AIR QUALITY PERMIT

Issued To: Bear Paw Energy, Inc. Permit: #2792-03

Richland Compressor Station Application Complete: 12/20/04

1400 16th Street, Suite 310 Preliminary Determination Issued: 12/23/04 Denver, CO 80202 Department's Decision Issued: 01/10/05

Permit Final: 01/26/05 AFS: #083-0014

An air quality permit, with conditions, is hereby granted to Bear Paw Energy, Inc. (Bear Paw), pursuant to Sections 75-2-204 and 211 of the Montana Code Annotated (MCA), as amended, and Administrative Rules of Montana (ARM) 17.8.740, *et seq.*, as amended, for the following:

SECTION I: Permitted Facilities

A. Plant Location

The facility is located in the NW¼ of the NW¼ of Section 8, Township 23 North, Range 58 East, in Richland County, Montana. This facility is known as the Richland Compressor Station.

B. Current Permit Action

On December 20, 2004, the Department of Environmental Quality (Department) received a complete Montana Air Quality Permit Application from Bear Paw to modify Permit #2792-02. The Bear Paw application requested to add two compressor engines, Waukesha L7042 GLs and/or Waukesha L7044 GSIs, such that the total horsepower (hp) of the Richland Compressor Station shall not exceed 3,605 hp.

SECTION II: Conditions and Limitations

A. Emission Limitations

1. The 245-hp naturally aspirated Caterpillar G379-NA compressor engine equipped with an air-to-fuel (AFR) controller shall be operated with an electronic air/fuel ratio controller. The engine speed shall not exceed 1,000 revolutions per minute (rpm) of continuous duty operation. Emissions from this 245-hp compressor engine shall not exceed the following limits (ARM 17.8.752):

NO_X¹ 6.97 lb/hr CO 1.62 lb/hr VOC 0.43 lb/hr

- 2. Bear Paw shall operate the flare stack only for equipment blowdown when repairs are needed or for emergency use. This flare is not permitted to continuously flare sour gas (ARM 17.8.752).
- 3. Operation of the flare stack shall be limited to 55 hours during any rolling 12-month time period (ARM 17.8.749).

#2792-03 1 Final: 1/26/05

¹ NO_X reported as NO₂.

- 4. Bear Paw shall not operate more than three compressor engines at any one time at the Richland Compressor Station (ARM 17.8.749).
- 5. The maximum rated design capacity of the Richland Compressor Station shall not exceed 3,605 hp. The Richland Compressor Station may include only one Caterpillar G379-NA and a combination of Waukesha L7042 GL and/or Waukesha L7044 GSI compressor engines (ARM 17.8.749).
- 6. The 1,680-hp Waukesha L7044 GSI rich burn engine(s) shall be controlled with a non-selective catalytic reduction (NSCR) unit and an AFR controller. The pound per hour (lb/hr) emission limits for the engine(s) shall be determined using the following equation and pollutant specific grams per horsepower-hour (g/hp-hr) emission factors (ARM 17.8.752):

Equation

Emission Limit (lb/hr) = Emission Factor (g/bhp-hr) * maximum rated design capacity of engine (bhp) * 0.002205 lb/g

Emission Factors

 $\begin{array}{ccc}
NO_X & 1.0 \text{ g/hp-hr} \\
CO & 2.0 \text{ g/hp-hr} \\
VOC & 0.5 \text{ g/hp-hr}
\end{array}$

7. The 1,478-hp Waukesha L7042 GL lean burn engine(s) shall be controlled with an oxidation catalyst. The lb/hr emission limits for the engine(s) shall be determined using the following equation and pollutant specific g/hp-hr emission factors (ARM 17.8.752):

Equation

Emission Limit (lb/hr) = Emission Factor (g/bhp-hr) * maximum rated design capacity of engine (bhp) * 0.002205 lb/g

Emission Factors

 $\begin{array}{ccc} NO_X & 1.0 \text{ g/hp-hr} \\ CO & 0.5 \text{ g/hp-hr} \\ VOC & 0.5 \text{ g/hp-hr} \end{array}$

- 8. Bear Paw shall not cause or authorize emissions to be discharged into the outdoor atmosphere from any sources installed after November 23, 1968, that exhibit an opacity of 20% or greater averaged over 6 consecutive minutes (ARM 17.8.304).
- 9. Bear Paw shall not cause or authorize the use of any street, road, or parking lot without taking reasonable precautions to control emissions of airborne particulate matter (ARM 17.8.308).

10. Bear Paw shall treat all unpaved portions of the haul roads, access roads, parking lots, or general plant area with water and/or chemical dust suppressant as necessary to maintain compliance with the reasonable precautions limitation in Section II.A.9 (ARM 17.8.749).

B. Testing Requirements

- Bear Paw shall test Source #01, the 245 hp Caterpillar G379-NA compressor engine, for NO_X and CO, concurrently and demonstrate compliance with the emission limits contained in Section II.A.1. During this test Bear Paw shall monitor the intake manifold temperature and pressure, exhaust temperature, engine rpm, and all parameters necessary to calculate horsepower. This data shall be submitted with the test results. Source #01 was last tested in December of 1996 (ARM 17.8.105).
- 2. The Waukesha L7044 GSI and/or L7042 GL compressor engine(s) shall be initially tested for NO_X and CO, concurrently, to demonstrate compliance with the emission limits as calculated in Sections II.A.6 and/or II.A.7. The initial source testing shall be conducted within 180 days of the initial start up date(s) of the compressor engine(s). After the initial source test, additional testing shall continue on an every 4-year basis or according to another testing/monitoring schedule as may be approved by the Department (ARM 17.8.105 and ARM 17.8.749).
- 3. All compliance source tests shall conform to the requirements of the Montana Source Test Protocol and Procedures Manual (ARM 17.8.106).
- 4. The Department may require further testing (ARM 17.8.105).

C. Operational Reporting Requirements

- 1. Bear Paw shall supply the Department with annual production information for all emission points, as required by the Department in the annual emission inventory request. The request will include, but is not limited to, all sources of emissions identified in the emission inventory contained in the permit analysis. Production information shall be gathered on a calendar-year basis and submitted to the Department by the date required in the emission inventory request. Information shall be in the units required by the Department. This information may be used to calculate operating fees, based on actual emissions from the facility, and/or to verify compliance with permit limitations (ARM 17.8.505).
- 2. Bear Paw shall notify the Department of any construction or improvement project conducted pursuant to ARM 17.8.745, that would include a change in control equipment, stack height, stack diameter, stack flow, stack gas temperature, source location or fuel specifications, or would result in an increase in source capacity above its permitted operation or the addition of a new emission unit. The notice must be submitted to the Department, in writing, 10 days prior to start up or use of the proposed de minimis change, or as soon as reasonably practicable in the event of an unanticipated circumstance causing the de minimis change, and must include the information requested in ARM 17.8.745(1)(d) (ARM 17.8.745).

- 3. All records compiled in accordance with this permit must be maintained by Bear Paw as a permanent business record for at least 5 years following the date of the measurement, must be available at the plant site for inspection by the Department, and must be submitted to the Department upon request (ARM 17.8.749).
- 4. Bear Paw shall document, by month, the hours of flare stack operation. By the 25th day of each month, Bear Paw shall total the hours of flare stack operation during the previous 12 months to verify compliance with the limitation in Section II.A.3. A written report of the compliance verification shall be submitted along with annual emission inventory (ARM 17.8.749).

D. Notification

- 1. Bear Paw shall provide the Department with written notification of the actual start-up date of the compressor engine(s) within 15 days after the actual start-up date(s).
- 2. Bear Paw shall provide the Department with written notification of the engine models utilized within 15 days after the actual start-up date(s).

SECTION III: General Conditions

- A. Inspection Bear Paw shall allow the Department's representatives access to the source at all reasonable times for the purpose of making inspections or surveys, collecting samples, obtaining data, auditing any monitoring equipment (CEMS, CERMS) or observing any monitoring or testing, and otherwise conducting all necessary functions related to this permit.
- B. Waiver The permit and the terms, conditions, and matters stated herein shall be deemed accepted if Bear Paw fails to appeal as indicated below.
- C. Compliance with Statutes and Regulations Nothing in this permit shall be construed as relieving Bear Paw of the responsibility for complying with any applicable federal or Montana statute, rule, or standard, except as specifically provided in ARM 17.8.740, *et seq.* (ARM 17.8.756).
- D. Enforcement Violations of limitations, conditions and requirements contained herein may constitute grounds for permit revocation, penalties or other enforcement action as specified in Section 75-2-401, *et seq.*, MCA.
- E. Appeals Any person or persons jointly or severally adversely affected by the Department's decision may request, within 15 days after the Department renders its decision, upon affidavit setting forth the grounds therefore, a hearing before the Board of Environmental Review (Board). A hearing shall be held under the provisions of the Montana Administrative Procedures Act. The filing of a request for a hearing does not stay the Department's decision, unless the Board issues a stay upon receipt of a petition and a finding that a stay is appropriate under Section 75-2-211(11)(b), MCA. The issuance of a stay on a permit by the Board postpones the effective date of the Department's decision until conclusion of the hearing and issuance of a final decision by the Board. If a stay is not issued by the Board, the Department's decision on the application is final 16 days after the Department's decision is made.

- F. Permit Inspection As required by ARM 17.8.755, Inspection of Permit, a copy of the air quality permit shall be made available for inspection by the Department at the location of the source.
- G. Permit Fee Pursuant to Section 75-2-220, MCA, as amended by the 1991 Legislature, failure to pay the annual operation fee by Bear Paw may be grounds for revocation of this permit, as required by that section and rules adopted thereunder by the Board.
- H. Construction Commencement Construction must begin within 3 years of permit issuance and proceed with due diligence until the project is complete or the permit shall be revoked (ARM 17.8.762).

PERMIT ANALYSIS Bear Paw Energy, Inc. Richland Compressor Station Permit #2792-03

I. Introduction/Process Description

Bear Paw Energy, Inc. (Bear Paw) is permitted for the construction and operation of the Richland Compressor Station. The facility is a natural gas compressor station located approximately 28 miles southeast of the Fort Peck Indian Reservation, approximately 44 miles south of the Medicine Lake National Wildlife Refuge, and approximately 8 miles northwest of the town of Sidney in the NW1/4 of the NW1/4, of Section 8, Township 23 North, Range 58 East, in Richland County, Montana.

A. Permitted Equipment

The facility consists of not more than three compressor engines with a total maximum rated design capacity of 3,605 horsepower (hp), one emergency flare (4" diameter x 60' height), and one 400-barrel fixed roof condensate/water tank. The Richland Compressor Station may include only one Caterpillar G379-NA and a combination of Waukesha L7042 GL and/or Waukesha L7044 GSI compressor engines.

B. Source Description

The Richland Compressor Station compresses and transports natural gas from the nearby gas field. The natural gas fired compressor engine compresses the gas for transmission through the pipeline.

C. Permit History

Permit #2792-00, finalized on August 25, 1993, permitted the installation of a 415-hp Caterpillar G379-TA turbo aspirated compressor engine at the Richland Compressor Station.

On June 13, 1996, the Department of Environmental Quality (Department) issued Permit #2792-01 for Source #01, identified in Permit #2792-00 as a 415-hp Caterpillar G379-TA turbo aspirated compressor engine, was instead permitted as a 245-hp Caterpillar G379-NA naturally aspirated gas compressor engine. Koch Hydrocarbon Company (Koch) was required to achieve the nitrogen oxide (NO_X) emissions limits in Section II.A.1 of this Permit #2792-01 by installing an electronic air-fuel-ratio (AFR) controller on the compressor engine.

On March 24, 1997, the Department received a request to modify Permit #2792-01. The permit modification reflected the fact that the Richland Compressor Station had changed ownership. The modification would transfer ownership of Permit #2792-01 from Koch to Bear Paw. Permit #2792-02 replaced Permit #2792-01.

D. Current Permit Action

On December 20, 2004, the Department received a complete Montana Air Quality Permit Application from Bear Paw to modify Permit #2792-02. The Bear Paw application requested to add two compressor engines, Waukesha L7042 GLs and/or Waukesha L7044 GSIs, such that the total hp of the Richland Compressor Station shall not exceed 3,605 hp. Permit #2792-03 replaces Permit #2792-02.

E. Additional Information

Additional information, such as applicable rules and regulations, Best Available Control Technology (BACT)/Reasonably Available Control Technology (RACT) determinations, air quality impacts, and environmental assessments, is included in the analysis associated with each change to the permit.

II. Applicable Rules and Regulations

The following are partial explanations of some applicable rules and regulations that apply to the facility. The complete rules are stated in the Administrative Rules of Montana (ARM) and are available, upon request, from the Department. Upon request, the Department will provide references for location of complete copies of all applicable rules and regulations or copies where appropriate.

- A. ARM 17.8, Subchapter 1 General Provisions, including but not limited to:
 - 1. <u>ARM 17.8.101 Definitions</u>. This rule includes a list of applicable definitions used in this chapter, unless indicated otherwise in a specific subchapter.
 - 2. <u>ARM 17.8.105 Testing Requirements</u>. Any person or persons responsible for the emission of any air contaminant into the outdoor atmosphere shall, upon written request of the Department, provide the facilities and necessary equipment (including instruments and sensing devices) and shall conduct tests, emission or ambient, for such periods of time as may be necessary using methods approved by the Department.
 - 3. <u>ARM 17.8.106 Source Testing Protocol</u>. The requirements of this rule apply to any emission source testing conducted by the Department, any source or other entity as required by any rule in this chapter, or any permit or order issued pursuant to this chapter, or the provisions of the Clean Air Act of Montana, 75-2-101, *et seq.*, Montana Code Annotated (MCA).

Bear Paw shall comply with the requirements contained in the Montana Source Test Protocol and Procedures Manual, including, but not limited to, using the proper test methods and supplying the required reports. A copy of the Montana Source Test Protocol and Procedures Manual is available from the Department upon request.

- 4. <u>ARM 17.8.110 Malfunctions</u>. (2) The Department must be notified promptly by telephone whenever a malfunction occurs that can be expected to create emissions in excess of any applicable emission limitation or to continue for a period greater than 4 hours.
- 5. <u>ARM 17.8.111 Circumvention</u>. (1) No person shall cause or permit the installation or use of any device or any means that, without resulting in reduction of the total amount of air contaminant emitted, conceals or dilutes an emission of air contaminant that would otherwise violate an air pollution control regulation. (2) No equipment that may produce emissions shall be operated or maintained in such a manner as to create a public nuisance.
- B. ARM 17.8, Subchapter 2 Ambient Air Quality, including, but not limited to the following:
 - 1. ARM 17.8.204 Ambient Air Monitoring
 - 2. ARM 17.8.210 Ambient Air Quality Standards for Sulfur Dioxide
 - 3. ARM 17.8.211 Ambient Air Quality Standards for Nitrogen Dioxide
 - 4. ARM 17.8.212 Ambient Air Quality Standards for Carbon Monoxide

- 5. ARM 17.8.213 Ambient Air Quality Standard for Ozone
- 6. ARM 17.8.214 Ambient Air Quality Standard for Hydrogen Sulfide
- 7. ARM 17.8.220 Ambient Air Quality Standard for Settled Particulate Matter
- 8. ARM 17.8.221 Ambient Air Quality Standard for Visibility
- 9. ARM 17.8.222 Ambient Air Quality Standard for Lead
- 10. ARM 17.8.223 Ambient Air Quality Standard for PM₁₀

Bear Paw must maintain compliance with the applicable ambient air quality standards.

- C. ARM 17.8, Subchapter 3 Emission Standards, including, but not limited to:
 - 1. <u>ARM 17.8.304 Visible Air Contaminants</u>. This rule requires that no person may cause or authorize emissions to be discharged into the outdoor atmosphere from any source installed after November 23, 1968, that exhibit an opacity of 20% or greater averaged over 6 consecutive minutes.
 - 2. <u>ARM 17.8.308 Particulate Matter, Airborne.</u> (1) This rule requires an opacity limitation of less than 20% for all fugitive emission sources and that reasonable precautions be taken to control emissions of airborne particulate matter (PM). (2) Under this rule, Bear Paw shall not cause or authorize the use of any street, road, or parking lot without taking reasonable precautions to control emissions of airborne PM.
 - 3. <u>ARM 17.8.309 Particulate Matter, Fuel Burning Equipment</u>. This rule requires that no person shall cause, allow, or permit to be discharged into the atmosphere PM caused by the combustion of fuel in excess of the amount determined by this rule.
 - 4. <u>ARM 17.8.310 Particulate Matter, Industrial Process</u>. This rule requires that no person shall cause, allow, or permit to be discharged into the atmosphere PM in excess of the amount set forth in this rule.
 - 5. ARM 17.8.322 Sulfur Oxide Emissions--Sulfur in Fuel. (4) Commencing July 1, 1972, no person shall burn liquid or solid fuels containing sulfur in excess of 1 pound of sulfur per million British thermal units (Btu) fired. (5) Commencing July 1, 1971, no person shall burn any gaseous fuel containing sulfur compounds in excess of 50 grains per 100 cubic feet of gaseous fuel, calculated as hydrogen sulfide at standard conditions. Bear Paw will utilize natural gas for operating its fuel burning equipment, which will meet this limitation.
 - 6. ARM 17.8.324 Hydrocarbon Emissions--Petroleum Products. (3) No person shall load or permit the loading of gasoline into any stationary tank with a capacity of 250 gallons or more from any tank truck or trailer, except through a permanent submerged fill pipe, unless such tank is equipped with a vapor loss control device as described in (1) of this rule.
 - 7. ARM 17.8.340 Standard of Performance for New Stationary Sources and Emission Guidelines for Existing Sources. This rule incorporates, by reference, 40 CFR 60, Standards of Performance for New Stationary Sources (NSPS). This facility is not an NSPS affected source because it does not meet the definition of any NSPS subpart defined in 40 CFR 60.

The Richland Compressor Station is not an NSPS affected source because it does not meet the definition of a natural gas processing plant defined in 40 CFR 60, Subpart KKK. In addition, 40 CFR 60, Subpart LLL is not applicable to the Richland Compressor Station because the facility does not utilize a sweetening unit to process sour gas.

- 8. <u>ARM 17.8.342 Emission Standards for Hazardous Air Pollutants for Source Categories</u>. The source, as defined and applied in 40 CFR 63, shall comply with the requirements of 40 CFR 63, as listed below:
 - 40 CFR 63, Subpart HH National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities. Owners or operators of oil and natural gas production facilities, as defined and applied in 40 CFR Part 63, shall comply with the applicable provisions of 40 CFR Part 63, Subpart HH. In order for a natural gas production facility to be subject to 40 CFR Part 63, Subpart HH requirements, certain criteria must be met. First, the facility must be a major source of Hazardous Air Pollutants (HAP) as determined according to paragraphs (a)(1)(i) through (a)(1)(iii) of 40 CFR 63, Subpart HH. Second, a facility that is determined to be major for HAPs must also either process, upgrade, or store hydrocarbon liquids prior to the point of custody transfer, or process, upgrade, or store natural gas prior to the point at which natural gas enters the natural gas transmission and storage source category or is delivered to a final end user. Third, the facility must also contain an affected source as specified in paragraphs (b)(1) through (b)(4) of 40 CFR Part 63, Subpart HH. Finally, if the first three criteria are met, and the exemptions contained in paragraphs (e)(1) and (e)(2) of 40 CFR Part 63, Subpart HH do not apply, the facility is subject to the applicable provisions of 40 CFR Part 63, Subpart HH. Based on the information submitted by Bear Paw, the facility is not subject to the provisions of 40 CFR Part 63, Subpart HH because the facility is not a major source of HAPs.

40 CFR 63, Subpart HHH National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities. Owners or operators of natural gas transmission or storage facilities, as defined and applied in 40 CFR Part 63, shall comply with the standards and provisions of 40 CFR Part 63, Subpart HHH. In order for a natural gas transmission and storage facility to be subject to 40 CFR Part 63, Subpart HHH requirements, certain criteria must be met. First, the facility must transport or store natural gas prior to the gas entering the pipeline to a local distribution company or to a final end user if there is no local distribution company. Second, the facility must be a major source of HAPs as determined using the maximum natural gas throughput as calculated in either paragraphs (a)(1) and (a)(2) or paragraphs (a)(2) and (a)(3) of 40 CFR Part 63, Subpart HHH. Third, a facility must contain an affected source (glycol dehydration unit) as defined in paragraph (b) of 40 CFR Part 63, Subpart HHH. Finally, if the first three criteria are met, and the exemptions contained in paragraph (f) of 40 CFR Part 63, Subpart HHH, do not apply, the facility is subject to the applicable provisions of 40 CFR Part 63, Subpart HHH. Based on the information submitted by Bear Paw, the facility is not subject to the provisions of 40 CFR 63, Subpart HHH because the facility is not a major source of HAPs.

40 CFR 63, Subpart ZZZZ National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines. Owners or operators of facilities that utilize reciprocating internal combustion engines and that are a major source of HAPs, as defined and applied in 40 CFR Part 63, shall comply with the standards and provisions of 40 CFR Part 63, Subpart ZZZZ. In order for a facility that utilizes a reciprocating internal combustion engine to be subject to 40 CFR Part 63, Subpart ZZZZ requirements, certain criteria must be met. The reciprocating internal combustion engines must have a maximum rated design capacity greater than 500-hp and the facility must be a major source of HAPs. Based on the information submitted by Bear Paw, the facility is not subject to the provisions of 40 CFR 63, Subpart ZZZZ because although the facility may utilize one reciprocating internal combustion engine with a maximum rated design capacity greater than 500-hp, the facility is not a major source of HAPs.

- D. ARM 17.8, Subchapter 5 Air Quality Permit Application, Operation, and Open Burning Fees, including, but not limited to:
 - 1. ARM 17.8.504 Air Quality Permit Application Fees. This rule requires that an applicant submit an air quality permit application fee concurrent with the submittal of an air quality permit application. A permit application is incomplete until the proper application fee is paid to the Department. Bear Paw submitted the appropriate permit application fee for the current permit action.
 - 2. <u>ARM 17.8.505 Air Quality Permit Operation Fees</u>. An annual air quality operation fee must, as a condition of continued operation, be submitted to the Department by each source of air contaminants holding an air quality permit (excluding an open burning permit) issued by the Department. The air quality operation fee is based on the actual or estimated actual amount of air pollutants emitted during the previous calendar year.

An air quality operation fee is separate and distinct from an air quality permit application fee. The annual assessment and collection of the air quality operation fee, described above, shall take place on a calendar-year basis. The Department may insert into any final permit issued after the effective date of these rules, such conditions as may be necessary to require the payment of an air quality operation fee on a calendar-year basis, including provisions that prorate the required fee amount.

- E. ARM 17.8, Subchapter 7 Permit, Construction, and Operation of Air Contaminant Sources, including, but not limited to:
 - 1. <u>ARM 17.8.740 Definitions</u>. This rule is a list of applicable definitions used in this chapter, unless indicated otherwise in a specific subchapter.
 - 2. <u>ARM 17.8.743 Montana Air Quality Permits--When Required</u>. This rule requires a person to obtain an air quality permit or permit alteration to construct, alter, or use any air contaminant sources that have the Potential to Emit (PTE) greater than 25 tons per year of any pollutant. The Richland Compressor Station has a PTE greater than 25 tons per year of NO_X, carbon monoxide (CO), and sulfur oxide (SO_X); therefore, an air quality permit is required.
 - 3. <u>ARM 17.8.744 Montana Air Quality Permits--General Exclusions</u>. This rule identifies the activities that are not subject to the Montana Air Quality Permit program.
 - 4. <u>ARM 17.8.745 Montana Air Quality Permits--Exclusion for De Minimis Changes</u>. This rule identifies the de minimis changes at permitted facilities that do not require a permit under the Montana Air Quality Permit Program.
 - 5. ARM 17.8.748 New or Modified Emitting Units--Permit Application Requirements. (1) This rule requires that a permit application be submitted prior to installation, alteration, or use of a source. Bear Paw submitted the required permit application for the current permit action. (7) This rule requires that the applicant notify the public by means of legal publication in a newspaper of general circulation in the area affected by the application for a permit. Bear Paw submitted an affidavit of publication of public notice for the December 14, 2004, issue of the *Sidney Herald*, a newspaper of general circulation in the Town of Decker in Big Horn County, as proof of compliance with the public notice requirements.

- 6. ARM 17.8.749 Conditions for Issuance or Denial of Permit. This rule requires that the permits issued by the Department must authorize the construction and operation of the facility or emitting unit subject to the conditions in the permit and the requirements of this subchapter. This rule also requires that the permit must contain any conditions necessary to assure compliance with the Federal Clean Air Act (FCAA), the Clean Air Act of Montana, and rules adopted under those acts.
- 7. <u>ARM 17.8.752 Emission Control Requirements</u>. This rule requires a source to install the maximum air pollution control capability that is technically practicable and economically feasible, except that BACT shall be utilized. The BACT analysis is included in Section III of this permit analysis.
- 8. <u>ARM 17.8.755 Inspection of Permit</u>. This rule requires that air quality permits shall be made available for inspection by the Department at the location of the source.
- 9. <u>ARM 17.8.756 Compliance with Other Requirements</u>. This rule states that nothing in the permit shall be construed as relieving Bear Paw of the responsibility for complying with any applicable federal or Montana statute, rule, or standard, except as specifically provided in ARM 17.8.740, *et seq*.
- 10. <u>ARM 17.8.759 Review of Permit Applications</u>. This rule describes the Department's responsibilities for processing permit applications and making permit decisions on those permit applications that do not require the preparation of an environmental impact statement.
- 11. ARM 17.8.762 Duration of Permit. An air quality permit shall be valid until revoked or modified, as provided in this subchapter, except that a permit issued prior to construction of a new or altered source may contain a condition providing that the permit will expire unless construction is commenced within the time specified in the permit, which in no event may be less than 1 year after the permit is issued.
- 12. <u>ARM 17.8.763 Revocation of Permit</u>. An air quality permit may be revoked upon written request of the permittee, or for violations of any requirement of the Clean Air Act of Montana, rules adopted under the Clean Air Act of Montana, the FCAA, rules adopted under the FCAA, or any applicable requirement contained in the Montana State Implementation Plan (SIP).
- 13. ARM 17.8.764 Administrative Amendment to Permit. An air quality permit may be amended for changes in any applicable rules and standards adopted by the Board of Environmental Review (Board) or changed conditions of operation at a source or stack that do not result in an increase of emissions as a result of those changed conditions. The owner or operator of a facility may not increase the facility's emissions beyond permit limits unless the increase meets the criteria in ARM 17.8.745 for a de minimis change not requiring a permit, or unless the owner or operator applies for and receives another permit in accordance with ARM 17.8.748, ARM 17.8.749, ARM 17.8.752, ARM 17.8.755, and ARM 17.8.756, and with all applicable requirements in ARM Title 17, Chapter 8, Subchapters 8, 9, and 10.
- 14. <u>ARM 17.8.765 Transfer of Permit.</u> This rule states that an air quality permit may be transferred from one person to another if written notice of Intent to Transfer, including the names of the transferor and the transferee, is sent to the Department.

- F. ARM 17.8, Subchapter 8 Prevention of Significant Deterioration of Air Quality, including, but not limited to:
 - 1. <u>ARM 17.8.801 Definitions</u>. This rule is a list of applicable definitions used in this subchapter.
 - 2. ARM 17.8.818 Review of Major Stationary Sources and Major Modifications--Source Applicability and Exemptions. The requirements contained in ARM 17.8.819 through ARM 17.8.827 shall apply to any major stationary source and any major modification, with respect to each pollutant subject to regulation under the FCAA that it would emit, except as this subchapter would otherwise allow.

This facility is not a major stationary source since this facility is not a listed source and the facility's PTE is below 250 tons per year of any pollutant (excluding fugitive emissions).

- G. ARM 17.8, Subchapter 12 Operating Permit Program Applicability, including, but not limited to:
 - 1. <u>ARM 17.8.1201 Definitions</u>. (23) Major Source under Section 7412 of the FCAA is defined as any source having:
 - a. PTE > 100 tons/year of any pollutant;
 - b. PTE > 10 tons/year of any one HAP, PTE > 25 tons/year of a combination of all HAPs, or lesser quantity as the Department may establish by rule; or
 - c. PTE > 70 tons/year of particulate matter with an aerodynamic diameter of 10 microns or less (PM_{10}) in a serious PM_{10} nonattainment area.
 - 2. <u>ARM 17.8.1204 Air Quality Operating Permit Program</u>. (1) Title V of the FCAA amendments of 1990 requires that all sources, as defined in ARM 17.8.1204(1), obtain a Title V Operating Permit. In reviewing and issuing Air Quality Permit #2792-03 for Bear Paw, the following conclusions were made:
 - a. The facility's PTE is less than 100 tons/year for any pollutant.
 - b. The facility's PTE is less than 10 tons/year for any one HAP and less than 25 tons/year for all HAPs.
 - c. This source is not located in a serious PM_{10} nonattainment area.
 - d. This facility is not subject to any current NSPS.
 - e. This facility is not subject to any current NESHAP standards.
 - f. This source is not a Title IV affected source, nor a solid waste combustion unit.
 - g. This source is not an EPA designated Title V source.

Based on these facts, the Department determined that the Richland Compressor Station is a minor source of emissions as defined under Title V.

III. BACT Determination

A BACT determination is required for each new or altered source. Bear Paw shall install on the new or altered source the maximum air pollution control capability, which is technically practicable and economically feasible, except that BACT shall be utilized.

A BACT analysis was submitted by Bear Paw in Permit Application #2792-03, addressing some available methods of controlling emissions from the sources used at the Richland Compressor Station. The Department reviewed these methods, as well as previous BACT determinations in order to make the following BACT determination.

A. Compressor Engines

1. CO BACT

As part of the CO BACT analyses, the following control technologies were reviewed:

- Lean burn engine with a catalytic oxidation unit and an air-to-fuel ratio (AFR) controller:
- Lean burn engine with a non-selective catalytic reduction (NSCR) unit and AFR controller:
- Lean burn engine with an NSCR unit;
- Lean burn engine with no additional controls;
- Rich burn engine with an NSCR unit and an AFR controller;
- Rich burn engine with an NSCR unit;
- Rich burn engine with an AFR controller;
- Rich burn engine with a catalytic oxidation unit and an AFR controller;
- Rich burn engine with a catalytic oxidation unit; and
- Rich burn engine with no additional controls.

Catalytic oxidation applied to a rich burn is technically infeasible because the oxygen concentration from a rich burn engine is not high enough for a catalytic oxidizer to operate properly. An NSCR unit applied to a lean burn engine or lean burn retrofit engine is also technically infeasible because the NSCR unit needs a rich fuel-to-air ratio to operate effectively.

Technically feasible control options, in order of the highest control efficiency to the lowest control efficiency, include:

1,478 Lean Burn and 1,680-hp Rich Burn Engines

Control Technology	% Control	CO Emission Rate (g/bhp-hr)
Lean Burn with Catalytic Oxidizer and/or AFR	97.5	0.5
Rich Burn with NSCR and/or AFR	90.0	2.0
Lean Burn without Control or with only AFR	85.0	3.0
Rich Burn without Control or with only AFR		20.0

The control methods listed above are widely used; these control options cannot be eliminated solely based on environmental or energy impacts. Lean burn engines do emit relatively higher HAP (formaldehyde) emissions than rich burn engines. Lean burn engines cannot be eliminated based on higher formaldehyde emissions, but the higher

formaldehyde emissions can affect the BACT determination. 800-hp range engines without AFR control are removed from the analysis because AFR control would be required and is consistent with other recently permitted similar sources.

The following tables show the cost per ton of CO reduction achieved for the various control options.

1,478 Lean Burn and 1,680-hp Rich Burn Engines Cost Effectiveness

Control Technology	Total Annual Cost (\$)	Resulting CO Emissions (tpy)	Cost Effectiveness (\$/ton)				
Controlled Emissions	·						
Lean Burn Engine with Oxidation Catalyst and AFR	46,241	7.1	1,295				
Rich Burn Engine with NSCR and AFR	40,339	32.4	138				
Baseline Emissions							
Lean Burn Engine without Control and with AFR	-	42.8	0				
Rich Burn Engine without Control and with AFR		324.2	0				

- \$1,295 = \$46,241 / (42.8-7.1)
- \$138 = \$40,339 / (324.2-32.4)

The use of the rich burn engine with an NSCR unit and an AFR controller is the most cost-effective method to control CO emissions. The Department agrees that rich burn engines with an NSCR unit and AFR controller, with an emission limit of 2.0 g/bhp-hr is BACT. A rich burn engine equipped with an NSCR unit and an AFR controller is frequently used in the natural gas compression industry and the BACT determination is consistent with other recently permitted similar sources. Because a 4-stroke lean burn engine equipped with an oxidation catalyst and an AFR controller, with an emission limit of 0.5 g/bhp-hr, provides environmental benefits that are equal to or exceed that of the rich burn engines equipped with an NSCR and an AFR controller the Department determined that it can be utilized in place of the rich burn engine.

2. NO_X BACT

As part of the NO_x BACT analyses, the following control technologies were reviewed:

- Lean burn engine with an SCR unit and AFR controller;
- Lean burn engine with an SCR unit;
- Lean burn engine with an AFR controller;
- Lean burn engine with an NSCR unit and AFR controller;
- Lean burn engine with an NSCR unit;
- Lean burn engine with no additional controls;
- Rich burn engine with an NSCR unit and an AFR controller;
- Rich burn engine with an NSCR unit;
- Rich burn engine with an AFR controller;
- Rich burn engine with an SCR and an AFR controller;
- Rich burn engine with an SCR; and
- Rich burn engine with no additional controls.

SCR applied to rich burn engines is technically infeasible because the oxygen concentration from rich burn engines is not high enough for an SCR to operate properly. NSCR on lean burn engines is technically infeasible because the engine must burn a rich fuel mixture for the NSCR to properly operate. Adverse environmental impacts could

occur with an SCR unit operating on lean burn engines at variable loads as required by a typical compressor engine. SCR units are typically installed on process units that have a constant or low variability in load fluctuation. When engine load changes excess ammonia (ammonia slip) may pass through the system and out the stack or not enough ammonia will be injected. SCR units are technically infeasible because of the potential adverse environmental impacts from the typical load fluctuations that are required for compressor engines. SCR units have not been installed on lean burn compressor engines in Montana.

Technically feasible control options, in order of the highest control efficiency to the lowest control efficiency, include:

1,478 Lean Burn and 1,680-hp Rich Burn Engines

Control Technology	% Control	NO _x Emission Rate (g/bhp-hr)
Rich Burn with NSCR and AFR	95.0	1.0
Rich Burn with NSCR	95.0	1.0
Lean Burn without Control or with AFR only	95.0	1.0
Rich Burn without Control or with AFR only	0.0	20.0

The control methods listed above are widely used; these control options cannot be eliminated solely based on environmental or energy impacts.

Lean burn engines do emit relatively higher HAP (formaldehyde) emissions than rich burn engines. Lean burn engines cannot be eliminated based on higher formaldehyde emissions, but the higher formaldehyde emissions can affect the BACT determination.

The table below shows the cost per ton of NO_X reduction achieved for the various control options.

1,478 Lean Burn and 1,680-hp Rich Burn Cost Effectiveness

	<u> </u>				
Control Technology	Total Annual Cost (\$)	Resulting NO _X Emissions (tpy)	Cost Effectiveness (\$/ton)		
Controlled Emissions					
Lean Burn Engine without Control and with AFR		14.3	0		
Rich Burn Engine with NSCR and AFR	40,339	16.2	131		
Baseline Emissions					
Lean Burn Engine without Control and with AFR		28.5	0		
Rich Burn Engine without Control and with AFR		324.2	0		

• \$131 = \$53,139 / (162.1-8.1)

The use of the lean burn engine with an AFR controller is the most cost-effective method to control NO_X emissions. The rich burn engine equipped with an NSCR unit and an AFR controller has the same emission rate of 1.0 g/bhp-hr as the lean burn engine. The cost effectiveness of the 1,680-hp rich burn engine is \$131 per ton. The cost effectiveness of the 1,478-hp lean burn engine is \$0 per ton. The Department agrees that the emission limit of 1.0 g/bhp-hr using a lean burn engine with an AFR controller for control of NO_X emissions is BACT. A lean burn engine equipped with an AFR controller is frequently used in the natural gas compression industry and the BACT determination is consistent with other recently permitted similar sources. Because a 4-stroke rich burn engine equipped with an NSCR and an AFR controller, with an emission limit of 1.0 g/bhp-hr, provides equal emission rates than the lean burn engine with an AFR controller, the Department determined that they can be utilized in place of the lean burn engines.

3. VOC BACT

Because a 4-stroke rich burn engine equipped with an NSCR unit and an AFR controller, with an emission limit of 0.5 g/bhp-hr and a 4-stroke lean burn engine equipped with an oxidation catalyst and an AFR controller, with an emission limit of 0.5 g/bhp-hr, provide equal emission rates the Department determined that they can be utilized. The Department determined that no additional control and burning pipeline quality natural gas to meet a lb/hr emission limit equivalent to 0.5 g/hp-hr constitutes BACT for the proposed compressor engines.

4. PM₁₀ and SO₂ BACT

The Department is not aware of any BACT determinations that have required controls for PM_{10} or sulfur dioxide (SO_2) emissions from natural gas fired compressor engines. Bear Paw proposed no additional controls and burning pipeline quality natural gas as BACT for PM_{10} and SO_2 emissions from the proposed compressor engine. Due to the relatively small amount of PM_{10} and SO_2 emissions from the proposed engine and the cost of adding additional control, any add-on controls would be cost prohibitive. Therefore, the Department concurred with Bear Paw's BACT proposal and determined that no additional controls and burning pipeline quality natural gas will constitute BACT for PM_{10} and SO_2 emissions from the compressor engine.

IV. Emission Inventory

Ton/year							
Source	PM_{10}	NO_X	CO	VOC	SO_X		
245 hp Caterpillar G379-NA	0.04	30.52	7.10	1.89	0.00		
4" Emergency Flare	0.00	0.00	0.00	0.00	30.89		
1,680-hp Waukesha L7044GSI	0.55	16.23	32.45	8.11	0.03		
1,478-hp Waukesha L7042GL	0.45	14.27	7.14	7.14	0.03		

245 hp Caterpillar G379-NA

Brake Horsepower: 245 bhp at 1,000 rpm Hours of Operation: 8,760 hr/yr Fuel Consumption: 8,311 Btu/hp-hr

Propane Combustion: 2,322 Btu/SCF OR 4.31E-04 SCF/Btu

PM₁₀ Emissions

Emission factor: 10.00 lb/MMSCF (AFSEF 2-02-002-02)

Calculations: 10.00 lb/MMSCF * 1.00E-06 MMSCF/SCF = 1.00E-05 lb/SCF

0.00001 lb/SCF * 0.00043066 SCF/Btu = 4.31E-09 lb/Btu 0.0000000431 lb/Btu * 8311 Btu/hp-hr = 3.58E-05 lb/hp-hr 0.0000358 lb/hp-hr * 245 bhp * 8,760 hrs/yr = 76.82 lb/yr

76.82 lb/yr * 0.0005 ton/lb = 0.04 ton/yr

NO_x Emissions

Emission factor: 12.90 gm/bhp-hr (BACT Determination)
Calculations: 11.30 gm/bhp-hr* 245 bhp * 0.002205 lb/gm = 6.97 lb/hr
6.97 lb/hr * 8,760 hr/yr * 0.0005 ton/lb = 30.52 tons/yr

CO Emissions

Emission factor: 3.00 gm/bhp-hr (BACT Determination)

VOC Emissions

Emission factor: 0.80 gm/bhp-hr (BACT Determination) Calculations: 0.80 gm/bhp-hr* 245 bhp * 0.002205 lb/gm = 0.43 lb/hr

0.43 lb/hr * 8,760 hr/yr * 0.0005 ton/lb = 1.89 ton/yr

SO_x Emissions

Emission factor: 0.60 lb/MMSCF (AFSEF 2-02-002-02)

Calculations: 0.60 lb/MMSCF * 1.00E-06 MMSCF/SCF = 6.00E-07 lb/SCF

0.0000006 lb/SCF * 0.00043066 SCF/Btu = 2.58E-10 lb/Btu0.00000000026 lb/Btu * 8311 Btu/hp = 2.15E-06 lb/hp-hr0.0000021475 lb/hp-hr * 245 bhp * 8,760 hr/yr = 4.61 lb/yr

4.6091 lb/yr * 0.0005 ton/lb = 0.00 ton/yr

4" Emergency Flare

Fuel Type: Sour Natural Gas with 7% H₂S.

1,000 Btu/SCF OR 1.00E-03 SCF/Btu Fuel Heat Content:

Flare Capacity: 90,000 SCF/hr Hours of operation 55 hr/yr

PM₁₀ Emissions

(AP-42 Table 13.5-1 1/95) Emission factor: 0.0 lb/MMSCF 0.00 lb/MMSCF * 1.00E+06 MMSCF/SCF = 0.00E+00 lb/SCF Calculations:

> 0.00 lb/SCF * 90,000 SCF/hr = 0.00 lb/hr0.0000 lb/hr * 55 hr/yr = 0.00 lb/yr0.00 lb/yr * 0.0005 ton/lb = 0.00 ton/yr

NO_x Emissions

Emission factor: 0.07 lb/MMSCF (AP-42 Table 13.5-1 1/95) 0.07 lb/MMSCF * 1.00E-06 MMSCF/SCF = 6.80E-08 lb/SCF Calculations:

0.00000007 lbs/SCF * 90,000 SCF/hr = 0.01 lb/hr

0.01 lb/hr * 55 hr/yr = 0.35 lb/yr0.35 lb/yr * 0.0005 ton/lb = 0.00 ton/yr

CO Emissions

(AP-42 Table 13.5-1 1/95) Emission factor: 0.37 lb/MMSCF Calculations: 0.37 lb/MMSCF * 1.00E-06 MMSCF/SCF = 3.70E-07 lb/SCF

0.00000037 lb/SCF * 90,000 SCF/hr = 0.03 lb/hr

0.03 lb/hr * 55 hr/yr = 1.83 lb/yr1.83 lb/yr * 0.0005 ton/lb = 0.00 ton/yr

VOC Emissions

Emission factor: 0.14 lb/MMSCF (AP-42 Table 13.5-1 1/95) 0.14 lb/MMSCF * 1.00E-06 MMSCF/SCF = 1.40E-07 lb/SCF Calculations:

0.00000014 lb/SCF * 90,000 SCF/hr = 0.01 ls/hr

0.01 lb/hr * 55 hr/yr = 0.69 lb/yr0.69 lb/yr * 0.0005 ton/lb = 0.00 ton/yr

SO_x Emissions

SO_x Emission Factor Calculation:

Assume: Ideal Gas with 7.0 mole % hydrogen sulfide in flared gas with all H₂S converted to SO_X. $100\% = 1,000,000 \text{ ppm H}_2\text{S}$

Fuel Consumption: 90,000 Scf/hr

Fuel Type: $70,000 \text{ ppm H}_2\text{S}$ $70,000 \text{ ppm H}_2\text{S} * (1 \text{ grain}/100 \text{ Scf } *16 \text{ ppm})*(1 \text{ lb}/7000 \text{ grain}) = 0.00625 \text{ lb H}_2\text{S}$ Calculations:

 $0.00625 \text{ lb H}_2\text{S} * (64.06 \text{ lbSO}_2/32.08 \text{ lb H}_2\text{S}) = 0.12 \text{ lb SO}_2/\text{Scf}$ $0.12 \text{ lb } SO_2/Scf * (90,000 Scf/hr) = 1,123 \text{ lb/hr}$

1,123 lb/hr * (55 hr/yr) * (0.0005 ton/lb) = 30.89 ton/yr

1,680-hp Waukesha L7044GSI Compressor Engine

Brake Horsepower: 1,680 bhp Hours of operation: 8760 hr/yr

PM₁₀ Emissions

Emission Factor: 9.50E-03 lb/MMBtu (AP-42, Chapter 3, Table 3.2-3, 7/00)

Fuel Consumption: 13.23 MMBtu/hr (Maximum Design) Calculations: 13.23 MMBtu/hr * 9.50E-03 lb/MMBtu = 0.13 lb/hr 0.13 lb/hr * 8760 hr/hr * 0.0005 ton/lb = 0.55 ton/yr

NO_x Emissions

Emission factor: 1.00 gram/bhp-hour (BACT Determination)
Calculations: 1.00 gram/bhp-hour * 1,680 bhp * 0.002205 lb/gram = 3.70 lb/hr

3.70 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 16.23 ton/yr

CO Emissions

Emission factor: 2.00 gram/bhp-hour (BACT Determination) Calculations: 2.00 gram/bhp-hour * 1,680 bhp * 0.002205 lb/gram = 7.41 lb/hr

7.41 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 32.45 ton/yr

VOC Emissions

Emission factor: 0.5 gram/bhp-hour (BACT Determination)
Calculations: 0.5 gram/bhp-hour * 1,680 bhp * 0.002205 lb/gram = 1.85 lb/hr

1.85 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 8.11 ton/yr

SO₂ Emission

Emission factor: 5.88E-04 lb/MMBtu (AP-42, Chapter 3, Table 3.2-3, 7/00)

Fuel Consumption: 13.23 MMBtu/hr (Maximum Design)
Calculations: 13.23 MMBtu/hr * 5.88E-04 lb/MMBtu = 0.01 lb/hr
0.01 lb/hr * 8760 hr/hr * 0.0005 ton/lb = 0.03 ton/yr

1,478-hp Waukesha L7042GL Compressor Engine

Brake Horsepower: 1,478 bhp Hours of operation: 8760 hr/yr

PM₁₀ Emissions

Emission Factor: 9.50E-03 lb/MMBtu (AP-42, Chapter 3, Table 3.2-3, 7/00)

Fuel Consumption: 10.75 MMBtu/hr (Maximum Design) Calculations: 10.75 MMBtu/hr * 9.50E-03 lb/MMBtu = 0.10 lb/hr 0.10 lb/hr * 8760 hr/hr * 0.0005 ton/lb = 0.45 ton/yr

NO_x Emissions

Emission factor: 1.00 gram/bhp-hour (BACT Determination)

Calculations: 1.00 gram/bhp-hour * 1,478 bhp * 0.002205 lb/gram = 3.26 lb/hr

3.26 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 14.27 ton/yr

CO Emissions

Emission factor: 0.5 gram/bhp-hour (BACT Determination) Calculations: 0.5 gram/bhp-hour * 1,478 bhp * 0.002205 lb/gram = 1.63 lb/hr

1.63 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 7.14 ton/yr

VOC Emissions

Emission factor: 0.5 gram/bhp-hour (BACT Determination)
Calculations: 0.5 gram/bhp-hour * 1,478 bhp * 0.002205 lb/gram = 1.63 lb/hr

1.63 lb/hr * 8760 hr/yr * 0.0005 ton/lb = 7.14 ton/yr

SO₂ Emission

Emission factor: 5.88E-04 lb/MMBtu (AP-42, Chapter 3, Table 3.2-3, 7/00)

Fuel Consumption: 10.75 MMBtu/hr (Maximum Design) Calculations: 10.75 MMBtu/hr * 5.88E-04 lb/MMBtu = 0.01 lb/hr 0.01 lb/hr * 8760 hr/hr * 0.0005 ton/lb = 0.03 ton/yr

V. Existing Air Quality

The facility is located approximately 28 miles southeast of the Fort Peck Indian Reservation, approximately 44 miles south of the Medicine Lake National Wildlife Refuge, and approximately 8 miles northwest of the town of Sidney in the NW½ of the NW½, of Section 8, Township 23 North, Range 58 East, in Richland County, Montana. The air quality of this area is classified as either better than National Standards or unclassifiable/attainment for the National Ambient Air Quality Standards (NAAQS) for criteria pollutants.

VI. Ambient Air Impact Analysis

The Department determined that the impacts from this permitting action will be minor. The Department believes it will not cause or contribute to a violation of any ambient air quality standard.

VII. Taking or Damaging Implication Analysis

As required by 2-10-105, MCA, the Department conducted a private property taking and damaging assessment and determined there are no taking or damaging implications.

VIII. Environmental Assessment

An environmental assessment, required by the Montana Environmental Policy Act, was completed for this project. A copy is attached.

DEPARTMENT OF ENVIRONMENTAL QUALITY

Permitting and Compliance Division Air Resources Management Bureau P.O. Box 200901, Helena, Montana 59620 (406) 444-3490

FINAL ENVIRONMENTAL ASSESSMENT (EA)

Issued To: Bear Paw Energy, Inc.

Richland Compressor Station 1400 16th Street, Suite 310 Denver, CO 80202

Air Quality Permit Number: 2792-03

Preliminary Determination Issued: December 23, 2004

Department Decision Issued: January 10, 2005

Permit Final: January 26, 2005

- 1. Legal Description of Site: Bear Paw Richland Compressor Station is located approximately 28 miles southeast of the Fort Peck Indian Reservation, approximately 44 miles south of the Medicine Lake National Wildlife Refuge, and approximately 8 miles northwest of the town of Sidney in the NW¼ of the NW¼, of Section 8, Township 23 North, Range 58 East, in Richland County, Montana.
- 2. Description of Project: The Bear Paw application requested to add two compressor engines, Waukesha L7042 GLs and/or Waukesha L7044 GSIs, such that the total hp of the Richland Compressor Station shall not exceed 3,605 hp. The Richland Compressor Station compresses and transports natural gas from the nearby gas field. The natural gas fired compressor engine compresses the gas for transmission through the pipeline.
- 3. *Objectives of Project*: The proposed project would provide business and revenue for Bear Paw by allowing the company to extract natural gas from the field. Natural gas would be received and compressed for transmission through the pipeline.
- 4. Alternatives Considered: In addition to the proposed action, the Department also considered the "no-action" alternative. The "no-action" alternative would deny issuance of the Montana Air Quality Permit to the proposed facility. However, the Department does not consider the "no-action" alternative to be appropriate because Bear Paw demonstrated compliance with all applicable rules and regulations as required for permit issuance. Therefore, the "no-action" alternative was eliminated from further consideration.
- 5. *A Listing of Mitigation, Stipulations, and Other Controls*: A list of enforceable conditions, including a BACT analysis, would be included in Permit #2792-03.
- 6. Regulatory Effects on Private Property: The Department considered alternatives to the conditions imposed in this permit as part of the permit development. The Department determined that the permit conditions would be reasonably necessary to ensure compliance with applicable requirements and to demonstrate compliance with those requirements and would not unduly restrict private property rights.

7. The following table summarizes the potential physical and biological effects of the proposed project on the human environment. The "no-action" alternative was discussed previously.

		Major	Moderate	Minor	None	Unknown	Comments Included
Α	Terrestrial and Aquatic Life and Habitats			X			Yes
В	Water Quality, Quantity, and Distribution			X			Yes
С	Geology and Soil Quality, Stability and Moisture			X			Yes
D	Vegetation Cover, Quantity, and Quality			X			Yes
Е	Aesthetics			X			Yes
F	Air Quality			X			Yes
G	Unique Endangered, Fragile, or Limited Environmental Resources			X			Yes
Н	Demands on Environmental Resource of Water, Air and Energy			X			Yes
I	Historical and Archaeological Sites			X			Yes
J	Cumulative and Secondary Impacts			X			Yes

SUMMARY OF COMMENTS ON POTENTIAL PHYSICAL AND BIOLOGICAL EFFECTS: The following comments have been prepared by the Department.

A. Terrestrial and Aquatic Life and Habitats

Minor impacts to terrestrial and aquatic life and habitats would be expected from the proposed project because deer, antelope, coyotes, geese, ducks, and other terrestrials would potentially use the area around the new compressor engines and because the engines would be a source of air pollutants. The engines would emit air pollutants but the Department determined that corresponding deposition of pollutants would occur and that any impacts from deposition would be minor. In addition, minor land disturbance would occur through engine installation activities. Any impacts from engine installation would be minor due to the relatively small size of the project and the relatively short period of time required for installation. Overall, any impacts to terrestrial and aquatic life and habitats would be minor.

B. Water Quality, Quantity, and Distribution

Minor impacts would be expected on water quality, quantity, and distribution from the proposed project because the engines would be a source of pollutants. The engines would have no direct discharges into surface water. However, minor amounts of water may be required to control fugitive dust emissions from the access roads and the general engine property. In addition, the engines would emit air pollutants and corresponding deposition of pollutants would occur. However, the Department determined because of the relative size of the engines that any impact resulting from the deposition of pollutants on water quality, quantity, and distribution would be minor.

In addition, water quality, quantity, and distribution would not be impacted from constructing the engines because there is no surface water at or relatively close to the site. Furthermore, no direct discharges into surface water would occur and no use of surface water would be expected for engine installation. Therefore, no impacts to water quality, quantity, and distribution would be expected from engine installation. Overall, any impacts to water quality, quantity, and distribution would be minor.

C. Geology and Soil Quality, Stability, and Moisture

Minor impacts would occur on the geology and soil quality, stability, and moisture from the proposed project because minor construction would be required to install the engines. Small buildings would be constructed and natural gas pipelines would be installed. In addition, no discharges, other than air emissions, would occur from the engines. Any impacts to the geology and soil quality, stability and moisture from engine installation would be minor due to the relatively small size of the project.

Further, deposition of pollutants would occur; however, the Department determined that any impacts resulting from the deposition of pollutants on the soils surrounding the site would be minor. Overall, any impacts to the geology and soil quality, stability, and moisture would be minor because of deposition of pollutants.

D. Vegetation Cover, Quantity, and Quality

Minor impacts would occur on vegetation cover, quantity, and quality because minor construction would be required to install the engines. Small buildings would be constructed and natural gas pipelines would be installed.

In addition, no discharges, other than air emissions, would occur from the engines. Any impacts to the vegetation cover, quantity, and quality from engine installation would be minor due to the relatively small size of the project.

The facility would be a source of air pollutants and corresponding deposition of pollutants would occur. However, the Department determined that any impacts resulting from the deposition of pollutants on the existing vegetation cover, quantity, and quality would be minor. Overall, any impacts to vegetation cover, quantity, and quality would be minor because of deposition of pollutants.

E. Aesthetics

Minor impacts would result on the aesthetic value of the area because small buildings would be constructed to house the engines and natural gas pipelines would be installed. However, any visual aesthetic impacts would be minor because the natural gas gathering plant is a relatively small industrial facility.

The engines would also create additional noise in the area. However, any auditory aesthetic impacts would be minor because the compressor engines would generally operate enclosed indoors. Overall, any aesthetic impacts would be minor.

F. Air Quality

The air quality of the area would realize minor impacts from the proposed project because the engines would emit the following air pollutants: PM_{10} ; NO_X ; CO; VOC, including HAPs; and SO_X . Air emissions from the engines would be minimized by limitations and conditions that would be included in Permit #2792-03. Conditions would include, but would not be limited to, BACT emission limits and opacity limitations on the proposed engines and the general facility. In addition, based on previous analysis of sources of this type operating under similar conditions, the Department believes that the emissions resulting from the proposed engines would exhibit good dispersion characteristics resulting in relatively low deposition impacts. While deposition of pollutants would occur as a result of operating the engines, the Department

determined that the impacts from deposition of pollutants would be minor due to dispersion characteristics of pollutants (stack height, stack temperature, etc.), the atmosphere (wind speed, wind direction, ambient temperature, etc.), and conditions that would be placed in Permit #2792-03. The amount of air concentration of pollutants would be relatively small, and the corresponding deposition of those air pollutants would be minor.

Since controlled emissions from the proposed engines would exhibit good dispersion characteristics and would not exceed any Montana ambient air quality modeling threshold, the Department determined that controlled emissions from the source will not cause or contribute to a violation of any ambient air quality standard. Therefore, any impacts to air quality from the proposed engines would be minor.

G. Unique Endangered, Fragile, or Limited Environmental Resources

In an effort to identify any unique endangered, fragile, or limited environmental resources in the area, the Department contacted the Montana Natural Heritage Program, Natural Resource Information System (NRIS). The NRIS search did not identify any known species of special concern located within the proposed project area. In this case, the project area was defined by the section, township, and range of the proposed location with an additional 1-mile buffer zone. Due to the minor amounts of construction that would be required, the relatively low levels of pollutants that would be emitted, and because the NRIS search did not identify any species of special concern in the area of the proposed facility, the Department determined that it would be unlikely that the proposed project would impact any species of special concern and that any potential impacts would be minor.

H. Demands on Environmental Resources of Water, Air, and Energy

The proposed project would have minor impacts on the demands for the environmental resources of air, because the engines would be a minor source of air pollutants. Demands for water would be minor because the facility may use water for dust suppression. Deposition of pollutants would occur as a result of operating the facility; however, the Department determined that any impacts from deposition of pollutants would be minor.

The proposed project would be expected to have minor impacts on the demand for the environmental resource of energy because power would be required at the site. The impact on the demand for the non-renewable environmental resource of energy would be minor because the engines would be relatively small by industrial standards. Overall, the impacts for the demands on the environmental resources of water, air, and energy would be minor.

I. Historical and Archaeological Sites

In an effort to identify any historical and archaeological sites near the proposed project area, the Department contacted the Montana Historical Society, State Historic Preservation Office (SHPO). According to SHPO records, there have not been any previously recorded historic or archaeological sites within the proposed area. In addition, SHPO records indicated that no previous cultural resource inventories have been conducted in the area. SHPO recommended that a cultural resource inventory be conducted to determine if cultural or historic sites exist and if they would be impacted. However, neither the Department nor SHPO has the authority to require Bear Paw to conduct a cultural resource inventory. The Department determined that due to the previous disturbance in the area and the small amount of land disturbance that would be required to construct the engines, the chance of the project impacting any cultural or historic sites would be minor.

J. Cumulative and Secondary Impacts

Overall, the cumulative and secondary impacts on the physical and biological aspects of the human environment in the immediate area would be minor due to the relatively small size of the engines and negligible construction activities associated with this type of engine installation. The Department believes that the engines could be expected to operate in compliance with all applicable rules and regulations as would be outlined in Permit #2792-03.

Additional facilities (compressor stations, gas plants, etc.) could locate in the area to withdraw natural gas from the nearby area and/or to separate the components of natural gas. However, any future facility would be required to apply for and receive the appropriate permits from the appropriate regulating authority. Environmental impacts from any future facilities would be assessed through the appropriate permitting process.

8. The following table summarizes the potential economic and social effects of the proposed project on the human environment. The "no-action" alternative was discussed previously.

		Major	Moderate	Minor	None	Unknown	Comments Included
A	Social Structures and Mores						Yes
В	Cultural Uniqueness and Diversity			X			Yes
С	Local and State Tax Base and Tax Revenue			X			Yes
D	Agricultural or Industrial Production			X			Yes
Е	Human Health			X			Yes
F	Access to and Quality of Recreational and Wilderness Activities			X			Yes
G	Quantity and Distribution of Employment			X			Yes
Н	Distribution of Population			X			Yes
I	Demands for Government Services			X			Yes
J	Industrial and Commercial Activity			X			Yes
K	Locally Adopted Environmental Plans and Goals			X			Yes
L	Cumulative and Secondary Impacts			X			Yes

SUMMARY OF COMMENTS ON POTENTIAL ECONOMIC AND SOCIAL EFFECTS: The following comments have been prepared by the Department.

- A. Social Structures and Mores
- B. Cultural Uniqueness and Diversity

The proposed project would cause minor, if any, impacts to the above social and economic resources in the area because the proposed project would take place in a relatively remote location. Further, the operation of compressor engines of this type would likely not result in any, or very little, immigration of new people to the area for employment purposes; thereby, having little if any impact on the above social and economic resources of the area.

Additional activity (vehicle traffic, construction equipment, etc.) would be noticeable during engine installation and the gathering plant would typically require day-to-day employees. Once the engines are installed, activities associated with the operation of the engines would be minor. Overall, any impacts to the above social and economic resources in the area would be minor.

C. Local and State Tax Base and Tax Revenue

The proposed project would result in minor impacts to the local and state tax base and tax revenue because relatively few new employees would be expected as a result of installing the engines. Further, the proposed project would necessitate negligible installation activities and typically would not require an extended period of time for completion. Therefore, any installation related jobs would be temporary and any corresponding impacts on the tax base/revenue in the area would be minor. Overall, any impacts to the local and state tax base would be minor.

D. Agricultural or Industrial Production

The land at the proposed location is rural agricultural grazing land. However, because the engines would be relatively small, the proposed project would result in only minor impacts to agricultural production. The proposed project would have minor impacts to industrial production because the proposed project would be an addition to an existing facility. However, because the facility would be relatively small by industrial standards, the project would likely not result in additional industrial sources.

Additional facilities (compressor stations, gas plants, etc.) could locate in the area to withdraw natural gas from the nearby area and/or to separate the components of natural gas. However, any future facility would be required to apply for and receive the appropriate permits from the appropriate regulating authority. Environmental impacts from any future facilities would be assessed through the appropriate permitting process. The Department is not aware of plans for any additional facilities at this time. Overall, any impacts to agricultural or industrial production of the area would be minor.

E. Human Health

The proposed project would result in minor, if any, impacts to human health. Deposition of pollutants would occur; however, the Department determined that the proposed project would comply with all applicable air quality rules, regulations, and standards. These rules, regulations, and standards are designed to be protective of human health. Overall any impacts to human health would be minor.

F. Access to and Quality of Recreational and Wilderness Activities

The proposed project would have minor, if any, impacts on access to recreational and wilderness activities because of the relatively remote location and the relatively small size of the project. The proposed project would have minor impacts on the quality of recreational and wilderness activities in the area because the engines, while relatively small by industrial standards, would be visible and would produce noise. Overall any impacts to the access and quality of recreational and wilderness activities in the area would be minor.

G. Quantity and Distribution of Employment

H. Distribution of Population

The proposed project would have minor impacts on the employment and population because temporary installation-related positions would result from this project. However, any impacts to the quantity and distribution of employment from installation related employment would be minor due to the relatively small size of the facility and the relatively short time period that would be required for installing the engines. Overall, any impacts to the above social and economic resources in the area would be minor.

I. Demands for Government Services

There would be minor impacts on the demands for government services because additional time would be required by government agencies to issue the appropriate permits for the engines and to assure compliance with applicable rules, standards, and conditions that would be contained in those permits. In addition, there would be minor impacts on the demands for government services to regulate the increase in vehicle traffic that would be associated with installing and maintaining the engines. The increase in vehicle traffic would be primarily during engine installation but the gas gathering plant typically does require day-to-day attention. Therefore, vehicle traffic would be relatively minor due to the relatively short time period that would be required to install the engines and the day-to-day over-site of the plant by permanent employees. Overall, any demands for government services to regulate the engines or activities associated with the engines would be minor.

J. Industrial and Commercial Activity

Only minor impacts would be expected on the local industrial and commercial activity because the proposed project would represent only a minor increase in the industrial and commercial activity in the area. The proposed project would be relatively small and would take place at a relatively remote location.

Additional facilities (compressor stations, gas plants, etc.) could locate in the area to withdraw natural gas from the nearby area and/or to separate the components of natural gas. However, any future facility would be required to apply for and receive the appropriate permits from the appropriate regulating authority. Environmental impacts from any future facilities would be assessed through the appropriate permitting process. Overall, any impacts to the local industrial and commercial activity of the area would be minor.

K. Locally Adopted Environmental Plans and Goals

The Department is unaware of any locally adopted environmental plans or goals. The permit would ensure compliance with state standards and goals. The state standards would protect the proposed site and the environment surrounding the site.

L. Cumulative and Secondary Impacts

Overall, cumulative and secondary impacts from this project would result in minor impacts to the economic and social aspects of the human environment in the immediate area. Due to the relatively small size of the project, the industrial production, employment, and tax revenue (etc.) impacts resulting from the proposed project would be minor. In addition, the Department believes that this facility could be expected to operate in compliance with all applicable rules and regulations as would be outlined in Permit #2792-03.

Additional facilities (compressor stations, gas plants, etc.) could locate in the area to withdraw natural gas from the nearby area and/or to separate the components of natural gas. However, any future facility would be required to apply for and receive the appropriate permits from the appropriate regulating authority. Environmental impacts from any future facilities would be assessed through the appropriate permitting process.

Recommendation: No EIS is required.

If an EIS is not required, explain why the EA is an appropriate level of analysis: The current permit action is for the installation and operation of a natural gas compressor engines. Permit #2792-03 includes conditions and limitations to ensure the engines will operate in compliance with all applicable rules and regulations. In addition, there are no significant impacts associated with this proposal.

Other groups or agencies contacted or which may have overlapping jurisdiction: Montana Historical Society – State Historic Preservation Office, Natural Resource Information System – Montana Natural Heritage Program

Individuals or groups contributing to this EA: Department of Environmental Quality – Air Resources Management Bureau, Montana Historical Society – State Historic Preservation Office, Natural Resource Information System – Montana Natural Heritage Program

EA prepared by: Chris Ames Date: December 20, 2004