICSAB	29 Interference C	Check Sample /	AB					10/15	/10 10:5:
Selenium	0.91	mg/L	0.10	91	80	120			
Silicon	10	mg/L	0.050		0	0			
Aluminum	500	mg/L	0.10	100	80	120			
Antimony	0.99	mg/L	0.029	99	80	120			
Arsenic	1.0	mg/L	0.10	103	80	120			
Barium	0.50	mg/L	0.10	101	80	120			
Beryllium	0.46	mg/L	0.010	92	80	120			
Cadmium	0.98	mg/L	0.010	98	80	120			
Calcium	450	mg/L	1.0	91	80	120			
Chromium	0.49	mg/L	0.050	98	80	120			
Cobalt	0.48	mg/L	0.020	97	80	120			
Copper	0.52	mg/L	0.010	105	80	120			
Iron	200	mg/L	0.096	101	80	120			
Lead	0.85	mg/L	0.050	85	80	120			
Lithium	1.1	mg/L	0.10	111	80	120			
Magnesium	500	mg/L	1.0	100	80	120			
Manganese	0.49	mg/L	0.010	98	80	120			
Molybdenum	0.97	mg/L	0.10	97	80	120			
Nickel	0.96		0.050	96	80	120			
Phosphorus	10	-	0.10	101	80	120			
Potassium	21	mg/L	1.0	107	80	120			
Silver	1.1	mg/L	0.010	106	80	120			
Sodium	19		1.0	97	80	120			
Strontium	1.0	mg/L	0.10	101	80	120			
Thallium	0.99	mg/L	0.018	99	80	120			
Tin	0.97	mg/L	0.011	97	80	120			

Qualifiers:

RL - Analyte reporting limit.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count Res	ult Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method: SW6010B			<u></u>		·		Analytical Run: SUE	3-B155661
Sample ID: ICSAB	29 Interference	e Check Sam	ple AB				10/15	5/10 10:52
Titanium	0.	98 mg/L	0.00062	98	80	120		
Vanadium	0.	48 mg/L	0.10	96	80	120		
Zinc	0.	92 mg/L	0.010	92	80	120		
Sample ID: ICSA	29 Interference	e Check Sam	ple A				10/16	5/10 12:06
Selenium	-0.0	36 mg/L	0.10		0	0		
Silicon	0.00	157 mg/L	0.050		0	0		
Aluminum	4	80 mg/L	0.10	96	80	120		
Antimony	-0.00	182 mg/L	0.029		0	0		
Arsenic	0.0	24 mg/L	0.10		0	0		
Barium	0.00	24 mg/L	0.10		0	0		
Beryllium	-0.000	10 mg/L	0.010		0	0		
Cadmium	0.00	167 mg/L	0.010		0	0		
Calcium	4	80 mg/L	1.0	95	80	120		
Chromium	-0.000		0.050		0	0		
Cobalt	-0.000		0.020		0	0		
Copper	0.00		0.010		0	0		
Iron	1	90 mg/L	0.096	93	80	120		
Lead		.12 mg/L	0.050		0	0		
Lithium	0.00	-	0.10		0	0		
Magnesium		.90 mg/L	1.0	98	80	120		
Manganese	-0.00	-	0.010		0	0		
Molybdenum	-0.0	0	0.10		0	0		
Nickel	6.0E-		0.050		0	0		
Phosphorus	0.0	-	0.10		0	0		
Potassium	0.0	-	1.0		0	0		
Silver	-0.00	0	0.010		0	0		
Sodium	0.0	0	1.0		0	0		
Strontium	0.0	0	0.10		0	0		
Thallium	0.000	0	0.018		0	0		
Tin	-0.0	0	0.011		0	0		
Titanium	-0.00	0	0.00062		0	0		
Vanadium	-0.00	0	0.10		0	0		
Zinc	-0.0		0.010		0	0		
Sample ID: ICSAB	29 Interference	e Check Sam	ple AB				10/10	6/10 12:10
Selenium		.91 mg/L	0.10	91	80	120		
Silicon		10 mg/L	0.050		0	0		
Aluminum		600 mg/L	0.10	100		120		
Antimony		.97 mg/L	0.029	97		120		
Arsenic		1.0 mg/L	0.10	101	80	120		
Barium		.56 mg/L	0.10	112		120		
Beryllium		.52 mg/L	0.010	103		120		
Cadmium		1.0 mg/L	0.010	104		120		
Calcium		510 mg/L	1.0	101		120		

Qualifiers:

RL - Analyte reporting limit.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count Resu	lt Units	RL	%REC	Low Limit	High Limit	RPD RPDLim	it Qual
Method: SW6010B							Analytical Run: S	UB-B155661
Sample ID: ICSAB	29 Interference	Check Samp	le AB				10	/16/10 12:10
Chromium	0.5	i1 mg/L	0.050	101	80	120		
Cobalt	0.5	i0 mg/L	0.020	100	80	120		
Copper	0.5	4 mg/L	0.010	108	80	120		
Iron	20	0 mg/L	0.096	99	80	120		
Lead	0.8	2 mg/L	0.050	82	80	120		
Lithium	1.	2 mg/L	0.10	116	80	120		
Magnesium	50	0 mg/L	1.0	100	80	120		
Manganese	0.5	2 mg/L	0.010	104	80	120		
Molybdenum	1.	0 mg/L	0.10	103	80	120		
Nickel	0.9	15 mg/L	0.050	95	80	120		
Phosphorus	1	0 mg/L	0.10	102	80	120		
Potassium	2	2 mg/L	1.0	108	80	120		
Silver	1.	1 mg/L	0.010	109	80	120		
Sodium	2	0 mg/L	1.0	99	80	120		
Strontium	1.	1 mg/L	0.10	112	80	120		
Thallium	0.9	8 mg/L	0.018	98	80	120		
Tin	0.9	4 mg/L	0.011	95	80	120		
Titanium	0.9	9 mg/L	0.00062	99	80	120		
Vanadium	0.5	2 mg/L	0.10	103	80	120		
Zinc	0.8	9 mg/L	0.010	89	80	120		
Method: SW6010B	***********						Ba	ch: B_49807
Sample ID: MB-49807	30 Method Blar	۱k			Run: SUB-E	3155661	10	/16/10 04:10
Aluminum	N	D wt%	0.007					
Antimony	N	D wt%	0.03					
Arsenic	N	D wt%	0.02					
Barium	N	D wt%	0.0002					
Beryllium	N	D wt%	8E-05					
Cadmium	N	D wt%	0.0006					
Calcium	0.0	13 wt%	0.02					
Chromium	0.00	2 wt%	0.002					
Cobalt	N	D wt%	0.002					
Copper	N	D wt%	0.0009					
Gold	0.00	5 wt%	0.004					
Iron	0.00	9 wt%	0.001					
Lead	0.0	2 wt%	0.01					
Lithium	N	D wt%	0.0004					
Magnesium	0.0	2 wt%	0.006					
Manganese	0.000	5 wt%	0.0002					
Molybdenum	N	D wt%	0.005					
Nickel	N	D wt%	0.001					
Phosphorus	N	D wt%	0.02					
Potassium	N	D wt%	0.007					
		4 wt%						

Qualifiers:

RL - Analyte reporting limit.

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6010B					4				Batch	: B_49807
Sample ID: MB-49807	30 Met	thod Blank				Run: SUB-E	3155661		10/16	/10 04:10
Silicon		1	wt%	0.007						
Silver		0.002	wt%	0.0008						
Sodium		ND	wt%	0.01						
Strontium		0.009	wt%	8E-05						
Thallium		ND	wt%	0.02						
Tin		ND	wt%	0.01						
Titanium		0.0010	wt%	0.0006						
Vanadium		ND	wt%	0.002						
Zinc		ND	wt%	0.002						
Sample ID: LCS3-49807	10 Lab	oratory Con	trol Sample			Run: SUB-E	3155661		10/16	/10 04:14
Aluminum		5.37	wt%	0.10	88	50	150			
Calcium		2.40	wt%	0.10	90	50	150			
Iron		3.75	wt%	0.10	94	50	150			
Magnesium		0.977	wt%	0.10	79	50	150			
Manganese		0.0546	wt%	0.10	99	50	150			
Potassium		2.02	wt%	0.10	101	50	150			
Silicon		26.0	wt%	1.0	99	50	150			
Sodium		0.548	wt%	0.10	99	50	150			
Titanium		0.412	wt%	0.10	90	50	150			
Zinc		0.0420	wt%	0.10	96	50	150			

Client: MT DEQ

Project: Sand Coulee

Revised Date: 11/12/10 Report Date: 10/27/10 Work Order: H10100078

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: USDA23c									Batch: B	_R155967
Sample ID: LCS-R155967	Lab	ooratory Con	trol Sample			Run: SUB-E	3155967		10/22	2/10 08:54
Lime as CaCO3		7.50	%	0.10	94	50	150			

ENERGY OF Www.energylab.com Analytical Excallence Since 1952	Gillette, Y		711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 pid City, SD 888-672-1225 • College Station, TX 888-690-2218
Workorder Receipt Chec MT DEQ	klist		H10100078
Login completed by: Tracy L. Lorash		Date	Received: 10/4/2010
Reviewed by: BL2000\ablackburn		Re	ceived by: rlt
Reviewed Date: 10/26/2010		Car	rier name: Hand Del
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗌	Not Present 🗹
Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present 🗹
Chain of custody present?	Yes 🗹	No 🗌	
Chain of custody signed when relinquished and received?	Yes 🗸	No 🔲	
Chain of custody agrees with sample labels?	Yes 🗌	No 🗸	
Samples in proper container/bottle?	Yes 🗹	No 🗌	
Sample containers intact?	Yes 🗹	No 🔲	
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌	
All samples received within holding time?	Yes 🗹	No 🗌	
Container/Temp Blank temperature:	21.8°C		
Water - VOA vials have zero headspace?	Yes 🗌	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🗌	No 🗹	Not Applicable

Contact and Corrective Action Comments:

Total metals sample split and preserved with 2ml nitric acid in lab. TI 10/5/10.

Company Name: Hydrometrics, Inc									•				
Hydrometrics, Inc				Project:						San	Sample Origin	EPA/Stai	EPA/State Compliance:
				Sand Coule	4 *					Sta	State:MT	Yes 🗆	No 🛛
Report Mail Address: 3020 Bozeman Ave Heiena, 59601	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			Contact Name: Bill Thompson	ë	τ <u></u> 1 2 4	Phone/Fax: 443-4150 ext. 130	. 130		Email: wthom trics.co	Email: wthompson@hydrome trics.com	Sampler: (Plea Bill Thompson	Sampler: (Please Print) Bill Thompson
Invoice Address: same				Invoice Contact & Phone Same as above	act & Phi ve	one:				H _C C A Dir Her	Purchase Order: Direct bill DEQ Abandoned mines (contact: Tom Henderson 841-5052	Quote/B	Quote/Bottle Order:
Special Report/Formats – ELI must be notified prior to sample submittal for the following:	Formats – ELI submittal for th	must be not le following:	tified	t ainers V S V B O /Solids Øther	ANJA Ad	ANALYSIS		REQUESTED	L		Contact ELI prior to RUSH sample submittal for charges and scheduling – See Instruction Page	nittal	Shipped by: MATH Cooler ID(4): COOLOV
DW GSA POTW/WMTP State: Other:		A2LA EDD/EDT(Electronic Data) Format: LEVEL IV NELAC	ctronic Data)	N A :edf Type: V A :edf Type: Air Water Soils/ Vegetätion Bioass	e Analysis 13, Silica, Fe, Al, Mn, 13, Silica, Fe, Al, Mn,	y ind yn			SEE ATTACH	Normal Turnaround	-	1	Receipt Temp A. C. C. On kee: Yes: NO Custody Seal Y A
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	TIFICATION Interval, etc.)	Collection Date	Collection Time	MATRIX		7							ure Y
Well No.2a		9/30/10	16:30	Water*	×						*Filter water/Save		»H10100078
² Well No.2a		9/30/10	16:30	Solids*	×						*Filtrate from above sample	·	אור
³ Well No.2 b		9/30/10	16:30	Solids	×								05
4 Well No.2 c		9/30/10	16:30	Solids	×	4							JSI
S												_ 3	1
6													yo
7											u		ν×
8													40 10
8									 				86
10													7
	Relinquished by (print):	Date/Tim	10 11 AL	Signature	::::		Received	Received by (print):		Date/Time	me:	Signature:	:ei
Record Rein	Relinquished by (print): ¹	Date/Tim		Signature:	ne:		Received	Received by (print):	(Date/Time:	me:	Signature:	ire: /
	Sample Disposal: Re	Return to Client:		Lah Disoosal	÷		A CONTRACTOR	Received by Laboratory	111	Date/Time:	10. 4.10 11.U	() Signature:	R. LOO

۰.

Page 26 of 26

APPENDIX C

WELL NO. 3 PHREEQCI MODEL INPUT AND OUTPUT

Sand_coulee4.pqi DATABASE C: \Program Files (x86)\USGS\Phreeqc Interactive 2.17.4799\database\minteq.v4.dat SOLUTION 1 10/16/2000 Sand Coulee Well 3 temp 12.6 pH 7.21 pe 4 pe 4 redox ре uni ts mg/I densi ty 1 Ca 60.2 Al kal i ni ty 387 K 3.64 Mg 74.6 Cl 11.3 Na S(6) 21

90.4

0.139 6.89 0.066 1 # kg

Fe Si

Mn -water

sand_coulee4.pqo Input file: J:\mark w\sand_coulee4.pqi Output file: J:\mark w\sand_coulee4.pqo Database file: C:\Program Files (x86)\USGS\Phreeqc Interactive 2.17.4799\database\minteq.v4.dat
Reading data base.
SOLUTI ON_MASTER_SPECI ES SOLUTI ON_SPECI ES SOLUTI ON_SPECI ES PHASES PHASES SURFACE_MASTER_SPECI ES SURFACE_SPECI ES END
Reading input data for simulation 1.
DATABASE C: \Program Files (x86)\USGS\Phreeqc Interactive 2.17.4799\database\minteq.v4.dat SOLUTION 1 10/16/2000 Sand Coulee Well 3 temp 12.6 pH 7.21 pe 4 redox pe units mg/l density 1 Ca 60.2 Alkalinity 387 K 3.64 Mg 74.6 Cl 11.3 Na 21 S(6) 90.4 Fe 0.139 Si 6.89 Mn 0.066 water 1 # kg Beginning of initial solution calculations.
Initial solution 1. 10/16/2000 Sand Coulee Well 3
Solution composition
Elements Molality Moles
Al kal i ni ty6. 346e-0036. 346e-003Ca1. 503e-0031. 503e-003Cl3. 189e-0043. 189e-004Fe2. 491e-0062. 491e-006K9. 316e-0059. 316e-005Mg3. 071e-0033. 071e-003Mn1. 202e-0061. 202e-006Na9. 140e-0049. 416e-004S(6)9. 416e-0049. 416e-004Si1. 147e-0041. 147e-004
Description of solution
$\begin{array}{rcl} pH &=& 7.210\\ pe &=& 4.000\\ Activity of water &=& 1.000\\ I onic strength &=& 1.365e-002\\ Mass of water (kg) &=& 1.000e+000\\ Total carbon (mol/kg) &=& 7.229e-003\\ Total CO2 (mol/kg) &=& 7.229e-003\\ Temperature (deg C) &=& 12.600\\ Electrical balance (eq) &=& 1.613e-003\\ Percent error, 100*(Cat- An)/(Cat+ An) &=& 9.23\\ I terations &=& 11\end{array}$

sand_coul ee4. pqo Total H = 1. 110222e+002 Total 0 = 5. 553275e+001

_

Distribution of species								
Speci es	Molality		Log Molality	Log Activity	Log Gamma			
H+ OH- H20	6. 921e-008 6. 920e-008 5. 551e+001		-7.160 -7.160 1.744	-7. 210 -7. 211 -0. 000	-0. 050 -0. 051 0. 000			
C(4) HCO3- H2CO3 MgHCO3+ CaHCO3+	7.229e-003 6.145e-003 8.948e-004 1.050e-004 6.853e-005	5.497e-003 8.948e-004 9.342e-005 6.143e-005	-2.212 -3.048 -3.979 -4.164	-2.260 -3.048 -4.030 -4.212	-0. 048 0. 000 -0. 051 -0. 047			
CO3-2 MgCO3 CaCO3 NaHCO3 NaCO3- MnHCO3+	5.139e-006 3.887e-006 3.302e-006 3.182e-006 7.787e-008 7.256e-008	3. 237e-006 3. 887e-006 3. 302e-006 3. 182e-006 6. 966e-008 6. 482e-008	-5.289 -5.410 -5.481 -5.497 -7.109 -7.139	-5.490 -5.410 -5.481 -5.497 -7.157 -7.188	-0.201 0.000 0.000 0.000 -0.048 -0.049			
FeHC03+ Ca Ca+2	2. 832e-008 1. 503e-003 1. 352e-003		-7. 548	-7. 595	-0. 049 -0. 047 -0. 201			
CaSO4 CaHCO3+ CaCO3 CaOH+	7.883e-005 6.853e-005 3.302e-006 1.008e-009	7.883e-005 6.143e-005 3.302e-006 9.033e-010	-4. 103 -4. 164 -5. 481 -8. 997	-4. 103 -4. 212 -5. 481 -9. 044	0. 000 -0. 047 0. 000 -0. 047			
CI CI - MnCI + MnCI 2 MnCI 3- FeCI +2 FeCI 2+	3. 189e-004 3. 189e-004 2. 538e-010 9. 100e-014 7. 972e-018 1. 878e-018 2. 541e-021	2.841e-004 2.267e-010 9.100e-014 7.121e-018 1.196e-018 2.270e-021	-3. 496 -9. 595 -13. 041 -17. 098 -17. 726 -20. 595	-3.546 -9.644 -13.041 -17.147 -17.922 -20.644	-0.050 -0.049 0.000 -0.049 -0.196 -0.049			
FeCI 3 Fe(2) Fe+2	6. 449e-026 8. 867e-007 8. 108e-007	4. 737e-007	-25. 191	-25. 191 -6. 324	-0. 233			
FeSO4 FeHCO3+ FeOH+ Fe(OH)2 Fe(OH)3-	4.624e-008 2.832e-008 1.298e-009 4.920e-014 2.524e-015	4. 624e-008 2. 539e-008 1. 159e-009 4. 920e-014 2. 255e-015	-7. 335 -7. 548 -8. 887 -13. 308 -14. 598	-7. 335 -7. 595 -8. 936 -13. 308 -14. 647	-0. 233 0. 000 -0. 047 -0. 049 0. 000 -0. 049			
Fe(3) Fe(0H)2+ Fe(0H)3 Fe(0H)4- Fe0H+2 FeS04+ Fe+3 Fe(S04)2- FeCI+2 Fe2(0H)2+4 FeCI2+ Fe3(0H)4+5 FeCI3	1. 604e-006 1. 560e-006 3. 977e-008 4. 158e-009 1. 660e-011 7. 730e-016 5. 898e-016 8. 550e-018 1. 878e-018 5. 002e-020 2. 541e-021 2. 958e-024 6. 449e-026	1. 395e-006 3. 977e-008 3. 720e-009 1. 057e-011 6. 906e-016 2. 084e-016 7. 475e-018 1. 196e-018 5. 829e-021 2. 270e-021 1. 029e-025 6. 449e-026	-5.807 -7.400 -8.381 -10.780 -15.112 -15.229 -17.068 -17.726 -19.301 -20.595 -23.529 -25.191	-5.855 -7.400 -8.429 -10.976 -15.161 -15.681 -17.126 -17.922 -20.234 -20.644 -24.988 -25.191	-0.048 0.000 -0.048 -0.196 -0.049 -0.452 -0.058 -0.196 -0.934 -0.049 -1.459 0.000			
H(0) H2 K	6. 104e-026 3. 052e-026 9. 316e-005	3.062e-026	-25.515	-25. 514	0.001			
K+ KSO4- Mg	9. 288e-005 2. 788e-007 3. 071e-003	8.274e-005 2.494e-007	-4.032 -6.555	-4.082 -6.603	-0. 050 -0. 048			
Mg+2 MgSO4 MgHCO3+ MgCO3 MgOH+	2.828e-003 1.340e-004 1.050e-004 3.887e-006 3.935e-008	1.781e-003 1.340e-004 9.342e-005 3.887e-006 3.533e-008	-2.548 -3.873 -3.979 -5.410 -7.405	-2.749 -3.873 -4.030 -5.410 -7.452	-0.201 0.000 -0.051 0.000 -0.047			
Mn(2) Mn+2 MnHCO3+ MnSO4 MnCI+ MnOH+	1. 202e-006 1. 085e-006 7. 256e-008 4. 428e-008 2. 538e-010 1. 096e-010	6.339e-007 6.482e-008 4.428e-008 2.267e-010 9.787e-011	-5.965 -7.139 -7.354 -9.595 -9.960	-6. 198 -7. 188 -7. 354 -9. 644 -10. 009	-0. 233 -0. 049 0. 000 -0. 049 -0. 049			

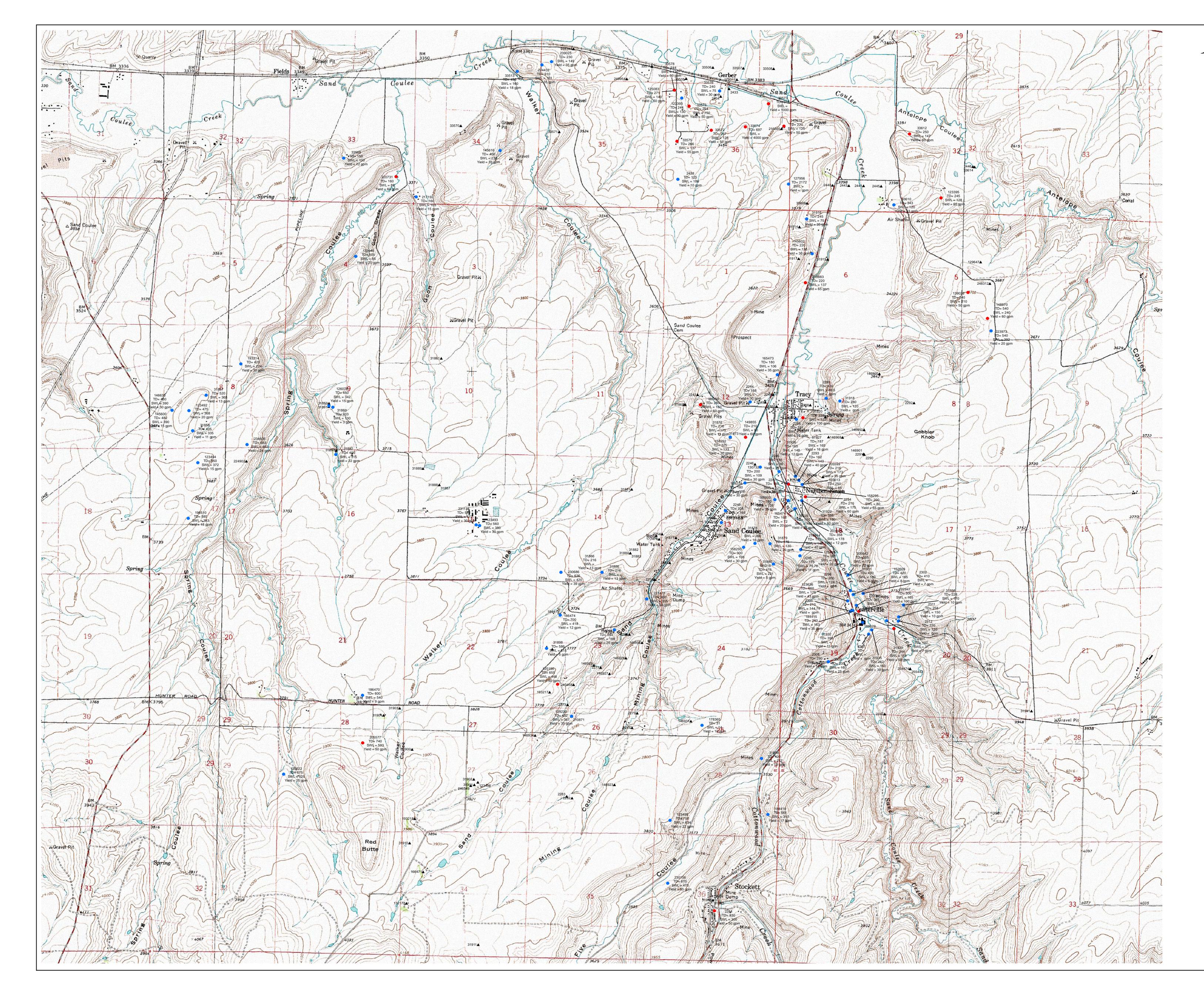
MnCI 2	9. 100e-014	9.100e-014		-13. 041	0.000		
MnCl 3- Mn(OH)3- Mn(OH)4-2	7.972e-018 4.794e-020 3.545e-026	7. 121e-018 4. 283e-020 2. 257e-026		-17. 147 -19. 368 -25. 646	-0. 049 -0. 049 -0. 196		
Mn(3) 1. Mn+3	. 214e-028 1. 214e-028		-27.916	-28. 367	-0. 452		
`Mn04-2	. 000e+000 0. 000e+000	0.000e+000	-56.150	-56.346	-0. 196		
Mn04-	. 000e+000 0. 000e+000	0.000e+000	-62.514	-62.566	-0.052		
Na+ NaHCO3 NaSO4- NaCO3-	. 140e-004 9. 086e-004 3. 182e-006 2. 184e-006 7. 787e-008	3.182e-006 1.954e-006	-5. 497 -5. 661	-3.092 -5.497 -5.709 -7.157	-0. 050 0. 000 -0. 048 -0. 048		
02	. 000e+000 0. 000e+000	0.000e+000	-44.814	-44.813	0.001		
\$04-2 MgS04 CaS04 NaS04- KS04- FeS04 MnS04 HS04- FeS04+ Fe(S04)2-	. 416e-004 7. 263e-004 1. 340e-004 7. 883e-005 2. 184e-006 2. 788e-007 4. 624e-008 4. 428e-008 2. 103e-009 7. 730e-016 8. 550e-018	1.340e-004 7.883e-005 1.954e-006 2.494e-007 4.624e-008 4.428e-008 1.875e-009 6.906e-016	-7.354 -8.677	-3. 340 -3. 873 -4. 103 -5. 709 -6. 603 -7. 335 -7. 354 -8. 727 -15. 161 -17. 126	-0. 201 0. 000 0. 000 -0. 048 -0. 048 0. 000 0. 000 -0. 050 -0. 049 -0. 058		
	. 147e-004 1. 145e-004 2. 132e-007 1. 479e-013	1.149e-004 1.898e-007 9.475e-014	-3.941 -6.671 -12.830	-3. 940 -6. 722 -13. 023	0.001 -0.051 -0.194		
	Satura						
Phase							
Phase SI log IAP log KT Anhydrite -2.10 -6.41 -4.31 CaSO4 Aragonite -0.35 -8.56 -8.21 CaCO3 Artinite -7.08 3.43 10.51 MgCO3:Mg(OH)2: 3H2O Birnessite -13.62 4.47 18.09 MnO2 Birnessite -6.04 11.67 17.71 MgCO3:Mg(OH)2: 3H2O Cal cite -6.04 11.67 17.71 MgCO3 Chaicedony -0.24 -3.94 -3.70 Si O2 Chrysotile -6.56 27.13 33.69 MgSO1205(OH)4 CO2(g) -1.73 -19.91 -18.18 CO2 Cristobalite -0.41 -8.0 -16.79 CaMg(CO3)2 Dolomite(disordered) -0.01 -16.80 -16.79 CaMg(CO3)2 Epsomite -3.84 -6.09 -2.21 MgSO4:7H2O Fe(OH)2 -5.47 8.10 13.56 Fe(OH)2.7Cl.3 Fe2(SO4)3 -394.49 -41.38 -1.89							

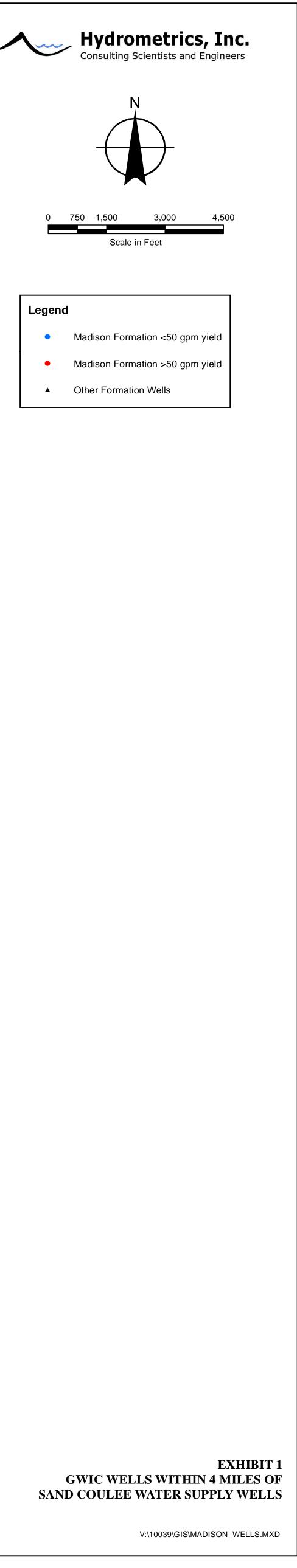
Mel anteri te	-7.30	-9.66		ul ee4. pqo FeS04: 7H20
Mg(OH)2(active)				
Mirabilite	-7.81			
Mn2(S04)3	-62.29			
MnCI 2: 4H20	-16.09	-13.29		
MnSO4		-9.54		
Na-Jarosi te	-3.51			
Natron	-9.86			Na2C03: 10H20
Nesquehoni te	-3.75	-8.24		MgC03: 3H20
Nsuti te		4.47		MnO2
02(g)	-42.60			02
Peri cl ase	-11.06	11.67	22.73	MgO
Portl andi te	-12.43	11.35	23.78	Că(OH)2
Pyrochroi te	-7.71	8.22	15.93	Mn(OH)2
Pýrol usi te	-12.81	30.64	43.45	MnO2
Quartz	0. 23	-3.94	-4.17	Si 02
Rhodochrosi te	-1.12	-11.69	-10.57	
Sepiolite		11. 52		
Sepiolite(A)		11. 52		Mğ2Si 307. 50H: 3H2O
Siderite	-1.70		-10.12	FeC03
Si O2(am-gel)		-3.94		
SiO2(am-ppt)	-1.08			
		-9.52		
Thermonatri te	-12.39	-11.67	0.72	Na2C03: H20

End of simulation.

Reading input data for simulation 2.

End of run.




APPENDIX D

GWIC DATABASE FOR MADISON WELLS

GWIC DATABASE FOR MADISON WELLS

Madison_Wells.M NUMBER	Madison_Wells.D NRC_NO	Madison_Wells.SITE_NAME	Madison_Wells. LATITUDE	Madison_Wells. LONGITUDE	Madison_Wells. TOT_DEPT	Madison_Wells. PWL	Madison_Wells. SWL	RECOV_WL	Madison_Wells. YIELD
2244 2245		KUJALA RICHARD KRAVULLA MIKE	47.413805 47.4058	-111.161565 -111.156355	158 170	135 72	0 36	0	25
2247 2249		SWANSON GARY KAVULLA GEORGE	47.4044 47.401149	-111.1548 -111.165367	185 328	150 0	121 165		3
2284 2285		TOWN OF STOCKETT HEAL WELL-2 TRACY	47.3548 47.4144	-111.1658 -111.1486	830 220	0 0	69.5	0	0
2289 2293		TRACY WATER USERS CORPORATION MCEWEN LARRY	47.4119 47.404838	-111.1536 -111.152961	191 162	150 155	150 143	0	40
2294 2295	C1873-00	LUOMA MARTIN J TERRY NET*.75 MI NW OF CENTERVILL	47.402952 47.3961	-111.151796 -111.1525	210 175	175 0	175 79.76	0	
2296 2301	19027	CENTERVILLE SENIOR CITIZENS CENT BEHRENT THOMAS	47.3922 47.3888	-111.1438 -111.1375	200 107	0 95	124.3 31	0	
2302 2303		HEAL GEORGE * CENTERVILLE MT * SUTICH PETE * CENTERVILLE BEHIND I	47.3919 47.3905	-111.1416 -111.1427	410 365	0	-	-	
2305 2307		CENTERVILLE BAR - WELL 1 ST PIUS X CENTER * CENTERVILLE MT	47.3898 47.3872	-111.1437 -111.1405	210 0	0	144.74 0	0	-
	C21421-00 C26954-00	GUISTI BRIAN AND MERVA MICHAEL P GUISTI RONALD AND JUDITH	47.383909 47.383909	-111.147294 -111.147294	290 235	285 230	205 160	0	-
2311 2312		KNOX DUANE E AND ELANE* DW-01 TAMIETTI WILLIAM	47.389278 47.3888	-111.135463 -111.1355	258 220	0		0	10
2438		MBMG RESEARCH WELL Q-A1 LARKFORD GARY	47.4394 47.413211	-111.1747 -111.254352	125 520	0	100	0	10
31858 31860		WARNER STAN HENDRICKSON LOU	47.409048 47.412135	-111.256517 -111.232713	405 403	400 350	335 100		11
31866 31868		FRANCETICH JOSEPH MAPSTON ALBERT AND ELIZABETH	47.393699 47.399754	-111.186208 -111.16601	216 257	28	0	0	13
31872	C69367-00	FRANCETICH JOSEPH JOHN JARVI ESTATE	47.409683 47.397428	-111.164817 -111.160217	216 300	0 290	175	0	13
31879 31886	00307-00	PEO CHARLES AND LINDA FRANCETICH JOSEPH	47.397428 47.393699	-111.157642 -111.186208	175 216	<u> </u>	130		
31892	C66898-00	KNAUP RICHARD	47.40666	-111.23201	400	0		0	22
31899	C6122-00 C68162-00	SWARTZENBERGER GEROLD CHARTIER RICHARD	47.384763 47.372549	-111.195376 -111.158322	586 400	585 0	515 217	217	5
	C19724-00	HABEL ED CLAY SGT EDWARD	47.43513 47.414125	-111.15256 -111.146261	245 280	140 0	75 120	0	C
	C16444-00	TRACY WATER USERS CORPORATION ROGERS JIM	47.4121 47.40248	-111.1525 -111.152378	228 386	152 0	152 160	160	100 80
	C30041553	SURMI WILLIAM HERING ALDEN K	47.40531 47.40531	-111.153543 -111.153543	165 187	156 180	148 165	0	16
	C68142-00 C4650-00	ELLER EMMET AND BONNIE KINNA BOB	47.401537 47.393993	-111.153543 -111.144226	175 430	140 410	130 180	130 0	35
31932 31935	C024427-00	CENTERVILLE SCHOOL DISTRICT 5 CENTERVILLE SCHOOL DISTRICT 5	47.388517 47.3877	-111.141576 -111.14	398 262	0 250	0 150	0	
31938 31939	C26978-00	SLAUGHTER BILLIE B AND BARBARA J KNOX DUANE	47.390662 47.387895	-111.134683 -111.136243	228 344	225 221	170 118	0	-
33513 33569		VOELLER MARCUS J. KIND STEPHEN AND MARILYN	47.451467 47.441	-111.202497 -111.2318	435 150	210 0	160		18
	C068155-00	BERTI JUSTIN AND FLORENTINA L JOHNSON INC.	47.445159 47.448346	-111.169175 -111.159493	267 317	245 0	125	0	50
33574 33575		LYMAN HOWARD UDALL RON	47.445615 47.443794		697 266	0 250		0	
33576	C061486-00 C064865-00	SCOTT JAMES DIGE ROBERT AND INGOLD E W	47.449712	-111.167884 -111.17563	240 244	230 75 200	75	0	30
	C064740-00	SPURGEON DON	47.447891	-111.173048	254	230	150	0	50
33612	74537	JOHNSON GENE PEARSON DOUG	47.436951 47.445213	-111.137736 -111.135319	343 250	121 0		147	33 60
122947	C68114-00	HOLZHEIMER WESLEY AND KIMBERLY CENTERVILLE SCHOOL DISTRICT 5	47.429647 47.3898	-111.229371 -111.1423	105 300	0 270	165	165	20 100
123393 123395	71629	BALLINGER DAVID AND ELIZABETH SHUMAKER GENE	47.448801 47.437875	-111.174339 -111.12972	244 245	240 0	130 128	128	30 65
		HALL KYRON BIG STONE COLONY	47.411361 47.398811	-111.257238 -111.207231	475 560	0 450	368 380	0	30
		NEARY BOB SHUMAKER TRUCKING AND EXCAVATI	47.405367 47.365164	-111.255542 -111.173706	550 700	0	634	0	22
123499 123636	C094914-00	OCONNELL LEROY AND CHARMAYNE CENTERVILLE WATER USERS ASSOCIA		-111.152378 -111.1442	261 460	210 340	169 175		43
125083 125190	79466 C79487-00	LEWIS WILLIAM B OR ALYCE A LAROCQUE FRED	47.449712 47.380628	-111.17563 -111.193345	271 655	200 0	140 448	0 448	50 50
126078 127956		KNAUP RICHARD CHAMBERLIN VIRGIL R	47.41228 47.4391	-111.23337 -111.1558	450 2172	0 0	-		-
129230 130732		CHARTIER RICHARD MCMILLAN GORDON AND CHARLENE	47.376965 47.406266	-111.190833 -111.159574	432 200	367 0	367 109	367 109	35 30
139022 139023	C88173-00	KONESKY GEORGE AND DIANE JENKINS MIKE	47.36952555 47.427	-111.2397018 -111.1248	675 540	0			-
145600	C90412-00	VINNING BRIAN KOPPANY MICHELLE	47.411361 47.4311	-111.260125 -111.1515	482 220	0	390	0	15
145616		DICKMAN DAVE BYRNE PAT AND JOYCE	47.442286 47.4458	-111.205143 -111.1568	400	300 200	230	230	35
	C30002287	VINNING BRIAN ROSSMILLER DANA	47.411361 47.424047	-111.260125 -111.12137	480 540	0	390 240	390	30
149855	30028244	HALKO PATRICK M & JAMI L HEPFNER JOE	47.409683 47.391743	-111.162215 -111.143291	210 420	0 230		0	60
		GROCE RANDY AND JOYCE	47.409683 47.396963	-111.164817 -111.162148	325	0	133 108	123	30
158294	C30047126	CHARTIER RICHARD MAYERNIK CLEM AND MILLY	47.387061	-111.183868 -111.154707	350 350 200	0	168	0	20
159224	C100532-00	GRIFFIN STEVE	47.404367 47.404405	-111.162148	180	0		0	30
165474	C105774-00	PRILL DAN ROGERS JIM	47.417011 47.40248	-111.157012 -111.154707	180 168	0	72	72	20
166933	C103270-00 C103314-00	RUSSELL KEN AND TONIA ERIKSON GEORGE AND BARBARA	47.404367 47.402545	-111.152378 -111.156999	250 180	0 170	85 128	0	35
		CHARTIER ERNEST REIMERS STEVE	47.376241 47.366087	-111.168578 -111.15704	31 561	14 0	310	312	17
184415 186470		NARDINGER PHIL CHARTIER RICHARD	47.3899 47.37886	-111.143291 -111.226563	240 600	0 540	163 540		g
	C113678-00 C30000878	HAKOLA ED NARDINGER PHIL	47.38865 47.413347	-111.19315 -111.170021	700 280	0	418 160		
193216	C30001592	JAAP STEVE JARVI KEN AND ALVIN	47.416912 47.395103	-111.156999	420 415	0	221	221	5
196510 203943	C30000876	MOTIL RICHARD INGMAN EDDIE AND CINDY	47.398911 47.40248	-111.256959 -111.152378	585 358	429 0	383 178		18 12
205577 205599		ROBERTSON BOB MCEWEN LARRY AND MARLENE	47.373348 47.404367	-111.226357 -111.152378	740 216	0	593 173	593	50
205642	C30042637	DILLEY OTIS GUISTI RON	47.393993 47.427732	-111.144226 -111.15256	505 220	0	170 172 137		22
210883 210914 217192		SAPPINGTON KENNTH AND VICTORIA	47.396822 47.4367	-111.152378 -111.2193	171 160	0 0 0	140	160	40
220731	C30030280	"BACK, ROY"	47.439	-111.2228	160	0	88	88	60
224432	30027844 C30028714	"MCKELVEY, CONN" "SAVINO, ANTHONY"	47.4226 47.4523	-111.1207 -111.1983	540 210	0	161	161	20
227473 230156		KT LAND CO. CHARTIER KORY	47.390737 47.357875	-111.178453 -111.173871	280 670	0		470	
231134		WALTERS RICHARD AND ELAINE BIG STONE COLONY	47.3936 47.39887	-111.20782	636 572	0	472	480	
	30028720 C30030277	ZIGAN AL AND CATHYE MOULTRAY LAMONTE	47.4076 47.4527	-111.2472 -111.1967	683 230	0	402 149		

